TWI329207B - Modulation differential confocal microscopy - Google Patents

Modulation differential confocal microscopy Download PDF

Info

Publication number
TWI329207B
TWI329207B TW96108842A TW96108842A TWI329207B TW I329207 B TWI329207 B TW I329207B TW 96108842 A TW96108842 A TW 96108842A TW 96108842 A TW96108842 A TW 96108842A TW I329207 B TWI329207 B TW I329207B
Authority
TW
Taiwan
Prior art keywords
confocal imaging
imaging system
light
measured
modulation
Prior art date
Application number
TW96108842A
Other languages
Chinese (zh)
Other versions
TW200837385A (en
Inventor
Fu Jen Kao
Chau Hwang Lee
Chung Hsing Yang
Chung Jiun Lee
Original Assignee
Univ Nat Yang Ming
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Yang Ming filed Critical Univ Nat Yang Ming
Priority to TW96108842A priority Critical patent/TWI329207B/en
Publication of TW200837385A publication Critical patent/TW200837385A/en
Application granted granted Critical
Publication of TWI329207B publication Critical patent/TWI329207B/en

Links

Description

13292071329207

P060072-TW 九、發明說明: 【發明所屬之技術領域】 本發明提供了一種新的光學顯微術,其工作原理利 用移動調變及鎖相偵測與共焦顯微術極高之三度空間解 析度,以獲得極高的橫向與縱向位移解析率(即位移靈敏 度,displacement sensitivity) ’並可藉待測物體反應與調 變頻率間之相位差推測出物體的力學特性。近年來,共 焦顯微術更結合了雷射光譜學的技術,例如雷射激發螢 光、多光子激發、拉叉散射(Raman scattering)、譜頻產 生(harmonics generation)、光致電流(optical beam induced current)等,在生物組織的研究、材料與半導體元件特性 的觀測等領域中,是極為有用的工具。 【先前技術】 共焦顯微術在西元1957年由Marvin Minsky提出完 整的概念,並在西元1961年獲得美國國家專利。然而 受限於當時沒有高功率的空間同調(spatial c〇herent)光 源’無法立刻得到廣泛的注意與應用。直到雷射發明以 後,共焦顯微術才開始有長足的發展。 共焦顯微術的信號光來自雷射光束經大數值孔徑 (numerical aperture)的聚焦元件聚焦下,焦點處的被測物 所發出的螢光、反射光或散射光;聚焦區之外的光線則 被光4貞測器前的空間遽波器(spatial filter)擋住。在聚焦 區外的信號光不會被偵測到,因而具有縱向深度的解析 6P060072-TW IX. INSTRUCTIONS: [Technical Field] The present invention provides a new optical microscopy whose working principle utilizes a three-dimensional spatial analysis of motion modulation, phase lock detection and confocal microscopy Degree, in order to obtain extremely high lateral and longitudinal displacement resolution (ie displacement sensitivity), and can estimate the mechanical properties of the object by the phase difference between the reaction of the object to be measured and the modulation frequency. In recent years, confocal microscopy has combined laser spectroscopy techniques such as laser excitation fluorescence, multiphoton excitation, Raman scattering, harmonic generation, and optical beam induced. Current) is an extremely useful tool in the fields of biological tissue research, observation of materials and semiconductor device characteristics. [Prior Art] Confocal microscopy was proposed by Marvin Minsky in 1957 and obtained the US national patent in 1961. However, limited spatial c〇herent light sources without high power at the time were not immediately available for widespread attention and application. Confocal microscopy did not begin to develop until after the invention of the laser. The signal light of confocal microscopy is from the laser beam that is focused by a numerical aperture of a numerical aperture, the fluorescent light, reflected light or scattered light emitted by the object at the focus; the light outside the focus area is The spatial filter in front of the light detector is blocked. Signal light outside the focus area is not detected and thus has a longitudinal depth analysis 6

P060072-TW 月b力。傳統共焦顯W術典型的信號縱向反應曲線約為一 sine平方函數’橫向反應曲線則為Airy disc函數平方, 而空間解析度即是這些反應曲線函數的半高寬,大約與 被聚焦光束的共焦參數(confocal parameter)相等。本發 與傳統共焦顯微術的不同之處,是它工作在橫向或縱向反 應曲線的線性斜線區,目標物位移會導致共焦橫向或縱向 訊號靈敏的差動變化’因而能大幅提高橫向或縱向位移解 析率。本技_橫向或縱向位移解析率㈣、統雜訊的極限 決定’且能由鎖㈣測量雜本移動時與調㈣號的相位 差读測物體的力學特性(如楊氏係數)。位移解析率不同於 受限於光波繞射極限的空間分辨率(spatial res〇lmi〇n)。利 用調變與差動的方式可大幅提昇位移靈敏度 (d1Splacement sensi躺y),但這並不等同於提昇空間 率。 . 【發明内容】 鑑於以上所述傳統共焦顯微 測與訊號處理方:以= 續未有之空間位移騎率。彻在丘 應曲線的線性斜率區,信號強::顯 Ϊ發=?!·〗、的高度與橫向位移變化。利用 原理2 〶的橫向與縱向位移解析率。其工作 在傳統共錢微術中,_㈣得到的光信號強度P060072-TW month b force. The typical signal longitudinal response curve of the traditional confocal display is about a sine square function. The lateral response curve is the square of the Airy disc function, and the spatial resolution is the full width and width of the function of these reaction curves. The confocal parameters are equal. The difference between this and traditional confocal microscopy is that it works in the linear oblique line of the lateral or longitudinal response curve, and the displacement of the target will result in a sensitive differential change of the confocal lateral or longitudinal signal', thus greatly improving the lateral or vertical direction. Displacement resolution. This technique _ lateral or longitudinal displacement resolution (four), the limit of the noise control determines 'and can be used to measure the mechanical characteristics of the object (such as Young's coefficient) by measuring the phase difference between the movement of the miscellaneous (4) and the coordinate (4). The displacement resolution is different from the spatial resolution (spatial res〇lmi〇n) limited by the diffraction limit of the light wave. The modulation sensitivity can be greatly improved by using modulation and differential methods (d1Splacement sensi lying y), but this is not equivalent to increasing the space ratio. SUMMARY OF THE INVENTION In view of the conventional confocal microscopy and signal processing described above, the space displacement rate is not continued. In the linear slope region of the curve, the signal is strong:: the height of the burst = ?! · 〗, the height and lateral displacement changes. Use the principle 2 横向 lateral and longitudinal displacement resolution. Its work in the traditional total money micro-surgery, _ (four) obtained optical signal strength

P060072-TW 與目標物的縱向位移的關係約為一 sine平方函數曲線 (圖一)’橫向解析度則為Airy disc函數平方(圖二)。 此sine平方函數曲線的極大值所對應的高度即為探測用 聚焦元件的焦點。雖然在焦點處可得到最大的信號強 度,但該處"is號強度對目標物位移的斜率卻為愛,表干 在該位置共焦信號對目標物位移不敏感》特別是當信號 光來自物體的表面或物體内部的介面時,將目標物置於 焦點處並不能得到最高的縱向解析率。如果將目標物高 度先調整到此sine平方函數曲線的線性斜率區(圖一中 以方框標示部份),則目標物縱向位移會引起偵測器所 知到的光心號強度的差動變化’所造成信號大小的改變 對高度的微小差異極為敏感’因而能大幅提高縱向解析 率。同樣的原理亦可用來大幅提昇横向位移之靈敏度 (如圖二中以方框標示部份),其效果相當於將原有2 共焦影像做橫向微分處理,以突顯影像中高空間頻率的 成分。 本發明為 調變差動共焦顯微系統,如圖三所干。 此系統使用具有空間同調性的光源1(Μ,以大數值孔^ 聚焦元件105將探測光線聚焦至被測物1〇6表面,再用 光偵測器偵測被測物106表面的反射光旦。 ^ 0g , 里光偵測益1 1 1 刖置一工間濾波器(Spatial filter) 121以產 縱向反·應。將被測物100的高度先行微,二… 、 向反應的線性斜率區,再進行二維料/ W述共焦縱 測器111的信號對表面高度的差動變:。我們記錄光偵 化’就能以極高的 1329207The relationship between P060072-TW and the longitudinal displacement of the target is about a sine square function curve (Fig. 1). The horizontal resolution is the square of the Airy disc function (Fig. 2). The height corresponding to the maximum value of the sine square function curve is the focus of the focusing element for detection. Although the maximum signal strength is obtained at the focus, the slope of the intensity of the "is intensity on the target is love, and the confocal signal is not sensitive to the displacement of the target at this position, especially when the signal light comes from When the surface of an object or the interface inside the object is placed at the focus, the highest longitudinal resolution is not obtained. If the height of the target is first adjusted to the linear slope of the sine square function curve (the part marked by the box in Figure 1), the longitudinal displacement of the target will cause the difference of the intensity of the optical core known by the detector. The change in signal size caused by the change 'is extremely sensitive to small differences in height' and thus can greatly increase the vertical resolution. The same principle can also be used to greatly increase the sensitivity of the lateral displacement (as indicated by the box in Figure 2). The effect is equivalent to laterally differentiating the original 2 confocal image to highlight the high spatial frequency components of the image. The present invention is a modulated differential confocal microscopy system, as shown in Figure 3. This system uses a light source 1 with spatial coherence (Μ, focusing the detection light to the surface of the object 1〇6 with a large value hole, and then detecting the reflected light on the surface of the object 106 with a photodetector. ^ 0g , 里光检测益1 1 1 一 一 工 工 滤波器 滤波器 121 121 121 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 121 以 121 以 121 以 121 以 以 。 。 Zone, then carry out the two-dimensional material / W the confocal longitudinal detector 111 signal to the surface height of the differential: We record the light detection 'can be extremely high 1329207

P060072-TW 【圖式簡單說明】 圖一:共焦顯微術中,信號強度與目標物的縱向位移的 關係。方框標示部份為線性斜率區。 圖二:共焦顯微術中,信號強度與目標物的橫向位移的 關係。方框標示部份為線性斜率區。 圖三:調變差動式共焦顯微術原型系統架構。 圖四:使用數值孔徑為0.85的顯微物鏡為探測聚焦元件 時,光偵測器測得的信號大小隨目標物高度位移不同的 變化情形。實心圓點是量測到的信號值,而實線為量測 值的線性套適曲線(fitting curve)。 【主要元件符號說明】 101雷射光源 102擴束鏡 103分光器 104光學掃描器 105, 109聚焦元件 106被測物 107高頻位置調整器 108位移平台 110針孔 111光偵測器 112鎖相迴路 113電腦 121空間濾波器 14P060072-TW [Simple description of the diagram] Figure 1: Relationship between signal intensity and longitudinal displacement of the target in confocal microscopy. The box marked part is a linear slope area. Figure 2: Relationship between signal intensity and lateral displacement of the target in confocal microscopy. The box marked part is a linear slope area. Figure 3: Prototype system architecture for modulated differential confocal microscopy. Figure 4: When a microscope objective with a numerical aperture of 0.85 is used to detect the focusing element, the magnitude of the signal measured by the photodetector varies with the height of the target. The solid dot is the measured signal value, and the solid line is the linear fitting curve of the measured value. [Main component symbol description] 101 laser light source 102 beam expander 103 beam splitter 104 optical scanner 105, 109 focusing element 106 object 107 high frequency position adjuster 108 displacement platform 110 pinhole 111 light detector 112 phase lock Loop 113 computer 121 spatial filter 14

Claims (1)

1329207 P060072-TW 十、申請專利範圍: 4、一種共焦成像系統,包含: 一雷射光源,該光源所發出的光束經由一光束擴大元件和 一分光元件,再經由一聚焦元件聚焦至一被測物上; 一回饋光以被測物為起點經由原路徑返回該分光元件,由 該分光元件導入一空間濾波器造成一共焦成像;及 一光偵測器偵測該共焦成像並連接一鎖相迴路,該鎖相迴 路和一調變控制器互相交換信號; 上述調變控制器控制一調變模組產生一位移調變,藉由鎖 相迴路偵測因位移調變所引起之訊號變化來提升共焦成 像系統之訊嗓比和位移靈敏度。 2、 如申請專利範圍第1項所述之共焦成像系統,其中該回饋 光可由被測物受激發而發出,或由散射或反射入射光而產 生。 3、 如申請專利範圍第1項所述之共焦成像系統,其中該空間 濾波器包含一聚焦元件和一針孔。 4、 如申請專利範圍第1項所述之共焦成像系統,另外包括一 平台以改變被測物在空間中的位置,該平台可將被測物移 動至一位置,該位置下系統具有最高的空間位移解析率。 15 1329207 P060072-TW 5'如申請專利範圍第4項所述之共焦成像系統,其中獲得最 高的空間位移解析率的方法為使用該空間濾波器測得的 信號強度與被測物表面和聚焦元件的距離關係為一鐘形 函數曲線之關係,在該函數曲線的線性斜率區中取適當的 區域使得由距離的變化所引起的差動改變正比於被測物 表面的高度變化,操作系統於該區域。 6、 如申請專利範圍第5項所述之共焦成像系統,其中由距離 的變化所引起的差動改變亦正比於水平偏移量。 7、 如申請專利範圍第4項所述之共焦成像系統,其中該平台 具有一維或二維掃描功能,以達成對被測物全表面高度與 水平界面變化之測量。 8、 如申請專利範圍第7項所述之共焦成像系統,其中該平台 可使用壓電式、機械式、電磁式、或聲波式位移平台。 9、 如申請專利範圍第7項所述之共焦成像系統,其中該平台 為一具有快速位移震動的平台裝置。 10、 如申請專利範圍第1項所述之共焦成像系統,其中該調 16 1329207 P060072-TW 變模組藉由靈敏的驅動器造成週期性位移,改變該被測物 與該聚焦元件的相對位置。 11、 如申請專利範圍第10項所述之共焦成像系統,其中該調 變模組在移動該被測物的調變下,利用該鎖相迴路獲得 兩者間的相位差。 12、 如申請專利範圍第11項所述之共焦成像系統,其中該相 位差由物體的力學特性決定,因而可以利用該相位差訊 號得到被測物的力學特性。 13、 如申請專利範圍第1項所述之共焦成像系統,其中該調 變模組藉由週期性改變聚焦元件之聚焦黠與樣品的相 對位置,而該鎖相迴路偵測在調變下的該回饋光。 14、 如申請專利範圍第13項所述之共焦成像系統,其中該調 變模組置於該聚焦元件和該分光元件中的光路中。 15、 如申請專利範圍第14項所述之共焦成像系統,其中該調 變模組,可使用液晶平板、可變形鏡面,或其他能改變 光波波前相位的元件。 17 1329207 P060072-TW 16、 如申請專利範圍第1項所述之共焦成像系統,其中該聚 焦元件為大數值孔徑聚焦元件。 17、 如申請專利範圍第16項所述之共焦成像系統,其中該大 數值孔徑聚焦元件可為顯微鏡物鏡、光纖出口、夫瑞奈 波域片或GRIN鏡其中之一。 18、 如申請專利範圍第1項所述之共焦成像系統,其中該光 偵測器為能產生與接受光量成正比的信號之元件。 19、 如申請專利範圍第18項所述之共焦成像系統,其中該光 偵測器為電二極體、崩瀉式光電二極體、光電倍加管、 電荷輕合元件或螢光屏其中之一。 2〇 * 、如申請專利範圍第1項所述之共焦成像系統,其中該調 變控制器為一電腦系統,該電腦系統接收該光偵測器的 k號’並發出信號至調變模組。 21、一種共焦成像系統,包含: 一雷射光源,該光源為能產生雙光子影像的脈衝雷射, 其所發出的光束經由一聚焦元件聚焦至一被測物上; 該被測物之部分區域吸收雙光子的頻率而激發,該激發 18 P060072-TW 僅發生於該光束聚焦的高強度區域,而其效果等同於一 具有該雙光子頻率之和的單光子之激發且該雙光子的 點擴散函數具有單光子共焦成像的空間滤波效果;及 -光情測器收集該被測物受激發而發出的激發光而形成 共焦成像。 22、如申請專利範圍第21$所述之共焦成像系統,另外包括 -平台以改變被測物在空間中的位置,該平台可將被測 物移動至—位置’該位置下系統具有最高的空間位移解 23、 如^請專·圍第22韻述之共线料統,其中獲得 取间的空間位移解析率的方法為使用該 的信,被測物表面和聚焦元件的距離關夂= =:Γ’在該函數曲線的線性斜率區中取適 田的b域使得由距離的變 測物声㈣引起的差動改變正比於被 、物表面的尚度變化,操作系統於該區域。 24、 如申請專利範圍第21項所述之共隹 偵測器為驗生與錢光量絲_信號^件㈣光 25如申明專利範圍第24項所述之共焦成像系統,其中該光 1329207 P060072-TW 偵測器為電二極體、崩瀉式光電二極體、光電倍加管、 電荷耦合元件或螢光屏其中之一。 201329207 P060072-TW X. Patent Application Range: 4. A confocal imaging system comprising: a laser light source, the light beam emitted by the light source is focused by a beam expanding element and a beam splitting element, and then focused by a focusing element On the measuring object, a feedback light returns to the light splitting component via the original path starting from the object to be measured, and the light splitting component is introduced into a spatial filter to cause a confocal imaging; and a photodetector detects the confocal imaging and connects one a phase-locked loop, the phase-locked loop and a modulation controller exchange signals with each other; the modulation controller controls a modulation module to generate a displacement modulation, and the signal caused by the displacement modulation is detected by the phase-locked loop Changes to improve the signal-to-noise ratio and displacement sensitivity of the confocal imaging system. 2. The confocal imaging system of claim 1, wherein the feedback light is generated by excitation of the object to be measured or by scattering or reflecting incident light. 3. The confocal imaging system of claim 1, wherein the spatial filter comprises a focusing element and a pinhole. 4. The confocal imaging system according to claim 1, further comprising a platform for changing the position of the object to be tested in the space, the platform moving the object to a position, wherein the system has the highest The spatial displacement resolution rate. 15 1329207 P060072-TW 5' The confocal imaging system of claim 4, wherein the method for obtaining the highest spatial displacement resolution is the signal intensity measured using the spatial filter and the surface and focus of the object to be measured The distance relationship of the components is a relationship of a bell-shaped function curve, and an appropriate region is taken in the linear slope region of the function curve so that the differential change caused by the change of the distance is proportional to the height change of the surface of the object to be measured, and the operating system The area. 6. The confocal imaging system of claim 5, wherein the differential change caused by the change in distance is also proportional to the horizontal offset. 7. The confocal imaging system of claim 4, wherein the platform has a one-dimensional or two-dimensional scanning function to achieve measurement of a full surface height and horizontal interface change of the measured object. 8. The confocal imaging system of claim 7, wherein the platform can use a piezoelectric, mechanical, electromagnetic, or sonic displacement platform. 9. The confocal imaging system of claim 7, wherein the platform is a platform device having rapid displacement vibration. 10. The confocal imaging system of claim 1, wherein the 16 1329207 P060072-TW variable module is periodically displaced by a sensitive actuator to change the relative position of the object to be measured. . 11. The confocal imaging system of claim 10, wherein the modulation module uses the phase-locked loop to obtain a phase difference between the two while moving the object to be measured. 12. The confocal imaging system of claim 11, wherein the phase difference is determined by the mechanical properties of the object, and the phase difference signal can be utilized to obtain the mechanical properties of the object to be measured. 13. The confocal imaging system of claim 1, wherein the modulation module periodically changes the relative position of the focus element of the focusing element to the sample, and the phase locked loop detects the modulation. The feedback light. 14. The confocal imaging system of claim 13, wherein the modulation module is disposed in the optical path of the focusing element and the beam splitting element. 15. The confocal imaging system of claim 14, wherein the modulation module can use a liquid crystal panel, a deformable mirror, or other component that changes the phase of the wavefront of the light wave. The confocal imaging system of claim 1, wherein the focusing element is a large numerical aperture focusing element. 17. The confocal imaging system of claim 16, wherein the large numerical aperture focusing element is one of a microscope objective, an optical fiber exit, a Fresnel wave plate or a GRIN mirror. 18. The confocal imaging system of claim 1, wherein the photodetector is an element capable of generating a signal proportional to the amount of received light. 19. The confocal imaging system according to claim 18, wherein the photodetector is an electric diode, a collapsing photodiode, a photomultiplier tube, a charge-and-light component or a fluorescent screen. one. 2. The confocal imaging system of claim 1, wherein the modulation controller is a computer system that receives the k-number of the photodetector and sends a signal to the modulation mode. group. 21. A confocal imaging system, comprising: a laser source, which is a pulsed laser capable of generating a two-photon image, the emitted beam being focused onto a measured object via a focusing element; The partial region is excited by absorbing the frequency of the two-photon, which occurs only in the high-intensity region where the beam is focused, and the effect is equivalent to the excitation of a single photon having the sum of the two photon frequencies and the two-photon The point spread function has a spatial filtering effect of single photon confocal imaging; and the photosensor collects the excitation light emitted by the detected object to form a confocal image. 22. The confocal imaging system of claim 21, further comprising a platform to change the position of the object under test, the platform moving the object to the position - the position has the highest The spatial displacement solution 23, such as ^ 专 · 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 共 共 共 共 共 共 共 共 共 共 共= =: Γ 'In the linear slope region of the function curve, the b domain of the field is made such that the differential change caused by the distance of the sound of the object (4) is proportional to the change of the surface of the object, and the operating system is in the region. . 24. The conjugate detector according to claim 21 is a confocal imaging system according to claim 24, wherein the light is 1329207. The P060072-TW detector is one of an electric diode, a collapsed photodiode, a photomultiplier tube, a charge coupled device or a fluorescent screen. 20
TW96108842A 2007-03-14 2007-03-14 Modulation differential confocal microscopy TWI329207B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96108842A TWI329207B (en) 2007-03-14 2007-03-14 Modulation differential confocal microscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96108842A TWI329207B (en) 2007-03-14 2007-03-14 Modulation differential confocal microscopy

Publications (2)

Publication Number Publication Date
TW200837385A TW200837385A (en) 2008-09-16
TWI329207B true TWI329207B (en) 2010-08-21

Family

ID=44820190

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96108842A TWI329207B (en) 2007-03-14 2007-03-14 Modulation differential confocal microscopy

Country Status (1)

Country Link
TW (1) TWI329207B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5955574B2 (en) * 2012-02-03 2016-07-20 株式会社東光高岳 3D shape measuring device
CN104296684B (en) * 2014-11-05 2016-11-30 哈尔滨工业大学 Film thickness error bearing calibration based on surface coating confocal microscopy topography measurement device
CN109187494A (en) * 2018-11-13 2019-01-11 北京理工大学 Femtosecond laser machined parameters differential confocal Raman spectra in-situ monitoring method and device

Also Published As

Publication number Publication date
TW200837385A (en) 2008-09-16

Similar Documents

Publication Publication Date Title
US5804813A (en) Differential confocal microscopy
Ghislain et al. Measurement of small forces using an optical trap
CN103439254B (en) A kind of point pupil confocal laser Raman spectra test method and device
US9618445B2 (en) Optical microscopy systems based on photoacoustic imaging
US8418538B2 (en) High frequency deflection measurement of IR absorption
JP5828359B2 (en) Mechanical detection of Raman resonance
CN110168383A (en) Use the IR Characterization for the sample that peak force touches
WO2015032278A1 (en) Method and device for testing spectral pupil laser differential confocal raman spectrum
CN104482880B (en) Laser stimulated emission depletion three-dimensional super-resolution light splitting pupil differential confocal imaging method and device
CN104296685B (en) The method measuring smooth free form surface sample based on differential STED
EP2795346B1 (en) Optical and atomic force microscopy integrated system for multi-probe spectroscopy measurements applied in a wide spatial region with an extended range of force sensitivity.
KR20210104651A (en) Laser emission absorption measurement system by sample
KR101004800B1 (en) Confocal microscopy
US8209767B1 (en) Near field detection for optical metrology
TWI329207B (en) Modulation differential confocal microscopy
US6833923B2 (en) Method for 3D object-scanning
Zhou et al. High-sensitivity laser confocal tomography based on frequency-shifted feedback technique
CN106198729B (en) A kind of sound Lamb wave self focusing light interferential scanning detection system
JP5453407B2 (en) Coherent nonlinear microscopy system and method with modulation of focal volume for probing nanostructures of organized materials
JPH0949849A (en) Device suitable for measuring near field of work piece
CN104614846B (en) Reflection type spectral pupil differential confocal-photoacoustic microimaging device and method
WO2021089010A1 (en) Optical microscopic device for focal point modulation on basis of resonant galvanometer, and method
KR100978600B1 (en) Scanning optical measurement apparatus having super resolution
KR101101988B1 (en) Near scanning photoacoustic apparatus
CN117147458B (en) Multiple scattered photon detection enhanced microscopic imaging medical system

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees