TW200837385A - Modulation differential confocal microscopy - Google Patents

Modulation differential confocal microscopy Download PDF

Info

Publication number
TW200837385A
TW200837385A TW96108842A TW96108842A TW200837385A TW 200837385 A TW200837385 A TW 200837385A TW 96108842 A TW96108842 A TW 96108842A TW 96108842 A TW96108842 A TW 96108842A TW 200837385 A TW200837385 A TW 200837385A
Authority
TW
Taiwan
Prior art keywords
confocal imaging
imaging system
modulation
phase
confocal
Prior art date
Application number
TW96108842A
Other languages
Chinese (zh)
Other versions
TWI329207B (en
Inventor
Fu-Jen Kao
Chau-Hwang Lee
Chung-Hsing Yang
Chung-Jiun Lee
Original Assignee
Univ Nat Yang Ming
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Yang Ming filed Critical Univ Nat Yang Ming
Priority to TW96108842A priority Critical patent/TWI329207B/en
Publication of TW200837385A publication Critical patent/TW200837385A/en
Application granted granted Critical
Publication of TWI329207B publication Critical patent/TWI329207B/en

Links

Landscapes

  • Microscoopes, Condenser (AREA)

Abstract

By employing the modulation technique (with phase-lock loop detection) and the differential spatial displacement sensitivity of confocal imaging, we are claiming a scanning imaging technique with spatial response much better than conventional confocal microscopy and a capability to determine the kinetic mechanical properties of objects. The axial response curve of confocal microscopy is approximately a sinc2 curve while the lateral response curve is the square of the Airy disc function. The corresponding spatial resolution is the full width at half maximum of these curves. In addition to the very high resolution claimed with differential confocal microscopy, our technique also detects the phase difference between the modulation and the response of the measured object that gives extra information to determine the mechanical properties of the object (such as Young's modulus). Combined with scanning mechanisms, this technique can be used to determine, with great accuracy, the specimen's kinetic behavior in addition to its 3D profiles.

Description

200837385200837385

P060072-TW 九、發明說明: 【發明所屬之技術領域】 本發明提供了 一種新的光學顯微術,其工作原理利 用移動調變及編目制與共f、麵術極高之三度空間解 析度’以獲得極高的橫向與縱向位移解析率(即位移靈敏 ' 1 ’dlsplacement sensitivity),並可藉待測物體反應與調 · 變頻率間之相位差推測出物體的力學特性。近年來,共 ㈣微術更結合了雷射光譜學的技術,例如雷射激發螢 光夕光子Μ發、拉哭散射(Raman scattering)、讀頻產 生(harmonics generation)、光致電流(_如b_迅如㈤ current)等,在生物組織的研究、材料與半導體元件特性 的觀測等領域中,是極為有用的工具。 【先前技術】 共焦頌欲術在西元1957年由Marvin Minsky提出完 φ 整的概念,並在西元1961年獲得美國國家專利。然而 受限於當時沒有高功率的空間同調(spatial c〇herem)光 源,無法立刻得到廣泛的注意與應用。直到雷射發明以 後,共焦顯微術才開始有長足的發展。 共焦顯微術的信號光來自雷射光束經大數值孔徑 (numerical aperture)的聚焦元件聚焦下,焦點處的被測物 所發出的螢光、反射光或散射光;聚焦區之外的光線則 被光偵測器前的空間濾、波器(spatial filter)檔住。在聚焦 區外的信號光不會被偵測到,因而具有縱向深度的解析 6 200837385P060072-TW IX. INSTRUCTIONS: [Technical Field] The present invention provides a new optical microscopy, the working principle of which utilizes the mobile modulation and cataloging system and the common three-degree spatial analysis of f and surface techniques. Degree 'to obtain extremely high lateral and longitudinal displacement resolution (ie, displacement sensitivity 1 'dlsplacement sensitivity), and can estimate the mechanical properties of the object by the phase difference between the measured object's response and the modulation and change frequency. In recent years, a total of (4) micro-surgery has combined laser spectroscopy techniques, such as laser-excited fluorescent photon emission, Raman scattering, harmonic generation, photocurrent (_ b_Xunru (5) current), etc., is an extremely useful tool in the fields of biological tissue research, observation of materials and semiconductor component characteristics. [Prior Art] Confocal ambition was proposed by Marvin Minsky in 1957, and was awarded the national patent in 1961. However, limited to the high-power spatial c〇herem light source at the time, it was not immediately available for widespread attention and application. Confocal microscopy did not begin to develop until after the invention of the laser. The signal light of confocal microscopy is from the laser beam that is focused by a numerical aperture of a numerical aperture, the fluorescent light, reflected light or scattered light emitted by the object at the focus; the light outside the focus area is The spatial filter and the spatial filter in front of the photodetector are blocked. Signal light outside the focus area is not detected and thus has a longitudinal depth resolution 6 200837385

P060072-TW 能力。傳統共焦顯微術典型的信號縱向反應曲線約為一 dnc平方函數,檢向反應曲線則為Airy disc函數平方, 而空間解析度即是這些反應曲線函數的半高寬,大約與 被聚焦光束的共焦參數(conf〇cal parameter)相等。本發明 與傳統共㈣微術的不同之處,是它玉作在橫向級向反 應曲線的線性斜線區,目標物位移會導致共焦橫向或縱向 訊號靈敏的島變化,_能域提高橫向或縱向位移解 析率。本技術的横向或縱向位移解析率㈣統雜訊的極限 決定,且能_相侧制樣本移動時與調變訊號的相位 箱測物體的力學特性(如揚氏係數)。位移解析率不同於 文限於級繞射極限的空間分辨率(spatiai刪祕岭利 用调變與差動的方式可大 ...t 人巾田棱歼位移靈敏度 (displacement sensitivity),但這廿 τ m 率。 纪亚不專同於提昇空間分辨 【發明内容】 鑑於以上所述傳統共焦顯 明以差分與賴—鎖相翻輿 +之特性、’本發 前所未有之空間位移解析率。=理方式猎以達成 應曲線的線性斜率區,信號心焦顯微術空間反 化,來偵測物體表面微小的高;二:物位置敏感的變 本發明可以獲得極高的橫广、杈僉位移變化。利用 原理如下:冋的“與縱向位移解析率。其工作 在傳統共焦顯微術中,如 °所件到的光信號強度 7 200837385P060072-TW capability. The typical signal longitudinal response curve of traditional confocal microscopy is about a dnc square function, and the direction-finding response curve is the square of the Airy disc function, and the spatial resolution is the full width at half maximum of these reaction curve functions, which is about the total of the focused beam. The conf〇cal parameters are equal. The difference between the present invention and the traditional co-(4) micro-surgery is that it is in the linear oblique line region of the transverse-level response curve, and the displacement of the target causes the confocal lateral or longitudinal signal sensitive island change, and the _ energy region improves the lateral or Longitudinal displacement resolution. The lateral or longitudinal displacement resolution of the technique (4) determines the limit of the noise, and can measure the mechanical properties of the object (such as the Young's modulus) when the sample is moved and the phase of the modulated signal is moved. The displacement resolution is different from the spatial resolution of the limit of the diffraction limit. The spatiai method can be used to adjust the displacement sensitivity. m rate. Ji Ya does not specialize in the promotion of spatial resolution [invention] In view of the above-mentioned traditional confocal display, the difference between the difference and the Lai-lock-inversion +, the unprecedented spatial displacement resolution of the original. Hunting to achieve the linear slope area of the curve, the signal focus microscopy space reversal to detect the tiny height of the surface of the object; Second: the object position sensitive change The invention can obtain extremely high transverse and wide displacement changes. The principle of utilization is as follows: 冋 "with the resolution of longitudinal displacement. It works in traditional confocal microscopy, such as the optical signal intensity of the piece 7 200837385

P060072-TW 與目標物的縱向位移的關係約為-sine平方函數曲線 (圖),&向解析度則為Airy disc函數平方(圖—)。 =騰平方函數曲線的極大值所對應的高度即為探測用 聚焦凡件的焦點。雖然在焦點處可得到最大的信號強 度’但該處信說強度對目標物位移的斜率卻為零,表示 在該位置共焦>^號對目標物位移不敏感。特別是當信號 光來自物體的表面或物體内部的介面時,將目標物置於The relationship between P060072-TW and the longitudinal displacement of the target is about the -sine square function curve (Fig.), and the resolution is the square of the Airy disc function (Fig. = The height corresponding to the maximum value of the square function curve is the focus of the focus component for the probe. Although the maximum signal strength is obtained at the focus, the slope of the intensity of the target is zero, indicating that the confocal >^ is not sensitive to the target displacement. Especially when the signal light comes from the surface of the object or the interface inside the object, the target is placed

焦點處並不能得到最高的縱向解析率。如果將目標物高 度先凋整到此sinc平方函數曲線的線性斜率區(圖一中 以方框標示部份)’則目標物縱向位移會引起偵測哭所 得^的光信號強度的差動變化,所造成信號大小的=變 對高度的微小差異極為敏感,因而能大幅提高縱向解析 率。同樣的原理亦可用來大幅提昇橫向位移之靈敏度 (如圖二中以方框標示部份),其效果相當於將原有之 共焦影像做橫向微分處理,以突顯影像中高空間頻率·的 成分。 本發明為一調變差動共焦顯微系統,如圖三所示。 此系統使用具有空間同調性的光源1〇丨,以大數值孔徑 聚焦元件105將探測光線聚焦至被測物1〇6表面,再用 光债測器债測被測物106表面的反射光量。光債測器in 莉置一空間濾波器(spatial filter) 121从產生共焦成像的 縱向反應。將被測物106的南度先行微調至前述共焦縱 向反應的線性斜率區,再進行二維掃描。我們記錄光偵 測器Π1的信號對表面高度的差動變化,就能以極高的 8 200837385The highest vertical resolution is not available at the focus. If the target height is first trimmed to the linear slope region of the sinc square function curve (the part indicated by the box in Figure 1), then the longitudinal displacement of the target will cause a differential change in the intensity of the light signal detected by the crying. The resulting signal size is extremely sensitive to small differences in height, which can greatly increase the vertical resolution. The same principle can also be used to greatly increase the sensitivity of the lateral displacement (as indicated by the box in Figure 2). The effect is equivalent to the lateral differential processing of the original confocal image to highlight the high spatial frequency of the image. . The invention is a modulated differential confocal microscopy system, as shown in FIG. This system uses a light source 1 具有 having a spatial coherence, focusing the detecting light to the surface of the object 1 〇 6 with a large numerical aperture focusing element 105, and measuring the amount of reflected light on the surface of the object 106 by an optical debt detector. The optical debt detector is placed in a spatial response from the longitudinal response of the confocal imaging. The southness of the object to be measured 106 is finely adjusted to the linear slope region of the aforementioned confocal longitudinal reaction, and then subjected to two-dimensional scanning. We recorded the differential change of the signal height of the photodetector Π1 to the surface height, which can be extremely high. 8 200837385

P060072-TW 精確度獲*物體表面,在移動調變下三度空間高度變化 影像。 、生在調艾部分,樣品可藉由聲波或壓電式驅動器等方 式造成週恤位移,改變其無紐頭(或其卿成之點 擴,函數)間的相對位置。另外也可在光路中置放液晶調 ,器\週期性改變聚焦點與樣品的相對位置。如此則可 藉由鎖相放大迴路偵測因位移調變所引起之訊號變 化。因鎖相迴路的使用得以大幅提昇訊噪比,使位移靈 ^度超越單純之共焦或差動顯微術。另外,鎖相迴路所 挺t、之相位差資汛(來自週期性調變之參考訊號與被測 訊號間的差異),可用以判讀待測物體的力學動態反應, 求取其關鍵之力學常數,如揚氏係數(Ymmg,s Modulus) 等,則是本發明的獨特優點。在下述的實際系統之詳細 描述中,將可更清楚地顯示本發明所應用的原理,使用 的物件及其優點。 調變一鎖相偵測原理如下所述:基本上調變訊號可 表不為: d(t)^d0+d} cos(^) + 〇(2ω) ⑴ 其中僅4項由鎖相迴路偵測,高諧頻項則可忽略。系統訊號 則為調變訊號與樣品反應的卷積(conv〇luti〇n): 坪) = c/lC〇S(a>0®i?(0,若假設樣品在位移調變下的反應可由 = 表示(或展開),則系統訊號 D⑴=1 f cos〇’ -多), (2) da + ω 9 200837385P060072-TW Accuracy is obtained on the surface of the object, and the height of the space is changed by three degrees under the motion modulation. In the part of the adjustment, the sample can be displaced by the sound wave or piezoelectric actuator, and the relative position between the no-head (or its expansion) function can be changed. In addition, the liquid crystal can be placed in the optical path, and the relative position of the focus point and the sample is periodically changed. In this way, the signal change caused by the shift modulation can be detected by the lock-in amplification circuit. Due to the use of the phase-locked loop, the signal-to-noise ratio is greatly improved, so that the displacement degree exceeds the simple confocal or differential microscopy. In addition, the phase difference loop of the phase-locked loop (the difference between the reference signal of the periodic modulation and the signal to be measured) can be used to interpret the mechanical dynamic response of the object to be measured, and obtain the critical mechanical constant. Such as the Young's Coefficient (Ymmg, s Modulus), etc., is a unique advantage of the present invention. In the detailed description of the actual system described below, the principles applied to the invention, the objects used and their advantages will be more clearly shown. The principle of modulation-phase-lock detection is as follows: Basically, the modulation signal can be expressed as: d(t)^d0+d} cos(^) + 〇(2ω) (1) Only 4 items are detected by the phase-locked loop The high harmonics are negligible. The system signal is the convolution of the modulation signal and the sample reaction (conv〇luti〇n): ping) = c/lC〇S (a>0®i? (0, if the reaction of the sample under the displacement modulation is assumed = indicates (or expands), then the system signal D(1)=1 f cos〇' -multi), (2) da + ω 9 200837385

P060072-TW 多=W〇為相位移並包含樣品的反應時間常數(或特性力學反 應)於其中。時間常數,r,可表示為 r=I = ItanW (3) 而相位則可藉由鎖相迴路偵測而得,即兩個正交(相位差為9〇 . 度)的輸出頻運y;/^rc〇s_) and為相位 • 偏移量(offset)。 • 【實施方式】 圖三為本發明之調變差動式共焦顯微術原型系統 架構。雷射光源101所發出的光束先經由一擴束鏡1〇2 擴大後再經由聚焦元件105聚焦至被測物1〇6上。光束 擴大的倍數疋使擴大後的光束半徑和聚焦元件1仍的焦 距長度比例能儘量接近聚焦元件105的數值孔徑。此舉 能減小縱向反應函數的半高寬以提高縱向空間的解析 率,同時縮小光束聚焦後在焦點上光點的大小,以達到 春 較高的橫向解析率。將被測物106置於一 3D高頻位置調 • 整器(3D high frequency displacement actuator) 107 上, 而3D高頻位置調整器107則架在另一個由電腦113控制 的3D位移平台(3D translation stage) 108上。首先將被 測物106與聚焦元件105的距離調整至接近聚焦元件1〇5 的焦距,再以3D高頻位置調整器107檄調至共焦顯微術 軸向反應曲線的線性斜率區,也就是調變差動式共焦顯 微術的工作區。電腦控制的3D位移平台1〇8是用來使被 測物106在與光線垂直的平面上做三維掃描。 10 200837385P060072-TW Multiple = W〇 is the phase shift and contains the reaction time constant (or characteristic mechanical response) of the sample. The time constant, r, can be expressed as r = I = ItanW (3) and the phase can be detected by the phase-locked loop, that is, two orthogonal (phase difference is 9 〇. degrees) output frequency y; /^rc〇s_) and is the phase • offset (offset). • [Embodiment] FIG. 3 is a schematic system architecture of a modulated differential confocal microscopy system of the present invention. The light beam emitted by the laser light source 101 is first enlarged by a beam expander 1 〇 2 and then focused by the focusing element 105 onto the object 1 〇 6 . The multiple of the beam expansion 疋 allows the enlarged beam radius and the focal length of the focusing element 1 to be as close as possible to the numerical aperture of the focusing element 105. This can reduce the full width at half maximum of the longitudinal response function to increase the resolution of the longitudinal space, while reducing the size of the spot at the focus after focusing the beam to achieve a higher lateral resolution in spring. The object to be tested 106 is placed on a 3D high frequency displacement actuator 107, and the 3D high frequency position adjuster 107 is placed on another 3D displacement platform controlled by the computer 113 (3D translation) Stage) 108. First, the distance between the object 106 and the focusing element 105 is adjusted to be close to the focal length of the focusing element 1〇5, and then adjusted to the linear slope region of the axial response curve of the confocal microscopy by the 3D high-frequency position adjuster 107, that is, the adjustment Work area for variable confocal microscopy. The computer controlled 3D displacement platform 1 〇 8 is used to cause the object 106 to be scanned in three dimensions on a plane perpendicular to the ray. 10 200837385

P060072-TW 本發明係使用一雷射或點光源當作此處的光源,聚 焦元件105則使用顯微鏡之物鏡,而雷射光源101會經 由影像光學掃描(scanning optics for imaging) 104 做二維 影像掃描。但回饋光對雷射會造成干涉效應,因此光路 中使用分光器(beam splitter) 103,物體表面的反射光 經分光器103導入光偵測器111之前,先通過由另一聚 焦元件109與針孔(pinhole) 110組成的空間濾波器121 _ 以造成共焦成像並濾去聚焦區外的光線。光偵測器111 測得的信號輸入電腦113中,由電腦113將信號大小配 合3D位移平台108的座標而得到三度空間立體影像。 需注意的是在測量前須先以同一被測物1〇6校準驅 動電流的變化量與物體高度的關係。這可利用已校準過 的3D高頻位置調整器107微調物體的高度,同時記錄光 偵測_ 111的彳§號大小而得到其線性關係。在線性工作 區内的量測值可以一直線來套適(fit),如圖四所示。而夂 • 校準點空間位置量測值對此套適曲線之方均根誤差 . (root-mean-square error)值就是系統的縱向解析率。依據 此套適直線可完成校準及解析度的4監定。以圖四為例, 使用數值孔徑為0·85的顯微物鏡為探測聚焦元件 時,動態範圍超過0.8微米,而系統縱向解析率為14务 米。 、 調變差動式共焦顯微術可以用任讨具高空間同調性 的光作為光源。例如改用更短波長的光源例如氮鑛雷射 200837385P060072-TW The present invention uses a laser or point source as the source here, the focusing element 105 uses the objective lens of the microscope, and the laser source 101 performs the 2D image via the scanning optics for imaging 104. scanning. However, the feedback light causes an interference effect on the laser. Therefore, a beam splitter 103 is used in the optical path. Before the reflected light of the surface of the object is introduced into the photodetector 111 via the optical splitter 103, the focus is passed through the other focusing element 109 and the needle. A spatial filter 121 _ consisting of a pinhole 110 causes confocal imaging and filters out light outside the focal zone. The signal measured by the photodetector 111 is input to the computer 113, and the size of the signal is matched by the computer 113 to the coordinates of the 3D displacement platform 108 to obtain a three-dimensional spatial stereoscopic image. It should be noted that the relationship between the amount of change in the drive current and the height of the object must be calibrated with the same object 1〇6 before measurement. This allows the height of the object to be fine-tuned using the calibrated 3D high-frequency position adjuster 107 while recording the size of the light-detecting _111 to obtain a linear relationship. The measured values in the linear working area can be fitted in a straight line, as shown in Figure 4.夂 • The calibration point spatial position measurement value is the square root error of the system. The (root-mean-square error) value is the longitudinal resolution of the system. According to this set of straight lines, calibration and resolution 4 can be completed. Taking Figure 4 as an example, when a microscope objective with a numerical aperture of 0·85 is used to detect the focusing element, the dynamic range exceeds 0.8 μm, and the longitudinal resolution of the system is 14 m. Modulated differential confocal microscopy can be used as a light source with high spatial coherence. For example, switching to a shorter wavelength source such as a nitrogen mine laser 200837385

P060072-TW (波長325奈米),將可得到更高的縱向及橫向解析率。 =統的錢_是㈣使_«、元件他的ί值孔 :=及=徑越小,動態範圍越大;然而所能達到 將隨之降低。以我們的原型系統為 杜=⑼數值孔握為〇.4的_物鏡為探測聚焦元 :广態範圍可達1〇微米’但縱向解析率變成8〇 示米,而棱向解析率大約為1.2微米。P060072-TW (wavelength 325 nm) will give higher longitudinal and lateral resolution. = The money of the system _ is (four) to make _«, the component his value hole: = and = diameter is smaller, the dynamic range is larger; however, the achievable will be reduced. In our prototype system, Du = (9) numerical hole grip is 〇. 4 _ objective lens for detecting focus element: wide range up to 1 〇 micron 'but the longitudinal resolution becomes 8 〇 meters, and the angular resolution is about 1.2 microns.

調變差動式共絲微術的縱向解析率 =源的輸出功率不穩定、光制器的内在雜訊、以及 力員比數位轉換益的誤差等因素,使各校準點空間位置 量測值對套適直線之方均根誤差不為G。改善所用的器 材,如使用功率穩^雷射(1)。而stablizediaser)、低雜訊 光偵測器及高解析率類比-數位轉換器(Analog/Digital C〇nverter)等,都能夠大幅提高縱向解析率。 本發明所揭之調變差動式共焦顯微術另可用被動鎖 核的鈦監賃;5雷射(Ti: Sap帅eLasei>)作為光源而形成 雙光子激發的成像。雙絲激發是指受激分子同時吸收 兩個光子,其效果如同吸收一個具有該兩個光子頻率之 和的單光子。因為需要兩個光子,故躍遷率(Tmnsisti〇n Rate)正比與人射絲度的平方,且因雙光子吸收截面 低故需極高的瞬間功率。鎖模鈦藍寶石雷射在氬離子雷 射激發下,其可調範圍從700nm至丨〇5〇nm,脈衝寬度可 短於10fs,而平均功率更超過iw。因為激發僅產生於 光束聚焦的高強度區,不需要使用針孔作為空間濾波 12 200837385The longitudinal resolution of the differential collinear microscopy = the instability of the output power of the source, the inherent noise of the optical controller, and the error of the power-to-digital conversion, so that the calibration position of each calibration point is measured. The square root error for the appropriate straight line is not G. Improve the materials used, such as using power stabilized lasers (1). Stablizediaser, low noise photodetectors, and high-resolution analog-to-digital converters (Analog/Digital C〇nverter) can greatly improve the vertical resolution. The modulated differential confocal microscopy disclosed in the present invention can also be used to form a two-photon excited imaging using a passively locked titanium scale; 5 laser (Ti: Sap handsome eLasei>) as a light source. Double-wire excitation means that the excited molecules absorb two photons at the same time, as if they were absorbing a single photon with the sum of the two photon frequencies. Since two photons are required, the transition rate (Tmnsisti〇n Rate) is proportional to the square of the human ray and requires a very high instantaneous power due to the low two-photon absorption cross section. The mode-locked titanium sapphire laser is excited by argon-ion laser excitation, and its adjustable range is from 700nm to 丨〇5〇nm. The pulse width can be shorter than 10fs, and the average power is more than iw. Since the excitation is only generated in the high-intensity region where the beam is focused, there is no need to use pinholes as spatial filtering. 12 200837385

P060072-TW 器,雙光子的點擴散函數即與針孔的單光子共焦一樣。 因此,在系統中,成像不一定經由原聚焦元件,而能經 由反射鏡在被測物106的另一面成像。For the P060072-TW, the two-photon point spread function is the same as the single-photon confocal pinhole. Therefore, in the system, imaging does not necessarily pass through the original focusing element, but can be imaged on the other side of the object 106 via the mirror.

1313

P060072-TW 200837385 【圖式簡單說明】 圖一:共焦顯微術中,信號強度與目標物的縱向位移的 關係。方框標示部份為線性斜率區。 圖二:共焦顯微術中,信號強度與目標物的橫向位移的 關係。方框標示部份為線性斜率區。 圖三:調變差動式共焦顯微術原型系統架構。 圖四:使用數值孔徑為0.85的顯微物鏡為探測聚焦元件 時,光偵測器测得的信號大小隨目標物高度位移不同的 變化情形。實心圓點是量測到的信號值,而實線為量測 值的線性套適曲線(fitting curve)。 【主要元件符號說明】 101雷射光源 102擴束鏡 103分光器 104光學掃描器 105, 109聚焦元件 106被測物 107高頻位置調整器 108位移平台 110針孔 111光偵測器 112鎖相迴路‘ 113電腦 121空間濾波器 14P060072-TW 200837385 [Simple description of the diagram] Figure 1: Relationship between signal intensity and longitudinal displacement of the target in confocal microscopy. The box marked part is a linear slope area. Figure 2: Relationship between signal intensity and lateral displacement of the target in confocal microscopy. The box marked part is a linear slope area. Figure 3: Prototype system architecture for modulated differential confocal microscopy. Figure 4: When a microscope objective with a numerical aperture of 0.85 is used to detect the focusing element, the magnitude of the signal measured by the photodetector varies with the height of the target. The solid dot is the measured signal value, and the solid line is the linear fitting curve of the measured value. [Main component symbol description] 101 laser light source 102 beam expander 103 beam splitter 104 optical scanner 105, 109 focusing element 106 object 107 high frequency position adjuster 108 displacement platform 110 pinhole 111 light detector 112 phase lock Loop '113 computer 121 spatial filter 14

Claims (1)

P060072-TW 200837385 十、申請專利範圍: 1、 一種共焦成像系統,包含: 一雷射光源,該光源所發出的光束經由一光束擴大元件和 一分光元件,再經由一聚焦元件聚焦至一被測物上; 一回饋光以被測物為起點經由原路徑返回該分光元件,由 * 該分光元件導入一空間濾波器造成一共焦成像;及 一光偵測器偵測該共焦成像並連接一鎖相迴路,該鎖相迴 Φ 路和一調變控制器互相交換信號; 上述調變控制器控制一調變模組產生一位移調變,藉由鎖 相迴路偵測因位移調變所引起之訊號變化來提升共焦成 像系統之訊噪比和位移靈敏度。 2、 如申請專利範圍第1項所述之共焦成像系統,其中該回饋 光可由被測物受激發而發出,或由散射或反射入射光而產 • 生 - 3、如申請專利範圍第1項所述之共焦成像系統,其中該空間 濾波器包含一聚焦元件和一針孔。 4、如申請專利範圍第1項所述之共焦成像系統,另外包括一 平台以改變被測物在空間中的位置,該平台可將被測物移 動至一位置,該位置下系統具有最高的空間位移解析率。 A 15 P060072-TW 200837385 5、 如申請專利範圍第4項所述之共焦成像系統,其中獲得最 高的空間位移解析率的方法為使用該空間濾波器測得的 信號強度與被測物表面和聚焦元件的距離關係為一鐘形 函數曲線之關係,在該函數曲線的線性斜率區中取適當的 區域使得由距離的變化所引起的差動改變正比於被測物 表面的高度變化,操作系統於該區域。 6、 如申請專利範圍第5項所述之共焦成像系統,其中由距離 的變化所引起的差動改變亦正比於水平偏移量。 7、 如申請專利範圍第4項所述之共焦成像系統,其中該平台 具有一維或二維掃描功能,以達成對被測物全表面高度與 水平界面變化之測量。 8、 如申請專利範圍第7項所述之共焦成像系統,其中該平台 可使用壓電式、機械式、電磁式、或聲波式位移平台。 9、 如申請專利範圍第7項所述之共焦成像系統,其中該平台 為一具有快速位移震動的平台裝置。 10、 如申請專利範圍第1項所述之共焦成像系統,其中該調 16 200837385 P060072-TW 變模組藉由靈敏的驅動器造成週期性位移,改變該被測物 與該聚焦元件的相對位置。 Π、如申請專利範圍第10項所述之共焦成像系統,其中該調 變模組在移動該被测物的調變下,利用該鎖相迴路獲得 : 兩者間的相位差。 • 12、如申請專利範圍第11項所述之共焦成像系統,其中該相 位差由物體的力學特性決定,因而可以利用該相位差訊 號得到被測物的力學特性。 13、 如申請專利範圍第1項所述之共焦成像系統,其中該調 變模組藉由週期性改變聚焦元件之聚焦黠與樣品的.相 對位置,而該鎖相迴路偵測在調變下的該回饋光。 14、 如申請專利範圍第13項所述之共焦成像系統,其中該調 變模組置於該聚焦元件和該分光元件中的光路中。 15、 如申請專利範圍第14項所述之共焦成像系統,其中該調 變模組,可使用液晶平板、可變形鏡面,或其他能改變 光波波前相位的元件。 17 P060072-TW 200837385 16、 17、 m is 19 • 20 如申請專利範圍第1項所述之共焦成像系統,其中該聚 焦元件為大數值孔徑聚焦元件。 如申請專利範圍第16項所述之共焦成像系統,其中該大 數值孔徑聚焦元件可為顯微鏡物鏡、光纖出口、夫瑞奈 波域片或GRIN鏡其中之一。 、如申請專利範圍第1項所述之共焦成像系統,其中該光 偵測器為能產生與接受光量成正比的信號之元件。 .如申請專利範圍第18項所述之共焦成像系統,其中該光 偵測器為電二極體、崩瀉式光電二極體、光電倍加管、 電荷耦合元件或螢光屏其中之一。 < 、如申請專利範圍第1項所述之共焦成像系統,其中該調 變控制器為一電腦系統,該電腦系統接收該光偵測器的 信號,並發出信號至調變模組。 、一種共焦成像系統,包含: 一雷射光源,該光源為能產生雙光子释像的脈衝雷射, 其所發出的光束經由一聚焦元件聚焦至一被測物上; 該被測物之部分區域吸收雙光子的頻率而激發,該激發 18 21 200837385 P060072-TW 僅發生於該光束聚焦的高強度區域,而其效果等同於一 具有該雙光子頻率之和的單光子之激發且該雙光子的 點擴散函數具有單光子共焦成像的空間濾波效果;及 一光偵測器收集該被測物受激發而發出的激發光而形成 共焦成像。 ’ 22、如申請專利範圍第21項所述之共焦成像系統,另外包括 一平台以改變被測物在空間中的位置,該平台可將被測 : 物移動至一位置,該位置下系統具有最高的空間位移解 析率。 23、 如申請專利範圍第22項所述之共焦成像系統,其中獲得 最高的空間位移解析率的方法為使用該空間濾波器測得 的信號強度與被測物表面和聚焦元件的距離關係為一鐘 形函數曲線之關係,在該函數曲線的線性斜率區中取適 當的區域使得由距離的變化所引起的差動改變正比於被 • 測物表面的高度變化,操作系統於該區域。 24、 如申請專利範圍第21項所述之共焦成像系統,其中該光 偵測器為能產生與接受光量成正比的信號之元件。 25、如申請專利範圍第24項所述之共焦成像系統,其中該光 19 P060072-TW 200837385 偵測器為電二極體、崩瀉式光電二極體、光電倍加管、 電荷搞合元件或螢光屏其中之一。 _ 20P060072-TW 200837385 X. Patent application scope: 1. A confocal imaging system comprising: a laser light source, the light beam emitted by the light source is focused by a focusing element and a focusing element, and then focused by a focusing element On the measuring object; a feedback light returns to the spectroscopic component through the original path starting from the object to be measured, and the spectroscopic component is introduced into a spatial filter to cause a confocal imaging; and a photodetector detects the confocal imaging and connects a phase-locked loop, the lock phase is returned to the Φ circuit and a modulation controller exchanges signals; the modulation controller controls a modulation module to generate a displacement modulation, and the phase-locked loop detects the displacement modulation The resulting signal changes to improve the signal-to-noise ratio and displacement sensitivity of the confocal imaging system. 2. The confocal imaging system according to claim 1, wherein the feedback light is emitted by the object to be tested, or is generated by scattering or reflecting incident light - 3, as claimed in claim 1 The confocal imaging system of the item, wherein the spatial filter comprises a focusing element and a pinhole. 4. The confocal imaging system of claim 1, further comprising a platform for changing the position of the object under test, the platform moving the object to a position, wherein the system has the highest The spatial displacement resolution rate. A 15 P060072-TW 200837385 5. The confocal imaging system according to claim 4, wherein the method for obtaining the highest spatial displacement resolution is the signal intensity measured by the spatial filter and the surface of the object to be tested. The distance relationship of the focusing elements is a relationship of a bell-shaped function curve, and an appropriate region is taken in the linear slope region of the function curve such that the differential change caused by the change in the distance is proportional to the height change of the surface of the object to be tested, the operating system In the area. 6. The confocal imaging system of claim 5, wherein the differential change caused by the change in distance is also proportional to the horizontal offset. 7. The confocal imaging system of claim 4, wherein the platform has a one-dimensional or two-dimensional scanning function to achieve measurement of a full surface height and horizontal interface change of the measured object. 8. The confocal imaging system of claim 7, wherein the platform can use a piezoelectric, mechanical, electromagnetic, or sonic displacement platform. 9. The confocal imaging system of claim 7, wherein the platform is a platform device having rapid displacement vibration. 10. The confocal imaging system of claim 1, wherein the modulating 16 200837385 P060072-TW variable module is periodically displaced by a sensitive driver to change the relative position of the object to be measured. . The confocal imaging system according to claim 10, wherein the modulation module obtains a phase difference between the two by using the phase-locked loop under the modulation of moving the object to be tested. 12. The confocal imaging system of claim 11, wherein the phase difference is determined by the mechanical properties of the object, and the phase difference signal can be utilized to obtain the mechanical properties of the object to be measured. 13. The confocal imaging system according to claim 1, wherein the modulation module detects the relative position of the focus 黠 and the sample by periodically changing the phase-locked loop, and the phase-locked loop detects the modulation. This feedback light. 14. The confocal imaging system of claim 13, wherein the modulation module is disposed in the optical path of the focusing element and the beam splitting element. 15. The confocal imaging system of claim 14, wherein the modulation module can use a liquid crystal panel, a deformable mirror, or other component that changes the phase of the wavefront of the light wave. 17 P060072-TW 200837385 16, 17, m is 19 • 20 The confocal imaging system of claim 1, wherein the focusing element is a large numerical aperture focusing element. A confocal imaging system according to claim 16 wherein the large numerical aperture focusing element is one of a microscope objective, an optical fiber exit, a Fresnel wave plate or a GRIN mirror. The confocal imaging system of claim 1, wherein the photodetector is an element capable of generating a signal proportional to the amount of received light. The confocal imaging system according to claim 18, wherein the photodetector is one of an electric diode, a collapsing photodiode, a photomultiplier tube, a charge coupled device or a fluorescent screen. . < The confocal imaging system of claim 1, wherein the modulation controller is a computer system that receives the signal of the photodetector and sends a signal to the modulation module. a confocal imaging system comprising: a laser source, the pulsed laser capable of generating a two-photon image, the emitted beam being focused onto a measured object via a focusing element; Part of the region is excited by the absorption of the two-photon frequency, which occurs only in the high-intensity region where the beam is focused, and the effect is equivalent to a single photon excitation with the sum of the two photon frequencies and the double The point spread function of the photon has a spatial filtering effect of single photon confocal imaging; and a photodetector collects the excitation light emitted by the detected object to form a confocal image. 22. The confocal imaging system of claim 21, further comprising a platform for changing the position of the object under test, the platform moving the object to be tested to a position, the system Has the highest spatial displacement resolution. 23. The confocal imaging system according to claim 22, wherein the method for obtaining the highest spatial displacement resolution is that the relationship between the signal intensity measured by the spatial filter and the surface of the object to be measured and the focusing element is The relationship of a bell-shaped function curve takes an appropriate region in the linear slope region of the function curve such that the differential change caused by the change in the distance is proportional to the height change of the surface of the object to be measured, and the operating system is in the region. 24. The confocal imaging system of claim 21, wherein the photodetector is an element capable of generating a signal proportional to the amount of received light. 25. The confocal imaging system according to claim 24, wherein the light 19 P060072-TW 200837385 detector is an electric diode, a collapsing photodiode, a photomultiplier tube, and a charge-matching element. Or one of the screens. _ 20
TW96108842A 2007-03-14 2007-03-14 Modulation differential confocal microscopy TWI329207B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96108842A TWI329207B (en) 2007-03-14 2007-03-14 Modulation differential confocal microscopy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96108842A TWI329207B (en) 2007-03-14 2007-03-14 Modulation differential confocal microscopy

Publications (2)

Publication Number Publication Date
TW200837385A true TW200837385A (en) 2008-09-16
TWI329207B TWI329207B (en) 2010-08-21

Family

ID=44820190

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96108842A TWI329207B (en) 2007-03-14 2007-03-14 Modulation differential confocal microscopy

Country Status (1)

Country Link
TW (1) TWI329207B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104296684A (en) * 2014-11-05 2015-01-21 哈尔滨工业大学 Film thickness error correction method based on surface coating film confocal microscopy shape measuring device
US9041940B2 (en) 2012-02-03 2015-05-26 Takaoka Toko Co., Ltd. Three-dimensional shape measuring apparatus
CN109187494A (en) * 2018-11-13 2019-01-11 北京理工大学 Femtosecond laser machined parameters differential confocal Raman spectra in-situ monitoring method and device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9041940B2 (en) 2012-02-03 2015-05-26 Takaoka Toko Co., Ltd. Three-dimensional shape measuring apparatus
TWI507659B (en) * 2012-02-03 2015-11-11 Takaoka Toko Co Ltd Three-dimensional shape measuring apparatus
CN104296684A (en) * 2014-11-05 2015-01-21 哈尔滨工业大学 Film thickness error correction method based on surface coating film confocal microscopy shape measuring device
CN104296684B (en) * 2014-11-05 2016-11-30 哈尔滨工业大学 Film thickness error bearing calibration based on surface coating confocal microscopy topography measurement device
CN109187494A (en) * 2018-11-13 2019-01-11 北京理工大学 Femtosecond laser machined parameters differential confocal Raman spectra in-situ monitoring method and device

Also Published As

Publication number Publication date
TWI329207B (en) 2010-08-21

Similar Documents

Publication Publication Date Title
US5804813A (en) Differential confocal microscopy
CN103439254B (en) A kind of point pupil confocal laser Raman spectra test method and device
Neuman et al. Optical trapping
Fukuma Wideband low-noise optical beam deflection sensor with photothermal excitation for liquid-environment atomic force microscopy
WO2015032278A1 (en) Method and device for testing spectral pupil laser differential confocal raman spectrum
Wang et al. All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound
WO2015135415A1 (en) Method and apparatus for measuring light-splitting pupil laser differential motion confocal brillouin-raman spectrums
CN103543135B (en) A kind of nano-precision hot spot alignment methods based on Fluorescence lifetime distribution and device
CN104296685B (en) The method measuring smooth free form surface sample based on differential STED
KR101004800B1 (en) Confocal microscopy
JP7342101B2 (en) Improved scanning optical microscope
Hausotte et al. High-speed focal-distance-modulated fiber-coupled confocal sensor for coordinate measuring systems
US8209767B1 (en) Near field detection for optical metrology
CN110960198A (en) Near-infrared two-region confocal microscopic imaging system based on multi-dimensional adjusting frame
CN107037031A (en) The confocal CARS micro-spectrometers method and device of reflection type differential
TW200837385A (en) Modulation differential confocal microscopy
Zhou et al. High-sensitivity laser confocal tomography based on frequency-shifted feedback technique
CN109142273A (en) A kind of refractive index micrometering system
Tyrrell et al. Development of a combined interference microscope objective and scanning probe microscope
Noda et al. A new microscope optics for laser dark-field illumination applied to high precision two dimensional measurement of specimen displacement
CN104614846B (en) Reflection type spectral pupil differential confocal-photoacoustic microimaging device and method
Gröschl et al. Evaluation of the optical performance of a novel high-speed focal-distance-modulated fibre-coupled confocal sensor
KR100978600B1 (en) Scanning optical measurement apparatus having super resolution
CN115166062B (en) All-optical ultrasonic detector based on differential interference and detection method
JP3669466B2 (en) Thermal spectrometer

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees