TWI329188B - Device and method for measuring surface profile - Google Patents

Device and method for measuring surface profile Download PDF

Info

Publication number
TWI329188B
TWI329188B TW96140306A TW96140306A TWI329188B TW I329188 B TWI329188 B TW I329188B TW 96140306 A TW96140306 A TW 96140306A TW 96140306 A TW96140306 A TW 96140306A TW I329188 B TWI329188 B TW I329188B
Authority
TW
Taiwan
Prior art keywords
light
beam splitter
tested
detecting device
wavefront
Prior art date
Application number
TW96140306A
Other languages
Chinese (zh)
Other versions
TW200918850A (en
Inventor
Hai Jo Huang
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW96140306A priority Critical patent/TWI329188B/en
Publication of TW200918850A publication Critical patent/TW200918850A/en
Application granted granted Critical
Publication of TWI329188B publication Critical patent/TWI329188B/en

Links

Description

1329188 ,__ 099年05月26日按正替换頁 六、發明說明: 【發明所屬之技術領域】 [0001] 本發明涉及一種表面檢測技術,尤其係關於一種用於表 面輪廓檢測之檢測裝置及其檢測方法。 【先前技術】 [0002] 檢測待測物表面輪廓可讓使用者瞭解待測物表面輪廓是 否正常或是否符合使用者之預期。一般之檢測待測物之 檢測裝置係接觸式的,這種檢測裝置主要包括一接觸式 測量頭,一雷射組件,一用於處理接觸式測量頭所回傳 之數據之處理器。在測量過程中,所述雷射組件發出兩 束光,一束為參考光束,一束為測量光束,該測量光束 隨測量頭的垂直位移變化而變化。測量頭以一定之速度 沿被測表面移動,被測表面之凹凸不平引起測量頭沿被 測表面之垂直方向上下移動,從而引起兩束光之光程差 改變。通過對干涉條紋移動個數之計數,可得到光程差 之變化,即可間接得到測量頭之垂直位移,進而由處理 器處理該垂直位移之數據以測量待測物表面之形貌。 [0003] 上述之檢測裝置由於有測量頭之存在,該測量頭在一定 測量壓力下測量頭可能變形及磨損,同時影響測量結果 之真實性,而且由於為了不使測量頭受損傷,測量頭之 硬度一般都很高,因此不適於材料表面有特別要求之測 量,例如光學鏡片,其表面粗糙度之要求很高,因此不 適用接觸式之檢測裝置檢測其表面輪廓。 【發明内容】 [0004] 有鑒於此,有必要提供一種非接觸式之表面輪廓檢測裝 096140306 表單編號A0101 第4頁/共18頁 0993182846-0 1329188 099年05月26日按正替換頁 置及其檢測方法。 [0005] 一種表面輪廓檢測裝置,其包括: [0006] 一光源組件,用於提供一平行光; [0007] —空間光調制器,設置於光源組件之出射光之光路上, 用於控制入射到該空間光調制器的每一個像素之出射光 之啟閉; [0008] —分光鏡,設置於空間光調制器之出射光之光路上,使 空間光調制器之出射光通過該分光鏡,到達被測物,並 出射被測物之反射光; [0009] 一波前感測器,設置於分光鏡之出射光之光路上,用於 檢測與空間光調制器之每一個像素所對應且經待測物反 射及由分光鏡出射之出射光之波前斜率並輸出該波前斜 率值;1329188, __ May 26, 2010, according to the replacement page, the invention: [0001] The present invention relates to a surface inspection technology, and more particularly to a detection device for surface contour detection and Detection method. [Prior Art] [0002] Detecting the surface profile of the object to be tested allows the user to know whether the surface profile of the object to be tested is normal or conforms to the user's expectations. Generally, the detecting device for detecting the object to be tested is contact type, and the detecting device mainly comprises a contact measuring head, a laser component, and a processor for processing the data returned by the contact measuring head. During the measurement, the laser assembly emits two beams, one for the reference beam and one for the measurement beam, which varies with the vertical displacement of the measurement head. The measuring head moves along the surface to be tested at a certain speed, and the unevenness of the surface to be measured causes the measuring head to move up and down along the vertical direction of the surface to be measured, thereby causing a change in the optical path difference between the two beams. By counting the number of interference fringes, the change of the optical path difference can be obtained, and the vertical displacement of the measuring head can be obtained indirectly, and the data of the vertical displacement is processed by the processor to measure the topography of the surface of the object to be tested. [0003] The above-mentioned detecting device has the presence of a measuring head, and the measuring head may be deformed and worn under a certain measuring pressure, and at the same time affects the authenticity of the measuring result, and since the measuring head is not damaged, the measuring head is Hardness is generally high, so it is not suitable for measurements with special requirements on the surface of the material. For example, optical lenses have high surface roughness requirements, so contact-type inspection devices are not suitable for detecting the surface profile. SUMMARY OF THE INVENTION [0004] In view of this, it is necessary to provide a non-contact surface contour detection device 096140306 Form No. A0101 Page 4 / A total of 18 pages 0993182846-0 1329188 099 May 26 by the replacement page and Its detection method. [0005] A surface contour detecting device comprising: [0006] a light source assembly for providing a parallel light; [0007] a spatial light modulator disposed on an optical path of the light emitted from the light source assembly for controlling incidence Opening and closing of the outgoing light to each pixel of the spatial light modulator; [0008] a beam splitter disposed on the optical path of the outgoing light of the spatial light modulator, such that the outgoing light of the spatial light modulator passes through the beam splitter, Reaching the measured object and emitting the reflected light of the measured object; [0009] a wavefront sensor disposed on the optical path of the outgoing light of the beam splitter for detecting each pixel corresponding to the spatial light modulator and The wavefront slope of the emitted light reflected by the object to be tested and emitted by the beam splitter and outputting the wavefront slope value;

[0010] 一控制處理器,與所述波前感測器及空間光調制器電氣 連接,用於控制所述空間光調制器啟閉每一個像素之出 射光以及處理所述波前感測器輸出之波前斜率值以取得 所測試之待測物之表面輪扉。 [0011] —種表面輪廓檢測方法,其包括下列步驟: [0012] a)初始化設置波前感測器之參考值; [0013] b)開啟光源組件,使其出射平行光並照射到空間光調制 器上; [0014] c )利用控制處理器控制所述空間光調制器開啟一個像素 096140306 表單编號A0101 第5頁/共18頁 0993182846-0 1329188 099年05月26日梭正替換頁 之光並照射在待測物之表面上; [0015] d)利用波前感測器獲取分光鏡的出射光之波前斜率; [0016] e)根據波前感測器設定之參考值,計算該像素所對應之 待測物表面之斜率; [0017] f)重複步驟c到步驟e,以使控制處理器控制空間光調制 器掃描待測物之整個表面; [0018] g)對該待測物表面之斜率進行斜率一物理尺度之轉換以 取得該待測物之表面輪廓。 [0019] 上述之表面輪廓檢測裝置及檢測方法在空間光調制器、 分光鏡以及波前感測器之配合作用下,能夠不與待測物 接觸而取得待測物之表面輪廓,避免了對待測物表面造 成損傷。 【實施方式】 [0020] 下面將結合附圖,舉以下較佳實施例並配合圖式·詳細描 述如下。[0010] a control processor electrically connected to the wavefront sensor and the spatial light modulator for controlling the spatial light modulator to open and close the outgoing light of each pixel and processing the wavefront sensor The wavefront slope value is output to obtain the surface rim of the tested object to be tested. [0011] A surface contour detecting method comprising the following steps: [0012] a) initializing a reference value of a wavefront sensor; [0013] b) turning on the light source assembly to emit parallel light and illuminating the spatial light [0014] c) using the control processor to control the spatial light modulator to turn on a pixel 096140306 Form No. A0101 Page 5 / Total 18 Page 0993182846-0 1329188 On May 26, 2008, the shuttle is replacing the page Light is incident on the surface of the object to be tested; [0015] d) obtaining a wavefront slope of the exiting light of the beam splitter by using a wavefront sensor; [0016] e) calculating according to a reference value set by the wavefront sensor The slope of the surface of the object to be tested corresponding to the pixel; [0017] f) repeating steps c to e to cause the control processor to control the spatial light modulator to scan the entire surface of the object to be tested; [0018] g) The slope of the surface of the object is subjected to a slope-physical scale conversion to obtain the surface profile of the object to be tested. [0019] The surface contour detecting device and the detecting method described above can cooperate with the spatial light modulator, the beam splitter and the wavefront sensor to obtain the surface contour of the object to be tested without contacting the object to be tested, thereby avoiding treatment. The surface of the test object caused damage. [Embodiment] Hereinafter, the following preferred embodiments will be described in conjunction with the drawings in detail with reference to the accompanying drawings.

[0021] 請參閱圖1,係本發明提供之一種表面輪廓檢測裝置100 之結構示意圖。該表面輪廓檢測裝置100包括一光源組件 10,一設置於所述光源組件10出射光光路上的空間光調 制器11,一設置於所述空間光調制器11出射光之光路上 之分光鏡12,一設置於所述分光鏡12所反射光之光路上 之波前感測器(Wave-front Sensor) 1 3以及一與空間光 調制器11及波前感測器1 3電氣連接之控制處理器14。 [0022] 在本實施例中,以一個光學玻璃鏡片為待測物20,在此 096140306 表單編號A0101 第6頁/共18頁 0993182846-0 099年05月26日修正巷换頁 1329188 ,僅為舉例而已,當然,可以理解的是,該檢測裝置可 以檢測任何物體。 [0023] 所述光源組件10包括依光路設置之一照明光源101、一準 直透鏡102以及偏振光轉換器103。所述照明光源101可 以為鹵素燈、金屬鹵化物燈、氣燈或雷射光源等。在本 實施例中,該照明光源101為雷射光源。所述準直透鏡 102用來將照明光源101所發出的光轉換成平行光。所述 偏振光轉換器103用於將入射平行白光轉換成同一偏振狀 $ 態的光,該偏振光轉換器103之出射光之偏振狀態可以為 P偏振也可以為S偏振。在本實施例中,該偏振光轉換器 103將入射平行白光轉換成P偏振光,並將該平行的P偏振 光作為出射光輸出。 [0024] 所述控制處理器14可以為一電腦,該控制處理器14可識 別處理有關數據,並輸出結果。本實施例中,所述控制 處理器14為一台中央處理器,其内安裝有可識別並處理 相關數據之程式。該控制處理器14分別與空間光調制器 # 11以及波前感測器13電氣連接,利用相關程式以系統地 配合並控制所述空間光調制器11以及波前感測器1 3工作 ,即通過該控制處理器14配合並控制所述空間光調制器 12啟閉每一個像素之出射光。通過該控制處理器14還可 以控制所述波前感測器13工作,即通過該控制處理器14 來配合並控制所述波前感測器13與空間光調制器11同步 來處理來自分光鏡12之每一個像素所對應之出射光之訊 號數據。在本實施例中,在所述控制處理器14内安裝有 一斜率一物理尺度轉換程式,用於對來自波前感測器13 096140306 表單編號A0101 第7頁/共18頁 0993182846-0 1329188 099年05月26日修正替換頁 之數據進行處理以取得待測物之表面輪廓。 [0025] 所述空間光調制器11可以為-液晶裝置aiquid Costal Device, LCD), 其通過控制處理器 u 中所安裝之 控制程式來控制該空間光調制器u之每個電極之開啟與 截止,進而控縣個像相對應之液晶之偏轉以控制入 射到對應母個像素之光之啟閉。該空間光調制器丨丨在控 制處理器14之控制下,可以對每個像素對應之待測物2〇 表面進行掃描。 — [0026] 所述分光鏡12包括一偏振分束器(p〇larizati〇n Beam φ[0021] Please refer to FIG. 1, which is a schematic structural diagram of a surface contour detecting apparatus 100 provided by the present invention. The surface contour detecting device 100 includes a light source assembly 10, a spatial light modulator 11 disposed on the light path of the light source assembly 10, and a beam splitter 12 disposed on the optical path of the light emitted by the spatial light modulator 11. a wavefront sensor 13 disposed on the optical path of the light reflected by the beam splitter 12 and a control process electrically connected to the spatial light modulator 11 and the wavefront sensor 13 14. [0022] In the present embodiment, an optical glass lens is used as the object to be tested 20, here 096140306 Form No. A0101 Page 6 / 18 pages 0993182846-0 099 May 26 revised lane change page 1329188, only For example, of course, it can be understood that the detecting device can detect any object. [0023] The light source assembly 10 includes an illumination source 101, a collimator lens 102, and a polarization converter 103 disposed in accordance with an optical path. The illumination source 101 can be a halogen lamp, a metal halide lamp, a gas lamp or a laser source or the like. In the present embodiment, the illumination source 101 is a laser source. The collimating lens 102 is used to convert light emitted by the illumination source 101 into parallel light. The polarization converter 103 is configured to convert incident parallel white light into light of the same polarization state, and the polarization state of the outgoing light of the polarization converter 103 may be P polarization or S polarization. In the present embodiment, the polarization converter 103 converts the incident parallel white light into P-polarized light, and outputs the parallel P-polarized light as the outgoing light. [0024] The control processor 14 can be a computer that can recognize processing related data and output the result. In this embodiment, the control processor 14 is a central processing unit in which a program for recognizing and processing related data is installed. The control processor 14 is electrically connected to the spatial light modulator #11 and the wavefront sensor 13, respectively, and systematically cooperates and controls the spatial light modulator 11 and the wavefront sensor 13 to operate, ie, The control light processor 12 cooperates and controls the spatial light modulator 12 to turn on and off the outgoing light of each pixel. The control of the wavefront sensor 13 can also be controlled by the control processor 14, that is, the control processor 14 cooperates and controls the wavefront sensor 13 to synchronize with the spatial light modulator 11 to process the beam splitter. The signal data of the outgoing light corresponding to each pixel of 12. In the present embodiment, a slope-physical scale conversion program is installed in the control processor 14 for pairing from the wavefront sensor 13 096140306 Form No. A0101 Page 7 / 18 pages 0993182846-0 1329188 099 On May 26, the data of the replacement page is corrected for processing to obtain the surface profile of the object to be tested. [0025] The spatial light modulator 11 may be a liquid crystal device (aiquid Costal Device, LCD), which controls the opening and closing of each electrode of the spatial light modulator u by controlling a control program installed in the processor u. And then control the deflection of the corresponding liquid crystal to control the opening and closing of the light incident on the corresponding mother pixel. The spatial light modulator 扫描 under the control of the control processor 14 can scan the surface of the object to be tested corresponding to each pixel. — [0026] The beam splitter 12 includes a polarization beam splitter (p〇larizati〇n Beam φ

Splitter,PBS) 121以及一設置於該偏振分光鏡121 透射光之光路上之四分之一波片122。該偏振分束器121 可以為偏振分光棱鏡,也可以為金屬栅格型偏振片(Wi re Grid Polarizer ’ WGP)。在本實施例中,該偏振分束 器121為偏振分光稜鏡。該偏振分束器121根據對S偏振光 及P偏振光之作用不同,可以分為反射S偏振光而透過p偏 振光’與透過S偏振光而反射P偏振光兩種形式。在本實 施例中,所述偏振分束器12反射S偏振光,而可以讓p偏 0 振光透過。所述四分之一波片122可以通過拉伸等方法獲 得之具有光學各向異性之有機薄膜。當光束通過該四分 之一波片122時,要反復經過四分之一波片兩次即可以將 該光束之偏振方向旋轉90度。在本實施例中,當來自空 間光調制器11之?偏振光透過偏振分束器121後,第一次 通過該四分之一波片122 ’然後經待測物20反射後,第二 次通過該四分之一波片122 ’從而使得入射光的偏振方向 旋轉90度,即將入射的p偏振光轉換為S偏振光,該S偏振 096140306 表單編號A0101 第8頁/共18頁 0993182846-0 1329188 [0027]A splitter (PBS) 121 and a quarter-wave plate 122 disposed on the optical path of the polarized light beam 121 to transmit light. The polarization beam splitter 121 may be a polarization beam splitting prism or a metal grid type polarizer (WGP). In the present embodiment, the polarization beam splitter 121 is a polarization splitter. The polarization beam splitter 121 can be classified into two types, namely, reflecting S-polarized light, transmitting p-polarized light, and transmitting S-polarized light, and reflecting P-polarized light, depending on the effects on S-polarized light and P-polarized light. In the present embodiment, the polarization beam splitter 12 reflects the S-polarized light and allows the p-polarized light to pass through. The quarter-wave plate 122 can be obtained by stretching or the like to obtain an optical film having optical anisotropy. When the beam passes through the quarter-wave plate 122, the polarization direction of the beam can be rotated by 90 degrees by repeating the quarter-wave plate twice. In the present embodiment, when it comes from the spatial light modulator 11? After the polarized light passes through the polarizing beam splitter 121, it passes through the quarter-wave plate 122' for the first time and then is reflected by the object to be tested 20, and then passes through the quarter-wave plate 122' for a second time, thereby making the incident light The polarization direction is rotated by 90 degrees, that is, the incident p-polarized light is converted into S-polarized light, the S-polarized 096140306 Form No. A0101 Page 8 of 18 pages 0993182846-0 1329188 [0027]

[0028] 光被偏振分束器121反射後發射出去 所述波前感測器(Wave-front Sensor) 13可以為夏克一 哈特曼(Shack-Hartraann)波前感测器’其主要由微透 鏡陣列131及影像感測器132組成’所述微透鏡陣列131 利用每個透鏡在影像感測器132上形成一個像斑。所述影 像感測器132可以為電荷藕合器件圖像感測器(Charge Coupled Device,CCD),也可以為互補金屬氧化物半 導體圖像感測器(Complementary Metal Oxide Semiconductor,CMOS)。在實施例’該影像感測器132 為CCD。在該波前感測器13運行時,如果入射光之斜率未 "改變,在本實施例中,當待測物的表面係一個平面時, 即波前係一個完好的平面時,每個透鏡所成之像斑質心 就在參考位置,此時控制處理器14將記載此參考位置之 數據作為該波前感測器13之參考值。當入射光之斜率發 生改變,即待測物之表面不係一個平面,則波前發生畸 變時,像斑之質心將偏離參考位置。因此,根據各個像 斑之質心位置之偏移就可以通過簡單之幾何公式求出畸 變波前上各個透鏡範圍内波前之斜率,同時利用控制處 理器14所安裝之斜率一物理尺度轉換程式對所得之數據 進行處理即可取得待測物之表面輪廓。 下面將對本實施例所提供之表面輪廓檢測裝置1〇〇之表面 輪廓檢測方法進行詳細說明,如圖2所示,為檢測待測物 表面輪廓之方法流程圖。 [0029] 096140306 首先,步驟S201,初始化設置波前感測器13之參考值。 表單编號A0101 第9頁/共18頁 0993182846-0 1329188 099年05月26日梭正替換頁 [0030] 步驟S202,開啟光源組件10,使其出射平行光並照射到 所述空間光調制器11上。 [0031] 步驟S203,利用控制處理器14控制所述空間光調制器11 開啟一個像素之光並照射在待測物20之表面。 [0032] 步驟S204,利用波前感測器13獲取分光鏡12之出射光之 波前斜率。 [0033] 步驟S205,根據波前感測器1 3之設定之參考值,計算該 像素所對應之待測物20表面之斜率。 [0034] 步驟S206,重複步驟S203到步驟S20 6,以使控制處理器 1 4控制空間光調制器11掃描待測物20之整個表面。 [0035] 步驟S207,對該待測物表面20之斜率進行斜率一物理尺 度之轉換以取得該待測物20之表面輪廓;[0028] The light is reflected by the polarization beam splitter 121 and emitted. The Wave-front Sensor 13 can be a Shack-Hartraann wavefront sensor. The microlens array 131 and the image sensor 132 constitute 'the microlens array 131', and each lens forms an image spot on the image sensor 132. The image sensor 132 may be a Charge Coupled Device (CCD) or a Complementary Metal Oxide Semiconductor (CMOS). In the embodiment, the image sensor 132 is a CCD. When the wavefront sensor 13 is in operation, if the slope of the incident light is not changed, in the present embodiment, when the surface of the object to be tested is a plane, that is, when the wavefront is a perfect plane, each The image center of the lens is at the reference position, and the control processor 14 records the data of the reference position as the reference value of the wavefront sensor 13. When the slope of the incident light changes, that is, the surface of the object to be tested is not in a plane, when the wavefront is distorted, the centroid of the image spot will deviate from the reference position. Therefore, the slope of the wavefront in each lens range on the distortion wavefront can be obtained by a simple geometric formula according to the offset of the centroid position of each image spot, and the slope-physical scale conversion program installed by the control processor 14 is used. The obtained data can be processed to obtain the surface profile of the object to be tested. The surface contour detecting method of the surface contour detecting device 1 provided in the present embodiment will be described in detail below, as shown in Fig. 2, which is a flow chart for detecting the surface contour of the object to be tested. [0029] 096140306 First, in step S201, the reference value of the wavefront sensor 13 is initialized. Form No. A0101 Page 9 / 18 pages 0993182846-0 1329188 On May 26, 2008, the shuttle is replacing the page [0030] Step S202, turning on the light source assembly 10 to emit parallel light and illuminating the spatial light modulator 11 on. [0031] Step S203, the control light processor 11 controls the spatial light modulator 11 to turn on the light of one pixel and illuminate the surface of the object to be tested 20. [0032] Step S204, the wavefront slope of the outgoing light of the beam splitter 12 is acquired by the wavefront sensor 13. [0033] Step S205: Calculate the slope of the surface of the object to be tested 20 corresponding to the pixel according to the reference value set by the wavefront sensor 13. [0034] Step S206, steps S203 through S20 are repeated to cause the control processor 14 to control the spatial light modulator 11 to scan the entire surface of the object to be tested 20. [0035] Step S207, performing a slope-physical scale conversion on the slope of the surface 20 of the object to be tested to obtain a surface profile of the object to be tested 20;

[0036] 在步驟S201中,因隨入射光方向之不同,波前感測器13 之參考值也不同,如圖3所示,在本實施例中,初始化設 置所述波前感測器13之參考值之方法包括下列步驟: [0037] 首先,步驟S301,選取一表面為平面之物體; [0038] 步驟S302,開啟光源組件10,使其平行出射光照射到平 面物體表面上; [0039] 步驟S303,利用/波前感測器13獲取分光鏡12之出射光之 波前斜率,並記載在所述控制處理器14中; [0040] 至此,則完成對波前感測器13之參考值,設定在步驟 S303中所獲取之波前斜率即為波前感測器13波前斜率之 096140306 表單編號A0101 第10頁/共18頁 0993182846-0 1329188 099年05月26日修正替换頁 參考值。 [0041] 在該表面輪廓檢測裝置100之檢測方法中,當完成一個像 素所對應之待測物20表面輪廓之獲取後,由控制處理器 14開啟所述空間光調制器11之下一個像素之入射光以照 射在該像素所對應之待測物20之表面上,從而取得該像 素所對應之待測物20表面之輪廓。重複步驟S203到步驟 S206,使控制處理器14控制空間光調制器11掃描待測物 20之整個表面,則可以標出待測物20表面之整體輪廓, 以進行其他制程,如判斷該待測物20之表面輪廓是否合 格。 [0042] 在這裏需要說明的是,上述之控制入射到每個像素的光 之啟閉、獲取每個像素所對應之待測物20表面之輪廓等 都係由所述控制處理器14中所内置之處理程式自動完成 ,並且該控制處理器14將最後所得之結果傳輸給操作者 ,以便讓操作者判斷係否進行下一次檢測操作。 [0043] 上述之表面輪廓檢測裝置在空間光調制器、分光鏡以及[0036] In step S201, the reference value of the wavefront sensor 13 is also different depending on the direction of the incident light. As shown in FIG. 3, in the present embodiment, the wavefront sensor 13 is initially set. The method for the reference value includes the following steps: First, in step S301, selecting an object whose surface is a plane; [0038] step S302, turning on the light source assembly 10 to illuminate the surface of the planar object in parallel; [0039] Step S303, the wavefront slope of the outgoing light of the beam splitter 12 is acquired by the / wavefront sensor 13, and is recorded in the control processor 14; [0040] So far, the wavefront sensor 13 is completed. For the reference value, the wavefront slope acquired in step S303 is 096140306 of the wavefront slope of the wavefront sensor 13. Form No. A0101 Page 10/18 pages 0993182846-0 1329188 Correction replacement page on May 26, 099 Reference. [0041] In the detecting method of the surface contour detecting apparatus 100, after the acquisition of the surface contour of the object 20 to be tested corresponding to one pixel is completed, the control processor 14 turns on the next pixel of the spatial light modulator 11. The incident light is irradiated on the surface of the object to be tested 20 corresponding to the pixel, thereby obtaining the contour of the surface of the object 20 to be tested corresponding to the pixel. Steps S203 to S206 are repeated, so that the control processor 14 controls the spatial light modulator 11 to scan the entire surface of the object to be tested 20, and then the overall contour of the surface of the object to be tested 20 can be marked for other processes, such as determining the to-be-tested. Whether the surface contour of the object 20 is acceptable. [0042] It should be noted that, in the above, controlling the opening and closing of the light incident on each pixel, acquiring the contour of the surface of the object to be tested corresponding to each pixel, and the like are all controlled by the control processor 14. The built-in processing program is automatically completed, and the control processor 14 transmits the resulting result to the operator to let the operator determine whether the next detection operation is performed. [0043] The above surface contour detecting device is in a spatial light modulator, a beam splitter, and

波前感測器之配合作用下,能夠不與待測物接觸而取得 待測物之表面輪廓,避免了對待測物表面造成損傷。 [0044] 綜上所述,本發明符合發明專利要件,爰依法提出專利 申請。惟,以上所述者僅為本發明之較佳實施方式,本 發明之範圍並不以上述實施方式為限,舉凡熟悉本案技 藝之人士援依本發明之精神所作之等效修飾或變化,皆 應涵蓋於以下申請專利範圍内。 【圖式簡單說明】· 096140306 表單編號A0101 第11頁/共18頁 0993182846-0 1329188 099年05月26日修正替換頁 [0045] 圖1係本發明實施例之表面輪廓檢測裝置之結構示意圖。 [0046] 圖2係圖1之表面輪廓檢測裝置之檢測方法之流程圖。 [0047] 圖3係為圖1之表面輪廓檢測裝置之波前感測器初始化設 置參考值之方法流程圖。 【主要元件符號說明】 [0048] 表面輪廓檢測裝置:1 0 0 [0049] 光源組件:10 [0050] 照明光源:1 01 [0051] 準直透鏡:102 [0052] 偏振轉換器:103 [0053] 空間光調制器:11 [0054] 分光鏡:12 [0055] 偏振分束器:121 [0056] 四分之一波片:122 [0057] 波前感測器:13 [0058] 微透鏡陣列:131 [0059] 影像感測器:132 [0060] 控制處理器:14Under the cooperation of the wavefront sensor, the surface profile of the object to be tested can be obtained without contacting the object to be tested, thereby avoiding damage to the surface of the object to be tested. [0044] In summary, the present invention complies with the requirements of the invention patent, and submits a patent application according to law. However, the above description is only the preferred embodiment of the present invention, and the scope of the present invention is not limited to the above-described embodiments, and equivalent modifications or variations made by those skilled in the art in light of the spirit of the present invention are It should be covered by the following patent application. BRIEF DESCRIPTION OF THE DRAWINGS [0045] FIG. 1 is a schematic structural view of a surface contour detecting apparatus according to an embodiment of the present invention. FIG. 1 is a schematic diagram of a surface contour detecting apparatus according to an embodiment of the present invention. 2 is a flow chart showing a method of detecting the surface contour detecting device of FIG. 1. 3 is a flow chart showing a method for initializing a reference value of a wavefront sensor of the surface contour detecting device of FIG. 1. [Main component symbol description] [0048] Surface contour detecting device: 1 0 0 [0049] Light source component: 10 [0050] Illuminating light source: 1 01 [0051] Collimating lens: 102 [0052] Polarization converter: 103 [0053 Spatial Light Modulator: 11 [0054] Beam Splitter: 12 [0055] Polarization Beamsplitter: 121 [0056] Quarter Wave Plate: 122 [0057] Wavefront Sensor: 13 [0058] Microlens Array :131 [0059] Image Sensor: 132 [0060] Control Processor: 14

096140306 表單編號A0101 第12頁/共18頁 0993182846-0096140306 Form No. A0101 Page 12 of 18 0993182846-0

Claims (1)

i 099年05月26日核正替換頁 申請專利範圍: 種表面輪廓檢測裝置,其包括: 光源組件,用於提供一平行光; 二間光調制器’設置于光源組件之出射光之光路上,用 ;二制入射到該空間光調制器之每一個像素之出射光之啟 閉; 々光鏡’設置於空間光調制器之出射光之光路上,使空 /光調制器之出射光通過該分光鏡,到達被測物,並出射 被剩物反射之光; 、波則感測器,設置於分光鏡之出射光之光路上,用於檢 Μ與二間光調制器之每一個像素所對應之且經待測物反射 及由分光鏡出射之出射光之波前斜率並輸出該波前斜率值 控制處理器,與所述波前感測器及空間光調制器電氣連 接,用於控制所述空間光調制器啟閉每一個像素之出射光 以及處理所述波前感測器輸出之波前斜率值以取得所測試 之待測物之表面輪廓。 ’申請專利範圍第1項所述之表面輪廓檢測裝置,其中,所 述光源組件包括一光源,一設置在光源出射光方向上之準 直透鏡以及一設置於準直透鏡出射光之光路上之偏振光轉 換器,該準直透鏡用於將光源所發出之發散光轉化為平行 光’所述偏振光轉換器用於將準直透鏡之出射光轉換為單 一偏振狀態之光並出射。 .如申請專利範圍第1項所述之表面輪廓檢測裝置,其中, 所述分光鏡包括一偏振分束器與一設置於偏振分束器與待 表單編號Α0101 第13頁/共18頁 0993182846-0 1329188 __ 099年05月26曰修正替换頁 測物之間之四分之一波片。 4 .如申請專利範圍第3項所述之表面輪廓檢測裝置,其中, 所述偏振分束器為偏振分光稜鏡。 5 .如申請專利範圍第3項所述之表面輪廓檢測裝置,其中, 所述偏振分束器為金屬柵格型偏振片。 6 .如申請專利範圍第1項所述之表面輪廓檢測裝置,其中, 所述空間光調制器為一液晶裝置。 7 .如申請專利範圍第1項所述之表面輪廓檢測裝置,其中, 所述波前感測器為一夏克一哈特曼波前感測器。 « 8 .如申請專利範圍第1項所述之表面輪廓檢測裝置,其中, 所述波前感測器包括一微透鏡陣列以及一設置於所述微透 鏡陣列出射光光路上之影像感測器。 9 .如申請專利範圍第9項所述之表面輪廓檢測裝置,其中, 所述影像感測器為電荷藕合器件圖像感測器。 10 .如申請專利範圍第9項所述之表面輪廓檢測裝置,其中, 所述影像感測器為互補金屬氧化物半導體圖像感測器。 11 .如申請專利範圍第1項所述之表面輪廓檢測裝置,其中, _ % 所述控制處理器為電腦。 12 . —種表面輪廓檢測方法,其包括下列步驟: a) 初始化設置波前感測器之參考值; b) 開啟光源組件,使其出射平行光並照射到所述空間光 調制器上; c) 利用控制處理器控制所述空間光調制器開啟一個像素 之光並照射在待測物之表面上; d) 利用波前感測器獲取分光鏡之出射光之波前斜率; e) 根據波前感測器設定之參考值,計算該像素所對應的 096140306 表單編號A0101 第14頁/共18頁 0993182846-0 1329188 099年OS月26日核正替換頁 待測物表面之斜率; f) 重複步驟C到步驟e,以使控制處理器控制空間光調制 器掃描待測物之整個表面; g) 對該待測物表面之斜率進行斜率一物理尺度之轉換以 取得該待測物之表面輪廓。 13 · 如申請專利範圍第12項所述之表面輪廓檢測方法,其中, 該初始化設置波前感測器之參考值之方法包括下列步驟: 提供一表面為平面之物體; 開啟光源組件,使其平行出射光照射到平面物體表面上; 利用波前感測器獲取分光鏡之出射光之波前斜率,並記載 在所述控制處理器中。i. May 26, 1989, the nuclear replacement page application patent scope: a surface contour detecting device, comprising: a light source assembly for providing a parallel light; and two light modulators disposed on the light path of the light source of the light source assembly The second light is incident on and off of each of the pixels of the spatial light modulator; the light microscope is disposed on the light path of the outgoing light of the spatial light modulator, so that the light exiting the air/light modulator passes The beam splitter reaches the object to be measured, and emits light reflected by the remaining object; and the wave sensor is disposed on the light path of the beam of the beam splitter for detecting each pixel of the two light modulators Corresponding to the wavefront slope of the emitted light reflected by the object to be tested and emitted by the beam splitter and outputting the wavefront slope value control processor, electrically connected to the wavefront sensor and the spatial light modulator, for The spatial light modulator is controlled to open and close the outgoing light of each pixel and to process the wavefront slope value of the wavefront sensor output to obtain a surface profile of the tested object to be tested. The surface contour detecting device of claim 1, wherein the light source assembly comprises a light source, a collimating lens disposed in a direction in which the light source emits light, and an optical path disposed on the light exiting the collimating lens A polarizing light converter for converting divergent light emitted by the light source into parallel light. The polarizing light converter is configured to convert the outgoing light of the collimating lens into light of a single polarization state and emit it. The surface contour detecting device according to claim 1, wherein the beam splitter comprises a polarizing beam splitter and a polarizing beam splitter and a form number Α0101, page 13 / 18 pages 0993182846- 0 1329188 __ May 26, 2008 曰 Corrected the quarter-wave plate between the replacement pages. 4. The surface profile detecting device according to claim 3, wherein the polarization beam splitter is a polarization beam splitter. 5. The surface contour detecting device according to claim 3, wherein the polarizing beam splitter is a metal grid type polarizing plate. 6. The surface contour detecting device according to claim 1, wherein the spatial light modulator is a liquid crystal device. 7. The surface profile detecting device of claim 1, wherein the wavefront sensor is a Shack-Hartman wavefront sensor. The surface contour detecting device of claim 1, wherein the wavefront sensor comprises a microlens array and an image sensor disposed on the optical path of the microlens array. . 9. The surface profile detecting device of claim 9, wherein the image sensor is a charge coupled device image sensor. The surface contour detecting device according to claim 9, wherein the image sensor is a complementary metal oxide semiconductor image sensor. 11. The surface contour detecting device according to claim 1, wherein the control processor is a computer. 12. A surface profile detecting method comprising the steps of: a) initializing a reference value of a wavefront sensor; b) turning on the light source component to emit parallel light and illuminating the spatial light modulator; Controlling, by the control processor, the spatial light modulator to turn on a pixel of light and illuminate the surface of the object to be tested; d) obtaining a wavefront slope of the outgoing light of the beam splitter by using a wavefront sensor; e) according to the wave The reference value set by the front sensor, calculate the 096140306 corresponding to the pixel. Form No. A0101 Page 14 / Total 18 Page 0993182846-0 1329188 099 OS 26th Nuclear Replacement Page Slope of the surface of the object to be tested; f) Repeat Step C to step e, so that the control processor controls the spatial light modulator to scan the entire surface of the object to be tested; g) performing a slope-physical scale conversion on the slope of the surface of the object to be tested to obtain the surface contour of the object to be tested . The surface contour detecting method according to claim 12, wherein the method of initializing the reference value of the wavefront sensor comprises the steps of: providing an object whose surface is a plane; and turning on the light source component to enable The parallel outgoing light is irradiated onto the surface of the planar object; the wavefront slope of the outgoing light of the beam splitter is obtained by the wavefront sensor and is recorded in the control processor. 096140306 表單編號A0101 第15頁/共18頁 0993182846-0096140306 Form No. A0101 Page 15 of 18 0993182846-0
TW96140306A 2007-10-26 2007-10-26 Device and method for measuring surface profile TWI329188B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96140306A TWI329188B (en) 2007-10-26 2007-10-26 Device and method for measuring surface profile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96140306A TWI329188B (en) 2007-10-26 2007-10-26 Device and method for measuring surface profile

Publications (2)

Publication Number Publication Date
TW200918850A TW200918850A (en) 2009-05-01
TWI329188B true TWI329188B (en) 2010-08-21

Family

ID=44726882

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96140306A TWI329188B (en) 2007-10-26 2007-10-26 Device and method for measuring surface profile

Country Status (1)

Country Link
TW (1) TWI329188B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI668439B (en) * 2018-11-26 2019-08-11 致茂電子股份有限公司 Method of measuring surface topography

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI472715B (en) * 2013-07-18 2015-02-11 Univ Nan Kai Technology An interferometric configuration based of synchronous measurement of dynamic surface profile

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI668439B (en) * 2018-11-26 2019-08-11 致茂電子股份有限公司 Method of measuring surface topography

Also Published As

Publication number Publication date
TW200918850A (en) 2009-05-01

Similar Documents

Publication Publication Date Title
JP6542356B2 (en) Optical evaluation of lenses and lens molds
TWI428558B (en) Distance measurement method and system, and processing software thereof
US7583392B2 (en) Surface profile measuring apparatus
US8045181B2 (en) Inspection system and method with multi-image phase shift analysis
US10643327B2 (en) Inspection method and inspection apparatus
JP3938785B2 (en) Defect inspection method and apparatus
CN105466359B (en) A kind of precision surface type measurement device
JP3327781B2 (en) Position detecting device and its verification method and adjustment method
US20220187161A1 (en) Deflectometry Measurement System
JP5584099B2 (en) Object surface shape measuring apparatus, shape measuring method and component kit
TW201237359A (en) Three dimensional surface profilometer and microscopy, and the method using the same
JP2010121960A (en) Measuring device and method of measuring subject
CN104570616A (en) Self-reference scattering measurement device and method
JP2004022797A (en) Device and method for detecting position of mark
TWI329188B (en) Device and method for measuring surface profile
JP2014240766A (en) Surface inspection method and device
TWI638133B (en) Non-contact lens radius of curvature and thickness detection device and detection method thereof
JP2023508738A (en) Defect inspection device and method
TW201425863A (en) Curvature measurement system and method thereof
JP2007298281A (en) Measuring method and device of surface shape of specimen
KR20070015310A (en) Overlay measuring apparatus in semiconductor device
TWI708040B (en) External reflection-type three dimensional surface profilometer
TWI805969B (en) Surface topography measuring system
US11841218B2 (en) System and method of measuring surface topography
TWI582400B (en) Target plate for testing, optical testing equipment and optical testing method