TWI328684B - Differential measurement probe having retractable double cushioned variable spacing probing tips and providing eos/esd protection - Google Patents

Differential measurement probe having retractable double cushioned variable spacing probing tips and providing eos/esd protection Download PDF

Info

Publication number
TWI328684B
TWI328684B TW095116084A TW95116084A TWI328684B TW I328684 B TWI328684 B TW I328684B TW 095116084 A TW095116084 A TW 095116084A TW 95116084 A TW95116084 A TW 95116084A TW I328684 B TWI328684 B TW I328684B
Authority
TW
Taiwan
Prior art keywords
probe
coaxial
electrical
semi
differential measuring
Prior art date
Application number
TW095116084A
Other languages
Chinese (zh)
Other versions
TW200710399A (en
Inventor
Kei-Wean C Yang
Original Assignee
Tektronix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tektronix Inc filed Critical Tektronix Inc
Publication of TW200710399A publication Critical patent/TW200710399A/en
Application granted granted Critical
Publication of TWI328684B publication Critical patent/TWI328684B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06788Hand-held or hand-manipulated probes, e.g. for oscilloscopes or for portable test instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06794Devices for sensing when probes are in contact, or in position to contact, with measured object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/36Overload-protection arrangements or circuits for electric measuring instruments

Description

(1) (1)1328684 九、發明說明 【發明所屬之技術領域】 本發明整體而言係關於信號獲取探針,且更具體而言 係關於一種具有可縮回雙減震可變間距探針尖及電性過應 力(EOS )及靜電放電(ESD )保護能力的差分式測量探 針。 【先前技術】 差分式時域反射計(TDR )探針係用於在被測試裝置 上發射階形脈衝以及接收從該裝置反射的返回脈衝。該返 回脈衝被耦接至一採樣頭,其產生返回信號之離散樣本。 由於在被測試裝置上之測試點之間距的差異,因此最好能 提供一種具有可變間距探針尖之差分式TDR探針。一種 此類差分式 TDR探針係美國加州聖克拉拉市的Inter-Continental Microwave公司所生產並販售的 A0134332差 分式TDR探針。該可變間距差分式TDR探針具有個別的 TDR探針,其係利用兩個螺絲而被安裝至一扁平彈簧上。 每一 TDR探針具有一金屬外殼,且該外殼之一端部具有 一用於連接一信號電纜之螺紋連接器。一大致呈長方形的 構件從該連接器下方朝外延伸且具有一用以收納將該TDR 探針牢固至該扁平彈簧之該螺絲的螺紋孔。在該長方形構 件下方係一圓形部分,其轉變成一窄長方形探針尖構件。 該探針尖構件具有一孔,其收納一RF插腳及電介質構件 。該RF插腳電性地連接至該螺紋連接器之一中央信號接 -4 - (2) 1328684 點。在該窄長方形探針尖構件中形成有額外的開 接地單蹺式插腳。各種不同的孔允許接地單蹺式 位在距離該RF插腳之各種不同距離處。一可變 夾被定位在該TDR探針上方而相鄰於窄長方形 件。該調整夾具有一 “U”形部分及一扁平部分, 分藉由螺絲而牢固在一起。該U形構件之兩相對 收納調整帽蓋螺絲之螺紋孔,該螺絲係延伸穿過丨 件之側邊而進入至該“U”的內部空間中。螺紋孔 該U形構件之基部而與在該U形構件之相反側 紋孔相交。在該基部中之每一螺紋孔收納一被拴 調整帽蓋螺絲上之固定螺絲。 該RF插腳之定位係藉由旋鬆該等調整帽蓋 該等固定螺絲且轉動該等調整帽蓋螺絲以將每一 針移動成更靠近或更分開而達成。使該等TDR 於其上之扁平彈簧在該等探針上造成朝外的壓力 其抵頂該等調整帽蓋螺絲。將該等TDR探針固 平彈簧的螺絲亦可被旋鬆以允許該等探針旋轉運 RF針尖及該等接地單翹式插腳被準確地定位時 等固定螺絲及該等扁平彈簧螺絲拴緊。 雖然上述的可變間距TDR探針允許該等RF 等單翹式插腳運動,然而該探針之設計仍具有缺 ,該等RF插腳被固定在該等TDR探針中而使得 不會具有軸向運動。這需要該差分式探針之該等 被定位在相同的橫向平面上以與該被測試裝置形 孔來收納 插腳被定 間距調整 探針尖構 且此兩部 側邊具有 该U形構 被形成在 邊中的螺 緊在該等 螺絲上的 TDR探 探針附接 ,以迫使 持至該扁 動。當該 ,便將該 針尖及該 點。例如 RF插腳 RF插腳 成良好的 -5- (3) 1328684 接觸。若該等RF針尖並未位在相同的橫向平面,則該等 RF插腳之一者將會受到更多的軸向力來使另一 RF插腳形 成接觸。若此軸向力過大,則將會對該等RF插腳之一或 兩者受損。這便需要更換該RF插腳及該電介質構件。再 者’此可變間距差分式探針並未具有保護該採樣頭免於受 到可能存在於該被測試裝置上之靜電壓的能力。這將會造 成在該採樣頭中之採樣電路受損。 # 使用在時域反射計中之超高速採樣頭通常係要求極低 電容。這會造成獨特的問題。採樣裝置對於留置在一被測 試裝置上的靜電放電更具敏感性。在該採樣頭中之採樣二 極體的小幾何形狀通常係要求低的擊穿電壓。在該採樣頭 輸入處的低寄生電容係表示針對一給定的被測試裝置( DUT )靜電放電’其在採樣器輸入處將具有更高的瞬間電 壓’适是因爲降低的電荷共享效果所造成。因此,在該採 樣頭輸入件被耦接至該被測試裝置之前,將該被測試裝置 ® 上的任何靜電荷予以中和係很重要的。 另一種可變間距差分式測量探針係揭示在美國專利第 6,704,670號中。該可變間距測量探針具有第—及第二大 致呈圓柱形的探針筒。每一探針筒係由一導電性材料所構 成’其部分地延伸於一探針單元外殻的外面。一探針筒鼻 錐被附接至每一外露的探針筒。每一探針鼻錐在形狀上係 大致呈圓錐狀且由一絕緣材料所製成。每一探針筒鼻錐的 縱軸係從該探針同以一偏離該探針筒之縱軸的一偏離角度 延伸而出。一典型的圓柱狀探針尖係部分地延伸出於每一 -6- (4) (4)1328684 探針筒鼻錐的端部且由一導電性材料所製成。一具有—外 部屏蔽導體及一中央信號導體之探針電纜係連接至該等探 針筒及探針尖的每一者,且使該外部屏蔽導體被連接至該 探針筒以及使該信號導體被連接至該探針尖。一彈性可壓 縮元件嚙合每一探針筒且該探針單元外殼允許該等探針筒 移進及移出於該探針單元外殼。該等探針鼻錐及相關的探 針相對於該探針筒之縱軸的偏移縱軸係允許該等探針尖具 有可變間距。 作用在該探針筒及探針鼻錐總成的力係在圖1中以圖 表來表示。該’670號專利顯示作爲壓縮彈簧之彈性可壓縮 元件係遵循虎克定律FzKiAX,其中Κι係壓縮彈簧常數 。圖1顯示在使用期間被施加至探針鼻錐及探針筒總成的 力’其中“F”係施加至探針鼻錐之探針尖的力,而Δχ係 彈簧壓縮量。假設該等彈性可壓縮元件被預負載,則在該 等總成上具有一由力F1所代表的初始力。在該探針單元 外殼上之向下力在該等總成上施加一增加力,其由斜線 Κ〇所表示。在該探針單元外殼上之持續向下力造成該等彈 性可壓縮元件被完全地壓縮或者該等總成嚙合一固定件。 在該探針單元外殻上之持續的向下壓力會將力轉移至該等 總成,如由垂直力線所表示》上述的差分式測量探針係用 於來自於一被測試裝置之測量信號。因此,該差分式測量 探針具有減少EOS/ESD保護之需要的被動輸入電路。因 此’這些探針不會將信號輸入接地以放電在該被測試裝置 上之靜電壓。 (5) (5)1328684 另一種可變間距差分式測量探針係由奧勒崗州 Beaverton巾之Tektronix公司所生產及販售的P738〇差分 式測量探針。該P7380探針具有一包含—主動電路之探針 本體及一藉由兩個同軸電纜而連接至該探針本體的探針尖 構件。該探針尖構件具有不同的探測接點,其與安裝在一 針尖夾中之各種不同探針尖相配合。該等針尖夾之一者具 有可轉動的探針尖’其爲該等探針尖提供可變間距。該探 針本體及該探針尖構件可被被定位在一持持式探測轉接器 外殻中,其藉由該P73 80來提供簡易的手持式探測,如 2004年3月27日申請之美國專利申請案第10/856,29〇號 所揭示者。該探針尖構件藉由將該探針尖構件之一部分延 伸通過該手持式探測轉接器之端部而被定位在該手持式探 測轉接器前面的一個腔室中。在該腔室中係由一彈性材料 所形成的柔順構件,其抵靠該探針尖構件之側邊表面及向 後表面。當該等差分式探針尖與一被測試裝置接觸時,在 該等探針尖與該被測試裝置之間的非平面變化會由該柔順 構件所化解。作用在該探針尖構件之該等探針尖上的力係 以曲線方式顯示在圖1中。該柔順構件較佳地由彈性材料 所形成,其係藉由該探針尖構件予以部分地壓縮而產生一 如由力F 1所表示之初始預負載狀態。在探針尖構件上的 向下壓力係由於該彈性材料之壓縮特性而在該等探針尖之 一者或兩者上施加一增加力,如由力Κι所表示者。在該 探針尖構件上的持續向下壓力會完全地壓縮該彈性材料或 者該探針尖構件嚙合一固定擋止件。在該探針尖單元上的 -8- (6) (6)1328684 持續向下壓力會將力轉移至該等探針尖,如由垂直力線所 表示。如前述的可變間距差分式探針,上述的可變間距差 分式測量探針係用於測量來自於一被測試裝置的信號。因 此’該可變間距差分式測量探針具有減少EOS/ESD保護 之需要的被動輸入電路。因此,這些探針不會將信號輸入 接地以放電在該被測試裝置上之靜電壓。 美國專利第6,734,689揭示一種測量探針,其提供用 於一 EOS/ESD保護控制模組之信號控制。該測量探針具 有一彈簧負載的同軸探針總成及一壓力感測器,其結合作 用以提供一啓動信號至該控制模組。該彈簧負載的同軸電 纜總成及壓力感測器被設置在一探針外殼中。該彈簧負載 的同軸探針總成具有一半硬性同軸電纜,其一端構件一探 針尖且另一端具有一螺紋連接器。一可撓性同軸電纜連接 至該螺紋連接器且連接至該控制模組。一壓縮彈簧被定位 在該半硬性同軸電纜上方,且其一端被牢固至該半硬性同 軸電纜而另一端則嚙合該探針外殼。該壓縮彈簧係被預負 載以施加一初始力至該彈簧負載的同軸探針總成,如圖1 之圖表所示。圖1顯示在使用期間施加至該彈簧負載的同 軸探針總成之探針尖的力,其中“F”係施加至該探針尖的 力,而K!係彈簧常數,且ΔΧ係該彈簧距其平衡位置的 位移量。該壓縮彈簧之預負載會在該同軸探針總成上產生 一初始力F 1。該壓力感測器具有一附接至該半硬性同軸 電纜之外部屏蔽導體的電接點,而該半硬性同軸電纜之外 部屏蔽導體係經由該可撓性同軸電纜而被連接至電性接地 (7) 1328684 。另一壓力感測器電接點被安裝至該探針外殼。一電導體 係將該壓力感測器電性地耦接至該控制模組。 當該啓動信號不存在時,該控制模組提供一用於該測 量探針之信號導體的接地電路路徑。當該探針尖與該被測 試裝置相接觸時,在該DUT上的任何靜電荷會經由該信 號導體而藉由該控制模組被耦接至接地線。當向下壓力被 施加至探針外殼時,該同軸 。該壓縮彈簧依照虎克定律 數)而在該同軸探針總成上 針外殻的持續向下壓力會造 這會造成該壓力感測器傳送 該控制模組中的開關電路, 量探針上之信號導體上的接 點被固定至該半硬性同軸電 針外殼上之任何持續向下壓 感測器及該同軸探針總成, 。在該壓力感測器及該同軸 造成該壓力感測器或該同軸 因此需要一種具有可縮 供EOS/ESD保護能力的差 距差分式測量探針係需要在 耦接至一採樣頭之信號通道 的靜電壓。再者,具有可縮 分式探針應提供一足夠壓力 探針總成會縮回至該探針本體 ΔΧ(其中1係彈簧常 施加增加的壓力。施加至該探 成壓力感測器接點產生接觸。 一啓動信號,該啓動信號控制 而該開關電路移除一位在該測 地連接。由於該壓力感測器接 纜及該探針外殼,因此在該探 力會將該等力量轉移至該壓力 如圖1中由垂直力線所表示者 探針總成上的過大力量可能會 探針總成受損。 回雙減震可變間距探針尖並提 分式測量探針。該可變針尖間 該差分式測量探針之探針尖被 之前先放電在一被測試裝置上 回雙減震可變間距探針尖之差 已被施加至該探針的指示給使 -10- (8) (8)1328684 用者,以防止該探針受損。 【發明內容】 因此’本發明係一種差分式測量探針,其具有第一及 第二同軸探針總成’且每一同軸探針總成具有一探針尖。 該等同軸探針總成被收納在一外殼中,且該等探針尖從該 外殼之一端部延伸而出。在較佳實施例中,該第一及第二 同軸探針總成的每一者係由一半硬性同軸電纜所形成,且 該半硬性同軸電纜在一端部具有一探針尖而在另一端部具 有一螺紋連接器。該等半硬性同軸電纜之探針尖端部具有 彎曲部分’該彎曲部分在該等探針尖處轉變成長直部分, 以使該等半硬性同軸電纜之該等探針尖以角度彎向彼此。 第一可壓縮元件被設置在該外殼中,且該等第一可壓 縮元件之一者嚙合該第一同軸探針總成且施加一第一預負 載壓縮力至該第一同軸探針總成以及一藉由該外殼相對於 該第一同軸探針總成之軸向運動而施加之第一增加壓縮力 。另一個第一可壓縮元件嚙合該第二同軸探針總成且施加 一第一預負載壓縮力至該第二同軸探針總成以及一藉由該 外殻相對於該第二同軸探針總成之軸向運動而施加之第一 增加壓縮力。在本較佳實施例中,該等第一可壓縮元件之 每一者係一被定位在該第一及第二同軸探針總成之每一者 之該等半硬性同軸電纜之一者上的壓縮彈簧。該壓縮彈簧 之一端部被固定地定位至該等半硬性同軸電纜,且另一端 部嚙合該外殼,且該等壓縮彈簧被壓縮於在該等半硬性同 -11 - (9) 1328684 軸電纜上之該等固定位置與該外殼之間,以產 預負載壓縮力。 第二可壓縮元件被設置在該外殼中,且該 縮元件之一者係在該第一同軸探針總成上施加 壓縮力之後施加一第二預負載壓縮力至該第一 成及一藉由該外殻相對於該第一同軸探針總成 向運動而施加之一第二增加壓縮力。另一個第 件係在該第二同軸探針總成上施加該第一增加 施加一第二預負載壓縮力至該第二同軸探針總 該外殼相對於該第二同軸探針總成之進一步軸 加之一第二增加壓縮力。 第一及第二壓力感測器被設置在該外殼中 外殼相對於該第一及第二同軸探針總成之軸向 一啓動信號。該第一及第二壓力感測器之每一 各別同軸探針總成之每一者相關聯的第一部分 殻相關聯的第二部分。該第一及第二壓力感測 具有一被定位在該第一及第二同軸探針總成之 等半硬性同軸電纜之外部屏蔽導體上的第一導 一被設置在該外殼中的第二導電接點。該第一 一者係電性地親接至該等半硬性同軸電續之一 蔽導體,而另一第一導電接點係與另一個半硬 之外部屏蔽導體電性地絕緣。當該第_及第一 之該寺弟一導電接點嚼合該第~及第二壓力感 第二導電接點時’該第一及第二壓力感測器產 生該等第一 等第二可壓 該第一增加 同軸探針總 之進一步軸 二可壓縮元 壓縮力之後 成及一藉由 向運動而施 以相應於該 運動來傳送 者具有一與 及一與該外 器之每一者 每一者之該 電接點以及 導電接點之 者的外部屏 性同軸電纜 壓力感測器 測器之該等 i生一邏輯“ -12- (10) (10)1328684 及(AND ) ”功能。 至少一第一調整機構係被設置在該外殼中且機械式地 耦接至該第一及第二同軸探針總成之一者,以改變該第一 及第二同軸探針總成之該等半硬性同軸電纜之該等探針尖 的探針尖間距。 該外殻較佳地具有第一及第二構件,且至少一構件具 有弟一及弟一通道形成於其中。該第一及第二構件結合在 一起以形成一內部腔室來收納該第一及第二同軸探針總成 、該等第一可壓縮元件、該等第二可壓縮元件及至少該第 一調整機構之第一及第二壓力感測器部分。 在該差分式測量探針之一實施例中,該第一及第二壓 力感測器之該等第一導電接點的每一者具有一被設置成鄰 近該第一同軸探針總成之該等半硬性同軸電纜的探針尖之 固持塊。該第一壓力感測器之固持塊具有一被設置在相對 置之長直部分之間的彎曲凹槽以收納該第一同軸探針總成 之該半硬性同軸電纜之彎曲部分,且該固持塊係用以作爲 該第一壓力感測器之第一導電接點。該第二壓力感測器之 固持塊被設置成鄰近於該第二同軸探針總成之該等半硬性 同軸電纜的探針尖。該第二壓力感測器之固持塊具有一被 設置在相對置之長直部分之間的彎曲凹槽以收納該第二同 軸探針總成之半硬性同軸電纜的彎曲部分。一導電構件被 設置成鄰近且電性地絕緣於該第二壓力感測器之一固持塊 。此外’該第一及第二壓力感測器之該等第二導電接點之 一者具有一共同導電接點,該共同導電接點用以經由該第 -13- (11) (11)1328684 一及第二壓力感測器之該等第一導電接點之一者來將該等 桌—導電接點電性地親接在一起。在本實施例中,該等第 二可壓縮元件之每一者係一被設置在一導電性外殼之一孔 中的壓縮彈簧,該導電性外殻具有一被牢固在該孔中之可 動電接點。該等第二可壓縮元件之壓縮彈簧被壓縮在該等 導電性外殻與該等可動電接點之間,以產生該等第二預負 載壓縮力。該等導電性外殼及該等可動電接點之每一者形 成該第一及第二壓力感測器之該等第二導電接點之一者。 該調整機構具有一於其中包括一螺紋孔的載具。該載具收 納被鄰設於該第一及第二同軸探針總成之該等半硬性同軸 電纜之該等探針尖的第一及第二固持塊的一者。一具有一 附接至一螺紋柄之螺絲頭部的螺絲係嚙合該載具中之螺紋 孔。該螺絲頭部被收納且捕捉在該外殼之該外表面的一凹 口中,而該螺紋柄貫穿該外殼中之一開孔以嚙合該載具。 在本較佳實施例中,該載具具有一 U形構件,該U形構 件具有一基部及側壁,且該固持塊被緊密地收納在該U形 構件中。藉由轉動在該調整構件中的螺絲,該第一及第二 同軸探針總成之該等探針尖的至少一者係相關於另一探針 尖來移動,以改變在該等探針尖之間的間距。在本較佳實 施例中,該第一及第二同軸探針總成的每一者進一步具有 一被設置在鄰近於該螺紋連接器之半硬性同軸電纜上的附 接板。每一附接板被牢固至一防轉塊,該防轉塊被定位在 該外殼中。一具有一頂板及附屬側壁之托架係被牢固至該 等附接板的一者。至少一第一電連接器插座安裝在該托架 -14 - (12) 1328684 上且藉由一電導體而被電性地耦接至該第一及第二壓 測器之一者。一差分式測量探針較佳地經由第一及第 軸電纜而耦接至至少一第一電性過應力及靜電放電保 制模組。該差分式測量探針傳送一啓動信號至該電性 力及靜電放電保護控制模組,以將該差分式測量探針 等探針尖電性地耦接至測量測試儀器之輸入電路。第 第二壓力感測器之第二導電接點的一者經由該電導體 接至電性過應力及靜電放電保護控制模組。在該第一 二壓力感測器之該等第一導電接點嚙合該第一及第二 感測益1之該等弟一導電接點之則,該第一及第二同軸 總成之該等探針尖經由該電性過應力及靜電放電保護 模組而被耦接至電性接地線。當該電性過應力及靜電 保護控制模組接收到相應於第一及第二壓力感測器之 第一導電接點嚙合該第一及第二壓力感測器之該等第 電接點而由該第一及第二壓力感測器所傳送的啓動信 ’該第一及第二同軸探針總成之該等探針尖便被電性 接至測量測試儀器之輸入電路。 將該第一及第二壓力感測器之該等第二導電接點 者親接至該電性過應力及靜電放電保護控制模組之電 較佳地具有第一及第二絕緣線部分。該第一絕緣線部 性地親接該第一及第二壓力感測器之該等第二導電接 至一被安裝在該差分式測量探針上之一電連接器 之電接點。該第二絕緣線部分電性地耦接一第一電插 電接點至一第二電插頭之一電接點,且該第一電插頭 力感 二同 護控 過應 之該 —及 而耦 及第 壓力 探針 控制 放電 該等 二導 號時 地耦 之一 導體 分電 點之 插座 頭之 與安 -15- (13) 1328684 裝在該差分式測量探針上的電連接器插座相配接,且 二電插頭與一具有被安裝在該電性過應力及靜電放電 控制模組中之一電接點的電連接器插座相配接。 該差分式測量探針亦可被連接至第一及第二電性 力及靜電放電保護控制模組。在本實施例中,該差分 量探針之第一同軸電纜被耦接至該第一電性過應力及 放電保護控制模組,且該第二同軸電纜被耦接至該第 φ 性過應力及靜電放電保護控制模組。該差分式測量探 該啓動信號傳送至這兩個電性過應力及靜電放電保護 模組。該電導體接著由一第一絕緣線部分所構成,該 絕緣線部分係將該第一及第二壓力感測器之該等第二 接點之一者電性地耦接至被安裝在該差分式測量探針 第一及第二電連接器插座的各別電接點。第二及第三 線部分將該啓動信號電性地耦接至該第一及第二電性 力及靜電放電保護控制模組。第二及第三絕緣線部分 # 一者具有第一及第二電插頭,且該第一及第二電插頭 一者具有一電接點。第二絕緣線之第一電插頭的電接 與安裝在該差分式測量探針上之第一電連接器插座之 點相配接,且該第二絕緣線之第二電插頭之電接點係 安裝在該第一電性過應力及靜電放電保護控制模組中 連接器插座之電接點相配接。該第三絕緣線之第一電 之電接點係與安裝在該差分式測量探針上之第二電連 插座的電接點相配接,且該第三絕緣線之第二電插頭 接點係與一安裝在該第二電性過應力及靜電放電保護 該第 保護 過應 式測 靜電 二電 針將 控制 第一 導電 上之 絕緣 過應 的每 之每 點係 電接 與— 之電 插頭 接器 之電 控制 -16- (15) (15)1328684 入連接器3 2亦被設置在該等控制模組1 2、1 3中。一諸如 一 LED之可選用之目視指示器34可被牢固至該等控制模 組1 2、1 3 ’以指示該可變針尖間距差分式測量探針1 〇之 各別探針尖之一者何時被耦接至該採樣頭1 8。該等控制模 組12、13之同軸輸入端子26被耦接至各別同軸電纜36、 37之一端,且該等同軸電纜的另一端係被耦接至該可變針 尖間距差分式測量探針10。該等同軸輸出端子28係藉由 各別同軸電纜24、25而被耦接至該採樣頭丨8之該等輸入 端子22、23» — 50歐姆終端連接器38被牢固至該同軸終 %機端子30。各別導電性插頭連接器4〇、41插接至該輸 入連接器32中。該等插頭連接器40' 41之電接點42、43 電性地連接至在另一端具有第二插頭連接器46、47之電 導體44、45。該等第二插頭連接器46、47係被插接至安 裝在該可變針尖間距差分式測量探針1〇上的插頭插座48 、49。該可變針尖間距差分式測量探針1 〇係用以探測安 裝在一被測試裝置54之一電路板52上的電路跡線50及 裝置。該電路板5 2顯示兩組電路跡線5 0,其中一組跡線 係以傳統的G-S-G-S-G接點來構形,且該等跡線50向外 擴展至該等接點。另一組跡線5 0並非被構形成傳統接點 構形方式。具有可縮回的雙減震可變間距探針尖之該差分 式測量探針1 0係具有藉由改變該等探針尖之間距來探測 兩組跡線5 0的能力。 現請參考圖4,其中顯示一用於具有可縮回雙減震可 變間距探針尖並具有傳送一啓動信號至該等EOS/ESD保 -18- (16) (16)1328684 護控制模組1 2、1 3能力之差分式測量探針1 〇的第一實施 例的外殼100的分解視圖。該外殼1〇〇較佳地爲長形,其 具有一主要爲長方形的截面形狀且係由第一及第二構件 102、104所製成。該外殼1〇〇係由—絕緣材料所形成,諸 如ABS塑膠、聚碳酸酯等等。該等外殻構件1〇2之至少 一者具有第一及第二通道106、107,其外露在該外殻構件 102的前端。較佳地,該等通道106、107被形成彼此平行 且平行於該外殼構件102之縱軸。每一通道106、107具 有各別的凹口 112、113及114、115形成於其中。每一凹 口 112、113、114 及 115 具有一後端壁 116、117、118 及 119。一凹槽120被形成在一從該凹口 112之後端壁116 延伸至一形成在該外殼構件102中之橫向通道凹槽121而 介於該等通道106、107之間。兩個平行凹槽122、123係 形成在該通道 107中,且一凹槽122與該橫向通道凹槽 121相交。一縱向凹槽124被形成在該通道107中而從該 凹槽123延伸至位在該通道1〇7中的該凹口 115。該後端 壁1 19及1 19係通道分隔部125、126之表面,其將該通 道106、107與一位在該外殼構件102之背端部1 10的面 部向後之開放凹口 127分開。每一通道隔壁125、126各 具有一形成在頂部的缺口 128、129。一凹槽130被形成在 與該凹口 115相交之該通道隔壁126中。一孔(未圖示) 被形成在延伸至該外殼構件102之外表面的凹槽130中》 —大致連續狀突起131從該外殼構件102之一側邊向外延 伸。一凹口 132被形成在與該通道106中之凹口 112相交 -19- (17) (17)1328684 之該凸部壁中。一孔133被形成在該突起131,其從該凹 口 132延伸至該外殼構件1〇2之外側表面。當該第一及第 二外殼構件102及104彼此附接至在一起時,該等通道 106' 107及凹口 112、113' 114及115形成一位在該外殻 100中的內部腔室134。雖然上述描述之外殼100係在一 外殼構件102中具有一通道106、107及凹口 112、113、 114、115及127,然而該外殼1〇〇亦可在兩個外殼構件 102、104中皆形成有通道及凹口,當該外殼構件102、 1〇4彼此附接在一起時,該等通道及凹口便構成該內部腔 室134及該凹口 127» 現請參考圖5,其中顯示第一及第二同軸探針總成 140、141、第一及第二壓力感測器142、143、第一同軸探 針總成140之第一及第二壓縮元件丨44、145、以及該第二 同軸探針總成141之第一及第二壓縮元件146、147的部 分立體分解視圖。該等同軸探針總成140、141之每一者 具有一半硬性同軸電纜148,其具有一中央信號導體149 及一外部屏蔽導體150。該中央信號導體149以一端部向 外延伸越過該外部屏蔽導體150而形成一探針尖151。該 半硬性同軸電纜148在探針尖端部151處具有一彎曲部分 152,該彎曲部分在該探針尖151處轉變成長直部分且朝 向附接至該半硬性同軸電纜148之另一端的同軸螺紋連接 器1S3延伸。該同軸螺紋連接器153之螺合部分耦接至該 外部屏蔽導體150,且該中央信號導體149耦接至一軸向 設置在該同軸螺紋連接器153中的中央導體。一附接板 -20- (18) (18)(1) (1) 1328684 IX. Description of the Invention [Technical Field] The present invention relates generally to signal acquisition probes, and more particularly to a reversible double shock absorption variable pitch probe Differential measurement probe for tip and electrical overstress (EOS) and electrostatic discharge (ESD) protection. [Prior Art] A differential time domain reflectometer (TDR) probe is used to emit a stepped pulse on a device under test and to receive a return pulse reflected from the device. The return pulse is coupled to a sampling head that produces a discrete sample of the return signal. Due to the difference in distance between test points on the device under test, it is desirable to provide a differential TDR probe with a variable pitch probe tip. One such differential TDR probe is the A0134332 differential TDR probe manufactured and sold by Inter-Continental Microwave, Inc. of Santa Clara, California. The variable pitch differential TDR probe has individual TDR probes that are mounted to a flat spring using two screws. Each TDR probe has a metal outer casing and one end of the outer casing has a threaded connector for connecting a signal cable. A generally rectangular member extends outwardly from beneath the connector and has a threaded bore for receiving the TDR probe to the screw of the flat spring. Underneath the rectangular member is a circular portion that transforms into a narrow rectangular probe tip member. The probe tip member has a hole that houses an RF pin and a dielectric member. The RF pin is electrically connected to one of the threaded connectors at a central signal connection -4 - (2) 1328684 points. Additional grounded single-pin pins are formed in the narrow rectangular probe tip member. The various apertures allow the grounded single-turn position to be at various different distances from the RF pin. A variable clip is positioned over the TDR probe adjacent to the narrow rectangular member. The adjustment jig has a "U" shaped portion and a flat portion which are secured together by screws. The two U-shaped members are oppositely received to receive the threaded holes of the cap screws which extend through the sides of the jaws into the interior space of the "U". Threaded hole The base of the U-shaped member intersects the pit on the opposite side of the U-shaped member. Each of the threaded holes in the base receives a fixing screw on the cap adjustment screw. Positioning of the RF pins is accomplished by unscrewing the caps and adjusting the cap screws to move each of the pins closer or more apart. The flat springs on which the TDRs are placed cause outward pressure on the probes which abut the adjustment cap screws. The screws of the TDR probe flat springs can also be loosened to allow the probes to rotate the RF needle tip and the grounding single-wound pins are accurately positioned, such as the set screws and the flat spring screws. . Although the above-described variable pitch TDR probes allow for the movement of single tilt pins such as RF, the design of the probes is still lacking, and the RF pins are fixed in the TDR probes so that they do not have an axial direction. motion. This requires that the differential probes are positioned on the same lateral plane to accommodate the probe-shaped apertures to accommodate the pins to be pitch-adjusted to the probe tip and the two sides have the U-shaped configuration A TDR probe attached to the screws in the side is attached to force the holding to the flat motion. When this is done, the needle tip and the point will be taken. For example, the RF pin RF pin is a good -5- (3) 1328684 contact. If the RF tips are not in the same lateral plane, one of the RF pins will be subjected to more axial force to cause the other RF pin to make contact. If this axial force is too large, one or both of the RF pins will be damaged. This requires replacement of the RF pin and the dielectric member. Furthermore, this variable pitch differential probe does not have the ability to protect the sampling head from static voltages that may be present on the device under test. This will cause damage to the sampling circuit in the sampling head. # Using ultra-high speed sampling heads in time domain reflectometers typically requires very low capacitance. This creates a unique problem. The sampling device is more sensitive to electrostatic discharges that are placed on a device under test. The small geometry of the sampling diode in the sampling head typically requires a low breakdown voltage. The low parasitic capacitance at the input of the sampling head indicates that the electrostatic discharge for a given device under test (DUT) will have a higher instantaneous voltage at the input of the sampler due to the reduced charge sharing effect. . Therefore, it is important to neutralize any static charge on the device under test ® before the sample input member is coupled to the device under test. Another variable pitch differential measurement probe is disclosed in U.S. Patent No. 6,704,670. The variable pitch measuring probe has a first and a second substantially cylindrical probe barrel. Each of the probe barrels is constructed of a conductive material that extends partially outside of a probe unit housing. A probe cone nose is attached to each exposed probe barrel. Each of the probe nose cones is generally conical in shape and is made of an insulating material. The longitudinal axis of each probe cone extends from the probe at an offset angle from the longitudinal axis of the probe barrel. A typical cylindrical probe tip extends partially from the end of each -6-(4)(4)1328684 probe cone and is made of a conductive material. A probe cable having an outer shield conductor and a central signal conductor is coupled to each of the probe barrel and the probe tip, and the outer shield conductor is coupled to the probe barrel and the signal conductor Connected to the probe tip. An elastomeric compressible member engages each of the probe barrels and the probe unit housing allows the probe barrels to move in and out of the probe unit housing. The offset longitudinal axes of the probe nose cones and associated probes relative to the longitudinal axis of the probe barrel allow for variable spacing of the probe tips. The force acting on the probe barrel and the probe nose cone assembly is shown graphically in Figure 1. The '670 patent shows that the elastically compressible element as a compression spring follows Hooke's Law FzKiAX, where Κ is a compression spring constant. Figure 1 shows the force applied to the probe nose cone and probe barrel assembly during use, where "F" is the force applied to the probe tip of the probe nose cone, and the Δχ spring compression amount. Assuming that the elastically compressible elements are preloaded, there is an initial force on the assembly represented by force F1. The downward force on the probe unit housing exerts an increasing force on the assemblies, indicated by the diagonal Κ〇. The continued downward force on the probe unit housing causes the resiliently compressible members to be fully compressed or the assemblies to engage a fastener. Continued downward pressure on the probe unit housing transfers force to the assembly, as indicated by the vertical force line. The differential measurement probe described above is used for measurements from a device under test. signal. Therefore, the differential measurement probe has a passive input circuit that reduces the need for EOS/ESD protection. Therefore, these probes do not input the signal to ground to discharge the static voltage on the device under test. (5) (5) 1328684 Another variable-pitch differential measuring probe is the P738〇 differential measuring probe manufactured and sold by Tektronix, Beaverton Towel, Oregon. The P7380 probe has a probe body including an active circuit and a probe tip member coupled to the probe body by two coaxial cables. The probe tip member has different probe contacts that mate with the various probe tips mounted in a tip holder. One of the tip holders has a rotatable probe tip that provides a variable spacing for the probe tips. The probe body and the probe tip member can be positioned in a holding probe adapter housing, which provides easy hand-held detection by the P73 80, as claimed on March 27, 2004. The disclosure of U.S. Patent Application Serial No. 10/856,29. The probe tip member is positioned in a chamber in front of the hand-held probe adapter by extending a portion of the probe tip member through the end of the hand-held probe adapter. A compliant member formed of an elastic material in the chamber abuts against the side surface and the rearward surface of the probe tip member. When the differential probe tips are in contact with a device under test, non-planar changes between the probe tips and the device under test are resolved by the compliant member. The forces acting on the probe tips of the probe tip member are shown graphically in Figure 1. The compliant member is preferably formed of an elastomeric material that is partially compressed by the probe tip member to produce an initial preload condition as indicated by force F1. The downward pressure on the probe tip member exerts an increasing force on one or both of the probe tips due to the compressive nature of the elastomeric material, as indicated by force ι. Continued downward pressure on the probe tip member will completely compress the elastomeric material or the probe tip member engages a fixed stop. The -8-(6) (6) 1328684 on the probe tip unit continues to push down the force to the probe tips as indicated by the vertical force line. As with the variable pitch differential probe described above, the variable pitch differential measurement probe described above is used to measure signals from a device under test. Therefore, the variable pitch differential measuring probe has a passive input circuit that reduces the need for EOS/ESD protection. Therefore, these probes do not input the signal to ground to discharge the static voltage on the device under test. U.S. Patent No. 6,734,689 discloses a measuring probe that provides signal control for an EOS/ESD protection control module. The measurement probe has a spring loaded coaxial probe assembly and a pressure sensor that cooperate to provide a start signal to the control module. The spring loaded coaxial cable assembly and pressure sensor are disposed in a probe housing. The spring loaded coaxial probe assembly has a semi-rigid coaxial cable with a probe tip at one end and a threaded connector at the other end. A flexible coaxial cable is coupled to the threaded connector and to the control module. A compression spring is positioned over the semi-rigid coaxial cable and one end is secured to the semi-rigid coaxial cable and the other end engages the probe housing. The compression spring is preloaded to apply an initial force to the spring loaded coaxial probe assembly, as shown in the graph of Figure 1. Figure 1 shows the force applied to the probe tip of the spring loaded coaxial probe assembly during use, where "F" is the force applied to the probe tip and K! is the spring constant and ΔΧ is the spring The amount of displacement from its equilibrium position. The preload of the compression spring produces an initial force F 1 on the coaxial probe assembly. The pressure sensor has an electrical contact attached to an outer shield conductor of the semi-rigid coaxial cable, and the outer shield guiding system of the semi-rigid coaxial cable is connected to the electrical ground via the flexible coaxial cable (7) ) 1328684 . Another pressure sensor electrical contact is mounted to the probe housing. An electrical conductor electrically couples the pressure sensor to the control module. When the enable signal is not present, the control module provides a ground circuit path for the signal conductor of the measurement probe. When the probe tip is in contact with the device under test, any static charge on the DUT is coupled to the ground via the signal conductor via the control module. This coaxial when the downward pressure is applied to the probe housing. The compression spring according to Hooke's law number) and the continuous downward pressure of the needle housing on the coaxial probe assembly may cause the pressure sensor to transmit the switching circuit in the control module. The contacts on the signal conductor are secured to any of the continuous down-pressure sensors and the coaxial probe assembly on the semi-rigid coaxial electro-acoustic housing. In the pressure sensor and the coaxiality causing the pressure sensor or the coaxial, therefore, a gap differential measuring probe system having a condensable EOS/ESD protection capability is required to be coupled to a signal path of a sampling head. Static voltage. Furthermore, having a collapsible probe should provide a sufficient pressure that the probe assembly will retract to the probe body ΔΧ (where a series of springs often apply an increased pressure. Application to the probe pressure sensor contacts) Producing a contact. The start signal is controlled, and the switch circuit removes one of the ground connections. Since the pressure sensor is connected to the probe housing, the force is transferred to the probe. This pressure, as shown by the vertical force line in Figure 1. The excessive force on the probe assembly may damage the probe assembly. The double-shock variable-variable probe tip and the split-type measuring probe. Between the tip of the needle, the probe tip of the differential measuring probe is previously discharged on a device to be tested. The difference between the double-shock variable-pitch probe tip has been applied to the probe to give -10- ( 8) (8) 1328684 User to prevent damage to the probe. SUMMARY OF THE INVENTION [The present invention is a differential measuring probe having first and second coaxial probe assemblies' and each coaxial The probe assembly has a probe tip. The coaxial probe assemblies are received In a housing, the probe tips extend from one end of the housing. In a preferred embodiment, each of the first and second coaxial probe assemblies is formed by a half rigid coaxial cable And the semi-rigid coaxial cable has a probe tip at one end and a threaded connector at the other end. The probe tip portion of the semi-rigid coaxial cable has a curved portion at the probe tip Transforming the straight portions so that the probe tips of the semi-rigid coaxial cables are angled toward each other. The first compressible member is disposed in the housing and one of the first compressible members is engaged The first coaxial probe assembly and applying a first preload compressive force to the first coaxial probe assembly and a first applied by the housing relative to the axial movement of the first coaxial probe assembly Adding a compressive force. Another first compressible member engages the second coaxial probe assembly and applies a first preloading compressive force to the second coaxial probe assembly and a housing relative to the first Axial probe assembly axial The first applied compressive force is applied. In the preferred embodiment, each of the first compressible elements is positioned in each of the first and second coaxial probe assemblies. a compression spring on one of the semi-rigid coaxial cables. One end of the compression spring is fixedly positioned to the semi-rigid coaxial cables, and the other end engages the housing, and the compression springs are compressed therein And a semi-rigid relationship between the fixed position on the -11 - (9) 1328684 shaft cable and the outer casing to produce a preload compressive force. The second compressible member is disposed in the outer casing and one of the contracting members Applying a second preload compressive force to the first coaxial probe after applying a compressive force on the first coaxial probe assembly to the first assembly and by moving the housing relative to the first coaxial probe assembly One of the second increases the compressive force. The other first member applies the first increase on the second coaxial probe assembly to apply a second preloading compressive force to the second coaxial probe to the outer casing relative to the first One of the further axes of the two-coaxial probe assembly Increasing the compression force. The first and second pressure sensors are disposed in the housing with an activation signal of the housing relative to the axial direction of the first and second coaxial probe assemblies. A second portion associated with each of the first partial shells of each of the respective coaxial probe assemblies of the first and second pressure sensors. The first and second pressure sensing have a first guide disposed on an outer shield conductor of the semi-rigid coaxial cable of the first and second coaxial probe assemblies, and a second one disposed in the outer casing Conductive contacts. The first one is electrically intimately connected to the semi-rigid coaxial electrical conduction conductors, and the other first electrically conductive contact is electrically insulated from the other semi-rigid outer shield conductor. When the first and second pressure sensors chew the second and second pressure sensing second conductive contacts, the first and second pressure sensors generate the first and second second The first increasing coaxial probe can be pressed further to the second axis of the compressible element compressive force and then by moving to the motion corresponding to the motion, the transmitter has one and one and each of the outer devices One of the electrical contacts and the externally-screened coaxial cable pressure sensor of the conductive contacts is a logical "-12-(10) (10) 1328684 and (AND)" function. At least one first adjustment mechanism is disposed in the housing and mechanically coupled to one of the first and second coaxial probe assemblies to change the first and second coaxial probe assemblies The probe tip spacing of the probe tips of the semi-rigid coaxial cable. The outer casing preferably has first and second members, and at least one of the members has a passageway formed therein. The first and second members are joined together to form an internal chamber for receiving the first and second coaxial probe assemblies, the first compressible members, the second compressible members, and at least the first Adjusting the first and second pressure sensor portions of the mechanism. In one embodiment of the differential measurement probe, each of the first conductive contacts of the first and second pressure sensors has a first coaxial probe assembly disposed adjacent to the first coaxial probe assembly. The holding tips of the probe tips of the semi-rigid coaxial cables. The holding block of the first pressure sensor has a curved groove disposed between the opposite straight portions to receive the curved portion of the semi-rigid coaxial cable of the first coaxial probe assembly, and the holding The block is used as the first conductive contact of the first pressure sensor. The retaining block of the second pressure sensor is disposed adjacent to the probe tip of the semi-rigid coaxial cable of the second coaxial probe assembly. The retaining block of the second pressure sensor has a curved recess disposed between the opposite straight portions to receive a curved portion of the semi-rigid coaxial cable of the second coaxial probe assembly. A conductive member is disposed adjacent and electrically insulated from one of the second pressure sensor holding blocks. In addition, one of the second conductive contacts of the first and second pressure sensors has a common conductive contact for the common conductive contact via the 13th - (11) (11) 1328684 One of the first conductive contacts of the first and second pressure sensors electrically connects the table-conductive contacts together. In this embodiment, each of the second compressible elements is a compression spring disposed in a hole in a conductive outer casing, the conductive outer casing having a movable electricity secured in the hole contact. Compression springs of the second compressible members are compressed between the electrically conductive outer casings and the movable electrical contacts to produce the second preloading compressive forces. Each of the electrically conductive outer casings and the movable electrical contacts forms one of the second electrically conductive contacts of the first and second pressure sensors. The adjustment mechanism has a carrier that includes a threaded bore therein. The carrier receives one of the first and second retention blocks of the probe tips of the semi-rigid coaxial cables disposed adjacent to the first and second coaxial probe assemblies. A screw having a screw head attached to a threaded shank engages a threaded bore in the carrier. The screw head is received and captured in a recess in the outer surface of the outer casing, and the threaded shank extends through one of the outer casings to engage the carrier. In the preferred embodiment, the carrier has a U-shaped member having a base and side walls, and the retaining block is tightly received in the U-shaped member. At least one of the probe tips of the first and second coaxial probe assemblies is moved relative to the other probe tip to change the probes by rotating the screws in the adjustment member The spacing between the tips. In the preferred embodiment, each of the first and second coaxial probe assemblies further has an attachment plate disposed on the semi-rigid coaxial cable adjacent the threaded connector. Each attachment plate is secured to an anti-rotation block that is positioned in the housing. A bracket having a top panel and associated side walls is secured to one of the attachment panels. At least one first electrical connector receptacle is mounted to the bracket - 14 - (12) 1328684 and is electrically coupled to one of the first and second embosses by an electrical conductor. A differential measuring probe is preferably coupled to the at least one first electrical overstress and electrostatic discharge protection module via the first and first axis cables. The differential measuring probe transmits a start signal to the electrical force and electrostatic discharge protection control module to electrically couple the probe tip such as the differential measuring probe to the input circuit of the measuring test instrument. One of the second conductive contacts of the second pressure sensor is coupled to the electrical overstress and electrostatic discharge protection control module via the electrical conductor. After the first conductive contacts of the first two pressure sensors engage the first conductive contacts of the first and second sensing benefits, the first and second coaxial assemblies The probe tip is coupled to the electrical ground via the electrical overstress and the ESD protection module. When the electrical overstress and the electrostatic protection control module receive the first conductive contacts corresponding to the first and second pressure sensors, the first electrical contacts of the first and second pressure sensors are engaged The starter signals transmitted by the first and second pressure sensors are electrically connected to the input circuits of the measurement test instrument. Preferably, the second conductive contacts of the first and second pressure sensors are in contact with the electrical overstress and the ESD protection control module, preferably having first and second insulated line portions. The first insulated wire partially contacts the second conductive of the first and second pressure sensors to an electrical contact of one of the electrical connectors mounted on the differential measuring probe. The second insulated wire is electrically coupled to a first electrical plug contact to an electrical contact of the second electrical plug, and the first electrical plug has the same sense of protection. The coupler and the first pressure probe control the discharge of the two guides when the socket head of one of the conductors is coupled with the electrical connector socket of the -15-(13) 1328684 mounted on the differential measuring probe. And the second electrical plug is mated with an electrical connector socket having an electrical contact mounted in the electrical overstress and electrostatic discharge control module. The differential measuring probe can also be coupled to the first and second electrical and electrostatic discharge protection control modules. In this embodiment, the first coaxial cable of the differential probe is coupled to the first electrical overstress and discharge protection control module, and the second coaxial cable is coupled to the φth overstress And electrostatic discharge protection control module. The differential measurement probe transmits the start signal to the two electrical overstress and ESD protection modules. The electrical conductor is then formed by a first insulated wire portion electrically coupled to one of the second contacts of the first and second pressure sensors to be mounted thereon Different electrical contacts of the first and second electrical connector sockets of the differential measuring probe. The second and third line portions electrically couple the enable signal to the first and second electrical force and electrostatic discharge protection control modules. The second and third insulated wire portions #1 have first and second electrical plugs, and the first and second electrical plugs have an electrical contact. The electrical connection of the first electrical plug of the second insulated wire is matched with the point of the first electrical connector socket mounted on the differential measuring probe, and the electrical contact of the second electrical plug of the second insulated wire is The electrical contacts of the connector socket are matched in the first electrical overstress and the electrostatic discharge protection control module. The first electrical contact of the third insulated wire is matched with the electrical contact of the second electrical socket mounted on the differential measuring probe, and the second electrical plug contact of the third insulated wire And each of the electrical plugs that are installed in the second electrical overstress and the electrostatic discharge protection of the first protective over-the-counter electrostatic second-electrode to control the insulation on the first conductive Electrical control of the connector - 16 - (15) (15) 1328684 The connector 3 2 is also placed in the control modules 1 2, 1 3 . An optional visual indicator 34, such as an LED, can be secured to the control modules 1 2, 1 3 ' to indicate one of the respective probe tips of the variable tip pitch differential measurement probe 1 When is coupled to the sampling head 18. The coaxial input terminals 26 of the control modules 12, 13 are coupled to one ends of the respective coaxial cables 36, 37, and the other ends of the coaxial cables are coupled to the variable tip pitch differential measuring probes. 10. The coaxial output terminals 28 are coupled to the input terminals 22, 23 of the sampling head 8 by respective coaxial cables 24, 25. The 50 ohm terminal connector 38 is secured to the coaxial terminal machine. Terminal 30. The respective conductive plug connectors 4, 41 are plugged into the input connector 32. The electrical contacts 42, 43 of the plug connectors 40'41 are electrically coupled to the electrical conductors 44, 45 having the second plug connectors 46, 47 at the other end. The second plug connectors 46, 47 are plugged into the plug sockets 48, 49 mounted on the variable tip pitch differential measuring probe 1''. The variable tip pitch differential measuring probe 1 is used to detect circuit traces 50 and devices mounted on a circuit board 52 of a device under test 54. The circuit board 52 displays two sets of circuit traces 50, one of which is configured with conventional G-S-G-S-G contacts, and the traces 50 extend outwardly to the contacts. Another set of traces 50 is not structured into a conventional contact configuration. The differential measuring probe 10 having a retractable double shock absorbing variable pitch probe tip has the ability to detect two sets of traces 50 by varying the distance between the probe tips. Referring now to Figure 4, there is shown a probe tip having a retractable double damper variable pitch and having a start signal transmitted to the EOS/ESD -18-(16) (16) 1328684 guard control mode An exploded view of the outer casing 100 of the first embodiment of the differential measuring probe 1 of the group 1 2, 1 3 capability. The outer casing 1 is preferably elongate and has a generally rectangular cross-sectional shape and is formed from the first and second members 102,104. The outer casing 1 is formed of an insulating material such as ABS plastic, polycarbonate or the like. At least one of the outer casing members 1 2 has first and second passages 106, 107 exposed at the front end of the outer casing member 102. Preferably, the channels 106, 107 are formed parallel to one another and parallel to the longitudinal axis of the outer casing member 102. Each channel 106, 107 has a respective recess 112, 113 and 114, 115 formed therein. Each of the recesses 112, 113, 114 and 115 has a rear end wall 116, 117, 118 and 119. A recess 120 is formed between the end wall 116 extending from the recess 112 to a transverse passage recess 121 formed in the outer casing member 102 between the passages 106, 107. Two parallel grooves 122, 123 are formed in the channel 107, and a groove 122 intersects the lateral channel groove 121. A longitudinal groove 124 is formed in the passage 107 and extends from the groove 123 to the recess 115 in the passage 1?. The rear end walls 1 19 and 19 are the surfaces of the channel partitions 125, 126 which separate the passages 106, 107 from a single open recess 127 that is rearwardly of the face of the back end portion 110 of the outer casing member 102. Each of the channel partition walls 125, 126 has a notch 128, 129 formed at the top. A groove 130 is formed in the passage partition 126 that intersects the recess 115. A hole (not shown) is formed in the recess 130 extending to the outer surface of the outer casing member 102" - a substantially continuous projection 131 extending outward from one side of the outer casing member 102. A notch 132 is formed in the wall of the projection that intersects the notch 112 in the passage 106 -19-(17) (17) 1328684. A hole 133 is formed in the protrusion 131 from the recess 132 to the outer side surface of the outer casing member 1〇2. When the first and second outer casing members 102 and 104 are attached to each other, the channels 106' 107 and the notches 112, 113' 114 and 115 form a single inner chamber 134 in the outer casing 100. . Although the housing 100 described above has a channel 106, 107 and recesses 112, 113, 114, 115 and 127 in a housing member 102, the housing 1 can also be in both housing members 102, 104. Channels and recesses are formed. When the outer casing members 102, 1〇4 are attached to each other, the passages and recesses constitute the inner chamber 134 and the recess 127». Referring now to FIG. 5, First and second coaxial probe assemblies 140, 141, first and second pressure sensors 142, 143, first and second compression elements 第一 44, 145 of the first coaxial probe assembly 140, and A partially exploded perspective view of the first and second compression elements 146, 147 of the second coaxial probe assembly 141. Each of the coaxial probe assemblies 140, 141 has a semi-rigid coaxial cable 148 having a central signal conductor 149 and an outer shield conductor 150. The center signal conductor 149 extends outwardly beyond the outer shield conductor 150 to form a probe tip 151. The semi-rigid coaxial cable 148 has a curved portion 152 at the probe tip portion 151 that transitions into a straight portion at the probe tip 151 and toward a coaxial thread attached to the other end of the semi-rigid coaxial cable 148. The connector 1S3 extends. The screw portion of the coaxial threaded connector 153 is coupled to the outer shield conductor 150, and the center signal conductor 149 is coupled to a center conductor disposed axially in the coaxial threaded connector 153. An attached plate -20- (18) (18)

1328684 154被附接至相鄰於該同軸螺紋連接器153之外部 體150。該附接板154在形狀上較佳爲長方形,且 具有用以收納螺絲的開孔155。一防轉塊156、157 遠離該同軸螺紋連接器1 5 3之側邊上的每一附接板 每一防轉塊156、157具有一用以收納該半硬性同 H8之通道158形成於其中。該防轉塊156、157具 孔,其收納貫穿該附接板1 5 4之開孔1 5 5的螺絲, 防轉塊156、157牢固至該附接板154。 該第一壓力感測器142具有一定位在該半硬性 纜148上之第一導電接點180。該導電接點18〇較 有一長方形的固持塊181,該固持塊具有一彎曲凹 ,如圖6清楚所示。該第一同軸探針總成140之半 軸電纜H8的彎曲部分152被設置在該固持塊181 凹槽182中。該半硬性同軸電纜148之彎曲部分1 入的彎曲凹槽182較佳地具有一1.1吋的中央線半 範圍從10至45度的總曲率半徑,且該曲率半徑較 度。在該固持塊181中之彎曲凹槽182的端部以及 性同軸電纜M8之彎曲部分152係轉變成長直部分 184,且該半硬性同軸電纜148之探針尖端部151 桿部分係沿切線方向延伸至該半硬性同軸電纜148 部分152。該半硬性同軸電纜152之彎曲及長直部 、183、184被定位在該固持塊181之彎曲凹槽182 彎曲成一彎曲形狀時,該半硬性同軸電纜148具有 些角度的傾向。此屬性係用以將該半硬性同軸電纜 屏蔽導 於其中 靠置在 15 4° 軸電纜 有螺紋 以將該 同軸電 佳地具 槽 182 硬性同 之彎曲 52及凹 徑以及 佳爲22 該半硬 183及 及該軸 之彎曲 ;分 152 中。當 '回彈某 148牢 -21 - (19) 1328684 固在該固持塊181之彎曲凹槽182中且在該半硬性同 纜148與該固持塊181之間形成電接觸。該半硬性同 纜148之外部屏蔽導體150的彎曲及長直部分152、1 184壓抵於該彎曲凹槽182之側邊,以將該半硬性同 .纜148牢固在該固持塊181中。該第一導電接點180 持塊181較佳地由一導電性材料所製成,諸如鍍金的 黃銅等等。該固持塊181之闻度大致上符合於形成在 殻構件102中的凹口 112的高度,且其寬度足以與該 壓力感測器142之一第二導電接點185形成接觸。該 壓力感測器142之第二導電接點185被設置在一形成 外殻構件102中之凹槽186內,如圖7之立體視圖清 示。該凹槽186係對準而平行於外殼構件1〇2中之 106。該第一壓力感測器142之第二導電接點185具 可動電接點1 8 7,其被設置在一導電性外殼1 8 8之孔 該第一同軸探針總成140之壓縮元件145亦被設置在 電性外殼188之孔中。該可動電接點187延伸至凹口 ’以與該第一壓力感測器142之第一導電接點180產 性接觸。 該第二壓力感測器143具有一第—導電接點190 被定位在一具有一彎曲凹槽192之長方形固持塊191 如圖8清楚所示。該第二同軸探針總成141之半硬性 電纜148之彎曲部分152被設置在該固持塊191之彎 槽192。該半硬性同軸電纜148之該彎曲部分152以 凹入的彎曲凹槽192較佳具有一1」吋的中央線半徑 軸電 軸電 83 ' 軸電 之固 銅、 該外 第一 第一 在該 楚顯 通道 有一 中。 該導 112 生電 ,其 上, 同軸 曲凹 及該 以及 -22- (20) 1328684 範圍從10至45度的總曲率半徑,且該曲率半徑較 度。在該固持塊191中之彎曲凹槽192的端部以及 性同軸電纜148之彎曲部分152係轉變成長直部分 194,且該半硬性同軸電纜148之探針尖端部151 桿部分係沿切線方向延伸至該半硬性同軸電纜148 部分1 52。 該半硬性同軸電纜1M之彎曲及長直部分152 194被定位在該固持塊191之彎曲凹槽192中。當 —彎曲形狀時,該半硬性同軸電纜148具有回彈某 的傾向。此屬性係用以將該半硬性同軸電纜148牢 固持塊191之彎曲凹槽192中且在該半硬性同軸電 與該固持塊191之間形成電接觸。該半硬性同軸電 之外部屏蔽導體150的彎曲及長直部分152,193、 抵於該彎曲凹槽192之側邊,以將該半硬性同軸電 牢固在該固持塊191中。該長方形固持塊191係由 料所形成,諸如黃銅、銘等等,以提供用於該導 190之一連續襯底表面。一電性絕緣材料195被設 電接點190與該固持塊191,以將該接點19〇與該 針總成141電性地隔離。該第一導電接點190較佳 導電性材料所製成,諸如鍍金的銅 '黃銅等等。該 191之高度大致上符合於形成在該外殼構件〗中 的局度’且其寬度足以使該第—導電接點19〇 一壓力感測器M3之一第—導電接點196形成接觸 二壓力感測器143之第二導電接點196係由兩個被 佳爲22 該半硬 193及 及該軸 之彎曲 、193、 彎曲成 些角度 固在該 ί 纜 148 纜148 194壓 :纜 148 堅硬材 電接點 置在導 同軸探 地由一 固持塊 的凹口 與該第 。該第 設置在 -23- (21) (21)1328684 形成於該外殼構件102中之凹槽199及200中的導電元件 197、198所構成。該凹槽199、200係對準而與位在該外 殻構件102中之通道107平行。該第二壓力感測器143之 第二導電接點196之導電元件197、198具有第一及第二 可動電接點201、202,其被設置在各別的導電性外殼203 、2〇4的孔中。該第二同軸探針總成141之第二壓縮元件 147亦被設置在該導電性外殼203、204的孔中。該可動電 接點20 1、202延伸至該凹口 1 14中,以與該第二壓力感 測器1 43之第一導電接點形成電性接觸。一絕緣線206被 設置在該橫向通道凹槽121中,其將該第一壓力感測器 M2之第二電接點185之導電性外殼188電性耦接至該第 二導電接點196之導電元件197之導電性外殼203。該絕 緣線206及該導電元件197形成一共同電性元件,該共同 電性元件係用以將該啓動信號經由第一導電接點1 8 0、1 9 0 而耦接於該第一及第二壓力感測器142、143之第二導電 接點185、196之間絕緣線207將該導電性元件198 之導電性外殼204電性地耦接至安裝在該差分式測量探針 1〇上的插頭插座48、49。或者,若該第一壓力感測器142 之第一導電接點180係與該第一同軸探針總成140之半硬 性同軸電纜148電性絕緣且該第二壓力感測器143之第一 導電接點190係電性地耦接至該第二同軸探針總成141之 半硬性同軸電纜148’則該絕緣線2〇6亦可被耦接至該第 —壓力感測器142之第一導電接點18〇的導電性外殻ι88 。在較佳實施例中’該第一壓力感測器142之第二導電接 -24- (22) (22)1328684 點185與該第二壓力感測器143之第二電接點196之導電 元件197、198係單翹式插腳。 請看回圖5,該第一及第二同軸探針總成140、141之 第一壓縮元件144、146的每一者皆係一壓縮彈簧208,其 被定位在該同軸探針總成140、141之半硬性同軸電纜148 上。該壓縮彈簧20 8之一端較佳地藉由一被牢固至該半硬 性同軸電纜148之外部屏蔽導體150的壓縮彈簧固持構件 209而被保持在該半硬性同軸電纜148上的定位。每一壓 縮彈簧固持構件209皆較佳地爲一軸環,其環套在該半硬 性同軸電纜148上。該等軸環係由堅固材料所形成,諸如 金屬、ABS塑膠等等。該等軸環被放置在該半硬性同軸電 纜148上且藉由諸如環氧樹脂、Locktite®或類似材料的黏 膠而被牢固至該半硬性同軸電纜148。該等壓縮彈簧208 之另一端係可沿著該半硬性同軸電纜148而自由移動。一 具有墊圈型式的壓力板210較佳地定位成相鄰於該壓縮彈 簧208之每一自由端,以嚙合該通道ι〇6、107之凹口 U3 、Η 5的後緣端壁丨丨7、1丨9。 該等第二壓縮元件145、147係被設置在一導電性外 殼188、203、2〇4之孔中且被捕捉於該等孔之封閉端與可 動電接點187、201、202之間的壓縮彈簧。該等壓縮彈簧 係藉由該等可動電接點187、201' 202而被部分地壓縮在 該等導電性外殼188、203、2 04中。在該導電性外殻188 中被部分壓縮的彈簧會在該可動電接點187上產生一預負 載壓縮力F2’如圖9A的圖表所示。在該可動電接點187 -25- (23) 1328684 上需要一增加的軸向力,以將該電接點187移動至 性外殼1 8 8中’如由斜線κ2所表示。施加至該可 點的力符合虎克定律F = K2AX,其中Κ2係彈簧常要 係該彈簧距其原始平衡位置的位移量。在該導電 203、204中每一個被部分壓縮的彈簧會在可動電接 、202上產生一預負載壓縮力ρ3如圖9Α的圖表所 該等可動電接點201、202之每一者上需要一增加 力,以將該等電接點201、202移動至該等導電性外 、204中,如由斜線κ3所表示。藉由在該等導電 203、204中之該等壓縮彈簧施加在該可動電接點 2〇2上的預負載壓縮力及增加的軸向力係相加的, 該第二同軸探針總成141上之第二壓縮元件147所 總預載壓縮力及增加的軸向力會大致相等於由第一 針總成1 4 0上之第二壓縮元件丨4 5所施加的預負載 及增加的軸向力。 該等同軸探針總成140、141被定位在該外殼構 中’使得該探針尖151延伸出於該外殼構件102 1〇8且該同軸螺紋連接器153延伸出於該外殼構件 另一端部110。該第—壓縮元件144、146之壓縮彈 被定位在該第一及第二通道106、107之各別的凹口 115中’且該等壓縮彈簧20 8被加壓且靠抵於該 H3、115之後緣端壁117、119上。該第一壓力 142之第一導電接點18〇及該第二壓力感測器143 導電接點190係被定位在各別的凹口 1丨2、114中 該導電 動電接 WAX 性外殼 點2 01 示。在 的軸向 殻203 性外殼 201、 使得由 施加的 同軸探 壓縮力 i 件 1 02 之端部 102之 簧208 113、 等凹口 感測器 之第一 。附接 -26- (24) 1328684 至該等同軸探針總成140、141之防轉塊156、157被 在該凹口 127中。該等壓縮彈簧208之初始壓縮會在 同軸探針總成丨4〇、Ml之每一者上施加一預負載壓 Fi,如圖9A之圖表所示。需要一增加的力來移動該 縮彈簧208之自由端,如斜線K,所表示,其中1係 縮彈簧208之彈簧常數,其符合虎克定律F = K2AX, △X係該彈簧距其原始平衡位置的位移量。 • 該等同軸探針總成140、141具有一藉由壓縮彈》 之預負載壓縮力而施加於其上的初始力,如圖9B中 F i所表示。藉由該等探針尖1 5 1被定位在該被測試 54上,該探針外殻1〇〇相對於該同軸探針總成14〇 的向下運動會造成該等凹口 113、115之後端壁117 壓縮該等壓縮彈簧20 8,如斜線K,所表示。被施加至 軸探針總成140、141且相應地施加至該探針尖151 係預負載壓縮力上該壓縮彈簧2 08之彈簧常數 ® 需要的增加力的組合》 該探針外殼100之向下運動造成該第一壓力感 142之導電接點185朝向該第一壓力感測器142之第 電接點180移動。同樣地,該探針外殼1〇〇之向下運 成該第二壓力感測器143之第二導電接點196之可動 點2〇1、2〇2朝向該第二壓力感測器143之第一導電 190移動。當該第一壓力感測器142之第一及第二導 點180、185相接觸時,一啓動信號被傳送至該第二 感測器143之導電接點196的導電元件197。當該第 定位 該等 縮力 等壓 該壓 其中 208 之力 裝置 141 119 該同 之力 所 測器 一導 動造 電接 接點 電接 壓力 二壓 -27- (25) 1328684 力感測器1 43之第一導電接點1 90與該第二壓力感測 143之第二導電接點196之導電元件197、198的可動電 點201、202相接觸時,該啓動信號便經由絕緣線207 過該第二壓力感測器143而被傳送至該插頭插座48、49 該啓動信號接著經由該電導體44、45而耦接至該控制 組12、13。在此同時,在該導電性外殻188中之第二壓 元件145的壓縮彈簧會產生壓抵於該壓力感測器142之 —導電接點180的預負載壓縮力F2。該預負載壓縮力 會在該同軸探針總成140上立即產生一增加的力量’如 圖9B中從Κι線延伸出之垂直力線F2所表示。同樣地 在該導電性外殼203、204中之該第二壓縮元件147的 一壓縮彈簧會產生壓抵該壓力感測器143之第一導電接 190的預負載壓縮力F2。如前所述,該壓縮彈簧在該導 性外殼20 3、204中所形成的組合力量係大致相等於在 導電性外殼188中之第二壓縮元件145之壓縮彈簧的壓 力F2及彈簧常數K!。該預負載壓縮力F2在該同軸探針 成141上產生一立即的作用力增加,如在圖9B中從K, 延伸出的垂直力線F2。在該同軸探針總成140、141上 作用力增加會針對每一同軸探針總成14〇、141而讓一 用者產生一明顯的觸覺。該使用者會感覺到需要在該探 外殼100上施加更大的向下力量以相對於該同軸探針總 140、141來移動該探針外殼。此外,由於該第一及第二 縮元件之彈簧常數的相加屬性,因此需要一增加的向下 量以相對於該等同軸探針總成140、141來移動該探針 器 接 通 〇 模 縮 第 F2 在 每 點 電 該 縮 總 線 之 使 針 成 壓 力 外 -28- (26) 1328684 殻100。在該探針外殻100上的持續向下力 感測器142、143之第一導電接點180、190 口 112' 114之後端壁116、118。在該探針: 任何持續向下壓力會將力量直接地傳送至該 140、Ml,如垂直力線f4所表示,而不會 簧抵消。 該第一及第二壓力感測器142、143的 輯“及(AND ) ”閘,其用以傳送該啓動信號 48、49。若該第一壓力感測器142之第一及 180及185係先於該第二壓力感測器143之 電接點190及196來嚙合,則該啓動信號將 該插頭插座48、49。同樣地,若該第二壓力 第一及第二導電接點190及196係先於該第 142之第一及第二導電接點180與185來嚙 信號將不會被傳送至該插頭插座48、49。只 感測器142、143之第一及第二導電接點被 ,該啓動信號才會被傳送至該等插頭插座48 相較於具有可動探針尖或外殼的習知差 ,使用該第一壓縮元件144、146及該第二壓 1 4 7可對該同軸探針總成1 4 0、1 4 1之組件提 由於該第二壓縮元件I45、147而使得用以 1〇〇相對於該同軸探針總成140、141來移動 的增加係可提供一觸覺指不給一使用者俾 足夠的壓力已被施加至該同軸探針總成140、 量將造成壓力 靠抵於該等凹 外殼1 0 0上之 同軸探針總成 被該等壓縮彈 功能如同一邏 至該插頭插座 第二導電接點 第一及第二導 不會被傳送至 感測器1 4 3之 一壓力感測器 合,則該啓動 有在該兩壓力 嚙合的情況下 、4 9 〇 分式測量深針 縮元件1 4 5、 供加強保護。 將該探針外殼 所需要之力量 讓使用者知道 ' 141。再者, -29- (27) (27)1328684 該等第二壓縮元件145、147提供一壓力安全區域,在此 區域中,額外的向下力量可被施加至該探針外殼100而不 用冒著使該同軸探針總成140、141受損的風險。在習知 技術的探針中並未提供此一壓力安全區域。 再請參考圖5,用以改變該等探針尖1 5 1之間之距離 的調整機構210具有一載具211,其緊密地收納該第一同 軸探針總成H1之固持塊181。該載具211較佳爲一U形 構件,其具有一基部212及從該基部212之兩末端延伸出 的側壁2 1 3及2 1 4 »側壁2 1 3具有一螺紋孔形成於其中, 以收納一具有一帽蓋頭2 1 6及螺紋柄2 1 7之螺紋帽蓋螺絲 2 1 5。該螺紋帽蓋螺絲2 1 5被插入至該外殼構件突起1 3 1 之孔133中,且該螺紋柄217延伸至該通道106之凹口 1 1 2中並且螺合至該載具2 1 1中。該帽蓋螺絲2 1 5之帽蓋 頭216被安置在一形成於該外殼構件1G2之外表面中的凹 口中。一帽蓋板218套合在此凹口上且藉由一螺合至該外 殻構件102中之螺絲219而被固持在定位。該帽蓋板218 將該帽蓋頭216緊密地捕捉於該外殼構件1〇2及該帽蓋板 218之間,使得該帽蓋頭216在該凹口中不會具有軸向運 動。 該固持塊181係摩擦式地配合在該載具211之側壁 213及214之間’使得該固持塊181在該載具211中不會 存在橫向餘隙。該載具211被定位在該外殼構件1〇2之通 道106的凹口 U2中,且相應於該帽蓋螺絲215之轉動而 橫向地越過該凹口。順時針轉動該帽蓋螺絲215會藉由該 -30- (28) (28)1328684 外殼構件102造成該載具211向外朝向該外殼突起移 動而該帽蓋頭216之底部表面上產生壓力》逆時針轉動該 帽蓋螺絲215會藉由該帽蓋板218造成該載具向內朝向該 外殼構件102的中央移動而在該帽蓋頭216的頂部上產生 壓力。該載具211可縮回至形成在該突出壁中的凹口 ι32 中’直到該固持塊181抵靠該凹口 112的外側壁爲止。該 載具211可延伸越過該凹口 112,直到該固持塊181抵靠 該凹口 112之內側壁且該載具之一部分移動進入至形成在 介於該通道106及107之間之分隔壁211中的凹槽220爲 止。 現請參考圖10,其中顯示一具有可縮回的雙減震可變 間距探針尖以傳送一啓動信號至第一及第二電性過應力( EOS )及靜電放電(ESD )保護控制模組12、13之組裝完 成的差分式測量探針1 0。該第一及第二外殼構件1 02、 1 04係牢固在一起,以將該同軸探針總成丨40、1 4丨捕捉在 該外殼100中,且使該等探針尖151延伸出於端部108, 且使該等同軸螺紋連接器153延伸出於端部110。該等探 針尖151係呈角度地朝向彼此,使得藉由利用該調整機構 210來使該等探針尖151之一者相對於另一著的運動,該 探針尖間距便可以從0.2毫米改變至4.2毫米。爲了達成 0.2毫米間距,由該半硬性同軸電纜i 48製成之該等探針 尖151之該中央信號導體149及該外部屏蔽導體15〇係被 截切成斜面,如圖1 1詳細顯示。 在圖Π中顯示具有可縮回的雙減震可變間距探針尖 -31 - (29) (29)1328684 之差分式測量探針10的該等探針尖151的其中一者。該 探針尖1 5 1之中央信號導體1 4 9係以相對該半硬性同軸電 纜148之表面230而呈36度的額定角度被截切成斜面。 一第二斜面被形成在該探針尖151之探測點232處,其具 有相對於該中央信號導體14 9.之斜面之一從45度至70度 的角度範圍,且該第二斜面具有63度的額外角度。這造 成在該中央信號導體149之銳角23 2上移除尖點。藉由第 二斜面所產生的平坦表面具有一從0.002至0.004吋的尺 寸範圍,且額定尺寸係0·003吋。在該中央信號導體149 上使用該第二斜面會增加該探測點23 2的強度。該外部屏 蔽導體1 5 0亦被截切出斜面2 3 4,以允許該中央信號導體 149的探測點23 2位在彼此爲0.2毫米的範圍內。在該外 部屏蔽導體150上的斜面具有一 15度的額定角度。該斜 面角度亦可依照半硬性同軸電纜148之直徑以及該探針尖 151相對於該探針1〇〇的端面的角度來改變。該等探針尖 151係被定向成使該等外部屏蔽導體150之斜面234彼此 相面對。 —托架222被定位在該外殼1〇〇的端部110上,其係 利用螺絲而被附接至防轉塊1 5 6、1 5 7之一者上。插頭插 座48、49被安裝在該托架上,且每一插頭插座48、49具 有一電接點22 5、226»該電導體44、45之第二插頭連接 器46、47各具有一電接點223、224,當相配接時,其係 電性地連接至該插頭插座48、49之該電接點225、226。 被電性地耦接至該第二壓力感測器143之該第二導電接點 -32- (30) 1328684 196的絕緣線207係被電性地耦接至該插頭插座48、49 電接點225、226,以將該啓動信號耦接至該控制模組 、1 3 〇 現請參考圖1 2,其中顯示在該控制模組1 2及1 3中 控制電路240的槪要示意圖。每一控制模組! 2 ' 1 3係 相同方式產生作用且提供EOS/ESD保護至測量測試儀 1 〇中之採樣’頭18的第一及第二輸入通道中之一者。每 控制模組1 2及1 3經由連接至該插頭連接器40、4 1之 別電接點42、43的導電性輸入連接器32而接收來自於 差分式測量探針10之啓動信號,其中該等插頭連接器 被連接至該等電導體44、45。來自於該差分式測量探 1 〇之啓動信號係經由電阻器242而被連接至一高輸入阻 互導裝置244的控制終端。在本較佳實施例中,該高輸 阻抗互導裝置244係一p-通道MOS場效電晶體,諸如 Tektronix公司所製造且以件號1 5 1 - 1 1 20-00所販售的場 電晶體。或者,該高輸入阻抗互導裝置244可以係一控 —電源電路的CMOS邏輯閘。一偏壓電阻器246被耦接 該高輸入阻抗互導裝置244之控制終端與一電壓供應源 間。該電壓供應源亦經由電源供應電阻器248及充電電 247而被供應至該高輸入阻抗互導裝置244的電流輸出 。該高輸入阻抗互導裝置244之輸出部係經由一RF繼 器開關250而被耦接》繼電器開關接點252及254係各 耦接至同軸輸出端子28及一同軸終端機端子30之信號 體256及258。該電樞接點260耦接至該同軸輸入端子 之 12 的 以 器 各 該 係 針 抗 入 由 效 制 於 之 容 部 電 別 導 -33- 26 (31) (31)1328684 之信號導體262。一分流二極體264係與該RF繼電器開 關250並聯耦接。一串聯電阻器266及用作爲該可選用之 目視指示器34之發光二極體亦可與該RF繼電器開關250 並聯耦接。 該差分式測量探針1〇之操作將以—P·通道MOSFET 作爲該高輸入阻抗互導裝置244來予以說明。該差分式測 量探針10之彈簧負載的同軸探針總成14〇、Ml係經由同 軸電纜36及37而被耦接至該控制模組12及13之各別同 軸輸入端子26的一者。該等第一及第二同軸探針總成140 、141之半硬性同軸電纜148的中央信號導體149被耦接 至該控制模組12及13之同軸輸入端子26的信號導體262 。該等半硬性,同軸電纜148之外部屏蔽導體150係經由該 同軸電纜36、37之外部屏蔽導體以及該等同軸輸入端子 26而被電性地耦接至接地線。該第一及第二壓力感測器 142、143係經由該輸入連接器40、41之該等電導體44、 45及該等接點42、43而耦接至該等p-通道MOSFET 244 的輸入部。該第一及第二壓力感測器142' 143的功能係 作爲一用於該P-通道MOSFET 244之輸入電路的邏輯“及” 閘。當未嚙合該第一及第二壓力感測器142、143之第一 及第二導電接點180、185、190、196之任一者或當該第 一及第二壓力感測器142、143之一者或另一者的第一及 第二導電接點被嚙合時,該第一及第二壓力感測器142、 143在待機模式中便對該p_通道MOSFET之閘呈現一斷路 。該斷路係藉由將供應電壓經由該偏壓電阻器246耦接至 -34- (32) (32)1328684 該MOSFET之閘而將該p-通道MOSFET 244偏壓至關閉( off)狀態。 一使用者將該差分式測量探針1 0定位在該被測試裝 置54上,且使該等探針尖151接觸該等電路跡線50。該 探針尖1 5 1經由控制模組1 2及1 3之電樞及開關接點260 及254以及50歐姆終端電阻器66而耦接至電性接地線, 以放電該被測試裝置54上的任何ESD及EOS·電壓。施加 在與一被測試裝置54相接觸之該差分式測量探針1〇之該 等探針尖151的壓力係造成該外殻100相對於該同軸探針 總成140,141的運動。該外殻100的運動造成該第一及 第二壓力感測器H2、M3之第二導電接點185、196與該 第一及第二壓力感測器142、143之第一導電接點180、 190相接觸。該第一及第二壓力感測器142、143之第一及 第二導電接點180、185及190、196的嚙合會將接地線電 性地耦接至該控制模組1 2及1 3之p-通道MOSFET 244的 輸入電路,該輸入電路係產生分壓器網路,其包括偏壓電 阻器246 '輸入電阻器242及第一或第二壓力感測器142 ' 143之電阻。橫越在本較佳實施例中具有大約7.7百萬 歐姆之高電阻値的偏壓電阻器246的電壓降會造成該等p-通道MOSFET 2 44進行且供應引入電流及電壓至該RF繼 電器2 5 0之線圈,其關閉該控制模組1 2及1 3之接點2 6 0 及252且將該差分式測量探針10之探針尖154耦接至該 採樣頭18之第一及第二輸入通道。該等RF繼電器250需 要+15伏特之30毫安培的引入電流,以將該電樞260初 -35- (33) 1328684 始地從正常關閉接點254移動至正常開啓接點252。較小 的保持電流及電壓藉由充電電容器247及電阻器248形成 之RC電路而被供應至該控制模組12及1 3的RF繼電器 250。該等p-通道MOSFET之電流輸出亦經由該控制模組 12及13之電阻器266及LED 34而耦接,以提供該等探 針尖1 5 1被耦接至該採樣頭1 8之通道輸入部的目視指示 〇 • 將該差分式測量探針1 〇作用在被測試裝置54之壓力 降低至低於由該第二壓縮元件145、147所產生之第二預 負載壓縮力之至少一者以下係會將該第一及第·二壓力感測 器142、143之至少一組導電接點180、185及190、196 脫離而造成來自於該差分式測量探針10之啓動信號從該 控制模組1 2及1 3之該p-通道MOSFET 244的輸入電路移 除。電壓供應係被再次供應至該等p-通道MOSFET 244之 閘而造成該等MOSFET關閉或移除供應至該RF線圏250 # 的電力,而這接著會將該差分式測量探針10之該等探針 尖1 5 1經由該50歐姆終端電阻器66而耦接至電性接地線 。來自於該等線圈之塌陷磁場的電流係被耦接通過分流二 極體2 6 4。 現請參考圖13,其中顯示具有可縮回的雙減震可變間 距探針尖之差分式測量探針的另一實施例之一部分的立體 視圖°在圖1 3中,相同於前面圖式之元件係以相同標號 予以標示。該同軸探針總成140 ' 141 '該壓力感測器142 ' 143及該第一及第二壓縮元件144、145' 146、147係與 -36- (34) 1328684 前面的說明相同。在本實施例中之外殼構件102具有從該 外殻構件102之兩側邊延伸而出之大致連續的突起131、 270。該第二突起270具有與突起131相同的結構。該外 殼構件102之外表面271具有一形成於其中之凹口 272’ 其收納該帽蓋螺絲215。該帽蓋板218套合於該凹口 272 上且藉由該螺絲219而被牢固至該外殼構件102。該帽蓋 螺絲215係螺合地連接至該載具211及273。該載具273 # 具有相同於載具211之結構。該載具273被定位在該通道 107之凹口 114中。該載具211收納該第一同軸探針總成 之固持塊181且該載具273收納該第二同軸探針總成141 之固持塊191。該等帽蓋螺絲215之轉動係獨立地移動該 等載具21 1、272,且接著獨立地移動該同軸探針總成140 、141之該等探針尖151,以設定在該等探針尖151之間 的探針間距。該外殼構件104藉由兩突起131及270而符 合該外殼構件102之周圍尺寸。 ® 現請參考圖14,其中顯示具有可縮回雙減震可變間距 探針尖以傳送一啓動信號至一電性過應力(EOS )及靜電 放電(ESD )保護控制模組3 00之差分式測量探針10的另 一實施例。相同於前述圖式中之元件係以相同標號予以標 示。前述實施例之該第一及第二控制模組1 2、1 3係以一 被設置在該測量測試儀器14之該等機架16之一者中的單 —控制模組3 0 0所取代。如圖1 5清楚所示,該控制模組 300具有同軸輸入端子302、303、同軸輸出端子304' 305 以及一同軸終端機端子306。一導電性輸入連接器307亦 -37- (35) (35)1328684 被設置在該控制模組300中。一可選用之目視指示器308 ’諸如一LED’係被牢固至該控制模組300,以指示尸差 分式測量探針1 0之該等探針尖1 5〗何時被耦接至該採樣 頭18°該同軸輸入端子3〇2及3 〇3被耦接至該等同軸電纜 36及37的各別端部,而該等同軸電纜的另—端被耦接至 該測量探針10。該輸出端子304及3 05經由該等同軸電纜 24及25而耦接至該採樣頭18之輸入端子。該5〇歐姆終 端連接器38被牢固至該同軸終端機端子306。該導電性插 頭連接器40插接至該輸入連接器32。該插頭連接器4〇之 該電接點42被電性連接至—在另一端具有一第二插頭連 接器46之電導體44。該第二插頭連接器46係插接至一安 裝在該差分式測量探針10上之插頭插座48。在該測量探 針上之插頭插座48係被安裝在該托架222上,該托架係 被牢固至該差分式測量探針10之防轉塊156、157的其中 —者。該差分式測量探針10之絕緣線207係電性地耦接 至該插頭插座48。 圖1 6顯示在該控制模組3 0 0中之控制電路3 2 0的槪 要示意圖。在圖16中,相同於前面圖式之元件係以相同 標號予以標示。該控制模組3 0 0具有相同於前述控制模組 12、13之電路結構及功能’除了該rf繼電器開關250具 有兩個電樞接點322及324來取代一個電樞接點以外。該 控制模組300經由連接至該插頭連接器40之電接點42的 導電性輸入連接器32而接收來自於該差分式測量探針1〇 之啓動信號,其中該電接點係被連接至該電導體44。繼電 -38- (36) 1328684 器開關接點326及328耦接至該同軸終端機端子3〇6的信 號導體3 3 0。繼電器開關接點3 3 2及3 3 4係分別地耦接至 該同軸輸出端子3 04及305之該信號導體336及338。該 電樞接點3 22及324係分別地耦接至該同軸輸入端子3〇2 及303之信號導體34〇及342。在操作中,當該 MOSFET244未傳導時,該rF繼電器開關25〇之電樞接點 322及324係經由繼電器開關接點326及328而耦接至50 φ 歐姆終端連接器38。該啓動信號造成該MOSFET 244傳導 且供應一引入電流及電壓至該RF繼電器250之線圈,該 RF繼電器關閉該控制模組300之接點322及332及324 及334且將該差分式測量探針1〇之該等探針尖ι51耦接 至該採樣頭18之第一及第二輸入通道。 本發明已說明的係具有一電性接地的啓動信號。然而 ,若電壓電力被提供至該測量探針1 〇,則本發明亦可利用 一正或負電壓啓動信號來實施。在此一構形中,該第一及 ® 第二壓力感測器142及143之第一導電接點180及190必 須與該半硬性同軸電纜148電性地絕緣,且使該電壓啓動 信號被親接至該第一及第二壓力感測器142、143之第二 導電元件185或196的一者。再者,亦已說明該第—及第 二壓縮元件144、146及145' 147的各種不同構形。亦可 嘗試採用不同壓縮材料,諸如彈性體等等,之第一及第二 壓縮元件144' 146及145、147的其他構形,其中該第一 壓縮元件在該同軸探針總成140、141上產生一初始的預 負載及增加的壓縮力,而該第二壓縮元件在該同軸探針總 -39- (37) 1328684 成140、141上產生一第二預負載壓縮力,且在該同軸探 針總成140、141上增添一增加的壓縮力。 熟習此項技術之人士應可瞭解,在不違背本發明原理 的情況下仍可對本發明上述實施例之細節施行許多改變。 因此,本發明之範圍僅由以下的申請專利範圍所界定。 【圖式簡單說明】 φ 圖1係施加至代表性的現有探針總成之一探針尖之力 的圖解表不圖。 圖2係依照本發明之一具有可縮回雙減震可變間距探 針尖以傳送一啓動信號至一EOS/ESD保護控制模組的差 分式測量探針之立體視圖。 圖3係一耦接至依照本發明之一具有可縮回雙減震可 變間距探針尖以傳送一啓動信號的差分式測量探針之第一 EOS/ESD保護控制模組的立體視圖。 # 圖4係一用於依照本發明之一具有可縮回雙減震可變 間距探針尖以傳送一啓動信號至一Ε Ο S /E S D保護控制模 組的差分式測量探針之外殼的分解立體視圖。 圖5係依照本發明之一具有可縮回雙減震可變間距探 針尖以傳送一啓動信號至一EOS/ESD保護控制模組的差 分式測量探針之一第一實施例的部分分解視圖。 圖6係在依照本發明之具有可縮回雙減震可變間距探 針尖以傳送一啓動信號至一EOS/ESD保護控制模組的測 量探針中之該半硬性同軸電纜之一第一固持塊及彎曲部分 -40 - (38) (38)1328684 的立體視圖。 圖7係依照本發明之具有可縮回雙減震可變間距探針 尖以傳送一啓動信號至一EOS/ESD保護控制模組的差分 式測量探針之第一及第二壓力感測器之該等第二導電接點 與該第二壓縮元件之近觀立體視圖。 圖8係在依照本發明之具有可縮回雙減震可變間距探 針尖以傳送一啓動信號至一 EOS/ESD保護控制模組的測 量探針中之該半硬性同軸電纜之一第二固持塊及彎曲部分 的立體視圖。 圖9Α係在依照本發明之一具有可縮回雙減震可變間 距探針尖以傳送一啓動信號至一 EOS/ESD保護控制模組 的差分式測量探針中藉由該第一及第二壓縮元件施加至該 等同軸探針總成之各別力的圖解示意圖。 圖9B係在依照本發明之一具有可縮回雙減震可變間 距探針尖以傳送一啓動信號至一E 0 S /E S D保護控制模組 的差分式測量探針中藉由該第一及第二壓縮元件施加至該 等同軸探針總成之總合力的圖解示意圖。 圖1〇係依照本發明之一具有可縮回雙減震可變間距 探針尖以傳送一啓動信號至一EOS/ESD保護控制模組之 已組裝完成的差分式測量探針之立體視圖。 圖I1係在依照本發明之一具有可縮回雙減震可變間 距探針尖以傳送一啓動信號至一E 〇 s /E S D保護控制模組 之差分式測量探針中之該等探針尖的詳細示意圖。 圖12係在耦接至依照本發明之一具有可縮回雙減震 -41 - (39) (39)1328684 可變間距探針尖以傳送一啓動信號至一EOS/ESD保護控 制模組之差分式測量探針中之該等控制模組中之控制電路 的槪要示意圖。 Η 13係依照本發明之具有可縮回雙減震可變間距探 針尖以傳送一啓動信號至一 EOS/ESD保護控制模組的差 分式測量探針之另一實施例之一部分的立體視圖。 W 14係依照本發明之具有可縮回雙減震可變間距探 針尖以傳送一啓動信號至一 EOS/ESD保護控制模組的差 分式測量探針之又一實施例。 ® 15係被耦接至依照本發明之一具有可縮回雙減震 可變間距探針尖以傳送一啓動信號的差分式測量探針之另 一 EOS/ESD保護控制模組的立體視圖。 圖1 6係在耦接至依照本發明之具有可縮回雙減震可 變間距探針尖以傳送一啓動信號至一 E 0 S / E S D保護控制 模組之差分式測量探針中之該控制模組中之控制電路的槪 要示意圖。 【主要元件符號說明】 1 〇 :可變針尖間距差分式測量探針 1 2 :控制模組 1 3 :控制模組 14:數位採樣示波器 16 :機架 1 8 :採樣頭 -42- (40) 1328684 22 :輸入端子 23 :輸入端子 24 :同軸電纜 25 :同軸電纜 26 :輸入端子 2 8 :輸出端子 3 0 :終端機端子 φ 32 :輸入連接器 34 :可選用之目視指示器 36 :電纜 37 :電纜 3 8 :終端連接器 40 :導電性插頭連接器 4 1 :導電性插頭連接器 4 2 :電接點 _ 4 3 :電接點 44 :電導體 45 :電導體 46 :插頭連接器 47 :插頭連接器 48 :插頭插座 49 :插頭插座 50 :電路跡線 52 :電路板 -43- (41) 1328684 5 4 :被測試裝置 1 〇 〇 :外殼 102 :外殼構件 104 :外殼構件 1 0 6 :通道 107 :通道 1 08 :端部 φ 1 10 :端部 1 1 2 :凹口 1 1 3 :凹口 1 1 4 :凹口 1 1 5 :凹口 1 1 6 :後端壁 1 1 7 :後端壁 1 1 8 :後端壁 # 1 1 9 :後端壁 1 20 :凹槽 1 2 1 :橫向通道凹槽 122 :平行凹槽 1 23 :平行凹槽 1 24 :縱向凹槽 125 :通道分隔部 126 :通道分隔部 127:面部向後之開放凹口 -44- 1328684 1 1 1 1 1 1 11328684 154 is attached to the outer body 150 adjacent to the coaxial threaded connector 153. The attachment plate 154 is preferably rectangular in shape and has an opening 155 for receiving a screw. An anti-rotation block 156, 157 is located away from each of the attachment plates on the side of the coaxial threaded connector 153. Each anti-rotation block 156, 157 has a channel 158 for receiving the semi-rigid H8. . The anti-rotation blocks 156, 157 have holes that receive screws that extend through the opening 1555 of the attachment plate 154, and the anti-rotation blocks 156, 157 are secured to the attachment plate 154. The first pressure sensor 142 has a first conductive contact 180 positioned on the semi-rigid cable 148. The conductive contact 18 〇 has a rectangular holding block 181 having a curved concave shape as clearly shown in FIG. A curved portion 152 of the half shaft cable H8 of the first coaxial probe assembly 140 is disposed in the recess 182 of the holding block 181. The curved recess 182 of the curved portion 1 of the semi-rigid coaxial cable 148 preferably has a length of 1. The central line half of 1吋 ranges from 10 to 45 degrees of total radius of curvature, and the radius of curvature is relatively large. The end portion of the curved groove 182 in the holding block 181 and the curved portion 152 of the coaxial coaxial cable M8 are converted into a straight portion 184, and the probe tip portion 151 of the semi-rigid coaxial cable 148 is extended in the tangential direction. To the semi-rigid coaxial cable 148 portion 152. When the curved and long straight portions 183, 184 of the semi-rigid coaxial cable 152 are positioned to bend the curved recess 182 of the retaining block 181 into a curved shape, the semi-rigid coaxial cable 148 has a tendency to have a certain angle. This property is used to guide the semi-rigid coaxial cable shield in the 15 4° axis cable is threaded to make the coaxial electric ground slot 182 rigidly curved 52 and concave diameter and preferably 22 semi-hard 183 and the bending of the shaft; divided into 152. When 'rebound 148" - 21 - (19) 1328684 is secured in the curved recess 182 of the retaining block 181 and electrical contact is made between the semi-rigid cable 148 and the retaining block 181. The curved and long straight portions 152, 1 184 of the outer shield conductor 150 of the semi-rigid cable 148 are pressed against the sides of the curved recess 182 to provide the semi-rigidity. Cable 148 is secured in the retention block 181. The first conductive contact 180 holding block 181 is preferably made of a conductive material such as gold plated brass or the like. The degree of susceptance of the retaining block 181 substantially conforms to the height of the recess 112 formed in the shell member 102 and is wide enough to make contact with one of the second conductive contacts 185 of the pressure sensor 142. The second conductive contact 185 of the pressure sensor 142 is disposed within a recess 186 formed in the outer casing member 102, as shown in the perspective view of FIG. The groove 186 is aligned and parallel to 106 of the outer casing members 1〇2. The second conductive contact 185 of the first pressure sensor 142 has a movable electrical contact 187, which is disposed in a hole of the conductive outer casing 188, and the compression element 145 of the first coaxial probe assembly 140. It is also disposed in the hole of the electrical housing 188. The movable electrical contact 187 extends to the recess ′ to make contact with the first conductive contact 180 of the first pressure sensor 142. The second pressure sensor 143 has a first conductive contact 190 positioned in a rectangular holding block 191 having a curved recess 192 as shown in FIG. The curved portion 152 of the semi-rigid cable 148 of the second coaxial probe assembly 141 is disposed in the curved slot 192 of the holding block 191. The curved portion 152 of the semi-rigid coaxial cable 148 has a concave curved groove 192 preferably having a 1" 中央 central line radius axis electrical axis 83' axial solid copper, the outer first first in the There is a channel in Chuxian. The guide 112 generates electricity, and the coaxial curvature and the -22-(20) 1328684 range from 10 to 45 degrees, and the radius of curvature is relatively high. The end of the curved recess 192 in the holding block 191 and the curved portion 152 of the coaxial coaxial cable 148 are converted into a straight portion 194, and the probe tip portion 151 of the semi-rigid coaxial cable 148 is extended in the tangential direction. To the semi-rigid coaxial cable 148 portion 1 52. The curved and long straight portion 152 194 of the semi-rigid coaxial cable 1M is positioned in the curved recess 192 of the holding block 191. The semi-rigid coaxial cable 148 has a tendency to rebound when it is bent. This property is used to secure the semi-rigid coaxial cable 148 in the curved recess 192 of the block 191 and to make electrical contact between the semi-rigid coaxial power and the retaining block 191. The semi-rigid coaxial outer shield conductor 150 has curved and long straight portions 152, 193 that abut against the sides of the curved recess 192 to secure the semi-rigid coaxial in the retaining block 191. The rectangular holding block 191 is formed of a material such as brass, embossing or the like to provide a continuous substrate surface for the guide 190. An electrically insulating material 195 is provided with electrical contacts 190 and the holding block 191 to electrically isolate the contacts 19A from the pin assembly 141. The first conductive contact 190 is preferably made of a conductive material such as gold plated copper 'brass or the like. The height of the 191 substantially conforms to the degree formed in the outer casing member and is wide enough to form the first conductive contact 19 and the first conductive contact 196 of the pressure sensor M3 to form a contact pressure. The second conductive contact 196 of the sensor 143 is made up of two of the 22 semi-hard 193 and the bending of the shaft, 193, bent at an angle to the cable 148 148 194 pressure: cable 148 hard The electrical contact of the material is placed on the guiding coaxial ground by a notch of the holding block and the first. The first arrangement is formed by conductive elements 197, 198 formed in the grooves 199 and 200 of the outer casing member 102 at -23-(21)(21)1328684. The grooves 199, 200 are aligned parallel to the passage 107 in the outer casing member 102. The conductive elements 197, 198 of the second conductive contact 196 of the second pressure sensor 143 have first and second movable electrical contacts 201, 202 disposed in respective conductive housings 203, 2〇4 In the hole. A second compression element 147 of the second coaxial probe assembly 141 is also disposed in the aperture of the conductive housing 203, 204. The movable electrical contact 20 1 , 202 extends into the recess 1 14 to make electrical contact with the first conductive contact of the second pressure sensor 1 43 . An insulated wire 206 is disposed in the lateral channel groove 121, and electrically couples the conductive outer casing 188 of the second electrical contact 185 of the first pressure sensor M2 to the second conductive contact 196. Conductive outer casing 203 of conductive element 197. The insulated wire 206 and the conductive element 197 form a common electrical component for coupling the enable signal to the first and the first via the first conductive contact 1 800, 190 An insulated wire 207 between the second conductive contacts 185, 196 of the two pressure sensors 142, 143 electrically couples the conductive outer casing 204 of the conductive element 198 to the differential measuring probe 1 Plug and socket 48, 49. Alternatively, if the first conductive contact 180 of the first pressure sensor 142 is electrically insulated from the semi-rigid coaxial cable 148 of the first coaxial probe assembly 140 and the first of the second pressure sensors 143 The conductive contact 190 is electrically coupled to the semi-rigid coaxial cable 148 ′ of the second coaxial probe assembly 141. The insulated wire 2 〇 6 can also be coupled to the first pressure sensor 142 . A conductive contact 18 〇 electrically conductive housing ι88. In the preferred embodiment, the second conductive contact of the first pressure sensor 142 is electrically conductive - 24 - (22) (22) 1328684 point 185 and the second electrical contact 196 of the second pressure sensor 143 is electrically conductive. Elements 197, 198 are single-wound pins. Referring back to FIG. 5, each of the first compression elements 144, 146 of the first and second coaxial probe assemblies 140, 141 is a compression spring 208 that is positioned in the coaxial probe assembly 140. 141 on the semi-rigid coaxial cable 148. One end of the compression spring 20 8 is preferably held in position on the semi-rigid coaxial cable 148 by a compression spring retaining member 209 secured to the outer shield conductor 150 of the semi-rigid coaxial cable 148. Each of the compression spring retaining members 209 is preferably a collar that is looped over the semi-rigid coaxial cable 148. The collars are formed of a sturdy material such as metal, ABS plastic, and the like. The collars are placed on the semi-rigid coaxial cable 148 and secured to the semi-rigid coaxial cable 148 by an adhesive such as epoxy, Locktite® or the like. The other ends of the compression springs 208 are free to move along the semi-rigid coaxial cable 148. A pressure plate 210 having a washer pattern is preferably positioned adjacent each of the free ends of the compression spring 208 to engage the recess U3 of the passages ι, 107, and the trailing edge end wall Η 7 of the Η 5 , 1丨9. The second compression elements 145, 147 are disposed in the holes of the conductive housings 188, 203, 2〇4 and are captured between the closed ends of the holes and the movable electrical contacts 187, 201, 202. compressed spring. The compression springs are partially compressed in the electrically conductive outer casings 188, 203, 204 by the movable electrical contacts 187, 201' 202. A partially compressed spring in the electrically conductive outer casing 188 produces a preloading compressive force F2' on the movable electrical contact 187 as shown in the graph of Fig. 9A. An increased axial force is required at the movable electrical contact 187-25-(23) 1328684 to move the electrical contact 187 into the housing 18' as indicated by the oblique line κ2. The force applied to this point is in accordance with Hooke's law F = K2AX, where the Κ2 spring is often the amount of displacement of the spring from its original equilibrium position. Each of the conductive 203, 204 partially compressed springs will produce a preloading force ρ3 on the movable electrical connection 202, as required by each of the movable electrical contacts 201, 202 of the diagram of FIG. A force is added to move the electrical contacts 201, 202 out of the conductivity, 204, as indicated by the oblique line κ3. The second coaxial probe assembly is added by the preloading force applied to the movable electrical contact 2〇2 and the increased axial force added by the compression springs in the conductive electrodes 203, 204 The total preloading force and the increased axial force of the second compression element 147 on 141 will be substantially equal to the preload applied by the second compression element 丨45 on the first needle assembly 140 and increased. Axial force. The coaxial probe assemblies 140, 141 are positioned in the housing configuration such that the probe tip 151 extends out of the housing member 102 1〇8 and the coaxial threaded connector 153 extends from the other end of the housing member 110. The compression bombs of the first compression elements 144, 146 are positioned in respective recesses 115 of the first and second passages 106, 107 ' and the compression springs 20 8 are pressurized and abut against the H3, 115 is on the trailing edge end walls 117, 119. The first conductive contact 18 〇 of the first pressure 142 and the second pressure sensor 143 conductive contact 190 are positioned in the respective recesses 1 丨 2, 114. 2 01 shows. The axial shell 203 of the outer casing 201 is such that the spring 208 113 of the end portion 102 of the compressive force i 012 is applied, and the first of the notch sensors. Attachment -26-(24) 1328684 to the anti-rotation blocks 156, 157 of the coaxial probe assemblies 140, 141 are in the recess 127. The initial compression of the compression springs 208 exerts a preload pressure Fi on each of the coaxial probe assemblies 丨4, M1, as shown in the graph of Figure 9A. An increased force is required to move the free end of the retracting spring 208, as indicated by the slash K, wherein the spring constant of the 1 yoke spring 208 conforms to Hooke's law F = K2AX, ΔX is the original balance of the spring The amount of displacement of the position. • The coaxial probe assemblies 140, 141 have an initial force applied thereto by the preload force of the compression bomb, as indicated by F i in Figure 9B. By the probe tips 151 being positioned on the tested 54, the downward movement of the probe housing 1 〇〇 relative to the coaxial probe assembly 14 会 causes the notches 113, 115 to follow The end wall 117 compresses the compression springs 20 8, as indicated by the diagonal line K. A combination of the increased force required to apply the spring constants of the compression springs 208 to the shaft probe assemblies 140, 141 and correspondingly applied to the probe tips 151. The lower movement causes the conductive contact 185 of the first pressure sense 142 to move toward the first electrical contact 180 of the first pressure sensor 142. Similarly, the movable portion 2〇1, 2〇2 of the second conductive contact 196 of the second pressure sensor 143 is moved downwardly toward the second pressure sensor 143. The first conductive 190 moves. When the first and second guiding points 180, 185 of the first pressure sensor 142 are in contact, an activation signal is transmitted to the conductive element 197 of the conductive contact 196 of the second sensor 143. When the first positioning force is equal to the pressure device 141 119, the force device 141 119 is the same force as the detector is guided to make electrical connection point electrical connection pressure two pressure -27- (25) 1328684 force sensor When the first conductive contact 1 90 of 1 43 is in contact with the movable electrical points 201, 202 of the conductive elements 197, 198 of the second conductive contact 196 of the second pressure sensing 143, the activation signal is via the insulated wire 207. The activation signal is then transmitted to the plug sockets 48, 49 via the second pressure sensor 143 and the activation signal is then coupled to the control group 12, 13 via the electrical conductors 44, 45. At the same time, the compression spring of the second pressure element 145 in the conductive housing 188 generates a preload compression force F2 that is pressed against the conductive contact 180 of the pressure sensor 142. The preload compressive force will immediately produce an increased force on the coaxial probe assembly 140 as indicated by the vertical force line F2 extending from the Κι line in Figure 9B. Similarly, a compression spring of the second compression element 147 in the electrically conductive outer casing 203, 204 produces a preloaded compressive force F2 that is pressed against the first electrically conductive joint 190 of the pressure sensor 143. As previously mentioned, the combined force of the compression spring in the conductive housings 20 3, 204 is substantially equal to the pressure F2 and the spring constant K of the compression spring of the second compression element 145 in the electrically conductive housing 188! . The preload compressive force F2 produces an immediate increase in force on the coaxial probe 141, such as the vertical force line F2 extending from K in Figure 9B. The increased force on the coaxial probe assemblies 140, 141 will give the user a distinct tactile feel for each of the coaxial probe assemblies 14 〇 141. The user will feel the need to apply a greater downward force on the probe housing 100 to move the probe housing relative to the coaxial probes 140, 141. Furthermore, due to the additive nature of the spring constants of the first and second contracting elements, an increased downward amount is required to move the probe to the jaws relative to the coaxial probe assemblies 140, 141. The first F2 is shunted at each point to make the needle into a pressure outside the -28- (26) 1328684 shell 100. On the probe housing 100, the first conductive contacts 180, 190 of the sensor 142, 143 are continued to the rear end walls 116, 118. At the probe: any continued downward pressure will transmit force directly to the 140, Ml, as indicated by the vertical force line f4, without spring cancellation. The "AND" gates of the first and second pressure sensors 142, 143 are used to transmit the enable signals 48, 49. If the first and 180 and 185 of the first pressure sensor 142 are engaged before the electrical contacts 190 and 196 of the second pressure sensor 143, the activation signal will be the plug sockets 48, 49. Similarly, if the second pressure first and second conductive contacts 190 and 196 are prior to the first and second conductive contacts 180 and 185 of the 142, the signal will not be transmitted to the plug socket 48. 49. Only the first and second conductive contacts of the sensors 142, 143 are transmitted to the plug receptacles 48, compared to the conventional differences with the movable probe tip or housing, using the first The compression elements 144, 146 and the second pressure 1 4 7 can be used to lift the components of the coaxial probe assembly 140, 141 by the second compression element I45, 147 for The increase in movement of the coaxial probe assemblies 140, 141 provides a tactile sense that does not give a user sufficient pressure has been applied to the coaxial probe assembly 140, the amount will cause pressure against the concave housing The coaxial probe assembly on the 1000 is subjected to the pressure sensing such that the first and second guides of the second conductive contact of the plug socket are not transmitted to the sensor 1 4 3 If the device is engaged, the start-up is to measure the deep-reduction element 14 5 in the case of the two-pressure engagement, for reinforcement protection. The force required for the probe housing is known to the user '141. Furthermore, -29-(27)(27)1328684 the second compression elements 145, 147 provide a pressure safety zone in which additional downward force can be applied to the probe housing 100 without There is a risk of damage to the coaxial probe assemblies 140, 141. This pressure safety zone is not provided in the probes of the prior art. Referring again to Figure 5, the adjustment mechanism 210 for varying the distance between the probe tips 115 has a carrier 211 that closely receives the retention block 181 of the first coaxial probe assembly H1. The carrier 211 is preferably a U-shaped member having a base portion 212 and sidewalls 2 1 3 and 2 1 4 extending from both ends of the base portion 212. The sidewall 2 1 3 has a threaded hole formed therein. A threaded cap screw 2 1 5 having a cap head 2 16 and a threaded shank 2 1 7 is received. The threaded cap screw 2 15 is inserted into the hole 133 of the outer casing member protrusion 13 1 , and the threaded shank 217 extends into the recess 1 1 2 of the passage 106 and is screwed to the carrier 2 1 1 in. The cap head 216 of the cap screw 2 15 is placed in a recess formed in the outer surface of the outer casing member 1G2. A cap plate 218 fits over the recess and is retained in position by a screw 219 that is threaded into the outer casing member 102. The cap cover 218 closely captures the cap head 216 between the outer casing member 1〇2 and the cap cover 218 such that the cap head 216 does not have axial movement in the recess. The retaining block 181 is frictionally fitted between the side walls 213 and 214 of the carrier 211 such that the retaining block 181 does not have lateral clearance in the carrier 211. The carrier 211 is positioned in the recess U2 of the passage 106 of the outer casing member 1 2 and transversely passes over the recess corresponding to the rotation of the cap screw 215. Rotating the cap screw 215 clockwise causes the carrier 211 to move outwardly toward the outer casing by the -30-(28) (28) 1328684 outer casing member 102 to generate pressure on the bottom surface of the cap head 216. The hour hand rotation of the cap screw 215 causes the carrier to move inwardly toward the center of the outer casing member 102 by the cap cover 218 to create pressure on the top of the cap head 216. The carrier 211 can be retracted into the recess ι 32 formed in the protruding wall until the holding block 181 abuts against the outer side wall of the recess 112. The carrier 211 can extend over the recess 112 until the retaining block 181 abuts against the inner sidewall of the recess 112 and a portion of the carrier moves into the partition wall 211 formed between the channels 106 and 107. The groove 220 in the middle. Referring now to Figure 10, there is shown a retractable dual shock absorbing variable pitch probe tip for transmitting a start signal to first and second electrical overstress (ESS) and electrostatic discharge (ESD) protection control modes. The assembled differential measuring probe 10 of the group 12, 13 is completed. The first and second outer casing members 102, 104 are secured together to capture the coaxial probe assembly 丨40, 14 丨 in the outer casing 100 and extend the probe tips 151 out of the The ends 108 extend and extend the coaxial threaded connectors 153 out of the ends 110. The probe tips 151 are angularly oriented toward one another such that by using the adjustment mechanism 210 to move one of the probe tips 151 relative to the other, the probe tip spacing can be from zero. 2 mm changed to 4. 2 mm. In order to achieve 0. The center signal conductor 149 and the outer shield conductor 15 of the probe tip 151 made of the semi-rigid coaxial cable i 48 are cut into bevels, as shown in detail in Fig. 11. One of the probe tips 151 of the differential measuring probe 10 having a retractable double shock absorbing variable pitch probe tip -31 - (29) (29) 1328684 is shown in the figure. The center signal conductor 149 of the probe tip 151 is truncated to a slope at a nominal angle of 36 degrees with respect to the surface 230 of the semi-rigid coaxial cable 148. A second bevel is formed at the detection point 232 of the probe tip 151 with respect to the central signal conductor 14. One of the slopes ranges from 45 degrees to 70 degrees, and the second slope has an additional angle of 63 degrees. This causes the sharp point to be removed at the acute angle 23 2 of the central signal conductor 149. The flat surface produced by the second slope has a zero from 0. 002 to 0. The size range of 004吋, and the rated size is 0·003吋. The use of the second bevel on the central signal conductor 149 increases the intensity of the detection point 23 2 . The outer shield conductor 150 is also cut out of the ramp 2 3 4 to allow the detection points 23 2 of the central signal conductor 149 to be at 0. Within 2 mm range. The diagonal mask on the outer shield conductor 150 has a nominal angle of 15 degrees. The bevel angle can also vary depending on the diameter of the semi-rigid coaxial cable 148 and the angle of the probe tip 151 relative to the end face of the probe 1 turns. The probe tips 151 are oriented such that the ramps 234 of the outer shield conductors 150 face each other. - The bracket 222 is positioned on the end 110 of the outer casing 1 , which is attached to one of the anti-rotation blocks 1 5 6 , 1 5 7 by means of screws. Plug receptacles 48, 49 are mounted on the bracket, and each plug receptacle 48, 49 has an electrical contact 22 5, 226» the second plug connectors 46, 47 of the electrical conductors 44, 45 each have an electrical Contacts 223, 224 are electrically coupled to the electrical contacts 225, 226 of the plug receptacles 48, 49 when mated. The insulated wire 207 electrically coupled to the second conductive contact -32- (30) 1328684 196 of the second pressure sensor 143 is electrically coupled to the plug socket 48, 49. Point 225, 226, to couple the start signal to the control module, 1 3, please refer to FIG. 12, which shows a schematic diagram of the control circuit 240 in the control modules 12 and 13. Every control module! The 2 ' 1 3 system acts in the same manner and provides EOS/ESD protection to one of the first and second input channels of the sample 'head 18 of the measurement tester 1 。. Each of the control modules 1 2 and 13 receives an activation signal from the differential measurement probe 10 via a conductive input connector 32 connected to the other electrical contacts 42 , 43 of the plug connector 40 , 4 1 , wherein The plug connectors are connected to the electrical conductors 44, 45. The enable signal from the differential measurement probe is coupled to the control terminal of a high input impedance transconductance device 244 via resistor 242. In the preferred embodiment, the high-impedance transconductance device 244 is a p-channel MOS field effect transistor, such as that manufactured by Tektronix and sold under the part number 1 5 1 - 1 1 20-00. Transistor. Alternatively, the high input impedance transconductance device 244 can be a CMOS logic gate of a power supply circuit. A bias resistor 246 is coupled between the control terminal of the high input impedance transconductance device 244 and a voltage supply source. The voltage supply is also supplied to the current output of the high input impedance transconductance device 244 via a power supply resistor 248 and a charging power 247. The output of the high input impedance transconductance device 244 is coupled via an RF relay switch 250. The relay switch contacts 252 and 254 are each coupled to the signal body of the coaxial output terminal 28 and a coaxial terminal terminal 30. 256 and 258. The armature contacts 260 are coupled to the coaxial input terminals 12, and the pins of the pins are responsive to the signal conductors 262 of the capacitors -33 - 26 (31) (31) 1328684. A shunt diode 264 is coupled in parallel with the RF relay switch 250. A series resistor 266 and a light emitting diode for use as the optional visual indicator 34 can also be coupled in parallel with the RF relay switch 250. The operation of the differential measuring probe 1 将 will be described with a -P·channel MOSFET as the high input impedance transconductance device 244. The spring loaded coaxial probe assembly 14A, M1 of the differential measuring probe 10 is coupled to one of the respective coaxial input terminals 26 of the control modules 12 and 13 via coaxial cables 36 and 37. The center signal conductors 149 of the semi-rigid coaxial cables 148 of the first and second coaxial probe assemblies 140, 141 are coupled to the signal conductors 262 of the coaxial input terminals 26 of the control modules 12 and 13. The semi-rigid, outer shield conductors 150 of the coaxial cable 148 are electrically coupled to the ground via the outer shield conductors of the coaxial cables 36, 37 and the coaxial input terminals 26. The first and second pressure sensors 142 , 143 are coupled to the p-channel MOSFETs 244 via the electrical conductors 44 , 45 of the input connectors 40 , 41 and the contacts 42 , 43 . Input section. The first and second pressure sensors 142' 143 function as a logical "AND" gate for the input circuit of the P-channel MOSFET 244. When the first and second conductive contacts 180, 185, 190, 196 of the first and second pressure sensors 142, 143 are not engaged or when the first and second pressure sensors 142, When the first and second conductive contacts of one of the 143 or the other are engaged, the first and second pressure sensors 142, 143 present an open circuit to the gate of the p_channel MOSFET in the standby mode. . The open circuit biases the p-channel MOSFET 244 to an off state by coupling a supply voltage to the gate of the MOSFET via the bias resistor 246 to -34- (32) (32) 1328684. A user positions the differential measurement probe 10 on the device under test 54 and causes the probe tips 151 to contact the circuit traces 50. The probe tip 151 is coupled to the electrical ground via the armatures and switch contacts 260 and 254 of the control modules 1 2 and 13 and the 50 ohm terminating resistor 66 to discharge the device under test 54. Any ESD and EOS voltage. The pressure applied to the probe tips 151 of the differential measuring probes 1 in contact with a device under test 54 causes movement of the housing 100 relative to the coaxial probe assemblies 140, 141. The movement of the outer casing 100 causes the second conductive contacts 185, 196 of the first and second pressure sensors H2, M3 and the first conductive contacts 180 of the first and second pressure sensors 142, 143 190 contact. The engagement of the first and second conductive contacts 180, 185 and 190, 196 of the first and second pressure sensors 142, 143 electrically couples the ground line to the control modules 1 2 and 1 3 The input circuit of the p-channel MOSFET 244, which produces a voltage divider network that includes the resistors of the bias resistor 246' input resistor 242 and the first or second pressure sensor 142' 143. The traverse has about 7. in the preferred embodiment. The voltage drop of the 7 million ohm high resistance 偏压 bias resistor 246 causes the p-channel MOSFET 2 44 to perform and supplies a current and voltage to the coil of the RF relay 250, which turns off the control module The contacts 2 260 and 252 of 1 2 and 1 3 and the probe tip 154 of the differential measuring probe 10 are coupled to the first and second input channels of the sampling head 18. The RF relays 250 require a current of 30 milliamps of +15 volts to move the armature 260 from -35- (33) 1328684 to the normal open contact 252. The smaller holding current and voltage are supplied to the RF relays 250 of the control modules 12 and 13 by the RC circuit formed by the charging capacitor 247 and the resistor 248. The current outputs of the p-channel MOSFETs are also coupled via resistors 266 and LEDs 34 of the control modules 12 and 13 to provide a path for the probe tips 151 to be coupled to the sampling heads 18. Visual indication of the input portion 〇 • reducing the pressure of the differential measuring probe 1 〇 at the device under test 54 to at least one of the second preload compressive forces generated by the second compressing member 145, 147 The following will disengage at least one set of conductive contacts 180, 185 and 190, 196 of the first and second pressure sensors 142, 143 to cause an activation signal from the differential measuring probe 10 from the control The input circuits of the p-channel MOSFET 244 of the modules 1 2 and 13 are removed. The voltage supply is again supplied to the gates of the p-channel MOSFETs 244 causing the MOSFETs to turn off or remove power supplied to the RF line 圏250#, which in turn will cause the differential measurement probe 10 to The probe tip 151 is coupled to the electrical ground via the 50 ohm terminating resistor 66. Currents from the collapsed magnetic fields of the coils are coupled through the shunt diodes 246. Referring now to Figure 13, there is shown a perspective view of a portion of another embodiment of a differential measuring probe having a retractable dual shock absorbing variable pitch probe tip. Figure 13 is the same as the previous figure. The components are labeled with the same reference numerals. The coaxial probe assembly 140' 141 'the pressure sensor 142 ' 143 and the first and second compression elements 144, 145' 146, 147 are identical to the previous description of -36-(34) 1328684. The outer casing member 102 in this embodiment has substantially continuous projections 131, 270 extending from the side edges of the outer casing member 102. This second protrusion 270 has the same structure as the protrusion 131. The outer surface 271 of the outer casing member 102 has a recess 272' formed therein to receive the cap screw 215. The cap cover 218 is fitted over the recess 272 and secured to the outer casing member 102 by the screw 219. The cap screws 215 are screwed to the carriers 211 and 273. The carrier 273 # has the same structure as the carrier 211. The carrier 273 is positioned in the recess 114 of the channel 107. The carrier 211 houses the holding block 181 of the first coaxial probe assembly and the carrier 273 houses the holding block 191 of the second coaxial probe assembly 141. The rotation of the cap screws 215 independently moves the carriers 21 1 , 272 and then independently moves the probe tips 151 of the coaxial probe assemblies 140, 141 to set the probes The probe spacing between the tips 151. The outer casing member 104 conforms to the size of the outer periphery of the outer casing member 102 by the two projections 131 and 270. ® Refer to Figure 14 for a differential with a retractable dual-damping variable-pitch probe tip to transmit a start signal to an electrical overstress (EOS) and electrostatic discharge (ESD) protection control module 300 Another embodiment of the measurement probe 10 is shown. Elements that are the same as in the previous figures are denoted by the same reference numerals. The first and second control modules 1 2, 13 of the previous embodiment are replaced by a single control module 300 that is disposed in one of the racks 16 of the measurement test instrument 14. . As clearly shown in FIG. 15, the control module 300 has coaxial input terminals 302, 303, coaxial output terminals 304' 305, and a coaxial terminal terminal 306. A conductive input connector 307 is also provided -37-(35) (35)1328684 in the control module 300. An optional visual indicator 308 'such as an LED' is secured to the control module 300 to indicate when the probe tips of the cadaver differential measurement probe 10 are coupled to the sampling head The coaxial input terminals 3〇2 and 3〇3 are coupled to respective ends of the coaxial cables 36 and 37, and the other ends of the coaxial cables are coupled to the measuring probe 10. The output terminals 304 and 305 are coupled to the input terminals of the sampling head 18 via the coaxial cables 24 and 25. The 5" ohmic terminal connector 38 is secured to the coaxial terminal terminal 306. The conductive plug connector 40 is plugged into the input connector 32. The electrical contact 42 of the plug connector 4 is electrically connected to the electrical conductor 44 having a second plug connector 46 at the other end. The second plug connector 46 is plugged into a plug receptacle 48 that is mounted to the differential measuring probe 10. A plug socket 48 on the measuring probe is mounted on the bracket 222, which is secured to the anti-rotation blocks 156, 157 of the differential measuring probe 10. The insulated wire 207 of the differential measuring probe 10 is electrically coupled to the plug receptacle 48. Figure 16 shows a schematic diagram of the control circuit 320 in the control module 300. In Fig. 16, elements identical to those of the previous figures are denoted by the same reference numerals. The control module 300 has the same circuit configuration and function as the control modules 12, 13 except that the rf relay switch 250 has two armature contacts 322 and 324 in place of an armature contact. The control module 300 receives an activation signal from the differential measurement probe 1 via a conductive input connector 32 connected to the electrical contact 42 of the plug connector 40, wherein the electrical contact is connected to The electrical conductor 44. The relay -38- (36) 1328684 switch contacts 326 and 328 are coupled to the signal conductor 3 3 0 of the coaxial terminal terminal 3〇6. Relay switch contacts 3 3 2 and 3 3 4 are coupled to the signal conductors 336 and 338 of the coaxial output terminals 3 04 and 305, respectively. The armature contacts 3 22 and 324 are respectively coupled to the signal conductors 34 and 342 of the coaxial input terminals 3 〇 2 and 303. In operation, when the MOSFET 244 is not conducting, the armature contacts 322 and 324 of the rF relay switch 25 are coupled to the 50 φ ohm termination connector 38 via relay switch contacts 326 and 328. The enable signal causes the MOSFET 244 to conduct and supply a current and voltage to the coil of the RF relay 250. The RF relay closes the contacts 322 and 332 and 324 and 334 of the control module 300 and the differential measuring probe The probe tips ι 51 are coupled to the first and second input channels of the sampling head 18. What has been described in the present invention is an activation signal that is electrically grounded. However, if voltage power is supplied to the measurement probe 1 则, the present invention can also be implemented using a positive or negative voltage enable signal. In this configuration, the first conductive contacts 180 and 190 of the first and second pressure sensors 142 and 143 must be electrically insulated from the semi-rigid coaxial cable 148, and the voltage enable signal is One of the second conductive elements 185 or 196 of the first and second pressure sensors 142, 143 is in contact. Moreover, various different configurations of the first and second compression members 144, 146 and 145' 147 have also been described. Other configurations of the first and second compression elements 144' 146 and 145, 147 may also be attempted using different compression materials, such as elastomers, etc., wherein the first compression element is in the coaxial probe assembly 140, 141 An initial preload and an increased compressive force are generated, and the second compression element generates a second preload compressive force on the coaxial probe total -39-(37) 1328684 to 140, 141, and the coaxial An increased compressive force is added to the probe assemblies 140, 141. It will be appreciated by those skilled in the art that many changes may be made in the details of the above described embodiments of the invention without departing from the principles of the invention. Accordingly, the scope of the invention is defined only by the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS φ Figure 1 is a graphical representation of the force applied to one of the representative probe assemblies. 2 is a perspective view of a differential measuring probe having a retractable dual shock absorbing variable pitch probe tip for transmitting a start signal to an EOS/ESD protection control module in accordance with the present invention. 3 is a perspective view of a first EOS/ESD protection control module coupled to a differential measurement probe having a retractable dual damped variable pitch probe tip for transmitting a start signal in accordance with the present invention. # Figure 4 is a housing for a differential measuring probe having a retractable double damped variable pitch probe tip for transmitting a start signal to a Ο S / ESD protection control module in accordance with the present invention. Decompose the stereo view. 5 is a partial exploded view of a first embodiment of a differential measuring probe having a retractable double damped variable pitch probe tip for transmitting a start signal to an EOS/ESD protection control module in accordance with the present invention. view. 6 is a first of the semi-rigid coaxial cables in a measurement probe having a retractable double-damping variable-pitch probe tip for transmitting a start signal to an EOS/ESD protection control module in accordance with the present invention. Stereo view of the holding block and the curved section -40 - (38) (38) 1328684. 7 is a first and second pressure sensor of a differential measuring probe having a retractable double damped variable pitch probe tip for transmitting a start signal to an EOS/ESD protection control module in accordance with the present invention. A close-up perspective view of the second conductive contact and the second compression element. Figure 8 is a second of the semi-rigid coaxial cable in a measuring probe having a retractable double-shock variable pitch probe tip for transmitting a start signal to an EOS/ESD protection control module in accordance with the present invention. A stereoscopic view of the holding block and the curved portion. 9 is a differential measurement probe having a retractable double damped variable pitch probe tip for transmitting a start signal to an EOS/ESD protection control module according to the present invention, by the first and the A schematic illustration of the respective forces applied by the two compression elements to the coaxial probe assemblies. 9B is a differential measurement probe having a retractable double damped variable pitch probe tip for transmitting a start signal to an E 0 S /ESD protection control module in accordance with the present invention And a schematic diagram of the total force applied by the second compression element to the coaxial probe assemblies. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a perspective view of an assembled differential measuring probe having a retractable double shock absorbing variable pitch probe tip for transmitting an activation signal to an EOS/ESD protection control module in accordance with one embodiment of the present invention. Figure I1 is a probe in a differential measuring probe having a retractable double damped variable pitch probe tip for transmitting a start signal to an E 〇 s /ESD protection control module in accordance with the present invention. Detailed illustration of the tip. Figure 12 is coupled to a reversible double shock absorbing -41 - (39) (39) 1328684 variable pitch probe tip for transmitting an activation signal to an EOS/ESD protection control module in accordance with one of the present invention. A schematic diagram of the control circuitry in the control modules in the differential measurement probes.立体 13 is a perspective view of a portion of another embodiment of a differential measuring probe having a retractable double damped variable pitch probe tip for transmitting a start signal to an EOS/ESD protection control module in accordance with the present invention . W 14 is another embodiment of a differential measuring probe having a retractable double damped variable pitch probe tip for transmitting a start signal to an EOS/ESD protection control module in accordance with the present invention. The ® 15 is coupled to a perspective view of another EOS/ESD protection control module having a differential measuring probe that retracts the double-shock variable pitch probe tip to transmit a start signal in accordance with the present invention. Figure 16 is coupled to a differential measuring probe having a retractable double damped variable pitch probe tip for transmitting a start signal to an E 0 S / ESD protection control module in accordance with the present invention. A schematic diagram of the control circuit in the control module. [Main component symbol description] 1 〇: Variable tip pitch differential measurement probe 1 2 : Control module 1 3 : Control module 14: Digital sampling oscilloscope 16: Rack 1 8 : Sampling head -42- (40) 1328684 22 : Input terminal 23 : Input terminal 24 : Coaxial cable 25 : Coaxial cable 26 : Input terminal 2 8 : Output terminal 3 0 : Terminal terminal φ 32 : Input connector 34 : Optional visual indicator 36 : Cable 37 : Cable 3 8 : Terminal connector 40 : Conductive plug connector 4 1 : Conductive plug connector 4 2 : Electrical contact _ 4 3 : Electrical contact 44 : Electrical conductor 45 : Electrical conductor 46 : Plug connector 47 : plug connector 48 : plug socket 49 : plug socket 50 : circuit trace 52 : circuit board - 43 - ( 41 ) 1328684 5 4 : device under test 1 : housing 102 : housing member 104 : housing member 1 0 6 : channel 107 : channel 1 08 : end φ 1 10 : end 1 1 2 : notch 1 1 3 : notch 1 1 4 : notch 1 1 5 : notch 1 1 6 : rear end wall 1 1 7 : Rear end wall 1 1 8 : Rear end wall # 1 1 9 : Rear end wall 1 20 : Groove 1 2 1 : Lateral passage groove 122 : Parallel groove 1 23 : Parallel groove 1 24 : Longitudinal groove 12 5: channel partition 126: channel partition 127: open recess with face back -44- 1328684 1 1 1 1 1 1 1

1 1 1 1 1 1 1 缺口 缺口 凹槽 突起 凹口 孔 內部腔室 探針總成 探針總成 壓力感測器 壓力感測器 壓縮元件 壓縮元件 壓縮元件 壓縮元件 半硬性同軸電纜 中央信號導體 外部屏蔽導體 探針尖 彎曲部分 同軸螺紋連接器 附接板 開孔 防轉塊 -45- 1 1328684 防轉塊 通道 導電接點 固持塊 彎曲凹槽 長直部分 長直部分 導電接點 凹槽 可動電接點 導電性外殼 導電接點 固持塊 彎曲凹槽 長直部分 長直部分 導電接點 導電元件 導電元件 凹槽 凹槽 可動電接點 可動電接點 203 :導電性外殼 (44) 1328684 204 :導電性外殼 2 0 6 :絕緣線 2 0 7 :絕緣線 208 :壓縮彈簧 209 :壓縮彈簧固持構件 210 :調整機構 21 1 :載具 φ 212 :基部 2 1 3 :側壁 2 1 4 :側壁 2 1 5 :螺紋帽蓋螺絲 2 1 6 :帽蓋頭 2 1 7 :螺紋柄 2 1 8 :帽蓋板 2 1 9 :螺絲 φ 220 :凹槽 2 2 1 :分隔壁 222 :托架 2 2 3 :電接點 2 2 4 :電接點 2 2 5 :電接點 2 2 6 :電接點 2 3 2 :探測點 2 3 4 :斜面 -47 - (45) 1328684 2 4 Ο :控制電路 2 4 2 :電阻器 244 :高輸入阻抗互導裝置 246:偏壓電阻器 247 :充電電容 248 :電源供應電阻器 2 5 0 : RF繼電器開關 φ 2 5 2 :接點 2 5 4 :接點 2 5 6 :信號導體 2 5 8 :信號導體 2 6 0 :電樞接點 262 :信號導體 2 6 4 :分流二極體 2 6 6 :串聯電阻器 # 270 :突部 271 :外表面 272 :凹口 3 00 :單一控制模組 302 :輸入端子 3 03 :輸入端子 3 04 :輸出端子 3 0 5 :輸出端子 3 0 6 :終端機端子 -48- (46) 1328684 3 07 :導電性輸入連接器 3 08 :可選用的目視指示器 3 2 0 :控制電路 3 2 2 :電樞接點 3 24 :電樞接點 3 2 6 :接點 3 2 8 :接點 φ 3 3 0 :信號導體 3 3 2 :接點 3 3 4 :接點 3 3 6 :信號導體 3 3 8 :信號導體 3 4 0 :信號導體 3 4 2 :信號導體 • -49 -1 1 1 1 1 1 1 notch notch groove projection notch hole inner chamber probe assembly probe assembly pressure sensor pressure sensor compression element compression element compression element compression element semi-rigid coaxial cable central signal conductor exterior Shielding conductor probe tip bending part coaxial threaded connector attachment plate opening anti-rotation block -45- 1 1328684 anti-rotation block channel conductive contact retaining block bending groove long straight part long straight part conductive contact groove movable electrical connection Point Conductive Housing Conductive Contact Hold Block Curved Groove Long Straight Section Long Straight Conductive Contact Conductive Element Conductive Element Groove Groove Movable Electrical Contact Movable Electrical Contact 203 : Conductive Housing (44) 1328684 204 : Conductivity Outer casing 2 0 6 : insulated wire 2 0 7 : insulated wire 208 : compression spring 209 : compression spring holding member 210 : adjustment mechanism 21 1 : carrier φ 212 : base 2 1 3 : side wall 2 1 4 : side wall 2 1 5 : Thread cap screw 2 1 6 : Cap head 2 1 7 : Threaded shank 2 1 8 : Cap plate 2 1 9 : Screw φ 220 : Groove 2 2 1 : Partition wall 222 : Bracket 2 2 3 : Electrical contact 2 2 4 : Electrical contact 2 2 5 : Electrical contact 2 2 6 : Electrical contact 2 3 2 : Detection point 2 3 4 : Bevel -47 - (45) 1328684 2 4 Ο : Control circuit 2 4 2 : Resistor 244 : High input impedance mutual conductor 246: Bias resistor 247: Charging capacitor 248: Power supply resistor 2 5 0 : RF relay switch φ 2 5 2 : Contact 2 5 4 : Contact 2 5 6 : Signal conductor 2 5 8 : Signal conductor 2 6 0 : Armature contact 262: signal conductor 2 6 4 : shunt diode 2 6 6 : series resistor # 270 : protrusion 271 : outer surface 272 : notch 3 00 : single control module 302 : input terminal 3 03 : input terminal 3 04 : Output terminal 3 0 5 : Output terminal 3 0 6 : Terminal terminal -48- (46) 1328684 3 07 : Conductive input connector 3 08 : Optional visual indicator 3 2 0 : Control circuit 3 2 2 : Armature contact 3 24 : Armature contact 3 2 6 : Contact 3 2 8 : Contact φ 3 3 0 : Signal conductor 3 3 2 : Contact 3 3 4 : Contact 3 3 6 : Signal conductor 3 3 8: Signal conductor 3 4 0 : Signal conductor 3 4 2 : Signal conductor • -49 -

Claims (1)

1328684 十、申請專利範圍 .附件.5A:第95116084號專利申請案 中文申請專利範圍替換本民國99年3月9曰呈 1 _ —種具有可變間距探針尖之差分式測量探針 含: 第一及第二同軸探針總成,且每一同軸探針總成 # —探針尖; 一外殻’其收納該第一及第二同軸探針總成且使 一及第二同軸探針總成之探針尖從該外殼之一端部延 來; 第一可壓縮元件,其被設置在該外殼中,且該等 可壓縮元件之一者施加一第一預負載壓縮力至該第一 探針總成以及一藉由該外殻相對於該第一同軸探針總 軸向運動而施加之第一增加壓縮力,且該等第一可壓 件之另一者施加一第一預負載壓縮力至該第二同軸探 成以及一藉由該外殼相對於該第二同軸探針總成之軸 動而施加之第一增加壓縮力; 第二可壓縮元件,其被設置在該外殻中,且該等 可壓縮元件之一者在施加該第一增加壓縮力於該第一 探針總成之後施加一第二預負載壓縮力至該第一同軸 總成以及一藉由該外殼相對於該第一同軸探針總成之 步軸向運動而施加之第二增加壓縮力,且該等第二可 元件之另一者在施加該第一增加壓縮力於該第二同軸 ,包 具有 該第 伸出 第一 同軸 成之 縮元 針總 向運 弟— 同軸 探針 進一 壓縮 探針 1328684 總成之後施加一第二預負載壓縮力至該第二同軸探針總成 以及一藉由該外殼相對於該第二同軸探針總成之進一步軸 向運動而施加之第二增加壓縮力; 第一及第二壓力感測器,其被設置在該外殻中以相應 於該外殼相對於該第一及第二同軸探針總成之軸向運動來 傳送一啓動信號,且該等第一及第二壓力感測器之每一者 具有一與該等各別同軸探針總成之每一者相關聯的第一接 點以及一與該外殼相關聯的第二接點;及 至少一第一調整機構,其被設置在該外殻中且機械式 地耦接至該等第一及第二同軸探針總成之一者,以改變該 第一及第二同軸探針總成之該等探針尖的探針尖間距。 2. 如申請專利範圍第1項之差分式測量探針,其中 該等第一及第二同軸探針總成之每一者進一步包含一半硬 性同軸電纜,在該半硬性同軸電纜之一端具有一探針尖且 在另一端具有一螺紋連接器,且該半硬性同軸電纜之探針 尖端部具有一彎曲部分,該彎曲部分在該探針尖處轉變成 一長直部分,以使該等半硬性同軸電纜之該等探針尖在該 外殼之一端部處以角度彎向彼此,且使該等半硬性同軸電 纜之每一者的螺紋連接器延伸於該外殼的另一端。 3. 如申請專利範圍第1項之差分式測量探針,其中 該外殼進一步包含第一及第二構件,且至少一構件具有第 一及第二通道形成於其中以收納該第一及第二同軸探針總 成、該第一可壓縮元件、該第二可壓縮元件、該第一及第 二壓力感測器及至少該第一調整機構,且該第一及第二構 -2- 1328684 件被結合在一起以形成一內部腔室。 4. 如申請專利範圍第2項之差分式測量探針,其中 該等第一可壓縮元件之每一者進一步包含一被定位在該等 第一及第二同軸探針總成之每一者之半硬性同軸電纜上的 壓縮彈簧,且該壓縮彈簧之一端部被固定地定位至該半硬 性同軸電纜而另一端部嚙合該外殼,且該壓縮彈簧被壓縮 於該半硬性同軸電纜上的該固定位置與該外殼之間,以產 生該第一預負載壓縮力。 5. 如申請專利範圍第2項之差分式測量探針,其中 該第一及第二壓力感測器之每一第一接點進一步包含一第 一導電接點,且該等第一導電接點之一者被電性地耦接至 該第一及第二同軸探針總成之該等半硬性同軸電纜之一者 的外部屏蔽導體且另一第一導電接點係與該第一及第二同 軸探針總成之另一半硬性同軸電纜的外部屏蔽導體電性地 絕緣,且該第一及第二壓力感測器之每一第二接點進一步 包含一被設置在該外殼中的第二導電接點。 6. 如申請專利範圍第5項之差分式測量探針,其中 該等第一及第二壓力感測器之一者的第一導電接點進一步 包含一第一固持塊,該第一固持塊被設置成鄰近於該第一 及第二同軸探針總成之該等半硬性同軸電纜之一者的探針 尖,且該第一固持塊具有一被設置在相對置之長直部分之 間的彎曲凹槽以收納該半硬性同軸電纜之各別彎曲部分, 且該另一第一及第二壓力感測器之該第一導電接點進一步 包含一被設置成鄰近且電性絕緣於一第二固持塊之導電構 -3- 1328684 件,且該第二固持塊被設置成鄰近於該第一及第二同軸探 針總成之該另一半硬性同軸電纜之探針尖,且該第二固持 塊具有一被設置在相對置的長直部分之間的彎曲凹槽以收 納該半硬性同軸電纜第一及第二同軸探針總成之各別彎曲 部分。 7. 如申請專利範圍第5項之差分式測量探針,其中 當該第一及第二壓力感測器之該等第一導電接點嚙合該第 一及第二壓力感測器之該等第二導電接點時,該第一及第 二壓力感測器產生一邏輯“及(AND ) ”功能。 8. 如申請專利範圍第7項之差分式測量探針,其中 該第一及第二壓力感測器之該等第二導電接點之一者進一 步包含一共同導電接點,該共同導電接點用以經由該第一 及第二壓力感測器之該等第一導電接點之一者來將該等第 二導電接點電性地耦接在一起。 9. 如申請專利範圍第8項的差分式測量探針,其中 該等第二可壓縮元件之每一者進一步包含一被設置在一導 電性外殻之一孔中的壓縮彈簧,該導電性外殼具有一被牢 固在該孔中之可動電接點,且該壓縮彈簧被壓縮於該導電 性外殼及該可動電接點之間以產生該第二預負載壓縮力。 10. 如申請專利範圍第9項之差分式測量探針,其中 收納該壓縮彈簧且牢固該可動電接點之該等導電性外殼的 每一者進一步包含該第一及第二壓力感測器之該等第二導 電接點之一者。 11. 如申請專利範圍第6項的差分式測量探針,其中 -4- 1328684 該第一調整機構進一步包含一於其中具有一螺紋 ,且該載具收納被設置成鄰近於該第一及第二同 成之該等半硬性同軸電纜之該等探針尖之第一及 塊之一者’及一具有一附接至一螺紋柄之螺絲頭 ’且該螺絲頭部被收納且捕捉在該外殼之該外表 口中’而該螺紋柄貫穿該外殻中之一開孔且嚙合 之該螺紋孔。 # 1 2 ·如申請專利範圍第1 1項的差分式測量 中該載具進一步包含一具有一基部及側壁的U形 該固持塊被緊密地收納在該U形構件中。 13.如申請專利範圍第1 1項的差分式測量 進一步包含一第二調整機構,其中該第二調整機 包含一於其中具有一螺紋孔之載具,且該載具收 成鄰近於該第一及第二同軸探針總成之該等半硬 纜之該等探針尖之第一及第二固持塊的另一者, ® 一附接至一螺紋柄之螺絲頭部的螺絲,且該螺絲 納且捕捉在該外殼之該外表面的一凹口中,而該 穿該外殻中之一開孔且嚙合該載具中之該螺紋孔 1 4 ·如申請專利範圍第1 3項的差分式測量 中該載具進一步包含一具有一基部及側壁的U形 該固持塊被緊密地收納在該U形構件中。 1 5 ·如申請專利範圍第2項之差分式測量探 該等第一及第二同軸探針總成之每一者進一步包 置在鄰近於該螺紋連接器之該半硬性同軸電纜上 孔之載具 軸探針總 第二固持 部的螺絲 面的一凹 該載具中 探針,其 構件,且 探針,其 構進一步 納被設置 性同軸電 及一具有 頭部被收 螺紋柄貫 〇 探針,其 構件,且 針,其中 含一被設 之附接板 -5- 1328684 ,且該附接板被牢固至一防轉塊,該防轉塊被定位在該外 殼中。 1 6 ·如申請專利範圍第1 5項之差分式測量探針,其 進一步包含一耦接至該等第一及第二壓力感測器之一者的 電導體。 1 7 ·如申請專利範圍第1 6項的差分式測量探針,其 進一步包含一被安裝在該差分式測量探針上的電連接器插 座,該差分式測量探針具有一被電性地耦接至該電導體的 φ 電接點。 1 8 .如申請專利範圍第1 7項之差分式測量探針,其 中該電連接器插座被安裝在一托架上,該托架具有一頂板 及附屬的側壁,且該托架被牢固至該等附接板的一者。 1 9 ·如申請專利範圍第1 6項的差分式測量探針,其 進一步包含被安裝在該差分式測量探針上的第一及第二電 連接器插座,且該等電連接器插座之每一者具有一被電性 地耦接至該電導體的電接點。 Φ 2 0 .如申請專利範圍第1 9項之差分式測量探針,其 中該第一及第二電連接器插座被安裝在一托架上,該托架 具有一頂板及附屬的側壁,且該托架被牢固至該等附接板 的一者。 2 1 .—種差分式測量探針,其具有經由第一及第二同 軸電纜而被耦接至至少一第一電性過應力及靜電放電保護 模組的可變間距探針尖’且該差分式測量探針傳送一啓動 信號至該電性過應力及靜電放電保護控制模組,以將該差 -6 - 1328684 分式測量探針耦接至測量測試儀器之輸入電路,包含: 第一及第二同軸探針總成,其各具有由一半硬性同軸 電纜所形成的同軸探針總成,在該半硬性同軸電纜之一端 具有一探針尖且在另一端具有一螺紋連接器,且該螺紋連 接器被耦接至該同軸電纜,且該半硬性同軸電纜之該探針 尖端部具有一彎曲部分,該彎曲部分在該探針尖處轉變成 一長直部分,以使該等半硬性同軸電纜之該等探針尖以角 度彎向彼此; 一外殼,其具有一延伸於該外殻之長度且外露於該外 殼之相對置端部的內部腔室,且該第一及第二同軸探針總 成被設置在該內部腔室中而使該第一及第二同軸探針總成 之探針尖從該外殻之一端部延伸出來,且使該第一及第二 同軸探針總成之螺紋連接器從該外殼之另一端部延伸出來 » 第一可壓縮元件,其被設置在該外殼中,且該等第一 可壓縮元件之一者施加一第一預負載壓縮力至該第一同軸 探針總成以及一藉由該外殻相對於該第一同軸探針總成之 軸向運動而施加之第一增加壓縮力,且該等第一可壓縮元 件之另一者施加一第一預負載壓縮力至該第二同軸探針總 成以及一藉由該外殼相對於該第二同軸探針總成之軸向運 動而施加之第一增加壓縮力;及 第二可壓縮元件,其被設置在該外殼中,且該等第二 可壓縮元件之一者在施加該第一增加壓縮力於該第一同軸 探針總成之後施加一第二預負載壓縮力至該第一同軸探針 1328684 總成以及一藉由該外殻相對於該第一同軸探針總成之進一 步軸向運動而施加之第二增加壓縮力,且該等第二可壓縮 元件之另一者在施加該第一增加壓縮力於該第二同軸探針 總成之後施加一第二預負載壓縮力至該第二同軸探針總成 以及一藉由該外殼相對於該第二同軸探針總成之進一步軸 向運動而施加之第二增加壓縮力; 第一及第二壓力感測器,其相應於該外殼相對於該第 一及第二同軸探針總成之軸向運動而傳送一啓動信號,且 該等第一及第二壓力感測器之每一者具有一第一導電接點 ,且該等第一導電接點之一者被電性地耦接至該第一及第 二同軸探針總成之該等半硬性同軸電纜之一者的外部屏蔽 導體且另一第一導電接點係與該第一及第二同軸探針總成 之另一半硬性同軸電纜的外部屏蔽導體電性地絕緣,以及 一被設置在該外殼中之第二導電接點,且該第一及第二壓 力感測器之該等第二接點的一者係經由一電導體而被耦接 至該電性過應力及靜電放電保護控制模組; 至少一第一調整機構,其被設置在該外殼中且機械式 地耦接至該等第一及第二同軸探針總成之一者,以改變該 第-及第二同軸探針總成之該等半硬性同軸電纜之該等探 針尖的探針尖間距; 在該第一及第二壓力感測器之該等第一導電接點嚙合 該第一及第二壓力感測器之該等第二導電接點之前,該第 一及第二同軸探針總成之該等探針尖經由該電性過應力及 靜電放電保護控制模組而被耦接至電性接地線,且當該電 -8- 1328684 性過應力及靜電放電保護控制模組接收到相應於該第一及 第二壓力感測器之該等第一導電接點嚙合該第一及第二壓 力感測器之該等第二導電接點而被傳送之該啓動信號時, 該等探針尖被耦接至該測量測試儀器的該輸入電路。 22. 如申請專利範圍第2 1項之差分式測量探針,其 中該外殼進一步包含第一及第二構件,且至少一構件具有 第一及第二通道形成於其中以收納該第一及第二同軸探針 φ 總成、該第一可壓縮元件、該第二可壓縮元件、該第一及 第二壓力感測器及至少該第一調整機構,且該第一及第二 構件被結合在一起以形成該內部腔室。 23. 如申請專利範圍第2 1項之差分式測量探針,其 中該等第一可壓縮元件之每一者進一步包含一被定位在該 等第一及第二同軸探針總成之每一者之半硬性同軸電纜上 的壓縮彈簧,且該壓縮彈簧之一端部被固定地定位至該半 硬性同軸電纜而另一端部嚙合該外殼,且該壓縮彈簧被壓 ©縮於該半硬性同軸電纜上的該固定位置與該外殼之間,以 產生該第一預負載壓縮力。 24. 如申請專利範圍第2 1項之差分式測量探針,其 中該等第一及第二壓力感測器之一者的第一導電接點進一 步包含一第一固持塊,該第一固持塊被設置成鄰近於該第 一及第二同軸探針總成之該等半硬性同軸電纜之一者的探 針尖,且該第一固持塊具有一被設置在相對置之長直部分 之間的彎曲凹槽以收納該半硬性同軸電纜之各別彎曲部分 ,且該另一第一及第二壓力感測器之該第一導電接點進一 -9 - 1328684 步包含一被設置成鄰近且電性絕緣於一第二固持塊之導電 構件,且該第二固持塊被設置成鄰近於該第一及第二同軸 探針總成之該另一半硬性同軸電纜之探針尖,且該第二固 持塊具有一被設置在相對置的長直部分之間的彎曲凹槽以 收納該半硬性同軸電纜第一及第二同軸探針總成之各別彎 曲部分。 25. 如申請專利範圍第2 1項之差分式測量探針,其 中當該第一及第二壓力感測器之該等第一導電接點嚙合該 第一及第二壓力感測器之該等第二導電接點時,該第一及 第二壓力感測器產生一邏輯“及(AND) ”功能。 26. 如申請專利範圍第25項之差分式測量探針,其 中該第一及第二壓力感測器之該等第二導電接點之一者進 一步包含一共同導電接點,該共同導電接點用以經由該第 一及第二壓力感測器之該等第一導電接點之一者來將該等 第二導電接點電性地耦接在一起。 27. 如申請專利範圍第26項的差分式測量探針,其 中該等第二可壓縮元件之每一者進一步包含一被設置在一 導電性外殻之一孔中的壓縮彈簧,該導電性外殼具有一被 牢固在該孔中之可動電接點,且該壓縮彈簧被壓縮於該導 電性外殼及該可動電接點之間以產生該第二預負載壓縮力 〇 28. 如申請專利範圍第2 7項之差分式測量探針,其 中收納該壓縮彈簧且牢固該可動電接點之該等導電性外殼 的每一者進一步包含該第一及第二壓力感測器之該等第二 -10 - 1328684 導電接點之一者。 29.如申請專利範圍第24項的差分式測量探針,其 中該第一調整機構進一步包含一於其中具有一螺紋孔之載 具’且該載具收納被設置成鄰近於該第一及第二同軸探針 總成之該等半硬性同軸電纜之該等探針尖之第一及第二固 持塊之一者’及一具有一附接至一螺紋柄之螺絲頭部的螺 絲’且該螺絲頭部被收納且捕捉在該外殼之該外表面的一 凹口中’而該螺紋柄貫穿該外殻中之一開孔且嚙合該載具 中之該螺紋孔。 3〇·如申請專利範圍第2 9項的差分式測量探針,其 中該載具進一步包含一具有一基部及側壁的U形構件,且 該固持塊被緊密地收納在該U形構件中。 3 1 ·如申請專利範圍第29項的差分式測量探針,其 進一步包含一第二調整機構,其中該第二調整機構進一步 包含一於其中具有一螺紋孔之載具,且該載具收納被設置 成鄰近於該第一及第二同軸探針總成之該等半硬性同軸電 纜之該等探針尖之第一及第二固持塊的另一者,及一具有 一附接至一螺紋柄之螺絲頭部的螺絲,且該螺絲頭部被收 納且捕捉在該外殼之該外表面的一凹口中,而該螺紋柄貫 穿該外殼中之一開孔且嚙合該載具中之該螺紋孔。 32.如申請專利範圍第3 1項的差分式測量探針,其 中該載具進一步包含一具有一基部及側壁的U形構件,且 該固持塊被緊密地收納在該U形構件中。 3 3 ·如申請專利範圍第2 1項之差分式測量探針,其 -11 - 1328684 中該等第一及第二同軸探針總成之每一者進一步包含一被 設置在鄰近於該螺紋連接器之該半硬性同軸電纜上之附接 板,且該附接板被牢固至一防轉塊,該防轉塊被定位在該 外殼中。 34. 如申請專利範圍第33項之差分式測量探針,其 中該電導體進一步包含第一及第二絕緣線部分,且該第一 絕緣線部分電性地耦接該第一及第二壓力感測器之該等第 二導電接點之一者至一被安裝在該差分式測量探針上之一 電連接器插座之電接點,且該第二絕緣線部分電性地耦接 一第一電插頭之電接點至一第二電插頭之一電接點,且該 第一電插頭與安裝在該差分式測量探針上的電連接器插座 相配接,且該第二電插頭與一具有被安裝在該電性過應力 及靜電放電保護控制模組中之一電接點的電連接器插座相 配接。 35. 如申請專利範圍第3 4項之差分式測量探針,其 中該電連接器插座被安裝在一托架上,該托架具有一頂板 及附屬的側壁,且該托架被牢固至該等附接板的一者。 36. 如申請專利範圍第3 3項之差分式測量探針,其 中該第一同軸電纜將該差分式測量探針耦接至一第一電性 過應力及靜電放電保護控制模組且該第二同軸電纜將該差 分式測量探針耦接至一第二電性過應力及靜電放電保護控 制模組,且該差分式測量探針傳送該啓動信號至該第一及 第二電性過應力及靜電放電保護控制模組,其中該電導體 進一步包含第一絕緣線部分,該第一絕緣線部分電性地耦 -12- 1328684 接該第一及第二壓力感測器之該等第二導電接點之一者至 被安裝在該差分式測量探針上之第一及第二電連接器插座 之各別電接點’且具有第二及第三絕緣線部分,且該第二 及第二絕緣線部分之每一者具有第一及第二電插頭,且該 第一及第二電插頭各具有一電接點,該第二絕緣線之該第 一電插頭的電接點係與被安裝在該差分式測量探針上之第 一電連接器插座的電接點相配接,且該第二絕緣線之該第 φ 二電插頭之電接點係與一被安裝在該第一電性過應力及靜 電放電保護控制模組中的一電連接器插座的電接點相配接 ’且該弟二絕緣線之弟一電插頭的電接點係與被安裝在該 差分式測量探針上之第二電連接器插座的電接點相配接, 且該第三絕緣線之第二電插頭的電接點係與一被安裝在該 第二電性過應力及靜電放電保護模組中之一電連接器插座 的電接點相配接。 3 7 .如申請專利範圍第3 6項之差分式測量探針,其 • 中該第一及第二電連接器插座被安裝在一托架上,該托架 具有一頂板及附屬的側壁,且該托架被牢固至該等附接板 的一者。 -13-1328684 X. Patent application scope. Annex. 5A: Patent application No. 95116084 Chinese patent application scope is replaced by the Republic of China on March 9th, 1999. The differential measurement probe with variable pitch probe tip contains: First and second coaxial probe assemblies, and each coaxial probe assembly #-probe tip; a housing 'which houses the first and second coaxial probe assemblies and enables one and second coaxial probes a probe tip of the needle assembly extending from one end of the housing; a first compressible member disposed in the housing, and one of the compressible members applying a first preload compressive force to the first a probe assembly and a first increased compression force applied by the total axial movement of the housing relative to the first coaxial probe, and the other of the first pressure members applies a first pre- a load compressing force to the second coaxial probe and a first increased compressive force applied by the housing relative to the second coaxial probe assembly; a second compressible member disposed externally In the shell, and one of the compressible elements is applying the first increasing pressure Applying a second preload compressive force to the first coaxial assembly to the first coaxial assembly and applying a first axial movement relative to the first coaxial probe assembly Secondly, the compression force is increased, and the other of the second component elements is applied to the first increased compression force on the second coaxial body, and the package has the first coaxially formed first coaxially formed contraction pin. Applying a second preload compressive force to the second coaxial probe assembly after the probe is inserted into the compression probe 1328684 assembly and applying a further axial movement of the housing relative to the second coaxial probe assembly a second increase in compressive force; first and second pressure sensors disposed in the housing to transmit an axial movement relative to the first and second coaxial probe assemblies An activation signal, and each of the first and second pressure sensors has a first contact associated with each of the respective coaxial probe assemblies and a associated with the housing Second contact; and at least one first adjustment machine Provided in the housing and mechanically coupled to one of the first and second coaxial probe assemblies to change the probes of the first and second coaxial probe assemblies Sharp probe tip spacing. 2. The differential measuring probe of claim 1, wherein each of the first and second coaxial probe assemblies further comprises a half rigid coaxial cable having one at one end of the semi-rigid coaxial cable a probe tip having a threaded connector at the other end, and the probe tip end portion of the semi-rigid coaxial cable has a curved portion that is converted into a straight portion at the probe tip to make the semi-rigid The probe tips of the coaxial cable are angled toward each other at one end of the outer casing and the threaded connectors of each of the semi-rigid coaxial cables extend at the other end of the outer casing. 3. The differential measuring probe of claim 1, wherein the outer casing further comprises first and second members, and at least one member has first and second passages formed therein to receive the first and second a coaxial probe assembly, the first compressible member, the second compressible member, the first and second pressure sensors, and at least the first adjustment mechanism, and the first and second configurations -2- 1328684 The pieces are joined together to form an internal chamber. 4. The differential measuring probe of claim 2, wherein each of the first compressible elements further comprises a first one of the first and second coaxial probe assemblies positioned a compression spring on the semi-rigid coaxial cable, and one end of the compression spring is fixedly positioned to the semi-rigid coaxial cable and the other end is engaged with the outer casing, and the compression spring is compressed on the semi-rigid coaxial cable A fixed position is formed between the housing and the first preload force. 5. The differential measuring probe of claim 2, wherein each of the first and second pressure sensors further comprises a first conductive contact, and the first conductive contacts One of the points is electrically coupled to the outer shield conductor of one of the semi-rigid coaxial cables of the first and second coaxial probe assemblies and the other first conductive contact is associated with the first The outer shield conductor of the other semi-rigid coaxial cable of the second coaxial probe assembly is electrically insulated, and each of the second and second pressure sensors further includes a second contact disposed in the outer casing Second conductive contact. 6. The differential measuring probe of claim 5, wherein the first conductive contact of one of the first and second pressure sensors further comprises a first holding block, the first holding block a probe tip disposed adjacent to one of the semi-rigid coaxial cables of the first and second coaxial probe assemblies, and the first retention block has a first disposed between the opposite straight portions The curved recesses receive the respective curved portions of the semi-rigid coaxial cable, and the first conductive contacts of the other first and second pressure sensors further comprise a first adjacent and electrically insulated one a conductive structure -3- 1328684 of the second holding block, and the second holding block is disposed adjacent to the probe tip of the other semi-rigid coaxial cable of the first and second coaxial probe assemblies, and the first The two retaining blocks have a curved recess disposed between the opposing elongated portions to receive the respective curved portions of the first and second coaxial probe assemblies of the semi-rigid coaxial cable. 7. The differential measuring probe of claim 5, wherein the first conductive contacts of the first and second pressure sensors engage the first and second pressure sensors The first and second pressure sensors generate a logical "AND" function when the second conductive contacts are in contact. 8. The differential measuring probe of claim 7, wherein one of the second conductive contacts of the first and second pressure sensors further comprises a common conductive contact, the common conductive connection The point is used to electrically couple the second conductive contacts together via one of the first conductive contacts of the first and second pressure sensors. 9. The differential measuring probe of claim 8 wherein each of the second compressible elements further comprises a compression spring disposed in a bore of a conductive outer casing, the conductivity The outer casing has a movable electrical contact secured in the aperture, and the compression spring is compressed between the electrically conductive outer casing and the movable electrical contact to produce the second preloading compressive force. 10. The differential measuring probe of claim 9, wherein each of the electrically conductive outer casings that house the compression spring and secure the movable electrical contact further comprises the first and second pressure sensors One of the second conductive contacts. 11. The differential measuring probe of claim 6, wherein the first adjusting mechanism further comprises a thread having a thread therein, and the carrier housing is disposed adjacent to the first and the first One of the first and the first of the probe tips of the semi-rigid coaxial cable and one having a screw head attached to a threaded shank and the screw head is received and captured therein In the outer surface of the outer casing, the threaded shank penetrates through one of the outer casings and engages the threaded hole. #1 2 · In the differential measurement of claim 1 of the patent application, the carrier further comprises a U-shape having a base and a side wall. The holding block is tightly received in the U-shaped member. 13. The differential measurement of claim 11 further comprising a second adjustment mechanism, wherein the second adjustment machine includes a carrier having a threaded hole therein, and the carrier is adjacent to the first And the other of the first and second holding blocks of the probe tips of the semi-rigid cables of the second coaxial probe assembly, a screw attached to the screw head of a threaded shank, and the Threaded and captured in a recess in the outer surface of the outer casing, and the one of the outer casing is bored and engages the threaded hole in the carrier. The difference is as disclosed in claim 13 In the measurement, the carrier further comprises a U-shaped portion having a base and a side wall, the holding block being tightly received in the U-shaped member. 1 5 - differential measurement as in claim 2, each of the first and second coaxial probe assemblies further enclosing a hole in the semi-rigid coaxial cable adjacent to the threaded connector A shaft of the second axial holding portion of the carrier shaft is recessed in the carrier, the probe member, the member thereof, and the probe are further configured to be coaxially disposed and have a head received by the threaded handle The probe, its components, and the needle, including an attached attachment plate-5-1328684, and the attachment plate is secured to an anti-rotation block in which the anti-rotation block is positioned. The differential measuring probe of claim 15 further comprising an electrical conductor coupled to one of the first and second pressure sensors. 1 7 - The differential measuring probe of claim 16 further comprising an electrical connector socket mounted on the differential measuring probe, the differential measuring probe having an electrical A φ electrical contact coupled to the electrical conductor. 18. The differential measuring probe of claim 17, wherein the electrical connector socket is mounted on a bracket having a top plate and an attached side wall, and the bracket is secured to One of the attachment plates. 1 9 - The differential measuring probe of claim 16 further comprising first and second electrical connector sockets mounted on the differential measuring probe, and the electrical connector socket Each has an electrical contact that is electrically coupled to the electrical conductor. Φ 2 0. The differential measuring probe of claim 19, wherein the first and second electrical connector sockets are mounted on a bracket having a top plate and an auxiliary side wall, and The bracket is secured to one of the attachment plates. 2 1 . A differential measuring probe having a variable pitch probe tip coupled to at least one first electrical overstress and electrostatic discharge protection module via first and second coaxial cables and The differential measuring probe transmits a start signal to the electrical overstress and electrostatic discharge protection control module to couple the difference -6 - 1328684 fractional measurement probe to the input circuit of the measurement test instrument, including: And a second coaxial probe assembly each having a coaxial probe assembly formed of a semi-rigid coaxial cable having a probe tip at one end of the semi-rigid coaxial cable and a threaded connector at the other end, and The threaded connector is coupled to the coaxial cable, and the probe tip portion of the semi-rigid coaxial cable has a curved portion that is converted into a straight portion at the probe tip to make the semi-rigid The probe tips of the coaxial cable are angled toward each other; an outer casing having an inner chamber extending from the outer length of the outer casing and exposed at opposite ends of the outer casing, and the first and second coaxial Probe Provided in the internal chamber such that the probe tips of the first and second coaxial probe assemblies extend from one end of the housing, and the first and second coaxial probe assemblies are assembled a threaded connector extending from the other end of the housing » a first compressible member disposed in the housing, and one of the first compressible members applying a first preloading compressive force to the first a coaxial probe assembly and a first increased compressive force applied by axial movement of the housing relative to the first coaxial probe assembly, and the other of the first compressible members applies a first a preloading compressive force to the second coaxial probe assembly and a first increased compressive force applied by axial movement of the outer casing relative to the second coaxial probe assembly; and a second compressible element, Provided in the housing, and one of the second compressible elements applies a second preloading compressive force to the first coaxial after applying the first increased compressive force to the first coaxial probe assembly Probe 1328684 assembly and one by the outer casing relative to The second coaxial probe assembly is further axially moved to apply a second increased compressive force, and the other of the second compressible members is applying the first increased compressive force to the second coaxial probe Applying a second preloading compressive force to the second coaxial probe assembly and a second increased compressive force applied by the housing for further axial movement relative to the second coaxial probe assembly; And a second pressure sensor transmitting an activation signal corresponding to axial movement of the housing relative to the first and second coaxial probe assemblies, and the first and second pressure sensors Each having a first conductive contact, and one of the first conductive contacts is electrically coupled to one of the semi-rigid coaxial cables of the first and second coaxial probe assemblies The outer shield conductor and the other first conductive contact are electrically insulated from the outer shield conductor of the other semi-rigid coaxial cable of the first and second coaxial probe assemblies, and a first one disposed in the outer casing Two conductive contacts, and the first and second pressure sensing One of the second contacts is coupled to the electrical overstress and ESD protection control module via an electrical conductor; at least a first adjustment mechanism disposed in the housing and mechanically Coupling to one of the first and second coaxial probe assemblies to change the probe tips of the probe tips of the semi-rigid coaxial cables of the first and second coaxial probe assemblies The first and second coaxial probes before the first conductive contacts of the first and second pressure sensors engage the second conductive contacts of the first and second pressure sensors The probe tips of the needle assembly are coupled to the electrical grounding wire via the electrical overstress and electrostatic discharge protection control module, and when the electrical-8-1328684 overstress and electrostatic discharge protection control module Receiving the activation signal corresponding to the first conductive contacts of the first and second pressure sensors engaging the second conductive contacts of the first and second pressure sensors, The probe tips are coupled to the input circuit of the measurement test instrument. 22. The differential measuring probe of claim 21, wherein the outer casing further comprises first and second members, and at least one member has first and second passages formed therein for receiving the first and second a coaxial probe φ assembly, the first compressible member, the second compressible member, the first and second pressure sensors, and at least the first adjustment mechanism, and the first and second members are combined Together to form the internal chamber. 23. The differential measuring probe of claim 21, wherein each of the first compressible elements further comprises a first one of the first and second coaxial probe assemblies positioned a compression spring on the semi-rigid coaxial cable, and one end of the compression spring is fixedly positioned to the semi-rigid coaxial cable and the other end is engaged with the outer casing, and the compression spring is pressed against the semi-rigid coaxial cable The fixed position on the upper portion is coupled to the outer casing to generate the first preload compressive force. 24. The differential measuring probe of claim 21, wherein the first conductive contact of one of the first and second pressure sensors further comprises a first holding block, the first holding a block is disposed adjacent to a probe tip of one of the semi-rigid coaxial cables of the first and second coaxial probe assemblies, and the first retaining block has a longitudinal portion disposed opposite each other a curved groove therebetween to receive the respective curved portions of the semi-rigid coaxial cable, and the first conductive contacts of the other first and second pressure sensors are further arranged in a step -9 - 1328684 And electrically insulated from the conductive member of the second holding block, and the second holding block is disposed adjacent to the probe tip of the other semi-rigid coaxial cable of the first and second coaxial probe assemblies, and the The second retaining block has a curved recess disposed between the opposing elongated portions to receive the respective curved portions of the first and second coaxial probe assemblies of the semi-rigid coaxial cable. 25. The differential measuring probe of claim 21, wherein the first conductive contacts of the first and second pressure sensors engage the first and second pressure sensors The first and second pressure sensors generate a logical "AND" function when the second conductive contacts are equal. 26. The differential measuring probe of claim 25, wherein one of the second conductive contacts of the first and second pressure sensors further comprises a common conductive contact, the common conductive connection The point is used to electrically couple the second conductive contacts together via one of the first conductive contacts of the first and second pressure sensors. 27. The differential measuring probe of claim 26, wherein each of the second compressible elements further comprises a compression spring disposed in a bore of a conductive outer casing, the conductivity The outer casing has a movable electrical contact secured in the hole, and the compression spring is compressed between the conductive outer casing and the movable electrical contact to generate the second preload compression force 〇28. The differential measuring probe of item 27, wherein each of the electrically conductive outer casings that house the compression spring and secure the movable electrical contact further comprises the second of the first and second pressure sensors -10 - 1328684 One of the conductive contacts. 29. The differential measuring probe of claim 24, wherein the first adjustment mechanism further comprises a carrier having a threaded hole therein and the carrier is disposed adjacent to the first and the first One of the first and second holding blocks of the probe tips of the semi-rigid coaxial cable of the two-coaxial probe assembly and a screw having a screw head attached to a threaded shank and A screw head is received and captured in a recess in the outer surface of the outer casing and the threaded shank extends through one of the outer casings and engages the threaded bore in the carrier. 3. The differential measuring probe of claim 29, wherein the carrier further comprises a U-shaped member having a base and a side wall, and the holding block is tightly received in the U-shaped member. The differential measuring probe of claim 29, further comprising a second adjusting mechanism, wherein the second adjusting mechanism further comprises a carrier having a threaded hole therein, and the carrier is received The other of the first and second holding blocks of the probe tips of the semi-rigid coaxial cables disposed adjacent to the first and second coaxial probe assemblies, and one having an attached to one a screw of a screw head of the shank, and the screw head is received and captured in a recess of the outer surface of the outer casing, and the threaded shank penetrates through one of the outer casings and engages the carrier Threaded hole. 32. The differential measuring probe of claim 31, wherein the carrier further comprises a U-shaped member having a base and a side wall, and the holding block is tightly received in the U-shaped member. 3 3 · The differential measuring probe of claim 21, wherein each of the first and second coaxial probe assemblies of -11 - 1328684 further comprises a first disposed adjacent to the thread An attachment plate on the semi-rigid coaxial cable of the connector, and the attachment plate is secured to an anti-rotation block, the anti-rotation block being positioned in the housing. 34. The differential measuring probe of claim 33, wherein the electrical conductor further comprises first and second insulated wire portions, and the first insulated wire portion is electrically coupled to the first and second pressure portions One of the second conductive contacts of the sensor is connected to an electrical contact of one of the electrical connector sockets of the differential measuring probe, and the second insulated wire is electrically coupled to the first An electrical contact of the first electrical plug to an electrical contact of a second electrical plug, and the first electrical plug is mated with an electrical connector socket mounted on the differential measuring probe, and the second electrical plug Cooperating with an electrical connector socket having an electrical contact mounted in the electrical overstress and ESD protection control module. 35. The differential measuring probe of claim 34, wherein the electrical connector receptacle is mounted on a bracket having a top plate and an associated side wall, and the bracket is secured to the bracket One of the attached plates. 36. The differential measuring probe of claim 3, wherein the first coaxial cable couples the differential measuring probe to a first electrical overstress and electrostatic discharge protection control module and the first The two-coaxial cable couples the differential measuring probe to a second electrical overstress and electrostatic discharge protection control module, and the differential measuring probe transmits the starting signal to the first and second electrical overstresses And an electrostatic discharge protection control module, wherein the electrical conductor further comprises a first insulated wire portion electrically coupled to the first and second pressure sensors 12- 1328684 One of the conductive contacts to the respective electrical contacts of the first and second electrical connector sockets mounted on the differential measuring probe and having second and third insulated wire portions, and the second and Each of the second insulated wire portions has first and second electrical plugs, and the first and second electrical plugs each have an electrical contact, and the electrical contact of the first electrical plug of the second insulated wire And the first electricity that is mounted on the differential measuring probe The electrical contacts of the connector socket are matched, and the electrical contacts of the second φ electric plug of the second insulated wire are connected to one of the first electrical overstress and the electrostatic discharge protection control module. The electrical contacts of the electrical connector socket are matched and the electrical contact of the electrical plug of the second insulated wire is matched with the electrical contact of the second electrical connector socket mounted on the differential measuring probe. And the electrical contact of the second electrical plug of the third insulated wire is matched with an electrical contact mounted on one of the second electrical overstress and the electrostatic discharge protection module. 3 7. The differential measuring probe of claim 36, wherein the first and second electrical connector sockets are mounted on a bracket having a top plate and an auxiliary side wall. And the bracket is secured to one of the attachment plates. -13-
TW095116084A 2005-05-27 2006-05-05 Differential measurement probe having retractable double cushioned variable spacing probing tips and providing eos/esd protection TWI328684B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/139,112 US7167011B2 (en) 2005-05-27 2005-05-27 Differential measurement probe having retractable double cushioned variable spacing probing tips with EOS/ESD protection capabilities

Publications (2)

Publication Number Publication Date
TW200710399A TW200710399A (en) 2007-03-16
TWI328684B true TWI328684B (en) 2010-08-11

Family

ID=37443429

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095116084A TWI328684B (en) 2005-05-27 2006-05-05 Differential measurement probe having retractable double cushioned variable spacing probing tips and providing eos/esd protection

Country Status (4)

Country Link
US (1) US7167011B2 (en)
JP (1) JP4745130B2 (en)
CN (1) CN1869713B (en)
TW (1) TWI328684B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI509272B (en) * 2013-12-09 2015-11-21 Univ Nat Taiwan Magnetic field probe,magnetic field measurement system and magnetic field measurement method

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7262614B1 (en) * 2005-02-10 2007-08-28 Lecroy Corporation Planar on edge probing tip with flex
US7321234B2 (en) 2003-12-18 2008-01-22 Lecroy Corporation Resistive test probe tips and applications therefor
US9404940B1 (en) 2006-01-06 2016-08-02 Teledyne Lecroy, Inc. Compensating probing tip optimized adapters for use with specific electrical test probes
US7456642B2 (en) * 2006-09-25 2008-11-25 Ceramic Component Technologies, Inc. Handheld electronic test probe assembly
US7728613B2 (en) * 2006-11-20 2010-06-01 Analog Devices, Inc. Device under test pogo pin type contact element
US8458759B2 (en) * 2007-06-19 2013-06-04 Arcom Digital, Llc Method and apparatus for locating network impairments
NZ561300A (en) * 2007-09-07 2010-01-29 Lincoln Ventures Ltd Time domain reflectomertry system and method of use
US8410804B1 (en) * 2009-02-24 2013-04-02 Keithley Instruments, Inc. Measurement system with high frequency ground switch
CN102053175B (en) * 2009-11-10 2014-12-10 北京普源精电科技有限公司 Probe used for display electrical variable device
MY154684A (en) * 2010-10-22 2015-07-15 Kow Kek Hing Test pin assembly with electrostatic discharge (esd) protection
JP2014511566A (en) 2011-02-10 2014-05-15 ハイジトロン,インク. Nano mechanical test system
US8860449B2 (en) 2011-06-10 2014-10-14 Tektronix, Inc. Dual probing tip system
CN102866345A (en) * 2011-07-08 2013-01-09 鸿富锦精密工业(深圳)有限公司 Monitoring device for output signal of circuit board
US9194888B2 (en) * 2012-10-11 2015-11-24 Tektronix, Inc. Automatic probe ground connection checking techniques
JP6214919B2 (en) * 2013-05-17 2017-10-18 日本メクトロン株式会社 Coaxial probe holding mechanism and electrical characteristic inspection device
US9417266B2 (en) * 2014-01-16 2016-08-16 International Business Machines Corporation Implementing handheld transfer impedance probe
JP6167083B2 (en) * 2014-09-09 2017-07-19 アンリツ株式会社 Static elimination device and static elimination method
US10101363B2 (en) * 2015-04-12 2018-10-16 Keysight Technologies, Inc. Coaxial connector locking bracket
US10012686B2 (en) * 2016-08-15 2018-07-03 Tektronix, Inc. High frequency time domain reflectometry probing system
TWI623753B (en) * 2017-08-15 2018-05-11 旺矽科技股份有限公司 Coaxial probe card device
US11187723B2 (en) * 2016-10-31 2021-11-30 Rohde & Schwarz Gmbh & Co. Kg Differential test probe
KR101722403B1 (en) * 2017-02-09 2017-04-03 위드시스템 주식회사 the pin block with adjustable pitch control
US10705119B2 (en) * 2018-02-21 2020-07-07 Fluke Corporation Shrouded test probe
TWI787647B (en) * 2019-10-04 2022-12-21 旺矽科技股份有限公司 Adjustable Probe Set for Circuit Board Impedance Testing
CN114371350A (en) * 2020-10-15 2022-04-19 普源精电科技股份有限公司 Differential probe and control method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4673839A (en) * 1986-09-08 1987-06-16 Tektronix, Inc. Piezoelectric pressure sensing apparatus for integrated circuit testing stations
JP2602097B2 (en) * 1989-06-15 1997-04-23 日本発条株式会社 Conductive contact
JPH0519964U (en) * 1991-08-28 1993-03-12 茨城日本電気株式会社 Contact for probe
US6704670B2 (en) * 2002-04-16 2004-03-09 Agilent Technologies, Inc. Systems and methods for wideband active probing of devices and circuits in operation
US6734689B1 (en) * 2002-12-05 2004-05-11 Tektronix, Inc. Measurement probe providing signal control for an EOS/ESD protection module
US7017435B2 (en) * 2004-05-27 2006-03-28 Tektronix, Inc. Hand-held probing adapter for a measurement probing system
US7126360B1 (en) * 2005-05-27 2006-10-24 Tektronix, Inc. Differential signal acquisition probe having retractable double cushioned probing tips with EOS/ESD protection capabilities

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI509272B (en) * 2013-12-09 2015-11-21 Univ Nat Taiwan Magnetic field probe,magnetic field measurement system and magnetic field measurement method
US9606198B2 (en) 2013-12-09 2017-03-28 National Taiwan University Magnetic field probe, magnetic field measurement system and magnetic field measurement method

Also Published As

Publication number Publication date
JP2006329992A (en) 2006-12-07
CN1869713B (en) 2012-03-21
US20060267604A1 (en) 2006-11-30
CN1869713A (en) 2006-11-29
US7167011B2 (en) 2007-01-23
TW200710399A (en) 2007-03-16
JP4745130B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
TWI328684B (en) Differential measurement probe having retractable double cushioned variable spacing probing tips and providing eos/esd protection
US6734689B1 (en) Measurement probe providing signal control for an EOS/ESD protection module
US7126360B1 (en) Differential signal acquisition probe having retractable double cushioned probing tips with EOS/ESD protection capabilities
US7253648B2 (en) Signal acquisition probe having a retractable double cushioned probing tip with EOS/ESD protection capabilities
US7909613B2 (en) Coaxial connecting device
US7015708B2 (en) Method and apparatus for a high frequency, impedance controlled probing device with flexible ground contacts
JP4767999B2 (en) Automatic wiring device for electrical meters
CN103378443B (en) Socket device for electromedical equipment
US6731104B1 (en) Measurement probe system with EOS/ESD protection
JP2005338088A (en) Detachable probe tip device for measuring probe
EP3406000A1 (en) Highspeed board connector
JP2012506552A (en) Test probe
CN107765047B (en) High-frequency time domain reflectometry exploration system
KR102080435B1 (en) Multpurpose electrical charging structure
JP2005003372A (en) Contact probe, probe socket, electric characteristics measuring apparatus, contact probe pressing method
US5525812A (en) Retractable pin dual in-line package test clip
CN113325203B (en) Detection connector
JP3315683B2 (en) Electrical property measurement device
CN112710873B (en) Wiring device and testing device
US10931040B1 (en) Controlled-impedance circuit board connector assembly
JP5207828B2 (en) Adapter for measuring device
CN114034886A (en) Test connector with self-adaptive adjustment of pin pitch
CN109932535B (en) Current probe structure
US10267838B1 (en) Current sensor having microwave chip resistors in parallel radial arrangement
JPH07260825A (en) Probe for measuring signal

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees