1327929 九、發明說明: 【發明所屬之技術領域】 本發明係有關-用於催化酉旨化與交酸 合物及-使用此觸媒複合物之_化/交_化製=觸媒複 【先前技術】 聚酉I與共聚酉旨為已知相當重要的高分 種應用中,而聚醋與共聚黯是由二缓酸與二4化::各 合觸媒反應製備而得者較佳,其 :土化口物配 對苯二甲gt之芳香錢較佳 _ 、—⑽以諸如 醇之脂肪族二經基化合物較佳^ 土口物以諸如乙二 熱塑性聚醋係為重要之高分子材料,可 產。線型熱塑性聚醋如聚乙歸對苯二甲酸醋(PET;可;= 種不同的型態作使用’例如_熱塑性聚 ^ 態使用,這種用合錢_型態作使用之線 病對大部分的礦物酸具有良好的抗性且對清潔劑及介面 活性劑亦具有優良的抗性(resis1;anGe)。熱塑性聚醋亦 可使用於其他廣大的領域中,如作為鑄模材料,而且此種 材料之特徵在於具有許多的合乎期望的性質,如硬度、強 度、韌性、良好的化學抗性與低吸濕性。 生產如PET之聚酯的習知技術係將二元醇與烷基或芳 香基二酸縮合,如聚合物科學與工程全書第2冊第12卷 (Encyclopaedia of P〇lymer Science and Engineering 2nd ed, volume 12, John Wiley and Sons, New York 1327929 (1988))中所述。PET通常利用對苯二甲酸與乙二醇轉化 或利用對本一甲酸一曱醋與乙一醇交酉旨化,並配合通稱第 一階段之催化添加物,而形成一低分子量的預聚體〔hs (hydeoxyalkyl) ester and oligomers〕,此預聚體隨後 以酯化與交酯化反應縮合而形成一高分子量聚醋。由於聚 酯化原本即為一種緩慢的反應,需要將反應物保持在一個 提局的溫度下一段時間並伴隨著熱降解(therma 1 degradation),因此縮合步驟一般都需要催化。 然而,以儘可能的快的速率製造具有高分子量與低黃 色度(low yellowness)的聚酯乃高度期望者,所謂的聚 酯黃色度通常為高分子裂解及附帶反應(side reacti〇ns;) 的結果,且不是發生在聚合反應期間就是在下游的製造過 程。因此,在高分子中所合成的黃色度不但可以用來作為 以此製造之高分子的品質指標,更可作為將高分子製造成 感色性應用型癌之加工指標,而感色性應用型態如纖維、 薄膜與特定的鑄模零件。雖然已知有許多用於製造高分子 量聚酷的觸媒,但這些觸媒之缺點在於不是轉化率低、不 易使用就是以此所形成之產品的品質差。 含録化合物為現今常作為商業性使用的觸媒,可提供 合乎期望的高反應率與低色彩的化合作用。然而,因為基 於保護環境的責任必須控制有毒銻而造成成本耗費而且難 以控制有毒銻’因此有必須考量尋找銻的取代物之需要。 以鈦為基礎的化合物(titanium-based compound)常 用作縮合反應之觸媒,這些以鈦為基礎的化合物之觸媒無 1327929 毒性且反應性甚至優於銻觸媒’但經由觀測會發現產生不 希望的聚酯黃色度著色。 某些專利包含用於製造聚s旨與共聚酯的方法,在該方 法中係使用鈦化合物與鹼金屬化合物作為觸媒;世界專利 第98/56848號案揭露以共沉殿物作為縮合觸媒;德國專利 第195 13 056 A1號案揭露根據二氧化鈦或鈦酸鹽作為沉殿 物之觸媒。再者,於日本專利案52148593 A號案中,揭露 在驗金屬前使用包含鈦的特定複合化合物作為觸媒所製備 之聚酉旨。 於 1989 出版之 Textil Praxis International 1 — 書之第29至33頁中揭露具有等莫耳的乙醇酸鈦與鹼金屬 乙醇酸鹽之觸媒,導致聚酯具有不足分子量。 【發明内容】 因此,本發明之主要目的係在提供一可催化酯化與交 酯化反應之觸媒以克服習用技術之缺點,尤其在濃度低且 反應時間短下催化產生聚酯,並可改善聚酯的性質,如減 低真色度且增加分子量。 本發明之另一目的係在提供一個利用此新觸媒複合物 製造聚酯的製程。 為達到本發明之主要目的,本發明是這樣實現的:藉 由觸媒、複合物催化酯化/交酯化反應,該觸媒複合物包含: i) /高分子的乙醇酸鈦,其分子式為〔Ti〇4 (CH〇 4〕n, 其中n=i至200;以及 1327929 ii) 一鹼金屬乙醇酸鹽; 其中,高分子的乙醇酸鈦與鹼金屬乙醇酸鹽的莫耳比 為約1. 25 : 1至約100 : 1,較佳是介於約1. 25 : 1至約10 : :1。 較佳者係鹼金屬為鈉且乙醇酸鹼鹽的分子式為 Na-0-CH2-CH2-0H。 在酉旨化成份混合物中之觸媒複合物的金屬總含量以1 至7Oppm為較佳,而對酸S旨化成分而言較佳為約10至約50 ppm ° 為達到本發明之另一目的,本發明是這樣實現的:利 用觸媒複合物製造聚酯,首先將二羧酸與二元醇酯化,並 於隨後進行交酯化反應。該觸媒複合物在此兩個反應中都 具有活性,該羧酸化合物為二羧酸,其分子式為 H00C-R-C00H,其中R可為線型或支鏈型的烯羥基、亞芳香 基、alkenylene或其混合物。 R較佳為具有約2至約30個碳原子,更佳為具有約4至約 15個碳原子。 再者,較佳的羧酸化合物可為選自包括對苯二曱酸、 間苯二甲酸、naphthalenic diacid、號珀酸、己二酸、苯 二甲酸、戊二酸、草酸、順丁烯二酸及其混合物之群組 〇 對苯二甲酸較佳為羧酸化合物。 又,較佳的缓酸化合物為一具有由缓酸衍生重複單元 的寡聚合物。 醇化合物可為具有分子式HO-R’ -OH之烴基乙二醇、具 1327929 有分子式為HO-〔 R,’ 〕nH2聚烴基乙二醇或其混合物較 佳其中R為具有2至約10個碳原子或較佳為具有2至約4 個碳原子之線型或支鏈型的烯羥基,且R’,為具有1至約10 個石厌原子或較佳為1至5個碳原子的烯羥基,而,可與R, 為具有同或不同碳原子者。 再者,醇化合物可為選自乙二醇、丙二醇、異丙二醇、 丁 醇 1 —曱基丙一醇、pentylene glycol、neopentylene glycol及其混合物之群組。 而且’較佳實施例中’其製程於溫度約l5〇°c至約5〇〇 °C下進行,較佳為250。(:至300。(:。 於另一實施例中,製程於壓力為約〇. 〇〇1至約1〇大氣壓 下進行。 另外,醇化合物對缓酸化合物的莫耳比可為約〇. 1 :工 至約10 : 1之範圍中,較佳為約1 ·· 1至約3 : 1。 參考酸酯化成份,酯化成份中觸媒佔,更佳 為10至50ppm。 此製程有利地為可用來製備聚乙烯對苯二曱酸酯。 令人驚喜的是已發現根據本發明之觸媒複合物可於短 反應時間下產生高產量的聚酯,再者,本發明之觸媒複合 物可防止聚g旨形成不需要的黃色,而取得的聚醋的分子量 之範圍甚至高於觸媒複合物’並且因此更適用於工業上的 應用。再者,本發明較習用技術(1989出版之Textil praxis International 1 —書之第29至33頁)獲得更高之分子量, 同時僅需要低濃度的觸媒,所以使得高分子中之總金屬含 1327929 量低。 本發明之觸媒複合物之高分子的乙醇酸鈦具有結構分 子式: (其中n=0至200 ) ch2-0x / 0 — CH2—CH2一0、/ O-CH 1 Tiv Ti〆 1 ch2-ox o—ch2—ch2_〇/、 0-CH n 不溶於乙二醇之高分子的乙醇酸鈦可藉由加入鹼金屬 乙醇酸鹽而溶解,以形成一複合物於乙醇酸鈦及鹼金屬乙 醇酸鹽間。在製備聚酯或共聚酯時,觸媒複合物可以溶液 或固態之型式使用。 例如藉由轉化titanium buty late與乙二醇可合成高 分子的乙醇酸鈦,而鹼金屬乙醇酸鹽可利用乙二醇溶解鹼 金屬元素來製造,如高分子複合物之乙醇酸鈦則無法溶解 於乙二醇中。利用加入鹼金屬乙醇酸鹽的溶液於乙二醇, 使乙醇酸鈦複合物形成,所形成之乙醇酸鈦複合物可溶於 乙二醇中獲得一清澈(clear)的觸媒溶液。複合物可藉由 蒸餾乙二醇沉澱出,且可以使用為固態型式或是溶於乙二 醇之溶液型式。 【實施方式】 1327929 為使貴審查委員了解本發明之目的、特徵及功效, 玆藉由下述具體實施例,對本發明做一詳細說明,說明如 后: 實例1鈦(Ti) /鈉(Na)-乙醇酸鹽的製備 1.1 乙醇酸鈦的合成 將一具有攪拌器、氮氣進入口、以及蒸餾連接管的 500ml三頸燒瓶填裝68.0克(0.2莫耳)的鈦-丁烯 (Ti-butylate)與124. 2 (0.2莫耳)的乙二醇,令此清澈 溶液擾拌混合5分鐘,在緩慢流動的氮氣下,將混合物加熱 至160°C (油浴溫度)。在加熱之同時,白色固體開始沉澱, 而在反應期間累積之正丁醇則蒸餾,此反應之時間約為9 小時。有時必須增加油浴溫度至180°C以獲得理論上可得的 正丁醇量,此正丁醇量為59. 3克(0. 8莫耳)。將燒瓶以塞 子關閉,已使反應混合物冷卻整晚,然後將100ml的乙酸乙 酯加入混合物中並攪拌5分鐘,固體以G3濾片過濾並以50ml 的乙酸乙酯水洗。產物透過磷氧化物在乾燥器中乾燥且隨 後置於溫度為60°C之真空(0. lmbar)下3小時,該產物之 產量為33.5克(0.199莫耳/99.7% )。 11 1327929 « - 1.2乙醇酸鈉的合成 • 在一具有授拌器、高效率冷凝器及氮氣進入口之500ml 三頸燒瓶中放入155.18克(2.5莫荨)的乙二醇(MEG, ethylene glycole)並且在氮氣進氣下攪拌15分鐘。將11.5克 (0.5莫耳)之鈉元素以刀子切為0.5克(0.05莫耳)之小塊。將 其小心地加入該MEG。可以觀察到小量的氫產生。該混合 物細接著小心地加熱至80°C,直到所有的納皆溶解。此係 可能很快的發生。 籲 1.3鈥(Τι) /鈉(Na)-乙醇酸鹽複合物的合成(此處分 子比為2 : 1 ) 於一個襄配有盡早,. 乃 土丁、ground in stooper)與設於磁性 授拌器上之lGGml的錐形瓶中加人Q 236Q克(ΐ 4χΐ() 3莫耳) 的Tl—乙賴鹽與35克(㈠6莫耳)的ethylene glyc〇le, 然後將此混合物加熱至12代並絲人權種為百分之一 ^Wt % )之5‘9G46^Na'乙醇酸鹽溶液於乙二醇( 0.0590 辦乙醇酸鹽)中。約在5分鐘内懸浮液改 變為澄清溶液。 實例2一—聚乙稀對苯二甲·的合成 '、有轉15及扭力測量單元的2升(L)反應器係裝 12 1327929 - 有778· 09克(4.68莫耳)的對苯二曱酸、377. 90克(6. 09 莫耳)乙二醇與一溶於乙二醇中之特定量觸媒溶液(例如 於實例1. 3所述之的觸媒複合物),於6〇分鐘内溫度增加至 235°C且塵力增加為大約9 bar,而且,於1小時30分鐘内令 壓力減乂至大氧壓並且將濃縮(condensate)收集至燒瓶 中。在完成預龍化反應後’將溫度於30分鐘内加熱至260 . C,令將脈度維持在26(TC30分鐘並且將壓力減少至7 mbar。隨後,於1〇分鐘内溫度增加至275它並且將壓力減少 至lOjmbar以下,此時開始測量縮合的時間,而溫度係維φ 持於275 C直到擾拌器獲得所需要的扭力(7. 三約 24, 000 g/mol)。濃縮物可在縮合步驟後使用冰浴收集並 粒化’在PET完全結晶後’透過所有產物本身的黏性及顏色 可析出轉化成具平均分子量之所有產物。 在下列表1中係描述樣品數、用以聚合母液之觸媒系 統、高分子產物之顏色編號參數L*、a,b*、聚合的時間 以及顏色編號之平均分子權重。 在CIE顏色比例表中: L* (明度)軸一0為黑色,1〇〇為白色。 a*(紅—綠)軸—正值為紅色;負值為綠色且G為非彩色 的(neutral)。 b* (藍-黃)#-正值為黃色;負值為藍色且〇為非彩色 的0 13 1327929 表1 樣品 觸酶一PPM (越參考 酯化成分/fi苯二甲酸) L* a* b* 縮合時間 平均分子 權重Μη [g/mol】 1 300 ppm Sb2A〇3 81.1 -1.9 -0.8 1小時39 分鐘 23,200 2 300 ppm Ti-乙醇酸鹽 78.4 -1.3 8.7 1小時38 分鐘 23,100 3 300 ppm Ti-乙醇酸鹽 150ppmNa-乙醇酸鹽 81.0 -1.6 4.3 1小時56 分鐘 23,900 4 409 ppm Ti-乙醇酸鹽 40.9ppmNa-乙醇酸鹽 80.5 -1.1 3.2 1小時24 分鐘 24,100 5 20 ppm Sb2Ac3 81.7 -1.7 -0.2 3小時30 分鐘 20,600 6 2〇i)pmTi-乙醇酸鹽 83.9 -2.1 2.2 2小時26 分鐘 24,000 7 50pPmTi-乙醇酸鹽 4〇ppraNa-乙醇酸鹽 83.1 -2.8 4.0 1小時25 分鐘 24,200 8 40ppm Ti-乙醇酸鹽 3〇ppmNa-乙醇酸鹽 83.7 2.2 1.2 1小時22 分鐘 23,500 9 30 ppm Ti-乙醇酸鹽 2〇ppmNa-乙醇酸鹽 82.6 -2.6 1.0 1小時27 分鐘 24,400 10 20 ppm Ti-乙醇酸鹽 10 ppm Na-乙醇酸鹽 85.3 -2.3 0.9 1小時34 分鐘 24,0001327929 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to - for the purpose of catalyzing the hydration and the acid complex and - using the catalyst complex - _ chemical / cross - chemical system = catalytic complex Prior Art] Polyfluorene I and copolymerization are known to be of high importance in high-altitude applications, while polyester and copolymerization are preferably prepared by the reaction of di-sulphuric acid and di-methanol: each catalyst reaction. , it is better to match the aromatic money of the benzene dimethyl gt. _, - (10) with an aliphatic di-based compound such as an alcohol, preferably a polymer such as ethylene thermoplastic polyester. Material, can be produced. Linear thermoplastic polyester, such as polyethylene glycol phthalic acid vinegar (PET; can be used in different types of use, such as _ thermoplastic polymer), this type of use of the _ type of line disease for large Some mineral acids have good resistance and excellent resistance to detergents and surfactants (resis1; anGe). Thermoplastic polyester can also be used in other fields, such as as a mold material, and The material is characterized by a number of desirable properties such as hardness, strength, toughness, good chemical resistance and low hygroscopicity. Conventional techniques for producing polyesters such as PET are diols with alkyl or aromatic Diacid condensation, as described in Encyclopaedia of P〇lymer Science and Engineering 2nd ed, volume 12, John Wiley and Sons, New York 1327929 (1988). Usually, the conversion of terephthalic acid and ethylene glycol or the use of the monocarboxylic acid monohydric vinegar and ethylene glycol, and the so-called first stage catalytic additive, to form a low molecular weight prepolymer [hs ( Hydeoxyalkyl) es Ter and oligomers], the prepolymer is then condensed by esterification and lactide to form a high molecular weight polyacetate. Since the polyesterification is a slow reaction, the reactants need to be kept at a temperature The next period of time is accompanied by therma 1 degradation, so the condensation step generally requires catalysis. However, it is highly desirable to produce polyesters with high molecular weight and low yellowness at the fastest possible rate. The so-called polyester yellowness is usually the result of polymer cracking and side reactions (side reacts), and does not occur during the polymerization process or downstream. Therefore, the yellowness synthesized in the polymer Not only can it be used as a quality index of the polymer to be manufactured, but also as a processing index for producing a polymer into a color-sensitive application type cancer, and a color-sensitive application type such as a fiber, a film, and a specific mold part. Although many catalysts for making high molecular weight polycools are known, the disadvantage of these catalysts is that they are not low in conversion rate and difficult to use. The quality of the product formed is poor. The recorded compound is a catalyst that is often used commercially as a catalyst, and it can provide a desired high reaction rate and low color. However, because the responsibility based on environmental protection must control toxic It is costly and difficult to control toxic cockroaches'. Therefore, there is a need to consider the need to find bismuth substitutes. Titanium-based compounds are often used as catalysts for condensation reactions. These titanium-based compounds The catalyst is not 1327929 toxic and is even more reactive than the ruthenium catalyst' but it has been observed to produce undesirable yellow coloration of the polyester. Certain patents include methods for making polysole and copolyesters in which titanium compounds and alkali metal compounds are used as catalysts; World Patent No. 98/56848 discloses the use of co-precipitate as a condensed touch The medium; German Patent No. 195 13 056 A1 discloses a catalyst based on titanium dioxide or titanate as a sinker. Further, in the case of Japanese Patent Publication No. 52148593 A, it is disclosed that a specific composite compound containing titanium is used as a catalyst before the metal test. Textil Praxis International 1 - published on 1989, pages 29 to 33, reveals a catalyst with an equimolar amount of titanium glycolate and an alkali metal glycolate, resulting in a polyester with insufficient molecular weight. SUMMARY OF THE INVENTION Accordingly, it is a primary object of the present invention to provide a catalyst which catalyzes the esterification and lactide reaction to overcome the disadvantages of conventional techniques, particularly in the low concentration and short reaction time to produce polyester. Improve the properties of polyester, such as reducing true color and increasing molecular weight. Another object of the present invention is to provide a process for producing a polyester using the novel catalyst composite. In order to achieve the main object of the present invention, the present invention is achieved by catalytically esterifying/lactifying a catalyst by a catalyst or a complex, the catalyst composite comprising: i) / a polymer of titanium glycolate, the molecular formula thereof Is [Ti〇4 (CH〇4]n, wherein n=i to 200; and 1327929 ii) an alkali metal glycolate; wherein the molar ratio of the polymer of titanium glycolate to the alkali metal glycolate is about 1. 25: 1 to about 100: 1, preferably between about 1.25:1 to about 10::1. Preferably, the alkali metal is sodium and the glycolic acid base salt has the formula Na-0-CH2-CH2-0H. The total amount of the metal of the catalyst complex in the mixture of the components of the composition is preferably from 1 to 70 ppm, and preferably from about 10 to about 50 ppm for the acid composition of the composition. Purpose, the present invention is achieved by producing a polyester using a catalyst composite, first esterifying a dicarboxylic acid with a glycol, and subsequently performing a lactide reaction. The catalyst complex is active in both reactions. The carboxylic acid compound is a dicarboxylic acid having a molecular formula of H00C-R-C00H, wherein R may be a linear or branched olefinic hydroxyl group, a subaromatic group, Alkenylene or a mixture thereof. R preferably has from about 2 to about 30 carbon atoms, more preferably from about 4 to about 15 carbon atoms. Further, a preferred carboxylic acid compound may be selected from the group consisting of terephthalic acid, isophthalic acid, naphthalenic diacid, morphic acid, adipic acid, phthalic acid, glutaric acid, oxalic acid, and butylene. The group of acids and mixtures thereof, terephthalic acid, is preferably a carboxylic acid compound. Further, a preferred acid retarding compound is an oligomeric polymer having a repeating unit derived from a slow acid. The alcohol compound may be a hydrocarbyl glycol having the formula HO-R'-OH, having 1327929 having a molecular formula of HO-[R, ']nH2 polyhydrocarbyl glycol or a mixture thereof, wherein R is from 2 to about 10 a carbon atom or preferably a linear or branched olefinic hydroxyl group having 2 to about 4 carbon atoms, and R' is an alkene having 1 to about 10 stone anodic atoms or preferably 1 to 5 carbon atoms. Hydroxyl, and, with R, those having the same or different carbon atoms. Further, the alcohol compound may be selected from the group consisting of ethylene glycol, propylene glycol, isopropyl glycol, butanol 1-mercaptopropanol, pentylene glycol, neopentylene glycol, and mixtures thereof. Further, in the preferred embodiment, the process is carried out at a temperature of from about 15 ° C to about 5 ° C, preferably 250. (: to 300. (: In another embodiment, the process is carried out at a pressure of about 〇1 to about 1 Torr. In addition, the molar ratio of the alcohol compound to the acid-lowering compound may be about 〇. 1 : In the range of about 10:1, preferably about 1 ··1 to about 3: 1. With reference to the acidifying component, the catalyst component of the esterification component is more preferably 10 to 50 ppm. It can be used to prepare polyethylene terephthalate. Surprisingly, it has been found that the catalyst composite according to the present invention can produce a high yield of polyester in a short reaction time, and further, the catalyst of the present invention. The composite prevents the formation of undesired yellow color, and the obtained molecular weight of the polyester is even higher than the catalyst composite' and thus is more suitable for industrial applications. Furthermore, the present invention is more conventional (1989). The published Textil praxis International 1 - pages 29 to 33 of the book) obtains a higher molecular weight and requires only a low concentration of catalyst, so that the total metal in the polymer contains a low amount of 1327929. The catalyst complex of the present invention The polymer of titanium glycolate has a structural formula: (where n=0 to 200) ch2-0x / 0 — CH2—CH2—0, / O-CH 1 Tiv Ti〆1 ch2-ox o—ch2—ch2_〇/, 0-CH n insoluble in ethylene glycol The polymer of titanium glycolate can be dissolved by adding an alkali metal glycolate to form a complex between titanium glycolate and an alkali metal glycolate. In the preparation of a polyester or copolyester, the catalyst complex It can be used in the form of a solution or a solid. For example, titanium glycolate can be synthesized by converting titanium buty late with ethylene glycol, and alkali metal glycolate can be produced by dissolving alkali metal elements in ethylene glycol, such as polymer composite. The titanium glycolate cannot be dissolved in ethylene glycol. The titanium glycolate complex is formed by adding a solution of an alkali metal glycolate to ethylene glycol, and the formed titanium glycolate complex is soluble in ethylene glycol. A clear catalyst solution is obtained. The complex can be precipitated by distillation of ethylene glycol, and can be used in a solid form or in a solution form dissolved in ethylene glycol. [Embodiment] 1327929 For your review Members understand the purpose, characteristics and efficacy of the present invention. The following detailed description of the invention will be described in detail, as follows: Example 1 Preparation of Titanium (Ti) / Sodium (Na)-Glycolate 1.1 Synthesis of Titanate Glycol A stirrer, nitrogen inlet, And a 500 ml three-necked flask with a distillation connection tube filled with 68.0 g (0.2 mol) of titanium-butene (Ti-butylate) and 124.2 (0.2 mol) of ethylene glycol, so that the clear solution was mixed and mixed 5 The mixture was heated to 160 ° C (oil bath temperature) under slow flowing nitrogen. While heating, the white solid began to precipitate, while the n-butanol accumulated during the reaction was distilled, and the reaction took about 9 hours. 5克(0. 8摩尔). The amount of n-butanol is 59.3 g (0.8 mol). The flask was closed with a plug and the reaction mixture was allowed to cool overnight. Then, 100 ml of ethyl acetate was added to the mixture and stirred for 5 minutes. The solid was filtered on a G3 filter and washed with 50 ml of ethyl acetate. The product was dried in a desiccator through a phosphorus oxide and then placed under vacuum (0.1 mbar) at a temperature of 60 ° C for 3 hours, yielding a product of 33.5 g (0.199 mol / 99.7%). 11 1327929 « - 1.2 Synthesis of sodium glycolate • Place 155.18 g (2.5 mol) of ethylene glycol (MEG, ethylene glycole) in a 500 ml three-necked flask with a stirrer, high efficiency condenser and nitrogen inlet. And stirred under nitrogen gas for 15 minutes. 11.5 grams (0.5 mole) of sodium was cut into 0.5 grams (0.05 moles) of small pieces with a knife. Carefully add it to the MEG. A small amount of hydrogen production can be observed. The mixture was finely then carefully heated to 80 ° C until all of the sodium was dissolved. This department may happen very quickly. The synthesis of 1.3鈥(Τι)/sodium(Na)-glycolate complex (here, the molecular ratio is 2:1) is provided in a sputum as early as possible, in the case of ground in stooper, and in magnetic Add 2 236Qg (ΐ 4χΐ() 3 moles) of Tl-acetate and 35 grams of ((1) 6 moles of ethylene glyc〇le to the lGGml conical flask on the stirrer, then heat the mixture to The 12th generation of humans was a 1% by weight of the 5'9G46^Na' glycolate solution in ethylene glycol (0.0590 glycolate). The suspension was changed to a clear solution in about 5 minutes. Example 2—Synthesis of Polyethylene Parabens·, 2 L (L) Reactor Ties with 15 and Torque Measurement Units 12 1327929 - 778·09 g (4.68 mol) of p-phenylene Capric acid, 377. 90 g (6.09 mol) of ethylene glycol and a specific amount of a catalyst solution dissolved in ethylene glycol (for example, the catalyst complex described in Example 1.3), at 6 The temperature was increased to 235 ° C in 〇 and the dust power was increased to about 9 bar, and the pressure was reduced to a large oxygen pressure within 1 hour and 30 minutes and condensed was collected into the flask. After completing the pre-longing reaction, 'heat the temperature to 260 ° C in 30 minutes, keep the pulse at 26 (TC 30 minutes and reduce the pressure to 7 mbar. Then, the temperature increases to 275 in 1 minute) And reduce the pressure below lOjmbar, at which point the time of condensation is measured, and the temperature dimension φ is held at 275 C until the stirrer obtains the required torque (7. 3 about 24,000 g/mol). After the condensation step, it is collected and granulated using an ice bath. After the complete crystallization of PET, the viscosity and color of all the products themselves can be precipitated and converted into all products with an average molecular weight. The number of samples is described in Table 1 below for polymerization. The catalyst system of the mother liquor, the color number parameters of the polymer product L*, a, b*, the time of polymerization, and the average molecular weight of the color number. In the CIE color scale table: L* (lightness) axis 0 is black, 1〇〇 is white. a* (red-green) axis—positive value is red; negative is green and G is non-colored. b* (blue-yellow)#-positive value is yellow; negative value Is blue and 〇 is achromatic 0 13 1327929 Table 1 sample touch enzyme one PPM (more reference esterification/fi phthalate) L* a* b* condensation time average molecular weight Μη [g/mol] 1 300 ppm Sb2A〇3 81.1 -1.9 -0.8 1 hour 39 minutes 23,200 2 300 ppm Ti - glycolate 78.4 -1.3 8.7 1 hour 38 minutes 23,100 3 300 ppm Ti-glycolate 150 ppm Na-glycolate 81.0 -1.6 4.3 1 hour 56 minutes 23,900 4 409 ppm Ti-glycolate 40.9 ppm Na-glycolate 80.5 -1.1 3.2 1 hour 24 minutes 24,100 5 20 ppm Sb2Ac3 81.7 -1.7 -0.2 3 hours 30 minutes 20,600 6 2〇i)pmTi-glycolate 83.9 -2.1 2.2 2 hours 26 minutes 24,000 7 50pPmTi-glycolate 4〇ppraNa - glycolate 83.1 -2.8 4.0 1 hour 25 minutes 24,200 8 40 ppm Ti-glycolate 3 〇ppm Na-glycolate 83.7 2.2 1.2 1 hour 22 minutes 23,500 9 30 ppm Ti-glycolate 2 〇ppm Na-glycolate 82.6 -2.6 1.0 1 hour 27 minutes 24,400 10 20 ppm Ti-glycolate 10 ppm Na-glycolate 85.3 -2.3 0.9 1 hour 34 minutes 24,000
由表1中可發現,使用各種之組成之Ti/ Na-乙醇酸鹽 (樣品3, 4與7至10)的觸媒系統在縮合時間係與商業上使 籲 用具有300 ppm銻觸媒(指對苯二甲酸)(樣品1)的縮合 時間相同。在表1中揭露出使用較低的觸媒濃度時得到銻觸 媒(樣品5)的聚酯之分子權重為20, 600 g/mol且縮合時間 為3小時30分鐘,然而使用Ti-乙醇酸鹽(樣品6)所得的聚 酯分子權重為24, 000 g/mol且縮合時間較短(2小時26分 鐘)。藉由使用具低濃度(樣品7至10)的觸媒複合物系統 可較使用300ppm銻觸媒的觸媒複合物系統縮短縮合時間且 分子權重較高,藉由使用純Ti-乙醇酸鹽(樣品2, b*值8. 7) 14 1327929 v - 所製造而得到高黃色度之PET可利用觸媒系統Ti/ Na-乙醇 酸鹽(樣品3, 4與7至10)之觸媒系統或藉由減低觸媒濃度 • (樣品6)而可明顯地降低黃色度。 雖本發明以一較佳實施例揭露如上,但並非用以限定 本發明之實施之範圍,任何熟習此項技藝者,在不脫離本 -發明之精神與範圍内,當可做些許的變動與潤飾,及凡依 -本發明所作的均等變化與修飾,應以本發明之申請專利範 < 圍所涵蓋,其界定應以申請專利範圍為準。 【圖式簡單說明】 【主要元件符號說明】 15It can be seen from Table 1 that a catalyst system using various compositions of Ti/Na-glycolate (samples 3, 4 and 7 to 10) is commercially available at a condensation time with 300 ppm of catalyst ( The condensation time for terephthalic acid (sample 1) is the same. It is disclosed in Table 1 that the polyester obtained by using a lower catalyst concentration has a molecular weight of 20,600 g/mol and a condensation time of 3 hours and 30 minutes, whereas Ti-glycolic acid is used. The salt (sample 6) obtained a polyester molecular weight of 24,000 g/mol and a shorter condensation time (2 hours and 26 minutes). By using a catalyst complex system with a low concentration (samples 7 to 10), the condensation time can be shortened and the molecular weight is higher than with a catalyst complex system using 300 ppm of ruthenium catalyst, by using pure Ti-glycolate ( Sample 2, b* value 8. 7) 14 1327929 v - PET produced to obtain high yellowness can utilize the catalyst system Ti/ Na-glycolate (samples 3, 4 and 7 to 10) of the catalyst system or The yellowness can be significantly reduced by reducing the catalyst concentration (sample 6). The present invention has been described above with reference to a preferred embodiment, and is not intended to limit the scope of the invention, and may be modified by those skilled in the art without departing from the spirit and scope of the invention. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; [Simple description of the diagram] [Explanation of main component symbols] 15