TWI327649B - - Google Patents

Download PDF

Info

Publication number
TWI327649B
TWI327649B TW96119708A TW96119708A TWI327649B TW I327649 B TWI327649 B TW I327649B TW 96119708 A TW96119708 A TW 96119708A TW 96119708 A TW96119708 A TW 96119708A TW I327649 B TWI327649 B TW I327649B
Authority
TW
Taiwan
Prior art keywords
hall
magnetic field
magnetic
unit
rotating
Prior art date
Application number
TW96119708A
Other languages
Chinese (zh)
Other versions
TW200848765A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW96119708A priority Critical patent/TW200848765A/en
Publication of TW200848765A publication Critical patent/TW200848765A/en
Application granted granted Critical
Publication of TWI327649B publication Critical patent/TWI327649B/zh

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Description

1327649 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種霍爾磁場元件測試裝置,提供在轉 動磁場的測試裝置中,測試霍爾元件。 【先前技術】 磁場中的載流體,其電流方向與磁場垂直,則在垂 直於電流與磁場的方向會產生一附加的橫向電場,此現 象稱為霍爾效應(Hall effect)。利用半導體的霍爾效應作 成的元件即是霍爾元件(Hall component),其種類有: 霍爾元件,磁阻元件,磁二極體,磁電晶體,磁閘流體, 霍爾積體電路(Integrated Circuits,1C)開關,線性霍爾積 體電路···.等。 霍爾效應不但是測定半導體材料電學參數的主要手 段’而且利用此效應所製成的霍爾元件已廣泛應用於電 測量、自動控制等方面。而霍爾積體電路對磁場感應的 靈敏度及磁滯寬度,可用以判定霍爾積體電路對磁場感 應的工作區域。 由於目前霍爾元件的廣泛應用,因此對於針對各種 不同的霍爾元件的測試需求,也日益增加》 【發明内容】 _---—1 5 —種霍_磁場元件麟裝置。本發明提供 在轉動磁場的測試裝置中,用以測試霍爾元件之磁場靈 敏度、轉速、方向識卿功能參數。 本發明之霍_場元件測試裝置至少備有-挾持固 之單7G、i試主機單元、以及—旋轉磁力單元。挟持 固疋單70 ’肋挾持與岐測試之霍爾元件於測量位 置,並與職主機單元連接;測試主機單元,其備有測 單元提供電频電壓等電性參 數至霍爾元件;旋轉磁力單元,係由至少—個磁性物質 在霍爾元件週遭形成至少-個轉動磁場。 而旋轉磁力單元係可藉由祠服馬達帶動永久磁鐵旋 轉,以形成磁極8·Ν _之轉動磁場;亦可以在一旋轉 平台上,安置至少2崎稱的永久韻,霍爾元件置於 對稱的永久磁歡間,旋轉平台_永久顧旋轉,即 可在待測物週遭形成轉動磁場’進^測試霍爾元件之功 能0 根據本發明之_磁場元件測試裝置,更可以包括至 少-個線圈磁場,可以針對各種霍件之特性,利用 線圈磁場與旋轉磁力單元的组合,^職霍爾元件之 方向性與速度。而_磁力單元之轉_場與待測物之 距離,亦可以作為職魏之魏时,以作為各種不 同磁場強度下的霍爾元件之測試應用。 茲配合下列圖示、實施例之詳細說明及申請專利範 圍,將上述及本發明之其他目的與優點詳述於後。 【實施方式】 第一圖係本發明之第一實施範例,說明一種霍爾磁 場元件測試裝置的一個方塊示意圖,其中此裝置是用以 測試霍爾元件或積體電路。參考第一圖,此霍爾磁場元 件測试裝置至少備有一挾持固定單元丨、一測試主機單 元2、以及一旋轉磁力單元3。挾持固定單元丨,用以挾 持與固定測試之霍爾元件4放置於測量位置,並與測試 主機單元連接;測試主機單元2,其備有測試程式,並 透過挾持固定單元1提供電流與電壓等電性參數至霍爾 元件4;旋轉磁力單元3,係由至少一個磁性物質(永久 磁鐵)在霍爾元件週遭形成至少一個轉動磁場。 不失一般性,本發明測試之霍爾元件4,其是由感測 器與放大電路加以一體化所構成之一種單晶積體電路。 挾持固定單元1將霍爾元件4固定後,挾持固定單元i 與測試主機單元2連結。參考第一圖,而旋轉磁力單元 係ΤΓ由圓柱型永久磁鐵(未顯示於圖示中)旋轉以形 成轉動磁場,此圓柱型永久磁鐵一側為s磁級、另一側 則為N磁級,置於霍爾元件4下方,且此圓柱型永久磁 1327649 鐵與-舰馬達連結(未顯示於圖示中),伺服馬達得以控 制圓柱型永久磁鐵依順時針或逆時針方向,以不同的轉 速、高速穩定之不同角度與各種旋轉圈數旋轉。 旋轉磁力單元3與翻彳H件4驗離,亦可 以作為測試觀之魏因素,作為在各種不同磁場強度 下的㈣元件戦翻。財,磁顧度與麟成反比, 當旋轉磁力單元3距離待測物越遠,其磁場強度越弱, 反之’。距離越近,磁場強度越強。此實施範例中,旋轉 磁力單元3與待測物之距離係介於i毫卡㈣與⑽毫 米之間。第一 A圖與第圖分別為旋轉磁力單元與待 測物之距離與磁場強度的關係示意圖。 、 霍爾元件4藉由挾持固定單元!接收測試主機單元2 之電流與龍等電性參數,錬馬達控制圓柱型永久磁 鐵以順時針與逆時針方向旋轉,形成磁極s_n的切換, 亦即在霍爾元件4下方因圓柱型永久磁鐵旋轉而形成轉 動磁場’㈣元件4感朗磁場_化,而將其參數透 過挾持固定單元1傳送至測試主機單元2,以判斷此霍 爾元件4的轉速、方向識別功能是否正常。此第—實施 範例申,旋轉磁力單元3置於霍爾元件的下方,而根據 霍爾元件4之特性與需求,亦可將旋轉磁力單元3八置 於霍爾元件的上方’如第三A圖所示。第三8圖為旋轉 磁力單元3B ' 3C分別置於測試之霍爾元件的上、下方 8 1327649 的一個測試裝置β 不失一般性,第四圖為本發明之第一工作範例,說 明一種霍爾磁場元件測試裝置的一個示意圖。此工作範 例之測試裝置係轉動磁場與線圈磁場的組合。參考第四 圖’此霍爾磁場元件測試裝置包含一挾持固定單元1、 一測試主機單元2 ' —旋轉磁力單元3D、以及一線圈磁 " 場5。其中,挾持固定單元1將霍爾元件4固定於旋轉 • 磁力單元與線圈磁場5之間。旋轉磁力單元3D則以 不同的轉速、旋轉方向以形成磁極S-N的切換,提供轉 動磁%測試霍爾元件4的電性參數’並藉由測試主機單 元2判斷霍爾元件4的轉速、方向、以及霍爾元件之識 別功能是否正常。 同樣地,此工作範例之旋轉磁力單元3D亦可以在霍 爾元件4的下方,而線圈磁場5則位於霍爾元件4的上 ^ 方。且旋轉磁力單元3D以及,線圈磁場5可分別調整與 霍爾元件4之距離,而形成不同的磁場強度,其調整距 離範圍係介於1毫米至140毫米之間 不失一般性,第五圖為本發明之第二工作範例,說 明-種霍爾磁場元件測試裝置的—個示意圖。此第二工 作Ι&例之測試裝置之旋轉磁力單元,係以環狀方式在霍 爾積體電路的四周旋轉,以測試霍爾積體電路之功能。 9 1327649 蓋之範圍内。 【圖式簡單說明】 第-圖係本發明之第—實施範例,說明—種霍爾磁場元 件測試裝置的一個方塊示意圖。 圖與第二3圖為旋轉磁力單元與待測物距離與磁 場強度的關係示意圖。 第三Α圖為旋轉磁力料置於霍爾元件的上方的一個示 意圖。 帛三轉磁力單元分職於霍_元件的上方與下 方的一個示意圖。 ^ 第四圖為本發明之第—工作範例,酬搭配線圈磁場之 霍爾磁場元件測試裝置的一個示意圖。 第五圖為本發明之第工卫作範例,說明透過旋轉平台以 形祕細場之-雜_磁場元件戦裝置的—個示意 圖。 〜 【主要元件符號說明】 • ____ 1挟持固定單元 ------- 2測試主機單元 3旋轉磁力單元 4霍爾元件 3A、3B、3C、3D、3E 旌趙磁六 i 士 5線圈磁場 1A挟持固定單元 1A’固定平台 1A”挾持固定單元之高度調整 4’霍爾積體電路 3E1、3E2永久磁鐵 3E3旋轉平台 121327649 IX. Description of the Invention: [Technical Field] The present invention relates to a Hall magnetic field element testing apparatus for providing a Hall element in a test apparatus for rotating a magnetic field. [Prior Art] A carrier fluid in a magnetic field whose current direction is perpendicular to a magnetic field generates an additional transverse electric field in a direction perpendicular to the current and the magnetic field. This phenomenon is called a Hall effect. The component made by the Hall effect of the semiconductor is a Hall component, and the types thereof are: Hall element, magnetoresistive element, magnetic diode, magnetocrystalline crystal, magnetic brake fluid, Hall integrated circuit (Integrated) Circuits, 1C) switches, linear Hall integrated circuits, etc. The Hall effect is not only the main means of determining the electrical parameters of semiconductor materials', but Hall elements made with this effect have been widely used in electrical measurement, automatic control and so on. The sensitivity and hysteresis width of the Hall integrated circuit for magnetic field induction can be used to determine the working area of the Hall integrated circuit that is sensitive to the magnetic field. Due to the wide application of Hall elements, the testing requirements for various Hall elements are also increasing. [Inventive content] _---- 1 5 - Kind of magnetic field element device. The invention provides a test device for rotating a magnetic field for testing magnetic field sensitivity, rotational speed, and direction function parameters of a Hall element. The Hoo field component testing device of the present invention is provided with at least a single 7G holding unit, an i test unit unit, and a rotating magnetic unit. Holding the fixed unit 70' rib holding and testing the Hall element at the measuring position and connecting with the host unit; testing the host unit, which is equipped with a measuring unit to provide electrical frequency and other electrical parameters to the Hall element; The unit is formed by at least one magnetic substance forming at least one rotating magnetic field around the Hall element. The rotating magnetic unit can rotate the permanent magnet by the motor to form the rotating magnetic field of the magnetic pole 8·Ν _; or can be placed on the rotating platform with at least 2 permanent rhymes, and the Hall element is placed symmetrically. The permanent magnetic chamber, the rotating platform _ permanent rotation, can form a rotating magnetic field around the object to be tested 'into test the function of the Hall element 0. According to the invention, the magnetic field element testing device can further include at least one coil The magnetic field can be used for the characteristics of various components, using the combination of the coil magnetic field and the rotating magnetic unit, and the directionality and speed of the Hall element. The distance between the _ magnetic unit and the object to be tested can also be used as a test component for Hall elements under various magnetic field strengths. The above and other objects and advantages of the present invention will be described in detail with reference to the accompanying drawings. [Embodiment] The first figure is a block diagram of a Hall magnetic field element testing device, which is used to test a Hall element or an integrated circuit, in a first embodiment of the present invention. Referring to the first figure, the Hall magnetic field element testing device is provided with at least a holding unit 丨, a test unit unit 2, and a rotating magnetic unit 3. Holding the fixed unit 丨, the Hall element 4 for holding and fixing the test is placed at the measurement position and connected to the test host unit; the test unit 2 is provided with a test program and supplies current and voltage through the holding unit 1 The electrical parameter is to the Hall element 4; the rotating magnetic unit 3 is formed by at least one magnetic substance (permanent magnet) forming at least one rotating magnetic field around the Hall element. Without loss of generality, the Hall element 4 of the present invention is a single crystal integrated circuit formed by integrating a sensor and an amplifying circuit. After the holding unit 1 fixes the Hall element 4, the holding unit i is coupled to the test unit unit 2. Referring to the first figure, the rotating magnetic unit is rotated by a cylindrical permanent magnet (not shown) to form a rotating magnetic field. The cylindrical permanent magnet has a s magnetic level on one side and an N magnetic level on the other side. Placed under the Hall element 4, and the cylindrical permanent magnet 1327649 is connected to the - ship motor (not shown), the servo motor can control the cylindrical permanent magnet in a clockwise or counterclockwise direction, with different Rotating speed and high speed stability at different angles and various rotations. The rotating magnetic unit 3 and the flipping H piece 4 can be used as a test factor, as a component in various magnetic field strengths. The magnetic degree is inversely proportional to the lining. When the rotating magnetic unit 3 is farther away from the object to be tested, the magnetic field strength is weaker, and vice versa. The closer the distance, the stronger the magnetic field strength. In this embodiment, the distance between the rotating magnetic unit 3 and the object to be tested is between i millicards (four) and (10) millimeters. The first A picture and the first figure are respectively a relationship between the distance between the rotating magnetic unit and the object to be tested and the magnetic field strength. , Hall element 4 by holding the fixed unit! Receiving the current and the dragon isoelectric parameter of the test host unit 2, the motor control cylindrical permanent magnet rotates clockwise and counterclockwise to form a switching of the magnetic pole s_n, that is, the rotation of the cylindrical permanent magnet under the Hall element 4 The rotating magnetic field '(4) element 4 is formed to sense the magnetic field, and its parameter is transmitted to the test host unit 2 through the holding and holding unit 1 to determine whether the rotational speed and direction recognition function of the Hall element 4 is normal. In this first embodiment, the rotating magnetic unit 3 is placed below the Hall element, and depending on the characteristics and requirements of the Hall element 4, the rotating magnetic unit 3 can also be placed above the Hall element as in the third A. The figure shows. The third figure 8 shows that the rotating magnetic unit 3B ' 3C is placed on the upper and lower 8 1327649 of the test Hall element respectively without loss of generality. The fourth figure is the first working example of the present invention, indicating a kind of Huo A schematic diagram of a magnetic field component testing device. The test device of this working example is a combination of a rotating magnetic field and a coil magnetic field. Referring to the fourth drawing, the Hall magnetic field element testing device includes a holding unit 1, a test unit 2'-rotating magnetic unit 3D, and a coil magnetic field 5. The holding unit 1 fixes the Hall element 4 between the rotating magnetic unit and the coil magnetic field 5. The rotating magnetic unit 3D switches the magnetic poles SN at different rotational speeds and rotational directions to provide the electrical parameters of the rotational magnetic % test Hall element 4 and determines the rotational speed, direction, and direction of the Hall element 4 by the test host unit 2. And whether the recognition function of the Hall element is normal. Similarly, the rotary magnetic unit 3D of this working example can also be below the Hall element 4, while the coil magnetic field 5 is located above the Hall element 4. And the rotating magnetic unit 3D and the coil magnetic field 5 can respectively adjust the distance from the Hall element 4 to form different magnetic field strengths, and the adjustment distance range is between 1 mm and 140 mm without loss of generality, the fifth figure For a second working example of the present invention, a schematic diagram of a Hall magnetic field element testing device is illustrated. The rotating magnetic unit of the second working device of the second working example is rotated in a circular manner around the Hall integrated circuit to test the function of the Hall integrated circuit. 9 1327649 Covered by the cover. BRIEF DESCRIPTION OF THE DRAWINGS A first embodiment of the present invention is a block diagram showing a Hall magnetic field element testing apparatus. Fig. 2 and Fig. 3 are schematic diagrams showing the relationship between the distance between the rotating magnetic unit and the object to be tested and the magnetic field strength. The third diagram is a schematic representation of the rotating magnetic material placed above the Hall element. The three-turn magnetic unit is divided into a schematic diagram above and below the Huo_ component. The fourth figure is a schematic diagram of the first working example of the present invention, and the Hall magnetic field component testing device of the magnetic field of the coil is matched. The fifth figure is an example of the first working example of the present invention, which illustrates a schematic diagram of a device that uses a rotating platform to shape a fine field. ~ [Main component symbol description] • ____ 1 holding fixed unit ------- 2 test main unit 3 rotating magnetic unit 4 Hall element 3A, 3B, 3C, 3D, 3E 旌 赵磁六伊士 5 coil magnetic field 1A holding fixed unit 1A' fixed platform 1A" holding height adjustment of fixed unit 4' Hall integrated circuit 3E1, 3E2 permanent magnet 3E3 rotating platform 12

Claims (1)

1327649 十、申請專利範圍: i 一種霍爾磁場元件測試裝置,該裝置用以測試一霍爾 元件,該裝置至少包含: 一挾持固定單元,用以挾持與固定該霍爾元件於測量 位置; 一測試主機單元,該測試主機單元係透過該挾持固定 單元提供電流與電壓等電性參數至該霍爾元件;以及 —旋轉磁力單元,係由至少一個磁性物質在該霍爾元 件四週旋轉,以形成至少一個轉動磁場。 2. 如申請專利範圍第1項所述之霍爾磁場元件測試裝 置’其中該旋轉磁力單元之該磁性物質係永久磁鐵。 3. 如申請專利範圍第1項所述之霍爾磁場元件測試裝 置,其中該旋轉磁力單元係可透過一伺服馬達控制該 磁性物質之轉動方向、轉動速度、以及轉動圈數。 4. 如申請專利範圍第1項所述之霍爾磁場元件測試裝 置,其中該旋轉磁力單元係磁極N_s的切換,以形成 該轉動磁場。 5. 如申請專利範圍第丨項所述之霍爾磁場元件測試裝 置,其中該測試裝置更包括至少一個線圈磁場。 6. 如申凊專利範圍第5項所述之霍爾磁場元件測試裝 置,其中該測試裝置更包括峨轉磁力單元與該線圈 磁場之組合,該旋轉磁力單元係置於該霍爾元件周邊 之任一方向。 7. 如申請專纖圍第i項所述之霍爾磁場元件測試裝 13 1327649 置’其中控制該旋轉磁力單元與該霍爾元件的距離亦 • 可作為測試環境之變數因素,以產生各種不同磁場強 度。 8. 如申請專利範圍第1項所述之霍爾磁場元件測試裝 置,其中該挾持固定單元更備有一固定平台,用以固 定與放置該霍爾元件。 9. 如申請專利範圍第8項所述之霍爾磁場元件測試裝 隹 置,其中該旋轉磁力單元所形成之該轉動磁場,係將 多個該磁性物質對稱置於一旋轉平台上,其中對稱之 多個該磁性物質,其彼此之S-Ν磁級相對,該霍爾元 件置於對稱之該磁性物質之間,該旋轉平台以順時針 或逆時針方向轉動該磁性物質,以在該霍爾元件四週 形成該轉動磁場。 10. 如申請專利範圍第9項所述之霍爾磁場元件測試裝 置’其中該旋轉平台上之每—該磁性物質係可調整與 • 該霍爾元件之距離,作為測試環境之變數因素。、 U.如申請專利範圍第8項所述之霍爾磁場元件測試裝 置,其中該挾持固定單元可調整該固定平台之高度。 141327649 X. Patent application scope: i A Hall magnetic field component testing device for testing a Hall element, the device comprising at least: a clamping fixing unit for holding and fixing the Hall element at a measuring position; Testing a host unit that supplies current and voltage isoelectric parameters to the Hall element through the holding fixed unit; and a rotating magnetic unit that is rotated by the at least one magnetic substance around the Hall element to form At least one rotating magnetic field. 2. The Hall magnetic field element testing device of claim 1, wherein the magnetic material of the rotating magnetic unit is a permanent magnet. 3. The Hall magnetic field element testing device according to claim 1, wherein the rotating magnetic unit is capable of controlling a rotational direction, a rotational speed, and a number of revolutions of the magnetic substance through a servo motor. 4. The Hall magnetic field element testing device of claim 1, wherein the rotating magnetic unit is switched by a magnetic pole N_s to form the rotating magnetic field. 5. The Hall field element testing device of claim </RTI> wherein the testing device further comprises at least one coil magnetic field. 6. The Hall magnetic field element testing device of claim 5, wherein the testing device further comprises a combination of a rotating magnetic unit and a magnetic field of the coil, the rotating magnetic unit being disposed around the Hall element. In either direction. 7. For the application of the magnetic field component test set 13 1327649 described in item i of the special fiber enclosure, the distance between the rotating magnetic unit and the Hall element can also be used as a variable factor in the test environment to produce various differences. Magnetic field strength. 8. The Hall field element testing device of claim 1, wherein the holding unit further has a fixed platform for fixing and placing the Hall element. 9. The Hall magnetic field device test device according to claim 8, wherein the rotating magnetic field formed by the rotating magnetic unit is configured to symmetrically place a plurality of the magnetic substances on a rotating platform, wherein the symmetry a plurality of the magnetic substances, which are opposite to each other in an S-Ν magnetic level, the Hall element being placed between the symmetrical magnetic substances, the rotating platform rotating the magnetic substance in a clockwise or counterclockwise direction, in the The rotating magnetic field is formed around the element. 10. The Hall field element testing device of claim 9 wherein each of the rotating materials is adjustable from the Hall element as a variable factor in the test environment. The Hall magnetic field component testing device of claim 8, wherein the clamping fixture unit adjusts the height of the fixed platform. 14
TW96119708A 2007-06-01 2007-06-01 Test apparatus of a Hall magnetic field component TW200848765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96119708A TW200848765A (en) 2007-06-01 2007-06-01 Test apparatus of a Hall magnetic field component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96119708A TW200848765A (en) 2007-06-01 2007-06-01 Test apparatus of a Hall magnetic field component

Publications (2)

Publication Number Publication Date
TW200848765A TW200848765A (en) 2008-12-16
TWI327649B true TWI327649B (en) 2010-07-21

Family

ID=44823953

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96119708A TW200848765A (en) 2007-06-01 2007-06-01 Test apparatus of a Hall magnetic field component

Country Status (1)

Country Link
TW (1) TW200848765A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI495450B (en) * 2013-05-24 2015-08-11 Univ Central Taiwan Sci & Tech Interior organism heating apparatus

Also Published As

Publication number Publication date
TW200848765A (en) 2008-12-16

Similar Documents

Publication Publication Date Title
JP5460191B2 (en) Magnetic field sensor device for measuring spatial component of magnetic field
JP5812262B2 (en) Magnetic angle sensor
JP4626728B2 (en) Magnetic detector
TW544525B (en) Sensor for the detection of the direction of a magnetic field
US10458819B2 (en) Shaft-integrated angle sensing device
CN107121057A (en) Magnetic deviation position sensor
US10816361B2 (en) Arrangement for detecting the angular position of a rotatable component
JP4234004B2 (en) Device for measuring the angular position of an object
JP2010066262A5 (en)
JP2009069148A (en) Device for measuring magnetic field
US10215550B2 (en) Methods and apparatus for magnetic sensors having highly uniform magnetic fields
JP2017524142A (en) Dual Z-axis magnetoresistive angle sensor
TW201015097A (en) Device for measuring the direction and/or strength of a magnetic field
JP2013156255A (en) Magnetic sensor
JP2009273357A (en) Integrated circuit for controlling electric motor
CN101320082B (en) Hall magnetic field element test apparatus
CN109219735A (en) Direct acting rotation detector, direct acting rotation detector unit and direct acting rotation drive device
CN102818517B (en) Comprise the angle measurement system of the magnet with basic square face
US20200243285A1 (en) Magnetic attractive rotary button system
TWI327649B (en)
JP6034650B2 (en) Rotation angle detector
US20170234699A1 (en) Tapered magnet
US9816888B2 (en) Sensor and method for detecting a position of an effective surface of the sensor
CN109075688A (en) Rotating electric machine
EP2097718A1 (en) Sensor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees