TWI326972B - Communication system and related method - Google Patents

Communication system and related method Download PDF

Info

Publication number
TWI326972B
TWI326972B TW95143177A TW95143177A TWI326972B TW I326972 B TWI326972 B TW I326972B TW 95143177 A TW95143177 A TW 95143177A TW 95143177 A TW95143177 A TW 95143177A TW I326972 B TWI326972 B TW I326972B
Authority
TW
Taiwan
Prior art keywords
frequency
circuit
value
signal
impedance
Prior art date
Application number
TW95143177A
Other languages
Chinese (zh)
Other versions
TW200743304A (en
Inventor
pi an Wu
Sen You Liu
Original Assignee
Via Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Via Tech Inc filed Critical Via Tech Inc
Publication of TW200743304A publication Critical patent/TW200743304A/en
Application granted granted Critical
Publication of TWI326972B publication Critical patent/TWI326972B/en

Links

Landscapes

  • Transmitters (AREA)
  • Transceivers (AREA)
  • Amplifiers (AREA)

Description

1326972 九、發明說明: ' 【發明所屬之技術領域】 本發明係知:供一種通祝系統及相關方法,尤指一種能依 據訊號頻率範圍動態調整等效阻抗以對不同頻率範圍之訊 - 號進行均等功率放大之通訊系統及相關方法。 【先前技術】 一般來說,當通訊系統要傳輸資料時,通訊系統都會對 _ ㈣輸資料進行調變以形成對應的待傳輸訊號,再以一放 ▲大電路來對待傳輸訊錢行功率放大以將訊號發送出去。 θ >考第1圆,其示意的是一傳統調譜放大電路丨〇的電路 ··圖。放大電路10偏壓於直流電壓V與接地端電壓G之間, 其内設有一 η型金氧半電晶體_以實現一放大器,而並 聯之電容CP與電感形成一容感槽(LC彻幻,並與電 阻Rp-起架構為-負截電路12,其中負載電路12之等效 參阻抗會隨其運作頻率而改變。電晶體刚之閘極用來接收 輸入訊號SU也就是待傳輸訊號),並在其汲極_源極間導 通對應的電流,以在負載電路12上建立功率放大後之輸出 請繼續參考第2圖, 阻抗隨頻率變化之情形。 效阻抗之幅度(magnitude) 其示意的就是負載電路12之等效 苐2圖之橫轴為頻率,縱轴為等 。容感槽所提供的等效阻抗會在 6 1326972 其等效阻抗之帶通特性會具有高度的頻率選擇性,為不同 頻率所提供的等效阻抗會具有相當大的差異。也就是說, 尚Q值負載電路】2無法為不同頻道的頻率提供均等的等效 連帶地,放大電路1G也就不能為不同頻道的待傳輪 k (即輸入號Si )提供均等的功率增益。 相較之下,若容感槽中電容Cp與電感Lp之組合會使 負載電路12具有較低的q值,其頻率選擇性就會較低,為 修二同頻率所提供的等效阻抗也較為相近,較為均等。不過, ^如第2圖所不’低q值會使負載電路12的等效阻抗低 落·’不利於訊號功率增益。· 為了提高資料傳輸的多丄效能,網路系統的不同成員間 可利用不同頻道的訊號來交換資料。譬如說,像在mEE 8〇3.lla規格τ的無線網路,就會在igHz (赠Hz)的頻 &門d刀出夕個不同的頻道’各頻道佔用不同的頻率範 圍。為了要實現這種多頻道規格下的通訊需求,通訊系統 。中的放大電路也應該要能廣泛地為*同頻道下的待傳輸訊 號”的功率放大。然而,習知的傳統調諧放大電路 1〇疋以定值電容Cp、定值電感Lp所形成的,故莫增益與 頻寬會相互牽制。若雷六^ 、 電谷Cp、電感Lp之組合具有高Q值, 就會犧牲頻見’無法為不同頻道的待傳輸訊號提供均等的 功率增麗。右使電容Cp、電感0之組合具有低q值就 8 1326972 =牲增益,無法提供較佳的功率增益。也因此,在通訊 先中之f知較值容感_義大電路難以兼顧功 益與頻寬要求。 . 【發明内容】 . ®此’本發明即是要提出-種具有較佳架構的通訊系統 及相關方法,以克服習知技術的缺點。 • 一般來說,通訊系統中都會設置有頻率合成器 (fluency synthesizer),用來根據一定頻參考訊號來為不同 頻道分別合成出不同頻率的調蹲訊號。當通訊系統要在某 .iit上傳輸資料時’鮮合成时為_道提供對叙 調協訊號,而通訊系統就可根據此調譜訊號的頻率來將待 傳輸資.料調變為待傳輸訊號,使待傳輸訊號的頻率範圍對 應於該頻道的頻率範圍。而本發明通訊系統中之放大電路 •就可和此頻率合成器協同運作。在本發明通訊系統中的放 大電路中會設有-放大器、一負載電路及一映對電路。負 載電路.中係採用了可變的容感槽來提供可變的等效阻抗, 而映對電路就可根據頻率合成器的運作情形來判斷待傳輸 訊號的頻率範圍,並對應地調整可變容感槽的可變等效阻 •抗,使等效阻抗的通帶能在頻i或平移至待傳輸訊號的頻率 範圍,使本發明通訊系統能為待傳輸訊號進行較佳的功率 放大。這樣一來,本發明就能兼顧各頻道上的功率增益, 9 1326972 而不必在增益-頻寬之間妥協。 心/就是說’本發明可採用具有適當Q值的高增益容感 效阻抗。雖然高Q值容感槽在頻域會具有較窄 =員見’但由於本發明映對電路會依據待傳輸訊號的 圍而將可變容感槽的㈣值通帶平移至待傳輸訊號 大:能為待傳輸訊號進行高增益的功率放 寺决=明映對電路也會動態地依據待傳輸訊號的頻帶範 圍來Ik時調整可變容感槽的等效阻抗,這樣就能以均等的 T益來為·不同頻道的待傳輸訊號進行功率放大,不必像 驾知技術一樣在增益-頻寬之間妥協。 t發明的實施細節可進—步說明如下。在頻率合成器 σο «以頻率相位偵測器、一低通濾波器、一壓控震盪 器及1/N除頻器來架構—鎖相迴路。壓控震盈器可震盈 。白。孔號除頻器可對此調諸訊號除頻,而頻率相位 偵測器就能.將此除頻後的調魏號與—定頻參考訊號進行 比較,以偵測出兩者_頻率、相位差異。低·波器可 濛頻率相位偵測益的比較結果來回授控制壓控震蘯器, =壓控震盈n㈣觸減的頻率。以此_迴路來反覆 修正調譜訊號的頻率,浦訊號除㈣㈣率就能鎖定為 參考訊號的料。仙此,賴訊狀鮮料於參考訊 〜倍。改變1/N除頻器的除頻N值(此除頻N值 皇仏次、承頻資料就能產生出不同頻率的調諧訊號來將 二:資料調變為至不同的頻道。換句話說,此除頻N值 傳輪資料的解範圍。*本發明映對電路就可 讀=的除頻N值來調整可變貞載電路的容感槽等效 吏等效阻抗的頻率表現能符合待傳輸訊號的頻率範 • θ纟本發明的一實施例中,可變負載電路中的可變容感槽 二-可,電容電路及一定值電感所架構而成的。此可變 電,,路是由-·連接蟑:而向放大電路中的放大器提供可變 =電#值使合:感槽的共振頻率能隨電容值改變,進而使 容感槽等效阻抗的通帶能夠在頻域上平移。此一可變電路 又有複數_疋值電容及複數個對應的開.關;各開關對 〜於電# ’每-開關的導通與否可控制該對應電容是否 ♦能連接於該連解。當本發明通訊线中之放大電路運作 時’映龍路就可依據解合成ϋ巾的除頻Ni (也就是 *頻:貝料之值)而分別控制各開關的導通與否,以調整該 可變電容電路所提供的電容值。 . 【實施方式】 I發明提出—種通訊系統其應用-具可變負載電路的 調言皆放大電路’則可兼顧高增益及高頻寬,以為廣大頻段 1326972 中分佈的各頻道提供均等的高功率增益。請參考第4圖, • 其示意的即為本發明通訊系統一實施例20的功能方塊 - 圖。通訊系統20中設有一頻率合成器24及一放大電路30, 並可由一介面電路26 (譬如說是一三線介面,TWIF, Three-Wire InterFace )接收一除頻資料 N-Data、一時脈 CLK 及一閂鎖訊號LE。介面電路26可根據時脈CLK之觸發而 接收除頻資料N-Data,以將此除頻資料N-Data轉換為Nd 位元(Nd為一定值)的除頻資料N-Dt,並依據閂鎖訊號 φ LE之控制而維持(hold)此除頻資料N-Dt,讓頻率合成器 24及本發明放大電路30能經由Nd位元的匯流排取得此一 除頻資料N-Dt。頻率合成器:24則可依據除頻資料N_Dt的 指示而利用一定頻參考訊號Fref來合成一對應的調諧訊號 Ft。譬如說,頻率合成器24可根據除頻資料N-Dt之值來 決定一倍率N,並使調諧訊號Ft之頻率為定頻參考訊號 Fref頻率的N倍。當'除頻資料N-Dt之值改變時,.頻率合成 .器24就會對應的改變N值,使調諧訊號Ft之頻率亦隨之 改變。依據頻率合成器24所提供的調諧訊號Ft,通訊系統 20就能將待傳輸資料調變為待傳輸訊號,使此待傳輸訊號 之頻率範圍被載波調變至調諧訊號Ft的頻率附近,讓待傳 輸訊號之頻率範圍對應於調諧訊號Ft的頻率。而此待傳輸 訊號就能做為放大電路3 0的輸入訊號S i ’由放大電路3 0 將其功率放大為輸出訊號S 〇。 1326972 由於除頻資料N-Dt可決定調諧訊號Ft之頻率,而輸 入成號Si之頻率範圍就對應於調諧訊號Ft之頻率,故除 頻資料N-Dt就能用來代表輸入訊號si的頻率範圍。事實 =:除頻資料N-Data (及N_Dt)就是用來向通訊系統20 指示通訊所用的頻道。 更具體地过,在頻率合成器24尹設有一頻率相位偵測1326972 IX. Description of the invention: 'Technical field to which the invention pertains>> The present invention is directed to a communication system and related methods, and more particularly to a signal-to-signal that can dynamically adjust the equivalent impedance according to the frequency range of the signal to different frequency ranges. A communication system and related methods for equal power amplification. [Prior Art] Generally speaking, when the communication system wants to transmit data, the communication system will modulate the _ (four) data to form the corresponding signal to be transmitted, and then use a large circuit to treat the power of the signal. To send the signal out. θ > test 1st circle, which is a circuit diagram of a conventional modulation and amplification circuit 丨〇. The amplifying circuit 10 is biased between the DC voltage V and the ground terminal voltage G, and is provided with an n-type MOS transistor to realize an amplifier, and the parallel capacitor CP and the inductor form a capacitive groove (LC enchantment) And the resistor Rp- is structured as a negative-cut circuit 12, wherein the equivalent para-impedance of the load circuit 12 changes with the operating frequency thereof. The gate of the transistor is used to receive the input signal SU, which is the signal to be transmitted. And turn on the corresponding current between its drain and source to establish the power amplified output on the load circuit 12. Please continue to refer to Figure 2, the impedance changes with frequency. The magnitude of the effect impedance is shown as the equivalent of the load circuit 12. The horizontal axis of the graph is the frequency, and the vertical axis is equal. The equivalent impedance provided by the tank will be 6 1326972. The bandpass characteristic of its equivalent impedance will have a high frequency selectivity, and the equivalent impedance provided for different frequencies will vary considerably. That is to say, the Q load circuit [2] cannot provide equal equivalent grounding for the frequencies of different channels, and the amplifying circuit 1G cannot provide equal power gain for the transmitting wheel k (i.e., input number Si) of different channels. . In contrast, if the combination of the capacitance Cp and the inductance Lp in the capacitive tank causes the load circuit 12 to have a lower q value, the frequency selectivity is lower, and the equivalent impedance provided for repairing the same frequency is also relatively high. Similar, more equal. However, ^ as shown in Fig. 2, the low q value causes the equivalent impedance of the load circuit 12 to be low, which is detrimental to the signal power gain. · In order to improve the performance of data transmission, different channels of the network system can use different channel signals to exchange data. For example, a wireless network like the mEE 8〇3.lla specification τ will occupy a different frequency range in the igHz (gift Hz) frequency & In order to achieve this multi-channel specification for communication needs, communication systems. The amplifying circuit in the middle should also be able to widely amplify the power of the signal to be transmitted under the same channel. However, the conventional tuning amplifier circuit 1 is formed by a constant value capacitor Cp and a constant value inductor Lp. Therefore, the gain and bandwidth will be mutually restrained. If the combination of Ray 6^, Electric Valley Cp, and Inductor Lp has a high Q value, it will sacrifice the frequency to 'cannot provide equal power enhancement for the signals to be transmitted of different channels. Right The combination of the capacitor Cp and the inductor 0 has a low q value of 8 1326972 = the gain of the amp, which does not provide a better power gain. Therefore, it is difficult to balance the power and frequency in the communication first. Width requirements. [Invention] The present invention is intended to provide a communication system and related method with a better architecture to overcome the shortcomings of the prior art. A fluency synthesizer is used to synthesize different frequency modulation signals for different channels according to a certain frequency reference signal. When the communication system wants to transmit data on a certain .iit, it is a fresh synthesis. The communication system can adjust the communication signal according to the frequency of the spectrum signal to adjust the signal to be transmitted into a signal to be transmitted, so that the frequency range of the signal to be transmitted corresponds to the frequency range of the channel. The amplifying circuit in the communication system can cooperate with the frequency synthesizer. In the amplifying circuit of the communication system of the present invention, an amplifier, a load circuit and a pair of pair circuits are provided. The load circuit is used in the middle. The variable capacitance slot provides a variable equivalent impedance, and the mapping circuit can determine the frequency range of the signal to be transmitted according to the operation condition of the frequency synthesizer, and adjust the variable equivalent of the variable capacitance slot correspondingly. Resisting and anti-resistance enables the passband of the equivalent impedance to be at or below the frequency range of the signal to be transmitted, so that the communication system of the present invention can perform better power amplification for the signal to be transmitted. Thus, the present invention can Take into account the power gain on each channel, 9 1326972 without having to compromise between gain-bandwidth. Heart / that is, 'the invention can use high gain capacitive effect impedance with appropriate Q value. Although high Q value The slot will have a narrower frequency in the frequency domain. However, since the mapping circuit of the present invention converts the (four) value passband of the variable capacitive slot to the signal to be transmitted according to the signal to be transmitted, the signal can be transmitted: Performing a high-gain power amplifier = Mingying also adjusts the equivalent impedance of the variable-capacitance slot dynamically according to the frequency band of the signal to be transmitted, so that it can be equalized by equal T The channel's signal to be transmitted is amplified by power, and it is not necessary to compromise between gain-bandwidth like the driving technique. The implementation details of the invention can be further explained as follows. In the frequency synthesizer σο «frequency phase detector, one Low-pass filter, a voltage-controlled oscillator and a 1/N frequency divider are used to structure the phase-locked loop. The voltage-controlled oscillator can be shocked. The white-hole number divider can adjust the frequency of this signal, and The frequency phase detector can compare the adjusted Wei number with the fixed frequency reference signal to detect the difference between the two frequencies and the phase. The low-wave filter can be used to control the voltage-controlled shock absorber, and the voltage of the voltage-controlled shock n (four) is reduced. In this way, the frequency of the spectrum signal is corrected repeatedly, and the Pu signal can be locked into the reference signal by the (four) (four) rate. This is the case, the information is fresh in the reference message ~ times. Change the frequency division N value of the 1/N frequency divider (this frequency division N value, the frequency data, can generate the tuning signal of different frequencies to change the data: to the different channels. In other words , the solution range of the frequency-reversed N-value transmission data. * The frequency-resolved N value of the circuit-readable circuit of the present invention is adjusted to adjust the capacitance of the variable load-carrying circuit. Frequency range of the signal to be transmitted θ θ In one embodiment of the present invention, the variable capacitance slot in the variable load circuit is constructed by a capacitor circuit and a certain value inductor. The path is connected by -·: the variable=electric# value is provided to the amplifier in the amplifying circuit: the resonant frequency of the sensing tank can be changed with the capacitance value, so that the passband of the equivalent impedance of the capacitive slot can be in the frequency The variable circuit has a complex _疋 value capacitor and a plurality of corresponding on and off; each switch pair ~ 电气# 'every switch is turned on or off to control whether the corresponding capacitor can be connected In the connection, when the amplifying circuit in the communication line of the present invention is operated, 'Yinglong Road can be synthesized according to the solution. In addition to the frequency Ni (that is, *frequency: the value of the material), the respective switches are controlled to be turned on or off to adjust the capacitance value provided by the variable capacitance circuit. [Embodiment] I invention proposes a communication system Its application - the variable-amplifier circuit's all-amplification circuit' can take into account the high gain and high-frequency width, in order to provide equal high power gain for each channel distributed in the band 1326972. Please refer to Figure 4, It is a functional block of the embodiment 20 of the communication system of the present invention. The communication system 20 is provided with a frequency synthesizer 24 and an amplifying circuit 30, and can be connected by an interface circuit 26 (for example, a three-wire interface, TWIF, Three-Wire). InterFace) receives a frequency division data N-Data, a clock CLK and a latch signal LE. The interface circuit 26 can receive the frequency division data N-Data according to the trigger of the clock CLK to convert the frequency division data N-Data. The frequency division data N-Dt of the Nd bit (Nd is a certain value), and the frequency division data N-Dt is held according to the control of the latch signal φ LE, so that the frequency synthesizer 24 and the amplifying circuit of the present invention 30 can communicate via Nd bit The frequency synthesizer: 24 can synthesize a corresponding tuning signal Ft by using the frequency reference signal Fref according to the indication of the frequency data N_Dt. For example, the frequency synthesizer 24 can be based on The value of the frequency data N-Dt is used to determine the multiple rate N, and the frequency of the tuning signal Ft is N times the frequency of the fixed frequency reference signal Fref. When the value of the frequency division data N-Dt changes, the frequency synthesis device 24 will change the value of N correspondingly, so that the frequency of the tuning signal Ft also changes. According to the tuning signal Ft provided by the frequency synthesizer 24, the communication system 20 can convert the data to be transmitted into a signal to be transmitted, so that The frequency range of the signal to be transmitted is modulated by the carrier to the vicinity of the frequency of the tuning signal Ft, and the frequency range of the signal to be transmitted corresponds to the frequency of the tuning signal Ft. The signal to be transmitted can be used as the input signal S i ' of the amplifying circuit 30 to amplify its power into an output signal S 由 by the amplifying circuit 30. 1326972 Since the frequency division data N-Dt can determine the frequency of the tuning signal Ft, and the frequency range of the input number Si corresponds to the frequency of the tuning signal Ft, the frequency division data N-Dt can be used to represent the frequency of the input signal si. range. Fact =: The frequency division data N-Data (and N_Dt) is the channel used to indicate communication to the communication system 20. More specifically, a frequency phase detection is provided in the frequency synthesizer 24

器PFD、一低通遽波器LPF、—壓控震廬If VCO及一 I/N 除頻益32,以架構出一鎖相迴路。壓控震盪器v⑺震盪 出調譜訊號Ft ’除頻器32依據除頻資料⑽而決定對應 之除頻N值,以此除❹值對調諧訊號扒除頻。頻率相 :立偵勒P F D ,錢將此除頻後的調4b訊號與定頻參考訊號 F-f進行比較,以伯測出兩者間的頻率、相位差異。低通 =器咖_頻率相位偵測器咖的比較結果來回授控 制壓控震堡器VCO,使壓控震場哭 號Ft的頻率,以此回授= =C〇回授調整_ 率,使_訊號調错訊Μ.的頻 ㈣_率。也鎖定為定頻參考訊號 訊號Fref頻料Ν倍。^解料於定頻參考 就能改變除頻器32的除頻Ν值貝;:N-Data (及N-Di) 同頻率的調諧訊號Ft來調變由鎖相迴路產生出不 良出不同頰道的待傳輸訊號。 輸訊號會分佈在 就如先前討論㈣’不_道的待傳 ::si槎:1為了貫現本發明之精神而為不同頻道輸入 丄“30 :均等的功率增益’本發明具可變負載電路之放 對電路㈣載電心2及—映 庫 、,放大器Μ可依據輸入訊號Si而提供對 ^ 電仙_)以在可變負載電路22上建立功率 =大後之輪出訊號S。。可變負載電路22可提供可變的等 映對電路28即可根據除頻資料㈣之值而調 ^,以/電路22 t等效阻抗,使等效阻抗可隨除頻資料 頻㈣上將等效^抗的通帶移動至輸人訊號义的 員^圍。這樣-來’本發明就能在不犧牲功率增益的情 為不同頻道的輸人訊號Si提供均等的功率增益。. 負載示’在本發明的一實施例中,本發明可變 f武可用一可變電容電路C及-定值電感L來形.: 斜雷二槽二可變電容電路c可提供可變的電容值,而映 所接徂8就是根據除頻資料㈣來控制可變電容電路c 說"f由,位元匯流排來控制可 供的電谷值),使可變負載電路22的共 振頻率(與料麵域切動,讓 :::=輸八,頻 _ 積的\&通▼的位置)會與電容值與電感值之乘 改㈣i£i艮^反比’故只要改變容感槽f的電容值,就能 改支共振頻率及通帶的位置。在實作時,本發明映對電路 14 1 1326972 28中設置一映對表(mapping table),以查表對應的方式來 —實^本發明映料路28的魏。此映對表中預先為不同除 —頻資料N_Dt分別設定其所對應的可變電容操控模式。當映 對電路28收到某一數值的除頻資料沁以時,就能查表找 .出對應的可變電容操控模式,並以該操控模式來實際操控 _可變電容電路c。譬如說,若除頻資料N_Dt代表的是一較 大的除頻N值’代表輸入訊號si會被調變至較高的頻率範 圍,而映對電路28就能對應地使可變電容電路C減少其所 • 提供的電容值,以將可變負载電路22的通帶移動至高頻, 因應較高頻率範圍的輸入訊號Si。The PFD, a low pass chopper LPF, a voltage controlled shock If VCO and an I/N divide the frequency 32 to construct a phase locked loop. The voltage controlled oscillator v(7) oscillates the out-of-spectrum signal Ft'. The frequency divider 32 determines the corresponding frequency-divided N value according to the frequency-divided data (10), thereby dividing the 调谐 value to the tuned signal 扒 frequency. The frequency phase: the vertical detective P F D , the money compares the frequency-adjusted 4b signal with the fixed-frequency reference signal F-f, and compares the frequency and phase difference between the two. The comparison result of the low pass = device coffee _ frequency phase detector coffee back and forth control the pressure control shock absorber VCO, so that the voltage of the pressure control shock field Ft, so feedback = = C 〇 feedback adjustment _ rate, The frequency (four) _ rate of the _ signal is adjusted. Also locked to the fixed frequency reference signal signal Fref frequency Ν times. ^Uninterpretation of the fixed frequency reference can change the frequency division value of the frequency divider 32;: N-Data (and N-Di) The same frequency tuning signal Ft is modulated by the phase-locked loop to produce a bad cheek The signal to be transmitted. The transmission signal will be distributed as in the previous discussion (4) 'Do not pass:: si槎: 1 for different channels input for the spirit of the present invention 丄 "30: Equal power gain' The present invention has a variable load The circuit is placed on the circuit (4), the carrier 2 and the amplifier, and the amplifier 提供 can provide a pair of signals according to the input signal Si to establish a power=large round-out signal S on the variable load circuit 22. The variable load circuit 22 can provide a variable equal mapping circuit 28, which can be adjusted according to the value of the frequency division data (4), and the equivalent impedance of the / circuit 22 t, so that the equivalent impedance can be matched with the frequency data (4). The passband of the equivalent ^ is moved to the member of the input signal. Thus, the present invention can provide equal power gain for the input signal Si of different channels without sacrificing power gain. In an embodiment of the present invention, the variable voltage circuit of the present invention can be formed by a variable capacitance circuit C and a constant value inductance L. The oblique deflection two-slot two variable capacitance circuit c can provide a variable capacitance. Value, and the image 8 is based on the frequency data (4) to control the variable capacitance circuit c said "f by, The meta-flow bar controls the available electric valley value, so that the resonant frequency of the variable load circuit 22 (cuts with the material plane, let:::= lose eight, the frequency _ product of the \& pass ▼ position) It will be multiplied by the capacitance value and the inductance value (4) i£i艮^ inverse ratio. Therefore, as long as the capacitance value of the capacitive groove f is changed, the resonance frequency and the position of the pass band can be changed. In practice, the present invention reflects the circuit. 14 1 1326972 28 sets a mapping table, in order to look up the corresponding way - the actual image of the invention of the map 28. This map is set in the table for the different de-frequency data N_Dt Corresponding variable capacitance control mode. When the pairing circuit 28 receives a certain value of the frequency division data, it can look up the table to find the corresponding variable capacitance control mode, and actually control the mode by the control mode. _ variable capacitance circuit c. For example, if the frequency division data N_Dt represents a large frequency division value N, the input signal si will be modulated to a higher frequency range, and the mapping circuit 28 can correspond to The variable capacitance circuit C is made to reduce the capacitance value it provides to pass the variable load circuit 22 The band moves to the high frequency, which corresponds to the input signal Si in the higher frequency range.

▲請參考第5圖,其更詳細地示意了本發明的實施樣 態。如第5圖所示,在第4圖中的可變電容電路c可由複 數個定值電容C0、Ch C2搭配開關8卜S2來實現。節點 Na-Nb可視為可變電容電路c的連接埠,而電容匸^⑺、 φ C2即並聯於此連接埠上,使可變電容電路c可由此連接埠 提供其可變電容值。其中,電容c〇可為可變電容電路c 提供基本的電容值,開關s卜S2分別對應於電容(n、c2, 開關S1、S2的導通與否可分別控制對應電容^卜C2是否 能連接於連接埠,而映對電路28就可依據除頻資料N_Dt •之值而以兩位元訊號(Nc=2)來分別控制各開關S1、S2 的V通,以6周整可變電容電路c在節點Na_Nb間所能提供 的電容值》譬如說,當映對電路28要減少可變電容電路C 15 1326972 所提供的電容時’可使開關SI、S2皆不導通,而可變電容 電路C就只由電容C0來提供電容值,此電容值將可使可 . 變負載電路22的通帶向高頻移動,以為高頻頻道之輸入訊 號進行功率放大。相對地,當映對電路28要增加可變電容 、電路C所提供的電容時,就可選擇性地使開關S1、S2導 通。譬如說,當開關S1、S2均導通時,可變電容電路c 所提供的電容值將是電容CO、C】、C2的電容值總和,而 此高電容值就可使可變負載電路22的通帶向低頻移動,以 _ 為低頻頻道之輸入訊號進行功率放大。另外,如第5圖所 示,放大電路30偏壓於直流電壓v與接地端電壓G之間, 第4圖中的放大态μ可用(但不限於)___n型金氧半電晶 •- 體來實現。 請繼續參考第6圖’其示意的就是本發明放大電路3〇 利用映對電路28及可變負载電路22以對不同頻道輸入訊 號進行增益放大的情形,第6圖之橫㈣解,縱轴為等 效阻抗的幅度。當除頻資料N_Dt (請見第4、帛5圖)使 頻率合成裔24合成出頻率為fa之調諧訊號。時,代表放 大電路30的輸人訊號Si也會被調變至頻率&附近,而本 發明映對電路28就能根據除頻f料來調整可變負載 電路22中的可變電容值(譬如說是使第5圖中的開關$卜 皆導通)’使可變負載電路22可在頻域上提供等效阻抗 Μ如第6圖料)’以此等效阻抗^來為辦範圍在頻 1326972 放大電路30可為寬廣頻财不同頻帶的輸入訊號 均等的功率增益。由於本發明是以頻域通帶移動的方式來 進仃功率放大,故本發明中的各等效阻抗Za'Zb、Zc等算 可,是高Q值的等效阻抗,以提供高功率增益。雖然 值等效阻k的通帶較f,但映對電路28的 帶有效地被移動到輸入訊號Si的頻率範圍,還是可== 頻道的輸入訊號提供均等功率增益。也因此,本發 顧高功率增益及高頻寬,不必像傳統調諧放大電路】〇要在 頻寬與功率增益間妥協。 :在實現本發明時,可採用適當Q值的等效阻抗Za、 =,使各等效阻抗本身可涵蓋一定數量的頻道,而這 „合之後就能在寬廣頻段中涵蓋更多頻道。譬 被二:某的頻道的頻㈣’就在頻率fa附近,也同樣能 等文1 7所涵蓋’則頻率fa、fa’就可共用同一個 :換句話說’當映對電路28經由除頻資料得 叙頻率為H fa,時,映對電路28都會使可變 提供等效阻抗以。這種「多頻道對同—等效阻抗」 夕映對關係能減省可變負載電路22的電路 度’使可變負載電路22不必實現出太多種的等效阻抗。 々月】!〇考第/圖,其示意的是本發明通訊系統20的運作 机秩】〇〇。流程100中有以下步驟: 丄 步驟1 〇2 :以除頻資料Ν-_ (第_ ^ $ ^除頻Ν值,使頻率合成器24可提供對應頻 率的調諧訊號。 步騍104 步騾106 ••映對電路28可根據除頻資料來對應地調整可變 負载電路22’使可變負載電路22的通帶能在頻 域移動以因應輸入訊號之頻率範圍。 :維持可變負載電路22的阻抗。若是除頻資料 N Data改變’代表輪入訊號&的頻道改變,而 /瓜程1〇〇就可重複進行步驟1〇2、HM及1〇6, ㈣因應被調變至新頻道的輸人訊號^。 實上"丨]王1〇〇可在時脈CLK、閃鎖訊號π (第*、第 圖:> 的控制觸發下重複進行,在輸人訊號&的頻道改變 時動態地隨時予以g]廡,|V # 处因應以對不同頻道的輸入訊號提供均 #的功率增益。 在第4至第7 _實施例中,是以鎖相迴路之頻率合成 為24為例來說明本發明之運作情形。然而,本發明中放大 電路30也可與其他麵的解合成器㈣運作,並不受限 :貞相iS路之頻率合成器。任何用來向頻率合成器指示通 訊頻道的訊號也同樣能被映對電路28所運用,讓映對電路 28能依據待傳輸訊號的頻道(頻率範⑴而調整可變負載 電路22 ’以使本發明具可變負載電路之通訊系統能為不同 頻道的待傳輸職進行均等的功率增益。值得強調的是, 1326972 頻率合成器是現代通訊系統中原本就必需具備的電路,故 本發明並不需要額外設立一個頻率合成器才能實現。另 . 外,在實現可變負裁電路22時,也可採用可變電感等等。 譬如說,而可變負載電路22可包含有複數個阻抗單元及對 .應的開關,每-開關的導通與否可控制該對應阻抗單元是 -否旎提供其阻抗。而映對電路28控制各開關的導通,就能 凋整該可變負載電路所提供的總阻抗。像在第5圖的實施 例中’電容Ci、C2就可視為阻抗單元,開關S卜S2就是 參對應的開關。當然’各阻抗單元也可由電感形成。 總結來說,相較於傳統調諧放大電路中相互牽制的頻寬 與增益關係本發明之通訊系統能以可變負載的調整來動 態地因應不同輝帶的訊號,故能為寬廣頻段中不同頻道的 訊號提供均.等的高功率增益。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範 圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 【圖式簡單說明】 第1圖為一傳統調諧放大電路之電路示意圖。 第2圖示意的是第1圖中定值容感槽負載電路的頻域特性。 第3圖示意的是第1圖中定值容感槽負載電路為不同頻道 ' 所提供的等效阻抗。 20 1326972 第4圖為本發明通訊系統之電路示意圖。 第5圖為第4圖中通訊系統進一步的實施樣態。 第6圖示意的是第4圖中具可變負载電路之放大電路為不 同頻道訊號提供均等功率增益的情形。 第7圖示意的是第4圖中通訊系統的運作流程。▲ Please refer to Figure 5, which illustrates an embodiment of the present invention in more detail. As shown in Fig. 5, the variable capacitance circuit c in Fig. 4 can be realized by a plurality of constant value capacitors C0 and Ch C2 in combination with the switch 8 S2. The node Na-Nb can be regarded as the connection port of the variable capacitance circuit c, and the capacitors (^(7) and φ C2 are connected in parallel to the connection port, so that the variable capacitance circuit c can be connected thereto to provide its variable capacitance value. Wherein, the capacitor c〇 can provide a basic capacitance value for the variable capacitance circuit c, and the switch S2 corresponds to the capacitance (n, c2, whether the switches S1 and S2 are turned on or not respectively can control whether the corresponding capacitance ^C2 can be connected After the connection, the mapping circuit 28 can respectively control the V-pass of each of the switches S1 and S2 by a two-dimensional signal (Nc=2) according to the value of the frequency-removed data N_Dt •, and the variable-capacitance circuit is completed for 6 weeks. c. The capacitance value that can be provided between the nodes Na_Nb, for example, when the mapping circuit 28 is to reduce the capacitance provided by the variable capacitance circuit C 15 1326972, the switches SI and S2 are not turned on, and the variable capacitance circuit is C only provides a capacitance value from the capacitor C0, which will cause the passband of the variable load circuit 22 to move to a high frequency to power amplify the input signal of the high frequency channel. In contrast, when the mapping circuit 28 To increase the capacitance of the variable capacitor and circuit C, the switches S1 and S2 can be selectively turned on. For example, when the switches S1 and S2 are both turned on, the capacitance value provided by the variable capacitor circuit c will be The sum of the capacitance values of the capacitors CO, C, and C2, and this high capacitance The value causes the pass band of the variable load circuit 22 to move to the low frequency, and the power is amplified by the input signal of the low frequency channel. Further, as shown in Fig. 5, the amplifying circuit 30 is biased to the direct current voltage v and the ground terminal voltage. Between G, the amplified state μ in Fig. 4 can be realized by (but not limited to) ___n type gold oxide semi-electric crystal body. Please continue to refer to Fig. 6 which shows the amplification circuit of the present invention. For the circuit 28 and the variable load circuit 22, the gain is amplified by inputting signals to different channels, the horizontal (four) solution of Fig. 6, and the vertical axis is the amplitude of the equivalent impedance. When the frequency division data N_Dt (see section 4, 帛5) The frequency synthesizing 24 is synthesized into a tuning signal having a frequency of fa. When the input signal Si representing the amplifying circuit 30 is also modulated to the vicinity of the frequency & The frequency f is used to adjust the variable capacitance value in the variable load circuit 22 (for example, to make the switch in FIG. 5 all turned on) 'to enable the variable load circuit 22 to provide an equivalent impedance in the frequency domain, such as Figure 6 material) 'This equivalent impedance ^ for the scope of the frequency at 1326972 Large circuit 30 may be a wide frequency band different financial gain of the input signal of equal power. Since the present invention performs power amplification by means of frequency domain passband movement, each equivalent impedance Za'Zb, Zc, etc. in the present invention is equivalent to a high Q equivalent impedance to provide high power gain. . Although the passband of the value equivalent k is f, but the band of the circuit 28 is effectively moved to the frequency range of the input signal Si, the input signal of the == channel provides an equal power gain. Therefore, the high power gain and high frequency width of the present invention do not have to be compromised between the bandwidth and the power gain as in the conventional tuning amplifier circuit. In the implementation of the present invention, an equivalent impedance Za, = of an appropriate Q value can be used, so that each equivalent impedance itself can cover a certain number of channels, and this can cover more channels in a wide frequency band. The second is: the frequency of a certain channel (four) 'is in the vicinity of the frequency fa, and can also be covered by the text 1 'then the frequency fa, fa' can share the same one: in other words, the current pairing circuit 28 is divided by frequency When the data frequency is H fa, the pairing circuit 28 will make it possible to provide an equivalent impedance. This "multi-channel pair-to-equal impedance" relationship can reduce the circuit degree of the variable load circuit 22. 'It is not necessary for the variable load circuit 22 to achieve too many equivalent impedances. 々月]! 第考第/图, which shows the operating machine rank of the communication system 20 of the present invention. The following steps are performed in the process 100: 丄Step 1 〇2: The frequency synthesizer 24 can provide the tuning signal of the corresponding frequency by using the frequency division data Ν-_ (the _ ^ $ ^ frequency division 。 value. Step 104 Step 106 • The mapping circuit 28 can adjust the variable load circuit 22 ′ according to the frequency division data to enable the pass band of the variable load circuit 22 to move in the frequency domain to respond to the frequency range of the input signal. Maintain the variable load circuit 22 Impedance. If the frequency data N Data changes 'represents the channel change of the round signal & and / 瓜 〇〇 1 , then steps 1 〇 2, HM and 1 〇 6 can be repeated, (d) in response to the change to the new The channel's input signal ^. In fact, "丨" Wang 1〇〇 can be repeated under the control of the clock CLK, flash lock signal π (*, picture: >, in the input signal & When the channel is changed, it is dynamically changed at any time, and |V # is provided with power gain of ## for the input signals of different channels. In the fourth to seventh embodiments, the frequency of the phase-locked loop is synthesized as 24 is taken as an example to illustrate the operation of the present invention. However, in the present invention, the amplifying circuit 30 can also be combined with other The surface de-synthesizer (4) operates without limitation: the frequency synthesizer of the i phase iS channel. Any signal used to indicate the communication channel to the frequency synthesizer can also be used by the mapping circuit 28 to enable the mapping circuit 28 to The variable load circuit 22' is adjusted according to the channel (frequency range (1) of the signal to be transmitted so that the communication system with the variable load circuit of the present invention can perform equal power gain for the to-be-transmitted jobs of different channels. It is worth emphasizing that 1326972 The frequency synthesizer is a circuit that is necessary in modern communication systems, so the invention does not need to be additionally provided with a frequency synthesizer. In addition, when the variable negative cutting circuit 22 is implemented, variable power can also be used. Sense, etc. For example, the variable load circuit 22 can include a plurality of impedance units and a pair of switches, and the conduction of each switch can control whether the corresponding impedance unit is - or not, provide its impedance. By controlling the conduction of each switch to the circuit 28, the total impedance provided by the variable load circuit can be attenuated. As in the embodiment of Fig. 5, the capacitances Ci and C2 can be regarded as impedance units. Sb S2 is the corresponding switch. Of course, each impedance unit can also be formed by an inductor. In summary, the communication system of the present invention can be variablely loaded compared to the bandwidth and gain of the conventional tuning amplifier circuit. Adjusting to dynamically respond to signals of different gamut bands, so that it can provide equal high power gain for signals of different channels in a wide frequency band. The above is only a preferred embodiment of the present invention, and the patent application scope according to the present invention The equal changes and modifications made should be within the scope of the present invention. [Simplified Schematic] Figure 1 is a schematic diagram of a conventional tuning amplifier circuit. Figure 2 is a diagram showing the constant value of Figure 1. The frequency domain characteristics of the tank load circuit. Figure 3 is a diagram showing the equivalent impedance provided by the fixed-value capacitive tank load circuit for different channels in Figure 1. 20 1326972 Fig. 4 is a circuit diagram of the communication system of the present invention. Figure 5 is a further embodiment of the communication system in Figure 4. Figure 6 is a diagram showing the case where the amplifying circuit with the variable load circuit of Fig. 4 provides equal power gain for different channel signals. Figure 7 is a diagram showing the operational flow of the communication system in Figure 4.

【主要元件符號說明】 】〇、30放大電路 20通訊系統 12 負載電路 24頻率合成器 22 可變負載電路 26 介面電路·: 28映對電路 32 除頻器 PFD頻率相位偵測器 LPF低通濾波器 vco震盪器 Nc-Nd位元數 Na-Nb節點 C可變電容電路 S1-S2 .開關 V直流電壓 M0電晶體 Μ放大器 M_Data、N-Dt除頻資料 CLK時脈 fO-fl、fa-fc 頻率 Za-Zc 等效阻抗 訊號[Main component symbol description] 】, 30 amplifying circuit 20 communication system 12 load circuit 24 frequency synthesizer 22 variable load circuit 26 interface circuit ·: 28 mapping circuit 32 frequency divider PFD frequency phase detector LPF low-pass filtering Vco oscillator Nc-Nd bit number Na-Nb node C variable capacitance circuit S1-S2. Switch V DC voltage M0 transistor Μ amplifier M_Data, N-Dt frequency division data CLK clock fO-fl, fa-fc Frequency Za-Zc equivalent impedance signal

Si-So、Fref-Ft、LE 1326972 電容Si-So, Fref-Ft, LE 1326972 capacitor

Rp 電阻 Cp、C0-C2 Lp、L 電感Rp resistor Cp, C0-C2 Lp, L inductor

22twenty two

Claims (1)

υ·72υ·72 十、申請專利範圍: =種通訊系統,其包含有: 頻率合成益,其受控於一除頻資料而依據一參考訊號 -生對應的調諧訊號,使該調諧訊號之頻率對應於 該參考訊號之頻率與該除頻資料之值;而該通訊系統 可依據該調諧訊號之頻率提供一輸入訊號,使該輸入 訊號之頻率範圍對應於該調諧訊號之頻率;以及 一放大電路,其包含有: —放大器及一負載電路,該負載電路用來提供一等效 几而該放大器可根據該輸入訊號而在該負載電 路提供的等效阻抗上建立—對應的輸出訊號;以及 映對電路,用來根據該除頻資料之值而調整該負载 電路之等效阻抗,使該等效阻抗可隨該除頻資料改 變。 2.如申睛專利範圍第1項之通訊系統,其中,該頻率合成 器中包含—鎖相迴路,該鎖相迴路中包含有一除頻器, 其可根據該除頻資料之值而對該調諳訊號除頻,而該鎖 相迴路可將該調諧訊號除頻後之頻率調整至該參考訊 號之頻率,使該調諧訊號之頻率對應於該參考訊號之頻 率與該除頻資料之值。 3·如申請專利範圍第1項之通訊系統,其中,該負載電路 23 1326972 中包含有: 至少一電感;以及 。 一可變電容電路,用來提供可變的電容值;該映對電路 係依據該除頻資料之值而調整該可變電容電路所提 供的電容值,使該負載電路所提供的等效阻抗可隨該 除頻資料改變。 4..如申請專利範圍第3項之通訊系統,其中,該可變電容 電路設有一連接埠,該可變電容電路係經由該連接埠提 供可變的電容值;而該可變電容電路中包含有至少一電 容及至少一開關;各開關對應於一電容,每一開關的導 通與否可控制該對應電容是否能連接於該連接埠;而該 映對電路係依據該除頻資料之值而控制各開關的導通 與否,以調整該可變電容電路所提供的電容值。 5.如申請專利範圍第1項之通訊系統,其中,該負載電路 係經由一連接埠而提供等效阻抗;而該負載電路中包含 有至少一阻抗單元及至少一開關;各開關對應於一阻抗 單元,每一開關的導通與否可控制該對應阻抗單元是否 能連接於該連接埠;而該映對電路係依據該除頻資料之 值而控制各開關的導通,以調整該負载電路所提供的等 效阻抗。. 24 1326972 其中,各阻抗單元 6·如申請專利範圍第5項之通訊系統, 係一電容。 Ρ 7.如申請專利範圍第5項之通訊系統,其中 係一電感。 各阻抗單元 ’其中,當該映對電 载電路之等效阻抗 域移動而對應於該輸 8.如申請專利範圍第1項之通訊系统 路根據該除頻資料之值而調整該負 時’係使該等效阻抗之通帶可於頻 入訊號之頻率範圍。 9. 以根據一輸入訊號 種進行通訊訊號調諧放大的方法, 而提供一輸出訊號,該方法其包含有 設定一除頻資科; 進行一頻率合成程序,以根據該除頻資料而利用一參考 訊號產生一對.應的調諧訊號,使該調諧訊號之頻率 對應於該參考訊號之頻率與該除頻資料之值,並使 該輸入訊號之頻率範圍對應於該調諧訊號之頻率; 進行一映對程序,以根據該除頻資料之值而提供一對應 之荨效阻抗,使該荨效阻抗之值可反應該除頻資料 之值;以及 進行一調諧放大程序,以根據該輸入訊號而在該等效阻 抗上建立該輪出訊號。 25 1326972 10. 如申請專利範圍第9項之方法,其中,當進行該映對 程序時,係針對不同數值之除頻資料而以不同數量之 阻抗元件來組合出該等效阻抗,使該等效阻抗之值可 反應該除頻資料之值。 11. 如申請專利範圍第9項之方法,其中,當進行該映對 程序時,係使該等效阻抗之通帶可於頻域移動而對應 於該輸入訊號之頻率範圍。 十一、圖式: 26X. Patent application scope: = a communication system, comprising: a frequency synthesis benefit, which is controlled by a frequency division data according to a reference signal-generated corresponding tuning signal, so that the frequency of the tuning signal corresponds to the reference signal The frequency and the value of the frequency-divided data; and the communication system can provide an input signal according to the frequency of the tuning signal, so that the frequency range of the input signal corresponds to the frequency of the tuning signal; and an amplifying circuit, comprising: An amplifier and a load circuit for providing an equivalent, and the amplifier can establish a corresponding output signal according to the input signal at an equivalent impedance provided by the load circuit; and a mapping circuit for Adjusting the equivalent impedance of the load circuit according to the value of the frequency division data, so that the equivalent impedance can be changed according to the frequency division data. 2. The communication system of claim 1, wherein the frequency synthesizer comprises a phase-locked loop, the phase-locked loop comprising a frequency divider, which can be based on the value of the frequency-divided data The frequency-locking circuit can adjust the frequency of the tuning signal to the frequency of the reference signal, so that the frequency of the tuning signal corresponds to the frequency of the reference signal and the value of the frequency-divided data. 3. The communication system of claim 1, wherein the load circuit 23 1326972 includes: at least one inductor; and . a variable capacitance circuit for providing a variable capacitance value; the mapping circuit adjusts the capacitance value provided by the variable capacitance circuit according to the value of the frequency division data, so that the equivalent impedance provided by the load circuit It can be changed with the frequency division data. 4. The communication system of claim 3, wherein the variable capacitance circuit is provided with a connection port, the variable capacitance circuit provides a variable capacitance value via the connection port; and the variable capacitance circuit is The circuit includes at least one capacitor and at least one switch; each switch corresponds to a capacitor, and whether the switch is turned on or not can control whether the corresponding capacitor can be connected to the connection port; and the mapping circuit is based on the value of the frequency division data And controlling whether the switches are turned on or not to adjust the capacitance value provided by the variable capacitance circuit. 5. The communication system of claim 1, wherein the load circuit provides an equivalent impedance via a port; the load circuit includes at least one impedance unit and at least one switch; each switch corresponds to a The impedance unit, the conduction of each switch can control whether the corresponding impedance unit can be connected to the connection port; and the mapping circuit controls the conduction of each switch according to the value of the frequency division data to adjust the load circuit The equivalent impedance provided. 24 1326972 wherein each impedance unit 6· is a communication system as claimed in claim 5, which is a capacitor. Ρ 7. For the communication system of patent application No. 5, which is an inductor. Each of the impedance units 'where the equivalent impedance domain of the pair of electric circuits is shifted to correspond to the input 8. If the communication system path of the first application of the patent scope adjusts the negative according to the value of the frequency division data' The passband of the equivalent impedance is made to be in the frequency range of the frequency signal. 9. providing an output signal by performing a method for tuning and amplifying the communication signal according to an input signal, the method comprising: setting a frequency division; performing a frequency synthesis procedure to utilize a reference according to the frequency division data The signal generates a pair of tuning signals, such that the frequency of the tuning signal corresponds to the frequency of the reference signal and the value of the frequency-divided data, and the frequency range of the input signal corresponds to the frequency of the tuning signal; And a program for providing a corresponding effective impedance according to the value of the frequency-divided data, such that the value of the effective impedance can reflect the value of the frequency-divided data; and performing a tuning amplification procedure to be performed according to the input signal The round-trip signal is established on the equivalent impedance. 25 1326972 10. The method of claim 9, wherein when the mapping process is performed, the equivalent impedance is combined with different numbers of impedance elements for different values of the frequency division data The value of the effect impedance can reflect the value of the frequency division data. 11. The method of claim 9, wherein when the mapping process is performed, the passband of the equivalent impedance is movable in the frequency domain to correspond to a frequency range of the input signal. XI. Schema: 26
TW95143177A 2006-05-11 2006-11-22 Communication system and related method TWI326972B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US74699006P 2006-05-11 2006-05-11

Publications (2)

Publication Number Publication Date
TW200743304A TW200743304A (en) 2007-11-16
TWI326972B true TWI326972B (en) 2010-07-01

Family

ID=38071844

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95143177A TWI326972B (en) 2006-05-11 2006-11-22 Communication system and related method

Country Status (2)

Country Link
CN (1) CN100550872C (en)
TW (1) TWI326972B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI528725B (en) 2013-05-06 2016-04-01 國立中山大學 Wideband frequency synthesizer and frequency synthesizing method thereof

Also Published As

Publication number Publication date
CN1960349A (en) 2007-05-09
TW200743304A (en) 2007-11-16
CN100550872C (en) 2009-10-14

Similar Documents

Publication Publication Date Title
KR101268124B1 (en) Loop filter with noise cancellation
US8841975B2 (en) Digitally controlled oscillator device and high frequency signal processing device
US10804848B2 (en) Low-power low-phase-noise oscillator
JP2009502068A (en) Method and apparatus for frequency synthesis of transceiver
JP6879847B2 (en) High-resolution tuning of the phase of active load modulation in NFC systems and systems
US10079671B2 (en) Circuit and method for providing an adjustable impedance
JP4685862B2 (en) Crystal oscillator buffer that is robust to interference
US20070081610A1 (en) Local oscillator with injection pulling suppression and spurious products filtering
US11271524B2 (en) Multi-element resonator
JP4673910B2 (en) Carrier wave oscillator
Chien Low-noise local oscillator design techniques using a DLL-based frequency multiplier for wireless applications
CA3101444C (en) Dual voltage controlled oscillator circuits for a broadband phase locked loop for multi-band millimeter-wave 5g communication
TWI326972B (en) Communication system and related method
US9853801B2 (en) Transceiver arrangement, communication device, and method
US7444122B2 (en) Communications system with variable load and related method
US9735731B2 (en) Digitally controlled oscillator device and high frequency signal processing device
US7609123B2 (en) Direct modulation type voltage-controlled oscillator using MOS varicap
US10447283B1 (en) Broadband phase locked loop for multi-band millimeter-wave 5G communication
US9130642B2 (en) Frequency-selective circuit with mixer module implemented for controlling frequency response, and related signal processing apparatus and method
CN109995362A (en) Phase-locked loop intergrated circuit
CN109478898B (en) Tunable matching network
CN103490770B (en) A kind of fast lockign apparatus based on C-band continuous wave answering machine
CN104270121B (en) The frequency source device of Self Adaptive Control
JP3786558B2 (en) Semiconductor integrated circuit and wireless communication device
JP2008289201A (en) Synthesizer apparatus and portable communication terminal with the same