TWI324723B - Heat-dissipation system and method for dynamic controlled type electronic apparatus - Google Patents

Heat-dissipation system and method for dynamic controlled type electronic apparatus Download PDF

Info

Publication number
TWI324723B
TWI324723B TW95145829A TW95145829A TWI324723B TW I324723 B TWI324723 B TW I324723B TW 95145829 A TW95145829 A TW 95145829A TW 95145829 A TW95145829 A TW 95145829A TW I324723 B TWI324723 B TW I324723B
Authority
TW
Taiwan
Prior art keywords
value
temperature
electronic device
fan
speed
Prior art date
Application number
TW95145829A
Other languages
Chinese (zh)
Other versions
TW200825685A (en
Inventor
Tsung Pin Wang
Original Assignee
Inventec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventec Corp filed Critical Inventec Corp
Priority to TW95145829A priority Critical patent/TWI324723B/en
Publication of TW200825685A publication Critical patent/TW200825685A/en
Application granted granted Critical
Publication of TWI324723B publication Critical patent/TWI324723B/en

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

1324723 九、發明說明: 【發明所屬之技術領域】 於-種於一種電子設備散熱技術’特別是有關 動心控制式電子設備散熱方法及系統。 【先前技術】 电:設備於操作過程中常會因為電能的消耗而產生 …里。右不將此敎量排除 中的雷敗1 能因此而燒毁電子設備 η㈣:晶片而導致其發生損毁性的當機狀況。此 問通的-般解決方法即為於電子設備的機體框架中“ 散熱裝置,例如為風扇裝置,以藉此來排除電子設備於又操 •作過程中所產生熱量。舉例來說,刀鋒型伺服器或桌上型 個人電腦的機體框架中通常即設置有一或多台風扇裝 '置’用以利用風力來吹除其於操作過程中所產生㈣量, 精此保護其内部主機電路不會因溫度過高而被燒毁。 於具體實施上,風扇裝置的啟動通常係受控於一溫度 亦即當該溫度感測器感測到電路的操作溫度 時,便會回應地啟動風扇裝置來提供散熱功能。基本上, 操作溫度愈高,則風扇裝置的轉速也就愈大。 於刀鋒型伺服器的應用上,目前所採用埶 杜财式為-種㈣狀賴方式,w㈣溫= 口疋方式對應至風扇轉逮。然而於實際應用上,此種靜 心對應方式之風扇轉速控制方法的一項缺點在於電路設 計工程師需花費較多的時間及精力來計算出所需之溫度 至轉速對應表,因此較不符合人力資源應用上的成本經濟 19691 5 1324723 效益。此外,固定之轉速對應方式無法應付極端之過熱狀 況’因此易於在此狀況下導致刀鋒型祠服器的 燒毁。 电發子反 【發明内容】 鑒於以上所述習知技術之缺點,本發明之主要目的便 是在於提供-種動態控制式電子設備散熱方法及李統,立 可讓電路設計工程師不需花費太多時間及精力來計曾出/、 =需之溫度至轉速對應表’藉以節省工時及人力作業成 本發明之另一目的在於提供一種動態控制式電子嗖 備散熱方法及系統,其可於極端之過熱狀況下,較先前技 •術更能保護刀鋒型伺服器的㈣電路不會被燒毁。 -本發明之動態控制式電子設備散熱方法至少包含 感測㈣子設備於實際操作時的操作溫度;⑵ 該插作溫度值位於線性階段 " 式對應出-轉速值;反:又的;度:圍内,則以-線性方 π戶蘇_ K #該#作溫度位於高溫階段的 ⑴依據所定出之轉速值來 /應+出轉速值’以及 子值木驅動一風扇模組進行 於實體架構上,本發明動離 統至少包含:⑴―風上广:剩式電子設備散熱系 流式之散熱功丄可對該電子設備提供-氣 ”、、 (),皿度感測模組,盆可咸測兮+ 設備於實際操作時的操作溫度;(c)—溫;至;…::! 組,其可依墟兮·痒 又至轉速對應模 出一對應之轉=的㈣溫度值來定 ^ 、,/、方式為若該操作溫度值位於-線性 19691 6 1324723 階段的範圍内,則 ^ 驗方式對^-轉輕,·反之, 右該操作溫度高於該線性階段,則以—動態調整方1324723 IX. Description of the invention: [Technical field of the invention] The invention relates to a method for dissipating heat of an electronic device, in particular, a method and system for dissipating heat of a kinetic control type electronic device. [Prior Art] Electricity: Equipment often generates electricity during the operation. The right does not exclude the thunder in the amount of 1 can burn the electronic device η (4): the wafer causes its destructive crash. The general solution to this problem is to "heat sinks, such as fan devices, in the body frame of an electronic device, in order to eliminate the heat generated by the electronic device during the operation. For example, the blade type In the body frame of a server or a desktop personal computer, one or more fans are usually installed to set off the wind (4) generated by the wind to protect the internal host circuit. Because the temperature is too high, it is burnt. In a specific implementation, the starting of the fan device is usually controlled by a temperature, that is, when the temperature sensor senses the operating temperature of the circuit, the fan device is responsively activated. The heat dissipation function is provided. Basically, the higher the operating temperature, the greater the rotational speed of the fan unit. In the application of the blade type servo, the current Du Fucai type is the type (four), the w (four) temperature = mouth The 疋 mode corresponds to the fan transfer. However, in practical applications, one of the disadvantages of the fan-to-fan control method of the meditation is that the circuit design engineer needs to spend more time and energy. Calculate the required temperature-to-speed correspondence table, so it is less in line with the cost-effectiveness of the human resources application in the case of the cost of the tires. In addition, the fixed speed response method cannot cope with the extreme overheating condition's, so it is easy to cause the blade type in this situation. In the light of the above-mentioned shortcomings of the prior art, the main purpose of the present invention is to provide a method for dissipating heat of a dynamically controlled electronic device and Li Tong. The circuit design engineer does not need to spend too much time and effort to calculate the temperature-to-speed correspondence table that has been used to save man-hours and labor costs. Another object of the invention is to provide a dynamic-controlled electronic equipment cooling method. And the system, in the extreme overheating condition, can protect the (four) circuit of the blade type server from being burned more than the prior art. - The dynamic control type electronic device heat dissipation method of the present invention at least includes sensing (four) The operating temperature of the device in actual operation; (2) the insertion temperature value is in the linear phase " corresponding to the output - speed value; reverse: again; Degree: within the circumference, then - linear square π household Su _ K # the # for the temperature in the high temperature stage (1) according to the determined speed value / should + output speed value 'and sub-value wood drive a fan module In the physical architecture, the moving system of the present invention at least includes: (1) "Wind-wide: the heat-dissipating power of the residual electronic device can provide - gas", (), the degree sensing module for the electronic device , pots can be salty test + operating temperature of the equipment in actual operation; (c) - temperature; to; ...::! In the group, it can be determined according to the temperature value of the corresponding 之 兮 痒 又 对应 = = 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 四 若 若 若 若 1969 1969 1969 1969 1969 1969 1969 1969 1969 1969 1969 1969 1969 1969 1969 1969 1969 1969 ^ The method of verification is to turn the light off, and vice versa. If the operating temperature is higher than the linear phase, the dynamic adjustment method is used.

速值;以及⑼-風扇驅動模組,其可依據該溫度^ 至轉速對錢輯Μ之轉輕來驅_風扇模 運轉。 J 本發明之動態控制式電子設備散熱方法及系統的特 ..點在於將操作溫度·劃分為2個階段:―線性階段和一 高溫階段’·並於線性階段時,以—線性方式來對應出一轉 逮值;反之’若於高溫階段,則以一動態調整方式來取得 轉速值,直至操作溫度值降低至線性階段的溫度範圍内為 止。此特點可較先前技術更能於極端之過熱狀況下,保護 .刀鋒型伺服器的内部電路不會被燒毀。 .-【實施方式】 以下即配合所附之圖式,詳細揭露說明本發明之動態 控制式電子設備散熱方法及系統之實施例。 • 第1圖即顯示本發明之動態控制式電子設備散熱系 統(如標號100所指之虛線框所包含之部分)的應用方式 及其内部架構。如圖所示,本發明之動態控制式電子設備 散熱系統100於實際應用上係搭载至一電子設備1〇,例 如為刀鋒型伺服器、桌上型個人電腦'或筆記型電腦(以 下以刀鋒型词服器為例作說明),用以對該刀鋒型伺服器 1〇提供一動態控制式之散熱功能。 如第1圖所示’本發明之動態控制式電子設備散熱系 統100的内部基本架構至少包含:(A)一風扇模組110;(B) 7 19691 1/23 -溫度感測模組120; (C)一溫度至轉速對應模組13〇;以 及(D)風扇驅動模組140。以下即首先分別說明此些構 成模組的個別屬性及功能。 風扇杈組11 〇係安設於刀鋒型伺服器丨〇之中,用以 亥刀鋒型飼服器1Q提供—氣流式之散熱功能。此風扇 模組110的轉速係預先於設計時劃分為N個階段,例如為 • 100 個階段 FAN_SPEED(1)、FAN—SPEED(2)..... FAN_SPEED(l〇G) ’其中最低轉速為FAN—SPEED⑴,而最 攀高轉速則為FAN—SPEED (100)。 士溫度感測模組120可於該刀鋒型伺服器1〇實際操作 時’被啟動來感測該刀鋒型伺服器1〇内部之電子電路(例 如為中央處理益及各個晶片)的操作溫度值。於具體實施 .、上,此溫度感測模組120例如為一數位式之溫度感測器, 可將其所感測到的溫度值轉換成一數位形式之操作溫度 值CURRENT_TEMP,再將此操作溫度值CURRENT_TEMp傳送 籲給該溫度至轉速對應模組1 。 /ffiL度至轉速對應模組1 3 〇可依據上述之溫度感測模 組120所感測到的溫度值CURRENT—TEMp來對應出一所需 之轉速值。於具體實施上,本發明係將操作溫度範圍預先 劃分為2個階段:一線性階段和一高溫階段;其中線性階 #又又進而劃分為Μ個階段,例如為個階段temp( 1)、 ΤΕΜΡ(2).....ΤΕΜΡ(80);其中TEMP(l)代表需要啟動散 熱功旎的最低臨界溫度(例如為2〇°c,亦即若低於此溫 度,則不必啟動風扇模組11〇);而TEMp(8〇)則代表過熱 19691 8 1324723 之高溫臨界溫度(例如為38。C),亦即高於此高溫臨界溫 度時’若不馬上予以降溫,則溫度可能會飆高至導致刀鋒 型伺服器10的内部電路被燒毁的溫度。如第2圖所示, 本發明的特點在於此溫度至轉速對應模組130於目前之 刀鋒型伺服器10的操作溫度值CURRENT_TEMP位於線性階 段A中的TEMP(l)至TEMP(80)的範圍内時,會以一線性 -方式來對應出一所需之轉速值;亦即若溫度值 CURRENT_TEMP= TEMP(l),則對應之轉速值為 籲 FAN—SPEEDC1);若溫度值 CURRENT_TEMP= TEMP(2),則對 應之轉速值為FAN_SPEED(2);依此類推至若溫度值 CURRENT_TEMP= TEMP(80),則對應之轉速值為 -FAN_SPEED(80)。反之,若操作溫度CURRENT_TEMP大於高 -溫臨界溫度TEMP(80)時(亦即操作溫度值CURRENT_TEMP 位於高溫階段B)’則改以一動態調整方式來定出所需之 轉速值’本實施例中’本動態調整方法亦即持續感測操作 -鲁溫度’若操作溫度仍大於高溫臨界溫度TEMP(80),則以 • 一固定的階數來調整轉速值’直到將轉速值持續遞增至最 高轉速值FAN_SPEED (100),或是直至操作溫度值 CURRENT_TEMP降至低於高溫度TEMP(80)為止。 風扇驅動模組140可依據上述之溫度至轉速對應模 組130所定出之轉速值來驅動該風扇模組11〇以該轉速值 所代表的轉速來作運轉。舉例來說,若上述之溫度至轉速 對應模組130所定出之轉速值為FAN_SPEED(1),則風扇 驅動模組140即驅動該風扇模組11〇以轉速faN_SPEED(1) 9 19691 1324723 來運轉;若所定出之轉速值為FAN_SPEED(2),則風扇驅 動模組140即驅動該風扇模組no以轉速FAn_speED(2) 來運轉;依此類推。 以下即利用一應用實例來說明本發明之動態控制式 電子設備散熱系統1 〇〇於實際應用時的整體操作方式。 每當刀鋒型伺服器1 〇被啟動來運作時,其即會同時 -觸動本發明之動態控制式電子設備散熱系統1 〇〇中的溫 度感測模組120持續感測該刀鋒型伺服器1 〇之内部電路 鲁(例如為中央處理器及各個晶片)的操作溫度值,並將其所 感測到的溫度值轉換成一數位形式之操作溫度值 CURRENT_TEMP,再將此操作溫度值CURRENT_TEMP傳送給 -該温度至轉速對應模組130。 • 若目前操作溫度CURRENT_TEMP低於最低臨界溫度The speed value; and (9)-fan drive module, which can be operated according to the temperature ^ to the speed of the light. J The dynamic control type electronic device heat dissipation method and system of the present invention is characterized in that the operating temperature is divided into two stages: a "linear phase and a high temperature phase", and in the linear phase, a linear response is performed. If the temperature is high, the speed value is obtained in a dynamic adjustment mode until the operating temperature value falls within the temperature range of the linear phase. This feature is more resistant to extreme overheating than previous technologies. The internal circuitry of the blade server is not burned. [Embodiment] Hereinafter, an embodiment of a method and system for dissipating heat of a dynamic control type electronic device according to the present invention will be described in detail with reference to the accompanying drawings. • Fig. 1 is a view showing the application mode and internal structure of the heat-dissipating system of the dynamic control type electronic device of the present invention (as indicated by the dotted line frame indicated by reference numeral 100). As shown in the figure, the dynamic control type electronic device heat dissipation system 100 of the present invention is mounted on an electronic device 1 for practical applications, such as a blade type server, a desktop type personal computer or a notebook computer (hereinafter referred to as a blade) The word processor is used as an example to provide a dynamic control type of heat dissipation function for the blade server. As shown in FIG. 1 , the internal basic architecture of the dynamic control type electronic device heat dissipation system 100 of the present invention includes at least: (A) a fan module 110; (B) 7 19691 1/23 - temperature sensing module 120; (C) a temperature to speed corresponding module 13A; and (D) a fan drive module 140. The following are the first to describe the individual attributes and functions of these constituent modules. The fan 杈 group 11 is installed in the blade type servo ,, which is used for the airflow type heat dissipation function of the Haidaofeng type feeder 1Q. The speed of the fan module 110 is divided into N stages in advance, for example, • 100 stages FAN_SPEED(1), FAN-SPEED(2)..... FAN_SPEED(l〇G) 'the lowest speed It is FAN-SPEED(1), and the maximum speed is FAN-SPEED (100). The temperature sensing module 120 can be activated to sense the operating temperature value of the electronic circuit inside the blade server 1 (for example, the central processing benefit and each chip) when the blade server 1 is actually operated. . In a specific implementation, the temperature sensing module 120 is, for example, a digital temperature sensor, and can convert the sensed temperature value into a digital operation temperature value CURRENT_TEMP, and then operate the temperature value. The CURRENT_TEMp transmission calls the temperature to the speed corresponding module 1. The /ffiL degree to speed corresponding module 1 3 对应 can be based on the temperature value CURRENT_TEMp sensed by the temperature sensing module 120 described above to correspond to a desired speed value. In a specific implementation, the present invention divides the operating temperature range into two stages: a linear phase and a high temperature phase; wherein the linear phase # is further divided into two phases, for example, a phase temp(1), ΤΕΜΡ (2).....ΤΕΜΡ(80); where TEMP(l) represents the minimum critical temperature at which the cooling function needs to be activated (for example, 2〇°c, that is, if it is lower than this temperature, the fan module does not have to be activated. 11〇); and TEMp (8〇) represents the high temperature critical temperature of overheating 19691 8 1324723 (for example, 38 ° C), that is, above this high temperature critical temperature, if the temperature is not immediately lowered, the temperature may be high. The temperature to the internal circuit that causes the blade type servo 10 to be burned. As shown in FIG. 2, the present invention is characterized in that the temperature-to-speed corresponding module 130 is in the range of TEMP(l) to TEMP(80) in the linear phase A at the operating temperature value CURRENT_TEMP of the current blade-type servo 10. In the meantime, a required speed value is correspondingly determined in a linear manner; that is, if the temperature value CURRENT_TEMP=TEMP(l), the corresponding speed value is FAN_SPEEDC1); if the temperature value is CURRENT_TEMP=TEMP ( 2), the corresponding speed value is FAN_SPEED(2); and so on if the temperature value CURRENT_TEMP=TEMP(80), the corresponding speed value is -FAN_SPEED(80). On the other hand, if the operating temperature CURRENT_TEMP is greater than the high-temperature threshold temperature TEMP (80) (ie, the operating temperature value CURRENT_TEMP is in the high temperature phase B), then the dynamic speed adjustment mode is used to determine the required speed value. 'This dynamic adjustment method is also continuous sensing operation - Lu temperature'. If the operating temperature is still greater than the high temperature critical temperature TEMP (80), adjust the speed value by a fixed order until the speed value is continuously increased to the maximum speed. The value is FAN_SPEED (100) or until the operating temperature value CURRENT_TEMP falls below the high temperature TEMP (80). The fan drive module 140 can drive the fan module 11 to operate at the rotational speed represented by the rotational speed value according to the rotational speed value determined by the temperature-to-rotation corresponding mode 130. For example, if the speed value determined by the temperature-to-speed corresponding module 130 is FAN_SPEED(1), the fan driving module 140 drives the fan module 11 to operate at the rotational speed faN_SPEED(1) 9 19691 1324723. If the determined speed value is FAN_SPEED(2), the fan drive module 140 drives the fan module no to operate at the speed FAn_speED(2); and so on. In the following, an application example is used to illustrate the overall operation mode of the dynamic control type electronic device heat dissipation system 1 of the present invention in practical applications. Whenever the blade type servo 1 is activated to operate, it simultaneously-touches the temperature sensing module 120 of the dynamic control type electronic device heat dissipation system 1 of the present invention to continuously sense the blade type servo 1 The operating temperature value of the internal circuit 鲁 (for example, the central processing unit and each chip), and converts the sensed temperature value into a digital operating temperature value CURRENT_TEMP, and then transmits the operating temperature value CURRENT_TEMP to the The temperature to speed corresponds to the module 130. • If the current operating temperature CURRENT_TEMP is below the minimum critical temperature

Temp(0),則其對應之轉速值即為〇,代表風扇驅動模組 14 0不驅動風扇模組11 〇來運轉。 φ 若目前操作溫度值CURRENT_TEMP位於線性階段A(亦 即TEMP(l)至TEMP(80))的範圍内時,溫度至轉速對應 模組130即回應地以一線性方式來對應出所需之轉速 值;亦即若溫度值CURRENT_TEMP= TEMP(l),則對應之轉 速值為 FAN_SPEED(1);若溫度值 CURRENT_TEMP= TEMP(2),則對應之轉速值為FAN_SPEED(2);依此類推至 若溫度值CURRENT_TEMP= TEMP(80),則對應之轉速值為 FAN_SPEED(80)。 若操作溫度CURRENT_TEMP大於高溫臨界溫度 10 19691 1324723 TEMP (8 Ο)時,則持續感測彳呆作溫度,若操作溫度仍大於 高溫臨界温度TEMP(80),則以一固定的階數來調整轉速 值,直到將轉速值持續遞增至最高轉速值FAN_SPEED (100),或是直至操作溫度CURRENT_TEMP降至低於最高臨 界溫度TEMP(80)為止。舉例來說,設定固定調整的階數 為2,若溫度值CURRENT_TEMP= TEMP(81),則溫度至轉速 對應模組130即首先以FAN_SPEED(82)作為轉速;若 CURRENT_TEMP未降低至高溫度TEMP(80)以下,則將轉速 籲增大至FAN_SPEED(84);若溫度值CURRENT_TEMP仍未降 低至TEMPC80)以下,則將轉速再更進一步增大至 FAN_SPEED(84);依此類推,直至轉速增大至最高轉速值 -FAN_SPEED (100)為止。此時,風扇模組的轉速值,是持 •續動態調整,而與感測到的操作溫度沒有直接的線性關 係。 再者,本發明為避免在高溫階段與線性階段風扇過度 •切換轉速值,同時加強本發明在操作溫度屬於降溫時的風 扇控制,其運作流程圖可進一步如第3圖所示。如圖所 示,首先進行步驟S1,判斷該溫度感測模組120所感測 到的溫度是否屬於線性階段A中的溫度值,意即,屬於 TEMP(l)至TEMP(80)的範圍内,若是,則進至步驟S2 ; 反之,則進至步驟S8。 於該步驟S2中,判斷操作溫度是否為上升趨勢,亦 即將該溫度感測模組120上一次所感測到的溫度與這一 次所感測到的溫度作一比較,若這一次的操作溫度比上一 11 19691 丄以4723 次的操作溫度高,即表示操作溫度為—上升的趨勢,若 上升趨勢’則進至步驟S3;反之,絲,則進至步驟… 於該步驟S3中,該風扇驅動模組14〇依據該溫度至 2對應模組13〇轉換而得的轉速值驅使該風扇模組ιι〇 建作,並返回該步驟S1。 進入步驟S4中,即表示目前操作溫度為下降趨勢, 但為了確認此下降趨勢為—敎的趨勢,因此可以加上一 個判斷下降階數的步驟,以避免溫度震盡時,風扇模組即 降低轉速,本實施例中,步驟S4是設^判斷該温度感測 果組12 0此次所感測到的溫度階數與上次感測到溫度階 數差是否達到2 1是’則進至步驟%;反之,若否則返 ―回該步驟S1。 v驟S5中,判辦目鈾風扇驅動模組14〇驅動該 風扇模組11G運作的轉速值是否大於或等於線性階段A 及高溫階段B臨界值的風扇轉速值(意即,該最高臨界溫 度值所對應出的轉速值),若是,則進至步驟%;反之, 若否則進至步驟S7。本實施例之線性階段及高溫階段臨 界值的風扇轉速值例如為FAN—SPEED(8〇)。 於該步驟S6中,由於目前風扇驅動模組14〇驅動該 風扇核組11G運作的轉速值大於或等於線性階段及高溫 階段臨界值的風扇轉速值’故該風扇驅動模組刚依據該 溫度至轉速對應模組13〇轉換而得的轉速值減去預定風 扇轉速階數進行運轉(例如為2階),並返回該步驟si。 於該步驟S7中,由於目前風扇驅動模組14〇驅動該 19691 12 運作的轉速值小於線性階段及高溫階段臨 轉速對鹿丄速值,故該風扇驅動模組140依據該溫度至 步驟S1二吴、且130轉換而得的轉速值進行運轉,並返回該 的、Ί 1" 乂驟S8巾,判斷該溫度感測模、组120所感測到 否增加’若是,則進至步驟%;反 進至步驟S10。 :驟邓中’由於該溫度感測模組120所感測到 ==故該風扇驅動模組14°以預定風扇轉速階數 曰力風扇轉速值’(例如為2階)並返回該步驟 的、、W二二驟S1Q中’由於該溫度感測模組12。所感測到 、田=不增加,故判斷該溫度感測模組! 2 〇所感測到的 /皿度疋否降低,若是,則 回該步驟8卜《%進至步驟如,反之,若否則返 ;Λ 乂驟S11中,由於該溫度感測模組120所感測到 曰、皿又降低’故判斷該溫度感測模組i 2 〇所感測到的溫度 疋否低於預定溫度值,若是,則進至步驟S12 ;反之,若 否則返回該步驟S1。 於❹驟S12中’由於該溫度感測模組12()所感測到 的/皿度降於預定溫度值,故該風扇驅動模組14G依遞減方 式調:風扇模組11G的轉速值,並返回該步驟^。 赦〜而:之,本發明提供了 一種動態控制式電子設備散 …、方法及系統,其可應用於搭配至—刀鋒型飼服器,用以 對該刀鋒型飼服器提供—動態控制式之散熱功能,·其特點 19691 13 i324723 在於將操作溫度範圍劃分為2個階段線性階段和一高 溫階段;並於線性階段時,以-線性方式來對應出一轉速 溫階段’則以一動態調整方式來將控制 > 低踝性卩自奴為止❶此特點可較先 刖技術更此於極端之過敛狀況下,祖% μ …狀,兄下保濩刀鋒型伺服器的内 邓電路不會被燒毁。本發明因义 步性及實祕。 扣认先讀術具有更佳之進 以上所述僅為本發明之較佳實施例而已,並非用以限 疋=明之貫質技術内容的範圍。本發明之實質技術内容 ^廣義地定義於下述之申料利_中。若任何他人所完 2技#貫體或方法與下述之申請專利範圍所线者為 元全相同、或是為一種耸对夕樹® 種寺政之交更,均將被視為涵蓋於本 發明之申請專利範圍之中。 【圖式簡單說明】 第i圖為-系統架構示意圖,用以顯示本發明之動態 鲁控制式電子設備散熱系統的應用方式及其内部架構; 第2圖為應用不,$圖,用以顯示本發明之動態控制 式電子設備散熱系統所採用之溫度至轉速對應關係;以及 第3圖為流程示意圖,用以顯示本發明之動態控制式 電子設備散熱方法之運作流程。 【主要元件符號說明】 10 電子設備(刀鋒型伺服器) Ί1〇° 纟發明之動態控制式電子設備散熱系統 11 〇 風扇模組 19691 14 1324723 120 溫度感測模組 130 溫度至轉速對應模組 140 風扇驅動模組 A 線性階段 B 高溫階段 S1至S12步驟Temp (0), the corresponding speed value is 〇, which means that the fan drive module 14 0 does not drive the fan module 11 运转 to operate. φ If the current operating temperature value CURRENT_TEMP is in the range of linear phase A (ie, TEMP(l) to TEMP(80)), the temperature-to-speed corresponding module 130 responds in a linear manner to the required rotational speed. Value; that is, if the temperature value CURRENT_TEMP= TEMP(l), the corresponding speed value is FAN_SPEED(1); if the temperature value CURRENT_TEMP=TEMP(2), the corresponding speed value is FAN_SPEED(2); If the temperature value CURRENT_TEMP= TEMP(80), the corresponding speed value is FAN_SPEED(80). If the operating temperature CURRENT_TEMP is greater than the high temperature critical temperature 10 19691 1324723 TEMP (8 Ο), the temperature is continuously sensed. If the operating temperature is still greater than the high temperature critical temperature TEMP (80), the speed is adjusted by a fixed order. Value until the speed value is continuously incremented to the maximum speed value FAN_SPEED (100) or until the operating temperature CURRENT_TEMP falls below the maximum critical temperature TEMP (80). For example, the order of the fixed adjustment is set to 2. If the temperature value CURRENT_TEMP=TEMP(81), the temperature-to-speed corresponding module 130 first uses FAN_SPEED(82) as the rotational speed; if CURRENT_TEMP is not lowered to the high temperature TEMP (80) ), the speed is increased to FAN_SPEED (84); if the temperature value CURRENT_TEMP has not decreased below TEMPC80), the speed is further increased to FAN_SPEED (84); and so on, until the speed increases to The maximum speed value is -FAN_SPEED (100). At this time, the speed value of the fan module is continuously dynamically adjusted, and there is no direct linear relationship with the sensed operating temperature. Furthermore, the present invention is directed to avoid excessive fan switching in the high temperature phase and the linear phase. The fan speed control is enhanced while the operating temperature is reduced. The operational flow chart can be further illustrated in Fig. 3. As shown in the figure, first step S1 is performed to determine whether the temperature sensed by the temperature sensing module 120 belongs to the temperature value in the linear phase A, that is, within the range of TEMP(l) to TEMP(80). If yes, go to step S2; otherwise, go to step S8. In the step S2, it is determined whether the operating temperature is an upward trend, that is, the temperature sensed by the temperature sensing module 120 is compared with the temperature sensed this time, if the operating temperature ratio is higher than this time. A 11 19691 472 is operated at a high temperature of 4723 times, that is, the operating temperature is a rising trend, and if the rising trend is 'to step S3; otherwise, the wire is advanced to the step... In this step S3, the fan is driven. The module 14 drives the fan module according to the temperature value of the corresponding module 13 to convert the temperature to 2, and returns to the step S1. Proceeding to step S4, the current operating temperature is a downward trend, but in order to confirm that the downward trend is a trend of 敎, a step of determining the descending order may be added to avoid the fan module being lowered when the temperature is exhausted. In the present embodiment, step S4 is to determine whether the temperature sensed by the temperature sensing group 12 is different from the last sensed temperature step. %; otherwise, if otherwise, return to step S1. v in step S5, determining whether the speed value of the operation of the fan module 11G for driving the fan module 11G is greater than or equal to the fan speed value of the linear phase A and the high temperature phase B threshold value (that is, the highest critical temperature) The value of the rotation speed corresponding to the value), if yes, proceeds to step %; otherwise, if not, proceeds to step S7. The fan rotational speed value of the linear phase and the high temperature phase critical value of the present embodiment is, for example, FAN-SPEED (8 〇). In this step S6, since the fan drive module 14 〇 drives the fan core group 11G to operate at a speed value greater than or equal to a linear stage and a high temperature stage threshold value, the fan drive module just follows the temperature. The rotation speed corresponds to the rotation speed value converted by the module 13 减 minus the predetermined fan rotation speed (for example, 2nd order), and returns to the step si. In the step S7, since the fan drive module 14 〇 drives the driving speed of the 19691 12 to be less than the linear phase and the high temperature phase, the fan drive module 140 according to the temperature to step S1. The speed value converted by Wu and 130 is operated, and the Ί 1" step S8 towel is returned, and it is judged whether the temperature sensing mode and the group 120 sense the increase or not. If yes, the process proceeds to step %; Proceed to step S10. : 邓邓中', because the temperature sensing module 120 senses == the fan drive module 14° at a predetermined fan speed step to force the fan speed value ' (for example, 2 steps) and return to the step, In the second step S1Q, the temperature sensing module 12 is used. The sensed, field = no increase, so judge the temperature sensing module! 2 〇 感 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / When the 曰 and the dish are lowered, it is determined whether the temperature sensed by the temperature sensing module i 2 疋 is lower than the predetermined temperature value, and if so, the process proceeds to step S12; otherwise, if otherwise, the process returns to step S1. In step S12, the fan drive module 14G adjusts the speed value of the fan module 11G in a decreasing manner, because the temperature sensed by the temperature sensing module 12() is lowered to a predetermined temperature value, and Return to step ^.赦~而:, the present invention provides a dynamic control type electronic device, method, and system, which can be applied to a knife-type feeding device for providing a dynamic control type for the blade-type food feeder The heat dissipation function, its characteristic 19691 13 i324723 is to divide the operating temperature range into two phase linear phase and one high temperature phase; and in the linear phase, to linearly correspond to a rotational temperature phase 'to adjust dynamically The way to control > low-lying self-slave, this feature can be more advanced than the technology in the extreme over-constrained situation, the ancestor % μ shape, the brother inside the guardian blade server Will be burned. The present invention is based on the nature of justice and reality. It is a preferred embodiment of the present invention that is not limited to the scope of the technical content of the present invention. The technical contents of the present invention are broadly defined in the following claims. If any other person's work or method is the same as the following patent application scope, or is a kind of sacred tree, it will be considered to be covered by the present invention. The scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a system architecture for displaying the application mode and internal architecture of the dynamic Lu control electronic device heat dissipation system of the present invention; FIG. 2 is an application not, $ diagram for displaying The temperature-to-speed correspondence relationship adopted by the heat-dissipating system of the dynamic control type electronic device of the present invention; and FIG. 3 is a schematic flow chart for showing the operation flow of the heat-dissipating method of the dynamic control type electronic device of the present invention. [Main component symbol description] 10 Electronic device (blade server) Ί1〇° 纟Invented dynamic control electronic device cooling system 11 〇Fan module 19691 14 1324723 120 Temperature sensing module 130 Temperature to speed corresponding module 140 Fan drive module A linear phase B high temperature phase S1 to S12 steps

15 1969115 19691

Claims (1)

----—~— 今月r曰修(更)正替換頁 弟95141 s 62號專利申請案 (99年2月之曰) 卜、申請專利範圍: .一種動態控制式電子設備散熱方法,其可應用於-電 子f備,用以對該電子設備提供一動態控制式之散熱 功能, 此動態控制式電子設缝熱方法至少包含: 感測該電子設備於實際操作時的操作溫度; 依據所感測到的操作溫度值來定出一對應之轉 速值;其方式為若該操作溫度值位於—線性階段範 内’則以一線性方式對應出-轉速值;反之,若該摔 作溫度南於該錄階段,則以—純㈣方式對應出 一轉速值;以及 依據所疋出之轉速值來驅動一風扇模組進行運 轉0 ^申叫專利乾圍第i項所述之動態控制式電子設備散 j法’其中’該動態調整方式為:持續感測該操作 =度’若操作溫度仍高於該線性階段,則遞增該轉速 2請專利範圍第!項所述之動態控制式電子設備散 、R法,其中,該線性階段劃分為N個階段,且每一 階I又對應—轉速值,而該預定風扇轉速值 段所對應之轉速值,而該高溫臨界溫度值係= 弟N個階段所對應之溫度值。 ^申請專利範圍第3項所述之動態控制式 熱方法,其中,該N的值為80。 子又備政 19691(修正版) 16 5· 一種動態控制式電子設備散熱系統,其可搭配至一電 子設備’用關該電子設備提供—動態控制式之散熱 功能; 此動態控制式電子設備散熱系統至少包含: -風扇模組,其可對該電子設備提供—氣流式之 散熱功能; 一溫度或測模組,其可感測該電子設備於實際操 作時的操作溫度; 服度至轉速對應模組,其可依據該溫度感測模 組所感測到的操作溫度值來定出一對應之轉速值;其 方式為若該操作溫度值位於—㈣階段的範圍内,則 j-線性方式對應出—轉速值;反之,若該操作溫度 南於該線㈣段,則以—動態調整方式對應出一轉速 值;以及-----~- This month, r曰 repair (more) is replacing the pageant 95141 s 62 patent application (after the February of 1999). Patent application scope: A dynamic control type electronic device cooling method, The utility model can be applied to an electronic device for providing a dynamic control type heat dissipation function for the electronic device. The dynamic control type electronic seam heat method comprises at least: sensing an operating temperature of the electronic device during actual operation; The measured operating temperature value is used to determine a corresponding rotational speed value; if the operating temperature value is within the linear phase range, then the linear value corresponds to the rotational speed value; otherwise, if the operating temperature is south In the recording phase, a speed value is correspondingly performed in a pure (four) manner; and a fan module is driven to operate according to the value of the speed of the motor that is extracted. 0. The dynamic control type electronic device described in the patent item i散j法' where 'this dynamic adjustment mode is: continuous sensing the operation = degree' If the operating temperature is still higher than the linear phase, then increase the speed 2 please patent range! The dynamic control type electronic device, R method, wherein the linear phase is divided into N stages, and each step I corresponds to a speed value, and the predetermined fan speed value segment corresponds to the speed value, and The high temperature critical temperature value is the temperature value corresponding to the N stages. The dynamic control type thermal method described in claim 3, wherein the value of N is 80. Sub-Public Affairs 19691 (Revised Edition) 16 5. A dynamic control type electronic device cooling system that can be coupled to an electronic device 'provided with the electronic device - dynamic control type of heat dissipation function; this dynamic control type electronic device heat dissipation The system comprises at least: - a fan module, which can provide an airflow type heat dissipation function for the electronic device; a temperature or measurement module, which can sense the operating temperature of the electronic device during actual operation; The module can determine a corresponding rotational speed value according to the operating temperature value sensed by the temperature sensing module; if the operating temperature value is in the range of the - (four) phase, the j-linear mode corresponds to Output-speed value; conversely, if the operating temperature is south of the line (four), the speed value is corresponding to the dynamic adjustment mode; 丹3攸艨該溫度至轉速對 、、斤疋出之轉速值來驅動該風扇模組進行運轉。 如申印專利圍第5項所述之動態控制式電子設備 熱系統,其护,該線性階段劃分為N個階段,且每 階段對應-轉速值,而該預定風扇轉速值係指處於; N個階段所對應之轉速值,而該高溫 第N個階段所對應之溫度值。 又值WDan 3 攸艨 the temperature to the speed of the speed, and the speed value of the pound to drive the fan module to operate. For example, in the thermal control type electronic device thermal system described in the fifth paragraph of the patent application, the linear phase is divided into N stages, and each stage corresponds to a rotational speed value, and the predetermined fan rotational speed value is in the; N The speed value corresponding to each stage, and the temperature value corresponding to the Nth stage of the high temperature. Value W =申请專利範圍第6項所述之動態控制式電子設備散 …糸統,其和,該N的值為8〇。 19691(修正版) 17 1324723 19691 f许/月$日修(更}正替換頁 雠一画 10= The dynamic control type electronic device described in claim 6 of the patent scope, and the value of the N is 8 〇. 19691 (Revised Edition) 17 1324723 19691 fH/month $日修 (more} is replacing the page 雠一画 10 1/3 1324723 JsfFlis τ_(2)1--- -is- ?焊/月々日修(更)正替換頁 TEMP(81) TEMP(g) (βΜ顳雒 SS) ®2 画 MBS® FAN—SPEEDS FAN—ID(1) (*is餐®) YA FANISPEED( 100) (sMssir FANISPEED(S) FAN—SPEEDS) FANISPEHXg) 2/3 1324723 • 19691 • U年f月f日修(更)正替換頁1/3 1324723 JsfFlis τ_(2)1--- -is- welding/monthly repair (more) replacement page TEMP(81) TEMP(g) (βΜ颞雒SS) ®2 painting MBS® FAN-SPEEDS FAN—ID(1) (*is meal®) YA FANISPEED( 100) (sMssir FANISPEED(S) FAN—SPEEDS) FANISPEHXg) 2/3 1324723 • 19691 • U-year f-month-day repair (more) replacement page 3/33/3
TW95145829A 2006-12-07 2006-12-07 Heat-dissipation system and method for dynamic controlled type electronic apparatus TWI324723B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95145829A TWI324723B (en) 2006-12-07 2006-12-07 Heat-dissipation system and method for dynamic controlled type electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95145829A TWI324723B (en) 2006-12-07 2006-12-07 Heat-dissipation system and method for dynamic controlled type electronic apparatus

Publications (2)

Publication Number Publication Date
TW200825685A TW200825685A (en) 2008-06-16
TWI324723B true TWI324723B (en) 2010-05-11

Family

ID=44772045

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95145829A TWI324723B (en) 2006-12-07 2006-12-07 Heat-dissipation system and method for dynamic controlled type electronic apparatus

Country Status (1)

Country Link
TW (1) TWI324723B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9753508B2 (en) 2008-12-15 2017-09-05 Hewlett-Packard Development Company, L.P. Temperature threshold adjustment based on human detection
TWI487844B (en) * 2012-11-26 2015-06-11 英業達股份有限公司 Method for fan monitoring and server system using the same
CN112963372B (en) * 2021-03-11 2022-11-18 英业达科技有限公司 Fan control system and method thereof

Also Published As

Publication number Publication date
TW200825685A (en) 2008-06-16

Similar Documents

Publication Publication Date Title
US20070096665A1 (en) Method and circuit for controlling motor speed
TW559692B (en) Method and system for controlling a cooling fan within a computer system
CN114761902B (en) Control method and control device for heat dissipation element
TW201200996A (en) System and method for controlling temperature of a computer
TWI323838B (en) Mthod for contrlling the rotational speed of a cooling fan in an electronic system and electronic system utilizing the same
US8569989B2 (en) Pulse width modulation fan controller
TWI292877B (en) Method for adjusting an operating rate of a graphics card
TWI324723B (en) Heat-dissipation system and method for dynamic controlled type electronic apparatus
TW200847610A (en) System and method for moderating computer speed
TW201207243A (en) Method and system for controlling rotation speed of fans
CN101770266A (en) Heat sink assembly of computer and control method thereof
TW201212806A (en) Fan speed control method and related computer system
CN100478820C (en) Electronic component temperature control method and its system
TW201929406A (en) Ceiling fan, method for controlling ceiling fan motor and contorl device of ceiling fan motor
TW201208547A (en) Method and system for controlling hot reflux
CN109429469A (en) The fan rotation speed control apparatus and control method of power supply unit
CN103807200A (en) Fan rotary speed control method and electronic device
JP2011199205A (en) Electronic apparatus
TWI299249B (en) Fan device
TWI494052B (en) Method for controlling fan speed and electronic device
TWI283807B (en) Fan control system and method
CN101203126A (en) Dynamic control type electronic equipment dissipating heat method and system
TW201918824A (en) Temperature control device and control method thereof
TWI289251B (en) System and method for controlling a processor fan's speed
TWI325299B (en)

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees