TWI323351B - Display - Google Patents

Display Download PDF

Info

Publication number
TWI323351B
TWI323351B TW092102362A TW92102362A TWI323351B TW I323351 B TWI323351 B TW I323351B TW 092102362 A TW092102362 A TW 092102362A TW 92102362 A TW92102362 A TW 92102362A TW I323351 B TWI323351 B TW I323351B
Authority
TW
Taiwan
Prior art keywords
light
guide
display
image
array
Prior art date
Application number
TW092102362A
Other languages
Chinese (zh)
Other versions
TW200302925A (en
Inventor
Anthony Cyril Lowe
Barbara Needham
Niall Anthony Gallen
Original Assignee
Shearline Prec Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0202789A external-priority patent/GB0202789D0/en
Priority claimed from GB0202780A external-priority patent/GB0202780D0/en
Application filed by Shearline Prec Engineering Ltd filed Critical Shearline Prec Engineering Ltd
Publication of TW200302925A publication Critical patent/TW200302925A/en
Application granted granted Critical
Publication of TWI323351B publication Critical patent/TWI323351B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

1323351 【發明所屬之技術領域】 本發明係相關於顯示器。 【背景技術】 在例如是液晶顯示器或是電漿顯示器等平板顯示器之 後的技術係已前進至一個單一顯示器被經濟地製造至大約 爲一適度家用電視之螢幕尺寸的階段。爲了使單一單元顯 示器之顯示尺寸增加越過此一等級係會導入大量成本、更 低之製造良率以及其他重要技術問題。 因此,爲了提供較大的顯示器,一種混合技術係已被 發展出來,藉此,多數個較小矩形顯示器係被排列成棋盤 格狀以形成所需之整體尺寸。舉例而言,一個對角1 5吋 的2x2鑲嵌陣列之顯示器在經由適當之電子部件以將像素 資訊轉換至適當的子顯示器的狀況下係將提供一個對角3 0英吋的顯示器。 此一類型之配置的一項缺點係爲,一個別顯示器之主 動區域,亦即顯示器前方表面顯示有像素資訊之區域,並 未延伸至顯示器實體區域的邊緣處。所使用無論是電漿、 液晶或是其他之技術係需要一個小型邊界於主動顯示區域 之邊緣附近,用以提供個別像素部件之相互連接並用以將 後方基板密封至前方基板。該邊緣可小至數厘米,但仍然 造成越過一方格顯示器之輕微的黑色邊帶。 許多不同的解決方案係針對此一問題而被提出,大部 分的解決方案係依賴大型光學或光纖影像引導件以平移或 1323351 擴大被產生在個別子顯示器之主動區域處的影像。 舉例而言,Hilsum之美國專利第4,139,261號係使用一 個由一束光纖所形成之楔形結構影像引導件,以擴大藉由 一平板顯示器所產生之影像,如此藉由鄰接已擴大之影像 ,介於兩個相鄰平板之間而由兩個平板之邊緣區域所形成 的間隙係不會爲吾人所看見。每個光纖之輸入端係與一像 素要件同尺寸或較之更小。該些光纖係在輸入端對準,其 具有該平面顯示器之個別像素要件,於是該顯示器之像素 結構係繼續存在至其影像擴大器之輸出平面。以此方式所 形成之其他影像引導件係可以使影像平移,以在一對相鄰 平板之間提供無邊界之鄰接。 在此一類型配置中所發生的一個問題係爲藉由外部反 射所造成的光損失。在例如是發光液晶(photoluminescent liquid crystal)、電致發光、或是有機發光二極體顯示器之 至少某種類型顯示器中,發光部件之放射性質係使得光線 將在核心/披覆介面處、以一個小於無損失之全內反射的 臨界角度而被發射進入至一個影像引導件之光纖或是其他 光線引導件之中。(應當注意的是,臨界角度被界定之狀 況係會影響入射光線是否必須超過或者小於發生全內反射 的臨界角度。熟習此項技藝之人士將理解的是,「臨界角 度(critical angle)」在此使用之狀況係如同在第四圖中所 顯示而將於下文中予以描述。在那狀況之中,入射光線係 必需以一個大於臨界角度的角度而到達,用以經受全內反 射。) 7 1323351 爲了克服此一問題,已爲吾人所提出者係爲使用一個 帶有一金屬化外側表面之光線引導件,其在核心一金屬介 面處提供鏡面反射。在這種例子之中,已提出者係爲,光 線引導件係甚至可爲中空者,如此可以在空氣-金屬介面 處提供鏡面反射。 然而,在金屬介面處之鏡面反射亦爲易損失者,並且 因爲數次此等反射係會發生在光線沿著影像引導件之光線 引導件傳播之時,在此一配置中之損失亦可能爲無法接受 者。 【發明內容】 本發明係提供了一種影像顯示器,其係包括有: 一個影像顯示裝置,其係具有一個像素部件陣列;以 及 一個影像引導件,其係具有一個光線傳送引導件陣列 ,光線傳送引導件之輸入端部係被配置以接收來自影像顯 示裝置之像素部件的光線,並且光線傳送引導件之輸出端 部係提供一個影像輸出表面; 其中每一個光線傳送引導件係包括有一個用以促進藉 由折射以及/或者全內反射之光線傳播的光線引導區域, 以及一個位在光線引導區域上而用以促進在區域-塗層介面 處之鏡面反射的反射性塗層。 本發明係涉及在沿著光線傳送引導件之長度上實質上 不同位置處使用鏡面反射以及全內反射/折射之光線傳送 1323351 引導件的反直覺步驟(counter-intuitive step),用以將光線 從像素部件處引導至影像輸出表面。當然,在使用全內反 射的實施例之中,銨層以及反射性塗層係可以同時出現在 引導件之整個長度上,而以上的其中一個或是另一個係具 有在沿著引導件之不同位置處的一種顯著效應。或者,在 其他實施例之中,披覆以及反射性塗層係可以出現於位在 引導件之長度上不同的、或是部分重疊的部分。 本發明的較佳實施例所認知的是,當光線沿著光線引 導件之長度而從較窄端部傳播朝向較寬端部之時,一種成 錐狀的光線引導件將會逐漸準直所引導之光線。此等認可 係容許以小於臨界角度所入射之光線可以一開始於披覆·塗 層介面處被鏡面反射的光線引導件能夠被使用,但是當光 線係藉由成錐狀的光線引導件而逐漸準直之時,其入射角 度係會增大以使其能夠(實質上)經受到藉由折射或全內 反射之無損失傳播。就此方面而論,光線引導件係可以被 說成是「自動_整(self-adjusting)」者。當然,已然處在 用於全內反射之適當角度的輸入光線應不會在其沿著光線 引導件進行傳播的任何部分處被鏡面反射。 然而,若不使用成錐狀之光線引導件的話,儘管準直 化並未發生,光線引導件係仍可能有效地接收以小於全內 反射之臨界角度爲入射角的光線。 舉例而言,雖然一種折射係數分級式結構係可以被使 用,較佳的情況係爲使用一種核心-鍍層結構,其係容許反 射性塗層能夠被製造在鍍層之上* 1323351 本發明亦認知到,從顯示器所發射的輸入光線並不需 要符合於光線引導件之輸入數値孔徑,此係因爲進入至光 線引導件中的所有光線在所有的狀況下係將被包含於其內 ,亦或是藉由鏡面反射或是全內反射皆然,並且係僅將於 輸出表面處離開光線引導件。此一配置對於下述顯示器應 用而言係爲重要者:光線未被反射,並且通過光線引導件 之壁部而離開的光線係可能會進入鄰近的引導件之中,而 致使對比損失以及影像退化。 即便光線引導件針對特定影像引導件設計而在使用中 爲彎曲者,此配置係仍可如上所述般地操作。如果彎曲係 爲以適當和緩的方式,則全內反射係可能會繼續。如果彎 曲半徑係降低至彎曲損失將變爲顯著的一種程度(在沒有 本發明的狀況下),在披覆-塗層介面處的鏡面反射係容許 可能會損耗之光線被加以回復。 在本發較佳實施例之中,每一個光線傳送引導件的輸 入端部係接收來自於一群個別主要顏色部件之光線,每一 個光線傳送引導件係被配置以混合來自於個別群主要顏色 部件的光線,以使得在一群主要顏色部件內的像素結構在 光線傳送引導件的輸出端部處係爲大致上不可識別者》 此係涉及使用影像引導件之光線傳送引導件的反直覺 步驟(counter-intuitive step),用以合倂在一群主要顏色部 件內之主要顏色像素部件的貢獻。 在使用影像引導件的前述系統之中,吾人係已努力的 是儘可能地維持影像顯示裝置之像素結構。舉例而言,在 1323351 美國專利第4,139,261號之中,至少一個光線傳送引導件係 針對每一像素部件而被提供。的確,針對每一像素部件而 使用多於一個光線傳送引導件所具有爲吾人所感知的優點 係爲,介於影像引導件與影像顯示裝置間的對準狀況爲較 不具關鍵性者。 然而,在影像顯示裝置之確切像素部件結構爲藉由影 像引導件而繼續存在至觀看平面的任何彩色顯示系統之中 ,影像顯示裝置之主觀擾亂主要顏色部件結構亦可以繼續 存在至觀看者。如此,在接近地檢查此一顯示器之時,觀 看者將會看到例如是個別的紅色、綠色、以及藍色部件, 而非形成爲這些部件之一組合而爲吾人所希求之色彩。 本發明之較佳實施例係藉由組合來自於一群位在一個 單一光線傳送引導件中之主要顏色部件的光線而爲相當簡 單的步驟,而解決了此一問題。當光線沿著光線傳送引導 件而通過之時,在主要顏色部件群內的部件結構係會失去 ,如此光線傳送引導件之輸出係爲一種處於藉由主要顏色 部件群所設定之亮度及色差程度的單一顏色。此一解決方 案對於空間解析度在事實上不會藉由主要顏色部件之組合 而損失的狀況而言係爲特別有用者。 雖然其他組合亦可以爲吾人所使用,較佳的情況是, 主要顏色部件係提供紅色、綠色、以及藍色發光。當然, 將爲吾人所了解的是,「主要顏色(primary colour)」一 詞並非意味對於色彩組之任何正式的或在科學上的定義, 而是使用在一特定影像顯示器中而容許不同輸出顏色能夠 被產生的組成色彩組。 1323351 在本發明更進一步的實施例之中,每一群主要顏色部 件係針對每一主要顏色而包括有一個像素部件。然而,在 其他實施例之中,每一群主要顏色部件係針對每—主要顏 色而包括有η個像素部件,其中n係爲大於1的整數。此 一配置係可以具有數項優點。舉例而言,在因具有故障像 素而造成較差良率的影像顯示裝置之中,冗餘程度係可以 被建立以使得η個像素部件能夠被分派至每一光線傳送引 導件,但僅有η - ρ個部件係會爲了顯示用途而被使用。 此係容許顯示器能夠在針對每一光線傳送引導件而言有最 多至Ρ個故障像素(在每一主要顔色之中)的狀況下得進 行操作。爲吾人所找到的另一項優點是每一像素部件係能 夠在m個不同的發光程度下操作,顯示器係包括有用於供 應像素資訊至諸群主要顏色部件的位址邏輯,以使得每一 個主要顏色能夠在mx η個不同發光程度下被顯示。易言 之,較高顏色解析度(可顯示顏色的數目)係可以爲吾人 所獲得,而此係較從個別像素部件之實質效能所能取得者 爲高。 ‘較佳的情況是,光線傳送引導件陣列係被配置以使得 位在影像輸出表面處的影像爲較影像顯示裝置所顯示之影 像爲大,以及/或者光線傳送引導件陣列係被配置以使得 位在影像輸出表面處的影像係相對於影像顯示裝置所顯示 之影像而側向地平移。 較佳的情況是,每一個光線傳送引導件係爲沿其長度 而均勻地成錐形者。 1323351 使用於光線引導件之材料係較佳爲如下所述者:核心 -係爲由一大致上透明玻璃或塑膠材料所製成;披覆係爲由 一大致上透明玻璃或塑膠材料所製成;以及反射性塗層係 爲由一金屬材料(例如是銀、鋁)或是一或多層介電材料 (例如是一種所謂的Bragg堆疊)所製成。 本發明亦提供了一種與一個具有一像素部件陣列之影 像顯示裝置一起使用的影像引導件,其係包括有: 一個光線傳送引導件陣列,該光線傳送引導件之輸入 端部係被配置以接收來自影像顯示裝置之像素部件的光線 % ,並且光線傳送引導件之輸出端部係提供一個影像線輸出 表面; 其中每一個光線傳送引導件係包括有一個用以促進藉 由折射以及/或者全內反射之光線傳播的光線引導區域, 以及一個位在光線引導區域上而用以促進在區域-塗層介面 處之鏡面反射的反射性塗層。 本發明亦提供了一種光線傳送引導件,其係包括有一 個用以促進藉由折射以及/或者全內反射之光線傳播的光 % 線引導區域,以及一個位在光線引導區域上而用以促進在 區域-塗層介面處之鏡面反射的反射性塗層。 本發明之其他不同個別方面及特點係被界定於隨附申 請專利範圍之中。來自申請專利範圍附屬項之特點係可以 與申請專利範圍獨立項之特點適當地相組合,且非僅爲在 申請專利範圍中所明確描述者。 13 “23351 【實施方式】 第一圖係爲一個排列式顯示器面板陣列的一個等角後 視圖。 該陣列係包括有在一水平方向上的四個顯示面板以及 在一垂直方向上的三個顯示面板。每一個顯不面板係包括 有一個光線發射表面1 0以及一個影像引導件2 0。 每一個光線發射表面1 0係被配置爲複數個像素或圖 像部件。在實際上,其係可以包括有例如是一個背光配置 '聚焦用、準直用、以及/或者均光用光學部件、·以及一 個液晶面板或類似部件,但是爲了圖示之說明淸楚起見, 大多部件係被予以省略。 每一個光線發射面板係顯示出一個將被顯示之整體影 像的諸部分。該等部分係代表在一個棋盤格狀配置中之相 鄰排列部。然而,因爲在光線發射表面1 〇之邊緣附近係 需要進行電子連接以及實體支承,其係無法在不留下一條 黑帶或「黑塊(black matrix)」於其之間的狀況下直接地 鄰接。如此,光線引導件2 0係被使用以增加來自每一光 線發射表面1 0處之影像尺寸,以使得發光引導件2 ◦之 輸出表面係可以被鄰接以形成一個連續的觀看表面。 此一配置係被顯示在第二圖之中,第二圖係爲第一圖 之陣列的前視等角視圖。在此,光線引導件2 0之輸出表 面係鄰接以便形成一個連續的觀看表面3 0。 第三圖係爲一個顯示器之側視圖,該顯示器係包括有 —個準直光源4 0 ' —個均光器5 0、一個液晶面板6 0 、以及一個光線引導件7 0。 1323351 準直光源4 0以及均光器5 0係以一種高度描繪的形 式被顯示,但其本身係形成習知技藝之一部份。被描繪說 明之特定均光器係包括有一個所謂「蒼蠅眼(fly,s eye)」 類型透鏡,用以提供液晶面板6 0所需之背光。 液晶面板6 0係可以爲一種使用白色或其他可視顏色 之背光、並且提供液晶圖像部件以針對顯示器之背光進行 調變之類型者。或者,液晶面板6 0係可以爲一種利用紫 外線背光、並於一磷光體陣列上對紫外光進行調變以產生 用於顯示之可見光的發光面板。當然,許多其他類型之光 線發射表面1 0係可以被使用,例如是有機發光二極體陣 列。 影像引導件7 0係包括有一光線傳送引導件8 0陣列 ,每一個光線傳送引導件8 0係將來自液晶面板6 0之一 特定區域的光線運載至一輸出表面9 0上之一相應特定區 域。如此施行,光線傳送引導件係被配置以互異,如此被 覆蓋於輸出表面9 0上的區域係實體上大於液晶面板6 0 上的影像顯示區域。如上所述,此係容許如同在第三圖中 所顯示之顯示器陣列能夠被鄰接而不會在觀看平面處有一 個難看的黑塊。 第四圖係爲一個光線傳送引導件8 0之側視圖。如同 所顯示之光線傳送引導件8 0在功能上係類似於一個光纖 ,而具有一個藉由披覆材料8 4所環繞之內部核心8 2, 核心以及披覆係具有適當的折射係數,以便促進在光纖內 的全內反射,只要入射光線的入射角大於一臨界角度即 15 1323351 可。披覆係藉由一個反射層8 6所環繞,該反射層8 6係 爲由例如是一金屬或合金層(例如是銀或鋁,其係爲藉由 例如是氣相沉積技術所沉積者)、或是形成一種所謂Bragg 堆疊之一系列介電材料所製成。 核心以及披覆係可以例如是由玻璃或是塑膠材料所製 成者。 在操作上,來自背光4 0以及均光器5 0之發光在進 入引導件8 0之前係會通過顯示器面板6 0的圖像部件。 輸入光線4 5係沿著引導件通過並朝向其輸出部9 0。在 圖示中,此係被顯示爲從圖示之左側至右側的傳播。引導 件之輸出端部係形成一個觀看表面,並且係可以藉由一個 擴散面板1 0 0所覆蓋。 在第四圖中,輸入光線4 5係被顯示一開始處於一個 小於臨界角度的角度。因此,全內反射並未發生,而是 在披覆·反射層邊界處發生鏡面反射。鏡面反射係被描繪顯 示爲一種反射1 0 0。一種第二鏡面反射1 0 2亦會發生 〇 然而,因爲引導件8 0之錐形造型,在每一鏡面反射 處,入射角度係會逐漸地增大,直到其超過臨界角度(^。爲 止。此係發生在第三反射104 (被加以描繪說明)處, 其所意指者係爲,反射1 0 4係爲一個實質上無損耗之全 內反射。隨後,反射(例如是一反射1 0 6 )係爲全內反 射,而縮減了其後之損耗。 1323351 當然,如果入射光線之一分量係爲以大於臨界角度切c 而入射,該分量將會藉由全內反射而沿著整個引導件進行 傳播。 因爲在引導件之輸出部9 0處的光線顯露係爲以大於 入射之臨界角度Pe的角度而藉由全內反射所優良地傳播者 ,準直效果係已爲吾人所達成。 將爲吾人所理解的是,並非所有的引導件係需要爲呈 錐形者(任至是任何一個均可,即便前述有利之準直操作 係可能無法爲吾人所獲得)。舉例而言,引導件之僅一輸 入部分可能爲呈錐形者。同樣地,並非必需使用一種核心· 披覆結構於引導件中,一種經由一反射性塗層以提供實質 上無損耗傳播而爲在徑向上分級式折射係數的結構(在圖 示中並未顯示出來)係可以爲吾人所使用。 雖然一個反射性塗層係已爲吾人所描述,在本發明之 某些實施例之中,並未有此等塗層爲吾人所使用。 第五圖係爲一光線傳送引導件8 0之另一描繪側視圖 。如同第四圖中所顯示者,第五圖所顯示之光線傳送引導 件8 0在功能上係相似於一個光纖,而具有一個藉由披覆 材料(甚至可以是空氣)所環繞之內部核心,核心以及披 覆係具有適當的折射係數,以便致使在光纖內的全內反射 。或者,引導件8 0係能夠以一種具有一反射性內側表面 之中空管件的形式所呈現,如此在引導件內的光線在其沿 著引導件而通過時係會經受多次鏡面反射。又或者,引導 件係能夠以一種實心透明材料(例如是玻璃或塑膠材料) 17 1323351 所製成,但具有一個反射性外側表面或塗層,舉例而言, · 例如是銀或鋁之金屬材料的塗層。同樣地,此於光線沿著 引導件通過之時係將會導致多次內部鏡面反射。或者,一 種分級的折射係數之結構係可以被使用。 如此,在操作中,來自背光4 0以及均光器5 0之發 光4 5係於進入引導件8 0之前而通過顯示器面板6 0之 圖像部件。光線係沿著引導件而通過,並且朝向其輸出部 9 0。在圖示中,此係被顯示爲於圖示中從左方至右方的 傳播。引導件之輸出端部係形成一個觀看表面,並且係可 籲 以藉由一個擴散面板1 0 0所覆蓋。 在第五圖中,一群之數個像素係形成了一個單一光線 傳送引導件的輸入部。個別像素係被描繪顯示爲於面板6 0中之小方塊》特別的是,像素係被配置成針對每一主要 顏色而爲一群η個像素,其中η係至少爲1。 在此一示例之中,主要顏色係爲紅色、綠色 '以及藍 色,雖然其他主要顏色係可以被替換使用。同樣地,針對 每一個主要顏色而具有相同數目的像素係假設不同顏色像 鲁 素之光線輸出程度爲大致上相配以提供所希求之組合顏色 者°易言之,「白平衡(white balance)」係爲正確者,雖 然爲吾人所注意到的是此並非必然需要來.自每—種顏色之 亮度爲相等,而僅需要一組適當的相對亮度程度即可。當 然,系統被設計爲針對在每一群中之每一主要顏色像素而 帶有相同數目係爲非必要者。舉例而言,如果一個顏色之 像素係爲較針對與其他顏色之適當平衡所需者爲亮,則其 可爲吾人所察覺以於每一群中使用較低的亮度。 18 【1323351 當來自該群像素之光線係沿著光線傳送引導件而傳播 之時,不同顏色係會被混合或均化,而形成—種合成顏色 以於輸出端部9 0處爲吾人所看見。如此,與傳統陰極射 線管或液晶顯示螢幕所不同的是,舉例而言,此係意指觀 看者不會察覺到主要顏色像素結構,縱使觀看者係接近地 觀察擴散屏幕1 0 0。 第六a圖至第六e圖係描繪說明了多個主要顏色圖像 部件於一光線傳送引導件之輸入部處被加以組合的配置。 在第六a圖之中,一主要像素群1 2 0係包括有4 8 個像素,此係爲針對每一主要顏色而包括有1 6個像素( 亦即n= 1 6 )。不同主要顏色係爲藉由不同個別遮蔽所 任意指明者。該群1 2 0係整體形成一個方形形狀。如此 ,爲了達成有效傳送進入一個光線傳送引導件,而在同時 避免來自相鄰群之干擾光線,光線傳送引導件係具有一個 方形截面的輸入部而實質上在尺寸上與該群1 2 0之實體 尺寸相符。 然而,光線傳送引導件在沿其整個長度上並不需要爲 方形截面者。事實上,如果一個圓形截面係被使用於除一 輸入部分及一輸出部分外的所有部分,使光線傳送引導件 更容易地彎曲(以使影像擴大以及/或者平移),或是獲 得沿著光線傳送引導件之更有效傳播係爲可能者。無論如 何,截面並不需要維持恆定,但是,如果此一改變係可能 造成在反射表面之方向上的改變,則爲了避免非吾人所希 望的反射損耗,較佳的情況係爲在截面形狀上的改變爲逐 1323351 漸者而非突然改變者,如此一個形狀能夠和緩地逐步形成 爲下一個所希求的截面形狀。在另一方面,如果在截面形 狀上的此一改變並未產生一個能夠使所傳送之光線進行反 射的表面,例如是一個從一較小截面至一較大截面的過渡 區域,則於截面上之突然改變係爲吾人所偏好者。 如此,無論在光線傳送引導件之中央部分的截面形狀 爲何,選擇在輸出部9 0處之截面形狀以符合特殊顯示器 之需求係爲可能者。第六b圖以及第六c圖係顯示出兩種 可能性,亦即爲矩形之輸出像素(第六b圖)以及方形之 輸出像素(第六c圖)。以此方式,輸出像素形狀(其通 常係爲藉由與顯示器一起使用之視訊檩準所決定者)係可 以獨立於面板6 0上之像素的實體佈局。 第六d圖以及第六e圖係描繪說明了此一配置是如何 可以其他方式所作動,其中第六d圖係描繪說明一主要顏 色像素群1 3 0,其中個別像素係爲與第六a圖中的形狀 相同,但是η現在等於1 2而形成一個矩形像素群。爲了 有效地相符,光線傳送引導件之輸入端部係爲矩形者。輸 出端部9 0係可以爲矩形者(在圖示中並未顯示出來), 但亦或可以爲方形者,如同在第六e圖中所顯示者,或者 可以爲吾人所希求之任何其他截面形狀。 第七圖係描繪說明了在一顯示器面板中的像素控制。 在一顯示器面板6 0之上,每一個光線傳送引導件( 在圖示中並未顯示出來)係接收來自於一群1 4 0爲2 1 個主要顏色像素(亦即n = 7)的光線。爲了圖示之說明 1323351 淸楚起見,僅有一個此群係被顯示》 假設每一主要顏色像素係可以在m個不同亮度程度下 操作。如果針對每一主要顏色係僅有一個像素被使用於每 一群1 40中,可取得之顏色數目係將爲m3。然而,在一 個針對每群140而帶有多於一個主要顏色像素的系統之 中,藉由個別地提出每一此等主要顏色像素於該群1 4 0 中,針對在作爲一整體之該群中的每一主要顏色而獲得m X η個不同亮度程度係爲可能者,如此給出m3 η 3個不同 的可用顏色。 此係可具有許多優點。最簡單的一個係爲,該配置係 可以提供一個能夠顯示較依據個別像素之光學/電子特性 爲可能者更多顏色的顯示器。在另一個示例的狀況之中, 一個顯示器係可以爲吾人所獲得,其中在每一光線傳送引 導件之輸出部處的輸出像素係具有m3種可能的顏色,但此 有限範圍係可以被校正以置於m 3 η 3個顏色之可能範圍內 而爲吾人所希求的任何位置處。校正係能夠以一種一個輸 出像素接著一個輸出像素的方式爲基礎而被施行,或者以 —種一個面板接著一個面板的方式爲基礎而被施行。如果 吾人希求以針對在一單一面板內或從一面板至另一面板或 者是二者而言能夠符合相應於所希求程度之顏色以及/或者 發光,此係可能爲非常有用者。 第七圖係描繪顯示出用於施行此一操作之邏輯。輸入 圖像資料係被供應至一個發光及顏色控制器1 5 0。發光 及顏色控制器1 5 0係將指示出必需被操作之主要顏色像 21 1323351 素之數目其所需程度的資料供應至一個像素選擇器1 6 Ο 。像素選擇器1 6 0係將指示出發光程度之電子信號供應 至該群1 4 0中的每一個像素。如此,連同發光及顏色控 制器1 5 0以及像素選擇器1 60—起包括有用於供應像 素資訊至主要顏色部件之諸群的位址邏輯,如此每一主要 顏色係可以在mx η個不同發光程度之任一發光程度下被 顯示出來。 假設在第一實施例中整個顯示器係必需在m3 η 3個顏 色的最大顏色解析度下進行操作。在此一狀況之中,發光 及顏色控制器1 5 0係接收針對三個主要顏色之每一主要 顏色而指出在0至((mxn) - 1 )之範圍中之一所需 程度的程度資訊。 針對每一個主要顏色而言,發光及顏色控制器係必需 將所需程度分派至該群140中之主要顏色的η個不同像 素。此一程序之施行係存在有許多方式,但是技術之選擇 對於觀看者在實際上所看到的東西而言係具有少許影響( 如果有的話),這是因爲光線傳送引導件之均光效應所致 〇 在一種技術之中,發光以及顏色控制器係可以針對每 一個主要顏色而將所需程度除以m並進行無條件捨去以提 供整數個將於其最大程度所發光的像素數目。餘數(如果 有的話)係形成該顏色之更進一步像素的一個程度。 在另一種技術之中,發光以及顏色控制器係可以針對 每一個主要顏色而將所需程度除以η並進行無條件捨去以 22 1323351 提供針對在該群中之該主要顏色之η個像素的每一個像素 而言之平均程度。餘數(如果有的話)係被附加至這些像 素之任一項素的程度。 像素選擇器係接收來自發光及顏色控制器1 5 0之程 度資訊,並且將諸程度分派至個別像素。此係可以使用一 種個別像素之使用的預定次序而經由一隨意之基礎所施行 〇 現在考慮僅有m3個顏色爲吾人所需求、但是處在於一 m3 η 3個顏色之範圍內的校準位置處的狀況。在此一狀況 之中,發光及顏色控制器1 5 0係接收用於每一主要顏色 之一「偏斜(offset)」程度,其係介於0與((mx (η -1))一1)之間。就此方面而言,發光及顏色控制器 係會附加目前所接收到針對每一主要顏色而將處於從0至 (m - 1 )之範圍中的程度。處理係接著如上所述般地繼 續施行。 與平板顯示器所相同的是,所有這些技術係可運用至 離散像素式顯示器,例如是由個別主要顏色發光部件(例 如是紅色、綠色、以及藍色發光二極體(L E D ))所形 成之佈告板。 典型地使用諸群個別紅色、綠色、以及藍色之主要顏 色發光二極體於每一個黑與白之像素的彩色佈告板以及廣 告顯示模組係可能因爲在個別顏色於眼睛之視覺感知限制 (例如是針對1.5mm像素之佈告板而言爲與顯示器之距離 小於大約3公尺)內的一個距離處進行觀看時,所造成在 23 1323351 感知上之降低影像品質而變得更糟。如果在一像素內的紅 色、綠色、以及藍色被均化的話,觀看距離之可用範圍將 被增大並且影像品質將被提昇。如果由小型發光二極體光 源所形成之已均化像素在尺寸上亦被增大以緊密琳接著附 近的像素的話,影像係可以被更進一步地改善。 此係可以使用一個例如是如上所述之一影像引導件的 均化部件而得爲吾人所達成。此一方式係可以被使用於利 用顔色子像素(例如是LED、EL、OLED、真空螢光、LCD )之任何顯示器。此一方式於大型像素資料佈告板的運用 係提供了一種達成全彩大型文字的方式而可以從接近於顯 示器處進行讀取。 此一配置係藉由附加被疊層或被置放在顯示器外側表 面上之塑膠裝飾板條陣列而提供了一種用於均化顏色子像 素的方法。相同的技術亦可以提供用於將被增大之發光區 域外觀尺寸的機構,用以容許像素能夠直接鄰接其附近像 素,而消除在觀看表面處介於諸像素間的黑色遮蔽物。 爲了說明此一技術,第八a圖以及第八b圖係以平面 圖而描繪說明了形成個別白色像素之兩群不同發光二極體 主要顏色部件的佈局。這些主要顏色部件群係可以使用一 種上述影像引導件之個別光線傳送引導件而被組合。 第九圖係描繪顯示出一個三部件式LED,或爲吾人 所知之LED三極管的平面圖,其係具有一個基板2 1 0以 及三個帶有個別連接導線2 3 0之正極2 2 0,該等正極 係提供了不同的顏色發光。在側視平面圖(參見第十圖) 24 1323351 中,此一配置係可以形成一個單一光線傳送引導件2 4 Ο 之輸入部,如此提供顏色均化的光限於輸出表面2 5 0處 ^ —種實質上透明的黏著劑或是陶質化合物2 6 0係可以 被使用以提供一光學以及實體連接於L E D配置與光線傳 送引導件之間。係爲吾人所注意到的是,在此一應用之中 並不需要影像引導件以提供一互異效應。 對於光學效率而爲有利的是如果光線引導件陣列之輸 入表面係大致上被設置有能夠接收並傳送影像光線之光線 引導件穿孔。因此,大致上截面爲方形的光線引導件係提 供極佳效能予圓形者。光線引導件之製造程序的本質係可 能需要稍微離開一種完美矩形形狀,例如是梯形或是不規 則六角形,但是只要截面爲大致上矩形者即可,最大封裝 效率之需求將實質上爲吾人所符合。另外,在帶有圓形或 六角形反射件之LED或LEP (發光聚合物;Light Emitting Polymer)的例子之中,效率將藉由使引導件輸入 穿孔之形狀及尺寸符合調變器之形狀及尺寸而被增強。 顯示器使用者的眼睛係習慣於觀看一種在顯示器觀看 或輸出表面上而爲大致上矩形之圖像部件的直線陣列,如 此,有利的狀況係爲如果光線引導件陣列之輸出表面滿足 此一條件,而光線引導件之輸出截面係爲大致上矩形截面 (或者是六角形或梯形)並且大致上接近地塞擠。此一配 置係具有在例如是圓形截面之光線引導件陣列上而爲相當 優良的視覺特性。 如果光線引導件陣列係將適合以棋盤方式排列成爲一 25 1323351 個大型組件,以便形成一個非常大的顯示表面,則光線引 導件之輸入端部係必需在尺寸上爲較輸出端部爲小者,以 使得陣列之輸出表面在尺寸上能夠大於輸入表面所附接之 顯示標的者。 針對視覺效能於一觀看角度的範圍處而爲相當重要的 是,介於藉由一光線引導件所發射之光線的強度與光線所 發射之角度間的關係在光線引導件陣列中之所有點處係爲 相同者。再者,一般而言爲有利的是,如果最大強度係爲 在正交於光線引導件輸出表面的平面上爲吾人所觀察到。 如果光線引導件係被形成爲一種符合棋盤排列之需求 的陣列,則僅有在一陣列中的中央引導件將會於形式上爲 線性者。所有其他引導件將被彎曲成一種s型形式,而彎 曲的程度係會從陣列之中央至邊緣而逐漸地增大。s型形 式係爲所需要者,此係因爲如果前述強度對上角度需求將 被滿足的話’則所必須者係爲,光線引導件之輸出端部係 必需實質上垂直於光線引導件陣列的平面。 如果影像引導件之輸入及輸出間距在尺寸上係爲不同 者,則有兩種手段可以達成此一狀況。其一,光線引導件 之截面積係被維持恆定,且其擠塞密度在輸入端部及輸出 端部處係爲不同者,或者,其截面積於輸入端部及輸出端 部處係爲不同者,並且截面積之轉變係發生在輸入端部與 輸出端部間的某些點處。這些手段的第二種係符合上文中 所發現在輸入端部及輸出端部處爲大致上接近地擠塞之需 求。 26 1323351 有利的是如果光線引導件於其長度上發生有彎曲之部 · 分的截面係爲大致上圓形者。同樣地’爲了產生用以滿足 角強度分布特徵所需要的s型形狀’光線引導件在其長度 之一實質部分上的截面積係應爲較輸出細部的截面積爲小 ,否則光線引導件將不會令人滿意地擠塞。此一轉變係可 以藉由使輸入端部之實質上方形截面轉變爲一種圓形截面 而使其直徑大致上相等於輸入端部之側邊的尺寸所達成’ 或者可能地轉變爲一種均等的橢圓形’如果輸入端部在截 面上係爲矩形的話。在接近於輸出端部處轉變爲—較大截 ® 面係可以藉由一種成階狀方式所達成。 光線引導件形狀對於進入及離開光線引導件之光線的 幾何光路而言所將具有之效應現在將參照第十一圖至第十 四圖來加以說明。第十一圖所說明的是’相干光束(其針 對目前討論之目的而言係爲一種具有極微小直徑且爲準直 的光束)離開一個具平行側邊之光線引導件的方向將爲光 線引導件之長度的函數。可爲吾人所見者’依據光線引導 件之長度,光路將以相對於光線引導件軸線而言爲相同於 ® 其所進入之角度而離開,但是係可以在一個向上方向或是 向下方向上。因此,光束方向係呈現出一種相對於光線引 導件長度而言之雙穩定性(bistability)。 第十二圖係說明了一個真實的準直光束但其寬度相當 於光線引導件之寬度的狀況。光束之不同部分現在將具有 沿著光線引導件之不同路徑,而結果是,雖然介於光線引 導件之長度與在一個向上或是向下方向上離開光線引導件 27 1323351 之光束的分量間係仍有一顯著的從屬關係,針對一單一光 路觀察所得之不連續雙穩定行爲係已然損失。然而,所有 的光路仍然以其相對於光線引導件軸線的入射角度離開。 第十三圖係說明了在光線引導件爲呈錐狀而非具平行 側邊的狀況。在此一狀況之中,經由在光線引導件之長度 方向上的改變而在出口方向上的一種相似的、連續的改變 係如同針對具平行側邊之光線引導件般而爲吾人所觀察到 ,但是現在光路的方向係會改變,而此係取決於在錐形區 段內所發生之反射的次數而定。如果錐形之角度的1/2 係爲0,並且相對於錐形軸線之光束入射角係爲0,則光 路將離開光線引導件之角度的模數將爲I 4 _ 2 0 X η丨 ,其中η係爲反射的次數。錐形區段之作用在反射次數增 加時係會逐漸使光線準直。 第十四圖係說明了 一種彎曲式、具平行側邊之光線引 導件對於有限直徑之光束的效應。彎曲之效應係爲更困難 以計算者。具有直徑相當於光線引導件之直徑的光束係於 左側入射。將爲吾人所見者係爲,反射之次數以及反射發 生的角度係堅定地取決於光束內之光路的位置,並且光路 離開光線引導件之方向及角度現在將於一廣泛範圍中進行 改變。 這些簡單的例子係驗證了 一光線引導件之不同截面的 某些性質。然而,在真實顯示器中的狀況係爲較這些簡單 示例所暗示者更爲複雜。一般來說進入光線引導件的光線 所具有之強度分布vs.角度係爲對稱於光線引導件輸入端部 28 1323351 之軸線,並且係塡滿光線引導件之數値孔徑。使用數千條 光路之三維模擬硏究所顯示出的是,離開光線引導件之彎 曲部分的光線係有一種指向離開彎曲部分之曲率中心的趨 勢。 在某些狀況之中,在沿著引導件之截面以及錐形結構 上包括有一種成階狀的改變係可能爲有利者。此係被說明 於第十五圖之中。此將合倂針對光學角度輸出而言爲理想 的一個方面以及針對在模製程序中模流而言爲理想的另一 個方面。其二者將必需符合一種標準螢幕格式。作爲一個 示例,錐形部分係可能想要爲具一特定角度及長度,但模 流係可能想要在輸出部處爲一較大孔徑。在此之上係爲標 準LC面板像素之規定,其係界定出依據棋盤排列式螢幕尺 寸及格式之像素放大倍率。 在光線引導件之輸出部處使用一個平直區段係可以被 使用以藉由提供一個較錐形輸出部爲大之截面(在圖示中 爲高度誇張顯示者)而符合這些需求。以此方式,針對像 素而言之最佳光學輸出係可以被「放大(magnified)」, .用以符合螢幕尺寸及格式,而不會改變角度分布。 一種*進一步的可能性係爲,錐形部分係可以沿著不 同軸線而具有不同角度,舉例而言,錐形部分係可以在垂 直方向上延伸離開到達端部平直區段,從而產生更爲準直 之光線,但不會在水平方向上完全地延伸,從而取得所需 之最大觀看角度。 在另一種配置之中,輸出平直區段係被座落在錐形輸 29 1323351 出部之前。此一配置係可以在一種引導件之模擬之中爲吾 人所考慮,其中引導件係模擬接近至針對一個1 5吋X G A面板之4x0.297mm輸入像素而爲吾人所提出M=l.l放大 倍率而言之所預期數値的像素放大及平移。平直區段之效 應係被製作爲更有效率者,此係因爲來自輸出彎曲部分的 角度尙未爲錐形部分所準直並如此係爲較大者所致。此所 意指者係爲,在平直區段的一個短長度(.〜4mm)上,沿著 平直區段之角度係實質上會混合。針對一被座落在錐形部 分之後的平直區段而言,相對於引導件軸線之角度係爲更 小的,並如此在其撞擊於平直引導件之壁部上的頻率係爲 較長者。此係爲以下事實之複合:引導件之截面在輸出錐 形部分之後亦已被增大。從引導件之中央處開始,一種針 對光路前進之簡化的方程式係藉由使沿著引導件之長度相 關於引導件之寬度而被給定。 一般而言,根據本發明諸實施例之光線引導件在一個 從輸入部朝向輸出部的方向上進行考慮時,其係沿其長度 之至少一部份而可以具有以下型態: _彎曲;平直非錐形;錐形;平直非錐形 •彎曲;錐形;平直非錐形 彎曲、平直非錐形、錐形之形式亦爲可能者,但是並 非爲較佳者,此係因爲將諸最終錐形區段固定在一起以形 成一輸出影像平面可能有困難所致。 第十六A圖以及第十六B圖係分別說明了一個平直區 段座落在錐形區段之後以及在錐形區段之前的狀況。這些 30 1323351 圖示係針對這兩種狀況而顯示出從平直區段之中央處至引 導件之側邊處的路徑長度。在第十六A圖的狀況之中,較 寬的引導件以及更爲準直之光線係意指光路撞擊在壁部上 而沿著引導件上處於一個較第十六圖者爲更大的距離處。 此係可以被稱之爲「混合頻率(mixing frequency)」。在 第十六B圖的狀況之中,從彎曲部分之未改變角度係針對 相同長度的平直區段而經受四次反射。針對所描述行爲之 一簡單雛型係藉由以下表示所給定:tan0 uy=w/L。從此表 示式可以看出的是,在輸出錐形部分之前的一個平直區段 就角度混合而言係勝過一個後錐形平直區段。 光線傳送引導件之陣列係可以較佳爲於輸入部及輸出 部處使用低係數黏膠而被膠著在一起以形成一個影像引導 件。如果引導件係具有反射性外層於膠著位置處,則黏膠 係可以爲具任何折射係數者,並且甚至可以爲吸收性者。 在沒有反射層被提供的狀況中,爲了提供良好的光學 效率,吾人所需要的是確定輸入彎曲半徑係被界定爲符合 在通過膠著區域(如果可運用的話)以及輸出錐形部分之 後的背光分布。重要的是,輸入彎曲部分以及輸入錐形部 分(在空氣中)應可以接受被引導通過膠著區域之光線的 數値孔徑,即使入射角係已由於在引導件·空氣介面處之臨 界角度中的降低(與引導件-膠著區域介面相較之下)而藉 由這些特點而被增大。如果輸出彎曲半徑係等於或大於輸 入彎曲半徑,則光線將會被引導件所容納。 前述輸出截面轉變係涉及在引導件之尺寸上的增大。 31 1323351 易言之’就效應而言,在「系統」之孔徑上的增大且就其 本身而論係可以被使用以使光線準直。其統馭之基礎方程 式係起因於針對一無損失系統之輻射率不變性。照度係被 界定爲Ε=Φ/Α,其中Φ係爲通量,並且A係爲孔徑面積。 因此,針對一無損失系統而言, E2/E1=A1/A2 二照度E2及£!亦可以依據光度L而被定義。 E]= L]Sin2 α Ε2= π L2sin2 δ 其中,α以及(5係爲光線之錐形的半角度,並且L係 爲光度。L,以及L2係相關於在不同介面處之折射係數,並 且在任何系統中係爲保持不變者。針對一個小於輸出孔徑 A2的輸入孔徑A,而言,並且針對相同的折射係數而言,其 關係變爲 E2/E!=sin2 a / sin2 δ 此所意指的是,通量從Α,至Α2之擴大係可以使用引 導件之一錐形區段而被利用以降低光線從α至某種較小角 度5的角度分布。進入此一錐形區段之光線將被重新引導 朝向軸線,從而降低相對於軸線的角度。在一陣列中之引 導件之錐形區段的軸線係可以爲平行者,從而針對所有的 引導件而言,藉由抵銷彎曲引導件所致使光線平移之角度 分布增大而產生一種正交於顯示器表面之界定光線分布。 此係提供使得從帶有不同位移之一引導件陣列所顯露出之 光線的角度分布能夠均等之能力。 然而,依據一簡單最大角度程度而界定出光線之角度 32 1323351 分布並不足夠。而是,個別方向之相對強度(光度)係必 , 需針對不同引導件而爲實質上均等者,特別是針對界定出 介於兩個陣列間之邊界者。易言之,在從顯示器之法線起 算之一給定角度處,來自每一像素之光度應爲實質上均等 者。此所意指者係爲,在引導件之輸出部處的角度分布應 爲一緩慢改變而爲界定良好的角度分布。可選擇的是,此 係接著可以被傳送通過一個擴散器,用以產生一種針對螢 幕上的所有點而言甚至更爲均勻的光度。引導件之彎曲形 狀(亦即彎曲部分)的效應係於本文中依照其對於角度分 鲁 布的效應來加以討論。 兩個因素係決定了光線在其通過一個引導件時之角度 分布的相對強度。一個因素係爲在輸入部處的角度分布, 而另一因素係爲在輸入部處的位置。在輸入孔徑上不同點 處所進入以通過一個建構爲彎曲式引導件的兩個平行光路 將以不同角度離開引導件。考慮一個光路爲一種帶有一界 定良好中央方向之光線的極微小狹窄錐形。針對輸入通過 孔徑之上之每一組相同光線方向而言,一範圍之角度將被 鲁 輸出。此係因爲引導件之壁部係可以被考慮爲鏡子之一極 微小具平面的網狀系統,而每一個鏡子係處於一特定角度 。每一次反射將改變入射至其上之一光路的方向。由於引 導件之s型形狀所造成通量的位移將會由於一系列全內反 射而使其整體重新引導朝向引導件之局部軸線。此所意指 者係爲’到達輸出彎曲部分處的通量將實質上被引導(當 然,帶有一角度分布)沿著引導件之中間平直區段的方向 。輸出彎曲部分將會重新引導某些(但非爲全部)光線在 33 1323351 所需要的輸出方向上。針對此一理由,輸出平直區段係被 座落在輸出彎曲部分之後。其係具有一個平行於顯示器之 法線的軸線,並且引導光線分布於此一方向上。當極微小 鏡子之角度範圍增大之時,光線分布的範圍將會增大。輸 出錐形區段係被使用以藉由在所需方向上進行準直而降低 此一範圍,而作爲一種使得輸出於引導件陣列(不同彎曲 部分或是具有不同組極微小鏡子之s型形狀)上爲均等的 機構。 從上所述,可爲吾人所看到的是,在彎曲部分之後的 平直區段係決定了輸出光束之軸向對稱性,並且在彎曲部 分之後的錐形區段係決定了光束的角度程度。至少,錐形 區段係可以爲在截面積上的一種成階狀改變,如果最寬可 能的角度程度係爲所需求者。 第十七A圖以及第十七B圖係說明了平直以及錐形區 段對於從一個座落在一光線引導件陣列之角落處(亦即在 光線引導件之顯著曲率出現處)的光線引導件處所離開光 線之角度分布的影響。第十七A圖係說明了這兩個結構出 現的狀況,其中角度分布係大致上爲均勻者。此所提供之 角度分布係均等於大致上未帶有曲率之「中央」光線引導 件的角度分布。相反地,第十七B圖係說明了相同的狀況 ’但爲未出現有輸出平直區段且未出現有輸出錐形區段, 易言之’光線係於彎曲部分之後直接地離開。可以爲吾人 所看到的是’第十七A圖之「最佳化」輸出將於任何觀看 角度下而在顯示器之表面上提供更佳的均勻性。因此,所 描述的配置係有利地使用光線引導件之錐狀以及平直區段 34 1323351 於彎曲部分之後,以實質上破壞在光束中的相干性,並用 以致使強度分布在繞著光線引導件之輸出部分的軸線而爲 大致上角對稱者。 【圖式簡單說明】 (一)圖式部分 本發明之諸實施例現在將參照伴隨圖示而僅藉由示例 的方式來加以描述,其中該圖示係爲: 第一圖係爲一個顯示器面板之排列式陣列的一個等角 後視圖, 第二圖係爲第一圖之陣列的等角前視圖; 第三圖係爲包括有一光源、一均光器、一顯示器面板 、以及一影像引導件之顯示器的側視圖; 第四圖係爲一個光線傳送引導件的側視圖; 第五圖係爲一個光線傳送引導件的另一個側視圖; 第六a圖至第六e圖係描繪說明了多個主要顏色圖像 部件於一光線傳送引導件之輸入部處被加以組合的配置; 第七圖係描繪說明了在一顯示器面板中的像素控制; 第八a圖以及第八b圖係描繪說明了發光像素成形; 第九圖係爲一個LED三極管的平面圖; 第十圖係爲第八圖之LED三極管的側視平面圖,其係 帶有一個相關聯的光線引導件; 第十一圖係爲在不同長度之光線引導件中,具有極微 小直徑(infinitesimal diameter)之準直光束的光路圖; 35 1323351 第十二圖係爲在不同長度之光線引導件中,具有有限 直徑(Hnite diameter)之準直光束的光路圖; 第十三圖係爲在不同長度之錐形光線引導件中,具有 有限直徑(Hnite diameter)之準直光束的光路圖; 第十四圖係爲在不同長度之彎曲式平行側邊光線引導 件中,具有有限直徑(Hnite diameter)之準直光束的光路 圖, 第十五圖係爲包括有一錐形區段、而之後係爲一平直 區段之光線引導件配置的描繪圖示; 第十六Α圖以及第十六Β圖係爲光路圖,其係說明了一 個光束從一個光線引導件之一彎曲區段處行進進入至一個錐 形區段、之後進入一平直區段的行爲(第十六A圖),或是 光束從一個光線引導件之一彎曲區段處行進進入至一個平直 區段、之後進入一錐形區段的行爲(第十六B圖); 第十七A圖以及第十七B圖係爲來自一光線引導件之 光線在藉由錐形和平直端部區段所最佳化後之角度分布的 角度強度分布圖(第十七A圖),以及來自一光線引導件 之光線在不經由此等最佳化之角度分布的角度強度分布圖 (第十七B圖)。 (二)元件符號說明 10 光線發射表面 2 0 影像引導件 3 0 觀看表面 4 0 準直光源/背光 36 1323351 4 5 輸入光線/發光 5 0 均光器 6 0 液晶面板 7 0 光線引導件 8 0 光線傳送引導件 8 2 核心 8 4 披覆 8 6 反射層 9 0 輸出部 1 0 0 擴散面板/反射 1 0 2 第二鏡面反射 1 0 4 第三反射 1 0 6 反射 1 5 0 發光及顏色控制器 1 6 0 像素選擇器 2 1 0 基板 2 2 0 正極 2 3 0 連接導線 2 4 0 光線傳送引導件 2 5 0 輸出表面 2 6 0 黏著劑/陶質化合物1323351 TECHNICAL FIELD OF THE INVENTION The present invention relates to displays. BACKGROUND OF THE INVENTION Techniques behind flat panel displays such as liquid crystal displays or plasma displays have advanced to the stage where a single display is economically manufactured to a screen size of about a modest home television. In order to increase the display size of a single unit display over this level, a large amount of cost, lower manufacturing yield, and other important technical problems are introduced. Therefore, in order to provide a larger display, a hybrid technique has been developed whereby a plurality of smaller rectangular displays are arranged in a checkerboard pattern to form the desired overall size. For example, a diagonally 1 5 inch 2x2 mosaic array display would provide a diagonal 30 inch display with appropriate electronic components to convert pixel information to the appropriate sub-display. One disadvantage of this type of configuration is that the active area of one of the displays, i.e., the area on the front surface of the display that displays pixel information, does not extend to the edge of the physical area of the display. The use of either plasma, liquid crystal or other techniques requires a small border near the edge of the active display area to provide interconnection of individual pixel components and to seal the rear substrate to the front substrate. The edge can be as small as a few centimeters, but still causes a slight black sideband across the square display. Many different solutions have been proposed for this problem, and most of the solutions rely on large optical or fiber optic image guides to pan or 1323351 to magnify images that are produced at the active areas of individual sub-displays. For example, U.S. Patent No. 4,139,261 to Hilsum uses a wedge-shaped image guide formed by a bundle of optical fibers to expand the image produced by a flat panel display by abutting the enlarged image. The gap formed between the two adjacent plates and formed by the edge regions of the two plates is not visible to us. The input of each fiber is the same size or smaller than a pixel element. The fibers are aligned at the input with individual pixel elements of the flat panel display, and the pixel structure of the display continues to exist to the output plane of its image expander. Other image guides formed in this manner can translate the image to provide a borderless abutment between a pair of adjacent plates. One problem that occurs in this type of configuration is the loss of light caused by external reflections. In at least some type of display, such as a photoluminescent liquid crystal, an electroluminescent, or an organic light emitting diode display, the radioactive quality of the light emitting component is such that light will be at the core/cladding interface, with a Less than the critical angle of total internal reflection without loss, it is emitted into the fiber or other light guide of an image guide. (It should be noted that the critical angle is defined as a condition that affects whether the incident ray must exceed or be less than the critical angle at which total internal reflection occurs. Those skilled in the art will understand that the "critical angle" is The condition of this use is as will be described below in the fourth figure. In that case, the incident ray must arrive at an angle greater than the critical angle to withstand total internal reflection.) 7 1323351 To overcome this problem, it has been proposed for us to use a light guide with a metallized outer surface that provides specular reflection at the core-metal interface. Among such examples, it has been proposed that the light guides can even be hollow so that specular reflection can be provided at the air-metal interface. However, the specular reflection at the metal interface is also a lossy one, and since several such reflections occur when the light propagates along the light guide of the image guide, the loss in this configuration may also be Unacceptable. SUMMARY OF THE INVENTION The present invention provides an image display comprising: an image display device having an array of pixel components; and an image guide having an array of light transmission guides for guiding light transmission The input end of the device is configured to receive light from the pixel component of the image display device, and the output end of the light delivery guide provides an image output surface; wherein each of the light delivery guides includes a A light guiding region that propagates through the refracting and/or total internal reflection light, and a reflective coating positioned on the light guiding region to promote specular reflection at the region-coating interface. The present invention relates to a counter-intuitive step of transmitting a 1323351 guide using specular reflection and total internal reflection/refraction of light at substantially different locations along the length of the light transmission guide for illuminating the light The pixel component is directed to the image output surface. Of course, in embodiments where total internal reflection is used, the ammonium layer and the reflective coating can occur simultaneously over the entire length of the guide, while one or the other of the above has a difference along the guide. A significant effect at the location. Alternatively, in other embodiments, the drape and reflective coatings may be present in different or partially overlapping portions of the length of the guide. It is recognized by a preferred embodiment of the present invention that a tapered light guide will gradually collimate as the light travels from the narrower end toward the wider end along the length of the light guide. Guide the light. These approvals allow light rays incident at less than the critical angle to be specularly reflected at the coating/coating interface to be used, but when the light is gradually formed by a tapered light guide At the time of collimation, the angle of incidence is increased to enable (substantially) to be transmitted without loss by refraction or total internal reflection. In this regard, the light guide can be said to be "self-adjusting". Of course, the input ray that is already at the appropriate angle for total internal reflection should not be specularly reflected at any portion of its propagation along the ray guide. However, if a tapered light guide is not used, although the collimation does not occur, the light guide system may effectively receive light having an incident angle smaller than the critical angle of total internal reflection. For example, although a refractive index hierarchical structure can be used, it is preferred to use a core-plated structure that allows the reflective coating to be fabricated over the coating. * 1323351 The input light emitted from the display does not need to conform to the input aperture of the light guide, because all the light entering the light guide will be included in all conditions, or This is true by specular or total internal reflection and will only leave the light guide at the output surface. This configuration is important for display applications where the light is not reflected and the light exiting through the wall of the light guide may enter adjacent guides, causing contrast loss and image degradation. . Even if the light guide is curved in use for a particular image guide design, this configuration can still operate as described above. If the bending is in a proper and gentle manner, the total internal reflection system may continue. If the radius of curvature is reduced to such an extent that the bending loss will become significant (in the absence of the present invention), the specular reflection at the drape-coating interface allows light that may be lost to be recovered. In a preferred embodiment of the invention, the input end of each of the light-transmissive guides receives light from a plurality of individual primary color components, each of the light-transferring guides being configured to mix the primary color components from the individual groups Light rays such that the pixel structure within a group of primary color components is substantially unrecognizable at the output end of the light-transmitting guide. This is a counter-intuitive step involving the light-transmitting guide using the image guide (counter -intuitive step), which is used to merge the contributions of the main color pixel components within a group of primary color components. Among the foregoing systems using image guides, it has been our intention to maintain the pixel structure of the image display device as much as possible. For example, in US Pat. No. 4,139,261, at least one light-transmitting guide is provided for each pixel component. Indeed, the use of more than one light-transmissive guide for each pixel component has the advantage that is perceived by us as the alignment between the image guide and the image display device is less critical. However, in the case where the exact pixel component structure of the image display device is any color display system that continues to be present to the viewing plane by the image guide, the subjectively disturbing primary color component structure of the image display device can continue to exist to the viewer. Thus, when the display is closely inspected, the viewer will see, for example, individual red, green, and blue components, rather than forming a color that is desirable for one of these components. The preferred embodiment of the present invention solves this problem by combining light from a group of primary color components located in a single light delivery guide. When the light passes along the light transmitting guide, the component structure in the main color component group is lost, and the output of the light transmitting guide is a degree of brightness and chromatic aberration set by the main color component group. Single color. This solution is particularly useful for situations where spatial resolution is not actually lost by the combination of primary color components. While other combinations may also be used by us, it is preferred that the primary color components provide red, green, and blue illumination. Of course, what we will understand is that the term "primary colour" does not mean any formal or scientific definition of a color group, but rather allows for different output colors in a particular image display. A set of constituent colors that can be produced. 1323351 In a still further embodiment of the invention, each group of primary color components includes one pixel component for each primary color. However, in other embodiments, each group of primary color components includes n pixel components for each primary color, where n is an integer greater than one. This configuration can have several advantages. For example, in an image display device that results in poor yield due to defective pixels, the degree of redundancy can be established such that n pixel components can be assigned to each of the light transmission guides, but only η - ρ components are used for display purposes. This allows the display to operate with up to one defective pixel (in each primary color) for each light delivery guide. Another advantage found for us is that each pixel component is capable of operating at m different levels of illumination, and the display includes address logic for supplying pixel information to the primary color components of the clusters such that each primary Colors can be displayed at mx η different levels of illumination. In other words, higher color resolution (the number of colors that can be displayed) can be obtained by us, and this is higher than the actual performance of individual pixel components. Preferably, the light transmission guide array is configured such that the image at the image output surface is larger than the image displayed by the image display device, and/or the light delivery guide array is configured such that The image positioned at the image output surface is translated laterally relative to the image displayed by the image display device. Preferably, each of the light transmitting guides is uniformly tapered along its length. 1323351 The material used for the light guide is preferably as follows: the core is made of a substantially transparent glass or plastic material; the cover is made of a substantially transparent glass or plastic material. And the reflective coating is made of a metallic material (such as silver, aluminum) or one or more dielectric materials (such as a so-called Bragg stack). The present invention also provides an image guide for use with an image display device having an array of pixel components, comprising: an array of light delivery guides, the input end of the light delivery guide being configured to receive The light source from the pixel component of the image display device, and the output end of the light transmission guide provides an image line output surface; wherein each of the light transmission guides includes a light source for facilitating refraction and/or internal A light guiding region that propagates from the reflected light, and a reflective coating positioned on the light guiding region to promote specular reflection at the region-coating interface. The present invention also provides a light transmission guide comprising a light-line guiding region for promoting light propagation by refraction and/or total internal reflection, and a position on the light guiding region for promoting A reflective coating that is specularly reflected at the area-coating interface. Other various aspects and features of the present invention are defined in the scope of the accompanying application. Features from the scope of the patent application scope may be appropriately combined with the characteristics of the independent scope of the patent application, and are not specifically described in the scope of the patent application. 13 "23351 [Embodiment] The first figure is an isometric rear view of an array of arranged display panels. The array includes four display panels in one horizontal direction and three displays in a vertical direction. Each of the display panels includes a light emitting surface 10 and an image guide 20. Each light emitting surface 10 is configured as a plurality of pixels or image components. In practice, the system can Including, for example, a backlight configuration 'focusing, collimating, and/or homogenizing optical components, and a liquid crystal panel or the like, but for the sake of illustration, most of the components are omitted. Each of the light-emitting panels displays portions of the overall image to be displayed. These portions represent adjacent alignments in a checkerboard configuration. However, because near the edge of the light-emitting surface 1 It is necessary to make electronic connections as well as physical support, which cannot be left without leaving a black belt or a "black matrix" between them. In the case of direct adjacency. Thus, light guides 20 are used to increase the image size from each of the light emitting surfaces 10 such that the output surfaces of the light guides 2 can be contiguous to form a continuous viewing surface. This configuration is shown in the second figure, which is a front isometric view of the array of the first figure. Here, the output surfaces of the light guides 20 are contiguous to form a continuous viewing surface 30. The third figure is a side view of a display including a collimated light source 40', a halogen 50, a liquid crystal panel 60, and a light guide 70. 1323351 The collimated light source 40 and the homogenizer 50 are shown in a highly depicted form, but are themselves part of the conventional art. The particular averaging device depicted is characterized by a so-called "fly, s eye" type lens for providing the backlight required for the liquid crystal panel 60. The liquid crystal panel 60 can be a type that uses a backlight of white or other visible color and provides a liquid crystal image component to be modulated for the backlight of the display. Alternatively, the liquid crystal panel 60 may be a light-emitting panel that utilizes an ultraviolet backlight and modulates ultraviolet light on a phosphor array to produce visible light for display. Of course, many other types of light emitting surface 10 can be used, such as an array of organic light emitting diodes. The image guide 70 includes an array of light-transmitting guides 80, each of which transmits light from a specific area of the liquid crystal panel 60 to a corresponding specific area on an output surface 90. . In this manner, the light-transmitting guides are arranged to be different from each other such that the area covered on the output surface 90 is physically larger than the image display area on the liquid crystal panel 60. As noted above, this allows the display array as shown in the third figure to be contiguous without an unsightly black block at the viewing plane. The fourth figure is a side view of a light transmission guide 80. As shown, the light-transmitting guide 80 is functionally similar to an optical fiber, and has an inner core 8 2 surrounded by a covering material 84, and the core and the covering have appropriate refractive indices to facilitate Total internal reflection in the fiber, as long as the incident angle of incident light is greater than a critical angle of 15 1323351. The cladding is surrounded by a reflective layer 86 which is, for example, a metal or alloy layer (for example, silver or aluminum, which is deposited by, for example, vapor deposition techniques). Or a series of dielectric materials called a Bragg stack. The core and the draping system can be made, for example, of glass or plastic materials. In operation, the illumination from the backlight 40 and the homogenizer 50 will pass through the image component of the display panel 60 before entering the guide 80. The input ray 4 5 is passed along the guide and towards its output 90. In the illustration, this is shown as propagating from the left to the right of the figure. The output end of the guide forms a viewing surface and is covered by a diffusing panel 100. In the fourth figure, the input ray 45 is displayed at an angle that is initially less than the critical angle. Therefore, total internal reflection does not occur, but specular reflection occurs at the boundary of the coating and reflection layer. The specular reflection is depicted as a reflection of 100. A second specular reflection 1 0 2 may also occur. However, because of the tapered shape of the guide member 80, at each specular reflection, the angle of incidence gradually increases until it exceeds the critical angle (^. This occurs at a third reflection 104 (illustrated), which means that the reflection 1 0 4 is a substantially lossless total internal reflection. Subsequently, the reflection (eg, a reflection 1 0) 6) is total internal reflection, and reduces the subsequent loss. 1323351 Of course, if one component of the incident ray is incident at a c-cut angle greater than the critical angle, the component will be guided along the whole by total internal reflection. The piece is propagated. Since the light exposure at the output portion 90 of the guide is excellently spread by total internal reflection at an angle larger than the critical angle Pe of the incident, the collimation effect has been achieved. It will be understood by us that not all guides need to be tapered (anything can be any, even if the aforementioned advantageous collimation system may not be available to us). For example, guiding Piece Only one input portion may be tapered. Similarly, it is not necessary to use a core-clad structure in the guide, a graded refraction in the radial direction via a reflective coating to provide substantially lossless propagation. The structure of the coefficients (not shown in the drawings) can be used by us. Although a reflective coating has been described for my purposes, in some embodiments of the invention, there is no such coating. The layer is for use by us. The fifth figure is another drawing side view of a light transmitting guide 80. As shown in the fourth figure, the light transmitting guide 80 shown in the fifth figure is functionally Similar to an optical fiber, with an inner core surrounded by a covering material (or even air), the core and the cladding have appropriate refractive indices to cause total internal reflection within the fiber. Or, guides 80 can be presented in the form of a hollow tubular member having a reflective inner surface such that light within the guide undergoes multiple mirrors as it passes along the guide Or, the guide member can be made of a solid transparent material (for example, glass or plastic material) 17 1323351, but with a reflective outer surface or coating, for example, for example, silver or aluminum. A coating of a metallic material. Similarly, this will result in multiple internal specular reflections as the light passes along the guide. Alternatively, a hierarchical refractive index structure can be used. Thus, in operation, The backlight 40 and the illumination 45 of the homogenizer 50 are passed through the image member of the display panel 60 before entering the guide 80. The light passes through the guide and faces the output 90. In the illustration, this is shown as propagating from the left to the right in the illustration. The output end of the guide forms a viewing surface and can be covered by a diffusion panel 100. In the fifth figure, a plurality of pixels of a group form an input portion of a single light transmission guide. The individual pixels are depicted as small squares in panel 60. In particular, the pixels are configured to be a group of n pixels for each primary color, where η is at least one. In this example, the main colors are red, green ', and blue, although other major colors can be used instead. Similarly, having the same number of pixels for each primary color assumes that the color output of different colors like Lu Su is roughly matched to provide the desired combination color. "White balance" The system is correct, although what I have noticed is that this is not necessarily necessary. Since the brightness of each color is equal, only a suitable set of relative brightness levels is required. Of course, the system is designed to be non-essential for each major color pixel in each group with the same number. For example, if the pixels of one color are brighter than those needed for proper balance with other colors, then it can be perceived by us to use lower brightness in each group. 18 [1323351] When the light from the group of pixels propagates along the light-transmitting guide, the different colors are mixed or homogenized to form a composite color for the output at the output end 90. . Thus, unlike conventional cathode ray tubes or liquid crystal display screens, for example, this means that the viewer does not perceive the primary color pixel structure, even though the viewer is closely viewing the diffused screen 100. The sixth to sixth e-graphs depict configurations in which a plurality of primary color image components are combined at the input of a light transmission guide. In the sixth a diagram, a main pixel group 1 2 0 includes 48 pixels, which is 16 pixels (i.e., n = 16) for each main color. The different primary colors are arbitrarily specified by different individual shades. The group 1 20 is integrally formed into a square shape. Thus, in order to achieve efficient transmission into a light-transmissive guide while avoiding interfering light from adjacent groups, the light-transmissive guide has a square-section input portion substantially in size with the group 1 2 0 The physical dimensions match. However, the light transmitting guide does not need to be a square cross section along its entire length. In fact, if a circular section is used for all but one of the input section and an output section, the light-transmissive guides are more easily bent (to enlarge and/or translate the image), or More efficient propagation of light delivery guides is possible. In any case, the cross-section does not need to be kept constant, but if this change may cause a change in the direction of the reflective surface, in order to avoid the reflection loss that is not desired, the preferred case is on the cross-sectional shape. Changed to 1323351 progressive rather than sudden change, such a shape can gradually form into the next desired cross-sectional shape. On the other hand, if such a change in the cross-sectional shape does not produce a surface capable of reflecting the transmitted light, for example, a transition from a small section to a larger section, then on the section The sudden change is the one we prefer. Thus, regardless of the cross-sectional shape of the central portion of the light transmitting guide, it is possible to select the cross-sectional shape at the output portion 90 to meet the requirements of the special display. The sixth b and sixth c diagrams show two possibilities, namely a rectangular output pixel (sixth b) and a square output pixel (sixth c). In this manner, the output pixel shape (which is typically determined by the video standard used with the display) can be independent of the physical layout of the pixels on panel 60. The sixth d and sixth e diagrams illustrate how this configuration can be actuated in other ways, wherein the sixth d diagram depicts a primary color pixel group 1 300, wherein the individual pixels are the sixth The shapes in the figure are the same, but η is now equal to 1 2 to form a rectangular pixel group. In order to effectively match, the input end of the light transmission guide is rectangular. The output end 90 can be rectangular (not shown in the figure), but it can also be square, as shown in the sixth e diagram, or any other section that we can hope for. shape. The seventh diagram depicts pixel control in a display panel. Above a display panel 60, each of the light-transmissive guides (not shown) receives light from a group of 140 to 2 1 primary color pixels (i.e., n = 7). For the sake of illustration, 1323351, only one of these groups is displayed. Assume that each primary color pixel can operate at m different brightness levels. If only one pixel is used for each of the primary colors for each primary color, the number of colors that can be obtained will be m3. However, in a system with more than one primary color pixel for each group 140, each such primary color pixel is individually presented in the group 1 4 0 for the group as a whole It is possible to obtain m X η different degrees of brightness for each of the main colors, thus giving m3 η 3 different usable colors. This system can have many advantages. The simplest one is that the configuration provides a display that can display more colors than possible depending on the optical/electronic characteristics of the individual pixels. In another exemplary situation, a display can be obtained by us, wherein the output pixels at the output of each light-transmissive guide have m3 possible colors, but this limited range can be corrected It is placed within the possible range of m 3 η 3 colors and is at any position that we are hoping for. The correction system can be implemented on the basis of one output pixel followed by one output pixel, or based on a panel and a panel. This may be very useful if one wishes to be able to conform to the desired color and/or illumination in a single panel or from a panel to another panel or both. The seventh diagram depicts the logic used to perform this operation. The input image data is supplied to a lighting and color controller 150. The illuminating and color controller 150 sends a data indicating the required degree of the main color to be manipulated to a pixel selector 1 6 Ο . The pixel selector 160 supplies an electronic signal indicating the degree of light emission to each of the pixels of the group 104. Thus, along with the illumination and color controller 150 and the pixel selector 160, the address logic for supplying the pixel information to the groups of the main color components is included, such that each of the main colors can be illuminated at mx η Any degree of luminosity is displayed. It is assumed that in the first embodiment, the entire display system must operate at the maximum color resolution of m3 η 3 colors. In this case, the illumination and color controller 150 receives information about the degree required to be one of the ranges of 0 to ((mxn) - 1 ) for each of the three primary colors. . For each primary color, the illumination and color controller must assign the desired degree to the n different pixels of the primary color in the group 140. There are many ways in which this program can be implemented, but the choice of technology has little effect (if any) on what the viewer actually sees, because of the uniform light effect of the light-transmitting guide. In one technique, the illumination and color controller can divide the desired degree by m for each primary color and unconditionally round off to provide an integer number of pixels that will be illuminated to the greatest extent. The remainder, if any, is a degree that forms further pixels of the color. In another technique, the illumination and color controller can divide the desired degree by η for each primary color and unconditionally round off to provide 22 1323351 for the n pixels of the primary color in the group. The average degree of each pixel. The remainder, if any, is attached to any of these pixels. The pixel selector receives the degree information from the illumination and color controller 150 and assigns the extents to the individual pixels. This can be performed on a random basis using a predetermined order of use of individual pixels. Now consider that only m3 colors are required for us, but at a calibration position within the range of one m3 η 3 colors situation. In this case, the illumination and color controller 150 receives a degree of "offset" for each of the primary colors, which is between 0 and ((mx (η -1)) 1) Between. In this regard, the illumination and color controllers will add to the extent that they are currently received in the range from 0 to (m - 1 ) for each primary color. The processing system then continues as described above. As with flat panel displays, all of these techniques can be applied to discrete pixel displays, such as those formed by individual primary color illuminating components such as red, green, and blue light emitting diodes (LEDs). board. Typically, the use of individual red, green, and blue primary color LEDs for each of the black and white pixels of the color billboard and the advertising display module may be due to the visual perception of the individual color in the eye ( For example, it is for 1. When viewing a 5mm pixel billboard at a distance of less than about 3 meters from the display, it is worse for the perceived degradation of image quality at 23 1323351. If the red, green, and blue in one pixel are averaged, the available range of viewing distance will be increased and the image quality will be improved. The image system can be further improved if the homogenized pixels formed by the small light-emitting diode light source are also increased in size to closely match the adjacent pixels. This can be achieved by using a homogenizing member such as one of the image guides as described above. This method can be used for any display that utilizes color sub-pixels (e.g., LED, EL, OLED, vacuum fluorescent, LCD). This approach to large pixel data billboards provides a way to achieve full color large text and can be read from close to the display. This configuration provides a method for homogenizing color sub-pixels by attaching an array of plastic decorative slats that are laminated or placed on the outside of the display. The same technique can also provide a mechanism for the apparent size of the illuminated area to allow pixels to directly abut nearby pixels while eliminating black masks between pixels at the viewing surface. To illustrate this technique, the eighth and eighth diagrams depict the layout of the two major groups of different light-emitting diode main color components forming individual white pixels in a plan view. These primary color component groups can be combined using individual light delivery guides of the above image guides. The ninth drawing depicts a plan view of a three-part LED, or LED triode known to us, having a substrate 2 1 0 and three positive electrodes 2 2 0 with individual connecting wires 2 3 0, which The positive electrode system provides different color luminescence. In a side plan view (see Fig. 10) 24 1323351, this configuration can form an input of a single light-transmissive guide 2 4 , such that the color-homed light is limited to the output surface 2 0 0 A substantially transparent adhesive or ceramic compound 260 can be used to provide an optical and physical connection between the LED configuration and the light delivery guide. What I have noticed is that no image guides are needed in this application to provide a mutually exclusive effect. It is advantageous for optical efficiency if the input surface of the array of light guides is substantially provided with a light guide perforation capable of receiving and transmitting image light. Therefore, a light guide member having a substantially square cross section provides excellent performance to a circular person. The nature of the manufacturing process of the light guide may require a slight departure from a perfectly rectangular shape, such as a trapezoidal or irregular hexagon, but as long as the cross section is substantially rectangular, the need for maximum packaging efficiency will be substantially ours. meets the. In addition, in the case of an LED or LEP (Light Emitting Polymer) with a circular or hexagonal reflector, the efficiency will be such that the shape and size of the guide input perforation conforms to the shape of the modulator and The size is enhanced. The user's eyes are accustomed to viewing a linear array of substantially rectangular image components on the viewing or output surface of the display, such that, if the output surface of the array of light guides meets this condition, The output section of the light guide is generally rectangular in cross section (either hexagonal or trapezoidal) and is substantially close to the ground. This configuration has a relatively good visual characteristic on an array of light guides, e.g., circular in cross section. If the array of ray guides is to be arranged in a checkerboard pattern to form a 25 1323351 large component to form a very large display surface, the input end of the ray guide must be smaller in size than the output end. So that the output surface of the array can be larger in size than the display target to which the input surface is attached. It is important that the visual performance is at a range of viewing angles at all points in the array of light guides between the intensity of the light emitted by a light guide and the angle at which the light is emitted. The same is true. Furthermore, it is generally advantageous if the maximum intensity is observed on a plane orthogonal to the output surface of the light guide. If the ray guides are formed into an array that meets the needs of the checkerboard arrangement, then only the central guides in an array will be linear in form. All other guides will be bent into an s-shaped form, and the degree of bending will gradually increase from the center to the edge of the array. The s-form is required, because if the aforementioned intensity-to-upper angle requirements are to be met, then the necessity is that the output end of the ray guide must be substantially perpendicular to the plane of the ray guide array. . If the input and output spacing of the image guides are different in size, there are two ways to achieve this. First, the cross-sectional area of the light guiding member is maintained constant, and the congestion density is different at the input end and the output end, or the cross-sectional area thereof is different at the input end and the output end. And the change in cross-sectional area occurs at some point between the input end and the output end. The second type of these means meets the above-mentioned need for substantially close congestion at the input and output ends. 26 1323351 It is advantageous if the light guide member has a curved portion at its length. The cross section of the light guide is substantially circular. Similarly, in order to generate the s-shaped shape required to satisfy the angular intensity distribution feature, the cross-sectional area of the light guide member on a substantial portion of its length should be smaller than the cross-sectional area of the output detail, otherwise the light guide will Will not satisfactorily congested. This transformation can be achieved by transforming the substantially square cross section of the input end into a circular cross section such that its diameter is substantially equal to the size of the sides of the input end or may be converted into an equal ellipse Shape 'If the input end is rectangular in cross section. The transition to a larger cut-off face near the output end can be achieved in a stepped manner. The effect that the shape of the light guide will have on the geometrical path of light entering and exiting the light guide will now be described with reference to Figures 11 through 14. What is illustrated in Figure 11 is that the 'coherent beam (which is a beam with a very small diameter and collimated for the purposes of the present discussion) will exit the ray guide with parallel sides and will guide the light. A function of the length of the piece. It can be seen by us. Depending on the length of the light guide, the light path will exit at the same angle as the axis of the light guide, but it can be in an upward or downward direction. Therefore, the beam direction exhibits a bistability with respect to the length of the light guide. The twelfth figure illustrates a true collimated beam but with a width comparable to the width of the ray guide. The different portions of the beam will now have different paths along the ray guide, with the result that although the length of the ray guide is between the component of the beam exiting the ray guide 27 1323351 in an upward or downward direction There is a significant affiliation, and the discontinuous bistable behavior observed for a single optical path has been lost. However, all of the light paths are still separated by their angle of incidence with respect to the axis of the light guide. The thirteenth figure illustrates the condition in which the light guides are tapered rather than having parallel sides. In this situation, a similar, continuous change in the exit direction via a change in the length direction of the light guide is observed for the light guide with parallel sides, But now the direction of the light path will change, depending on the number of reflections that occur within the tapered section. If 1/2 of the angle of the taper is 0 and the incident angle of the beam with respect to the cone axis is 0, the modulus of the angle at which the optical path will leave the ray guide will be I 4 _ 2 0 X η丨, Where η is the number of reflections. The effect of the tapered section is to gradually align the light as the number of reflections increases. Figure 14 illustrates the effect of a curved, parallel-side light guide on a finite diameter beam. The effect of bending is more difficult to calculate. A beam having a diameter corresponding to the diameter of the light guide is incident on the left side. It will be seen by us that the number of reflections and the angle at which the reflection occurs are determined by the position of the light path within the beam, and the direction and angle of the light path away from the light guide will now vary over a wide range. These simple examples verify certain properties of different sections of a light guide. However, the conditions in the real display are more complicated than those suggested by these simple examples. Generally, the intensity of light entering the light guide has a distribution of strength vs. The angle is symmetrical about the axis of the light guide input end 28 1323351 and is the number of apertures that fill the light guide. A three-dimensional simulation using thousands of optical paths shows that the light exiting the curved portion of the ray guide has a tendency to point away from the center of curvature of the curved portion. In some situations, it may be advantageous to include a stepped change in the section along the guide and the tapered structure. This is illustrated in the fifteenth figure. This would be an ideal aspect for optical angle output and another ideal for mold flow in a molding process. Both will have to conform to a standard screen format. As an example, the tapered portion may be intended to have a particular angle and length, but the mold system may want to have a larger aperture at the output. Above this is the standard LC panel pixel specification, which defines the pixel magnification based on the checkerboard screen size and format. The use of a straight section at the output of the light guide can be used to meet these needs by providing a larger cross-section of the tapered output (highly exaggerated in the illustration). In this way, the best optical output for a pixel can be "magnified". Used to match the screen size and format without changing the angular distribution. A further possibility is that the tapered portions can have different angles along different axes, for example, the tapered portion can extend in a vertical direction away from reaching the straight portion of the end, thereby producing a more Collimate the light, but does not extend completely horizontally to achieve the maximum viewing angle required. In another configuration, the output straight section is seated before the cone output 29 1323351. This configuration can be considered by us in the simulation of a guide, where the guide is simulated close to 4x0 for a 15 吋 X G A panel. 297mm input pixels and I proposed M=l. l Magnification and translation of the expected number of pixels in terms of magnification. The effect of the straight section is made more efficient because the angle 来自 from the output bend is not collimated for the tapered portion and is thus made larger. This means that the line is a short length in the straight section (. On ~4mm), it will mix substantially along the angle of the straight section. For a straight section that is seated behind the tapered portion, the angle with respect to the axis of the guide is smaller, and thus the frequency at which it impinges on the wall of the straight guide is Senior citizens. This is a combination of the fact that the cross section of the guide has also been increased after the output of the tapered portion. Starting from the center of the guide, a simplified equation for the advancement of the optical path is given by the length along the guide relative to the width of the guide. In general, a light guide according to embodiments of the present invention may have at least a portion along its length when considered in a direction from the input portion toward the output portion: _bend; flat Straight non-tapered; tapered; straight non-conical • curved; tapered; flat non-conical curved, straight non-tapered, tapered form is also possible, but not preferred, this is This can be difficult because the final tapered sections are held together to form an output image plane. Fig. 16A and Fig. 16B respectively illustrate the condition in which a straight section is seated behind the tapered section and before the tapered section. These 30 1323351 diagrams show the path length from the center of the straight section to the side of the guide for both conditions. In the case of Fig. 16A, a wider guide and a more collimated light means that the optical path impinges on the wall and is at a greater distance along the guide than in a sixteenth figure. At the office. This system can be called "mixing frequency". Among the conditions of Fig. 16B, the unchanging angle from the curved portion is subjected to four reflections for the straight section of the same length. A simple prototype for the described behavior is given by the following representation: tan0 uy=w/L. As can be seen from this expression, a straight section before the output tapered portion outperforms a rear tapered straight section in terms of angular mixing. The array of light transmitting guides may preferably be glued together at the input and output portions using low coefficient adhesive to form an image guide. If the guide has a reflective outer layer at the glue location, the adhesive system can be any refractive index and can even be absorbent. In the absence of a reflective layer being provided, in order to provide good optical efficiency, what is needed is to determine that the input bend radius is defined to conform to the backlight distribution after passing through the gluing region (if applicable) and the output tapered portion. . It is important that the input bend and the input taper (in air) should accept the number of apertures of the light that is directed through the glued area, even if the angle of incidence has been due to the critical angle at the guide/air interface. The reduction (as compared to the guide-adhesive area interface) is increased by these features. If the output bend radius is equal to or greater than the input bend radius, the light will be contained by the guide. The aforementioned output cross-section transition involves an increase in the size of the guide. 31 1323351 In other words, in terms of effect, the increase in the aperture of the "system" and, in its own right, can be used to align the light. The basic equation for its rectification is due to the invariance of the emissivity for a lossless system. The illuminance is defined as Ε = Φ / Α, where Φ is the flux and A is the aperture area. Therefore, for a lossless system, E2/E1=A1/A2 2 illuminance E2 and £! can also be defined in terms of luminosity L. E]= L]Sin2 α Ε2= π L2sin2 δ where α and (5 are the half angles of the cone of light, and L is the luminosity. L, and L2 are related to the refractive index at different interfaces, and In any system, it remains unchanged. For an input aperture A smaller than the output aperture A2, and for the same refractive index, the relationship becomes E2/E!=sin2 a / sin2 δ It is meant that the expansion of the flux from Α to Α 2 can be utilized using a tapered section of the guide to reduce the angular distribution of light from α to a certain smaller angle 5. Entering this tapered zone The rays of the segment will be redirected towards the axis, thereby reducing the angle with respect to the axis. The axis of the tapered section of the guide in an array may be parallel, for all guides, by means of The pin bending guide causes an increase in the angular distribution of the light translation to produce a defined light distribution orthogonal to the surface of the display. This provides for equal angular distribution of light emerging from an array of guides with different displacements. Ability However, it is not sufficient to define the angle of the light 32 1323351 according to a simple maximum angle. However, the relative intensity (luminosity) of the individual directions is mandatory and needs to be substantially equal for different guides, especially for Defining the boundary between the two arrays. In other words, at a given angle from the normal of the display, the luminosity from each pixel should be substantially equal. The angular distribution at the output of the guide should be a slow change to define a good angular distribution. Alternatively, the system can then be transmitted through a diffuser to produce a point for all points on the screen. Even more uniform luminosity. The effect of the curved shape (ie, the curved portion) of the guide is discussed herein in terms of its effect on the angle of the ruble. Two factors determine the light passing through it. The relative intensity of the angular distribution at the time of the guide. One factor is the angular distribution at the input and the other is the position at the input. Entering at different points on the input aperture to exit the guide at different angles through two parallel optical paths constructed as curved guides. Consider an optical path as a very narrow narrow cone with a light defining a good central direction. For each input of the same ray direction above the aperture, a range of angles will be output. This is because the wall of the guide can be considered as a very planar planar mesh system. Each mirror is at a specific angle. Each reflection will change the direction of the light path incident on it. The displacement of the flux due to the s-shaped shape of the guide will be due to a series of total internal reflections. Redirecting toward the local axis of the guide. This means that the flux at the end of the output bend will be substantially guided (of course, with an angular distribution) along the middle straight section of the guide. . The output bend will redirect some, but not all, of the light in the desired output direction of 33 1323351. For this reason, the output straight section is positioned behind the output bend. It has an axis parallel to the normal of the display and directs the light to be distributed in one direction. As the angular extent of a very small mirror increases, the range of light distribution will increase. The output tapered section is used to reduce this range by collimating in the desired direction, as an output type for the array of guides (different curved sections or s-shaped shapes with different sets of tiny mirrors) ) is an equal institution. From the above, it can be seen that the straight section after the curved portion determines the axial symmetry of the output beam, and the tapered section after the curved portion determines the angle of the beam. degree. At the very least, the tapered section can be a stepwise change in cross-sectional area if the widest possible degree of angle is desired. Figures 17A and 17B illustrate the light of a straight and tapered section for light from a corner of an array of light guides (i.e., where the significant curvature of the light guide appears) The effect of the angular distribution of the light exiting the guide. The seventeenth A diagram illustrates the situation in which the two structures appear, wherein the angular distribution is substantially uniform. This provides an angular distribution that is equal to the angular distribution of a "central" ray guide that is substantially uncurved. Conversely, the seventeenth B-B illustrates the same condition 'but that the output straight section does not appear and the output tapered section does not appear, it is easy to say that the light rays are directly left after the curved portion. What we can see is that the "optimized" output of Figure 17A will provide better uniformity on the surface of the display at any viewing angle. Thus, the described configuration advantageously uses the tapered and straight sections 34 1323351 of the light guide after the curved portion to substantially destroy the coherence in the beam and to cause the intensity to be distributed around the light guide The axis of the output portion is substantially angularly symmetric. BRIEF DESCRIPTION OF THE DRAWINGS (I) Illustrative Embodiments of the present invention will now be described by way of example only with reference to the accompanying drawings in which: An isometric rear view of the array of arrays, the second diagram is an isometric front view of the array of the first diagram; the third diagram includes a light source, a homogenizer, a display panel, and an image guide a side view of the display; the fourth view is a side view of a light transmission guide; the fifth figure is another side view of a light transmission guide; the sixth to sixth e drawings depict more a configuration in which the primary color image components are combined at the input of a light transmission guide; the seventh diagram depicts the pixel control in a display panel; the eighth and eighth b diagrams depict The illuminating pixel is formed; the ninth is a plan view of an LED triode; the tenth is a side plan view of the LED triode of the eighth figure, with an associated ray guide; The figure is an optical path diagram of a collimated beam having an infinitesimal diameter among light guides of different lengths; 35 1323351 The twelfth figure is a finite diameter in a light guide of different lengths (Hnite The optical path diagram of the collimated beam of the diameter; the thirteenth diagram is the optical path diagram of the collimated beam with a finite diameter (Hnite diameter) in the tapered ray guides of different lengths; the fourteenth figure is different In the curved parallel side ray guide of length, the optical path diagram of the collimated beam having a finite diameter (Hnite diameter), the fifteenth figure includes a tapered section and then a straight section A depiction of the arrangement of the light guides; the sixteenth and sixteenth views are light path diagrams illustrating a beam traveling from a curved section of a light guide into a tapered section And then enter the behavior of a straight section (figure 16A), or the beam travels from a curved section of a light guide into a straight section and then into a tapered zone The behavior of the segment (Fig. 16B); the 17th and 17th B are the angular distribution of the light from a ray guide after being optimized by the tapered and straight end sections The angular intensity profile (Fig. 17A), and the angular intensity profile of the light from a ray guide distributed at an angle that is not optimized by this (Fig. 17B). (2) Symbol Description 10 Light Emitting Surface 2 0 Image Guide 3 0 Viewing Surface 4 0 Collimated Light Source/Backlight 36 1323351 4 5 Input Light/Light 5 0 Light Leveler 6 0 Liquid Crystal Panel 7 0 Light Guide 8 0 Light Transmitter Guide 8 2 Core 8 4 Cover 8 6 Reflector 9 0 Output 1 0 0 Diffusion Panel / Reflection 1 0 2 Second Specular Reflection 1 0 4 Third Reflection 1 0 6 Reflection 1 5 0 Illumination and Color Control 1 6 0 pixel selector 2 1 0 substrate 2 2 0 positive 2 3 0 connecting wire 2 4 0 light transmitting guide 2 5 0 output surface 2 6 0 adhesive/ceramic compound

3737

Claims (1)

1323351 拾、申請專利範圍 J 一… …....../ 1、 一種光線傳送引導件陣列,其係沿其長度之至少 一部份爲成錐狀者,以便於其輸入端部處具有一個較其輸 出端部處爲小的截面積,並且具有s形狀,該光線傳送引 導件陣列係包括促進藉由折射以及/或者全內反射之光線 傳播的先線引導區域’該光線引導區域包含第一材料的核 心’該第一材料係由第二材料所圍繞,其中第一材料的折 射率係大於第二材料的折射率。 2、 如申請專利範圍第1項之光線傳送引導件陣列, · 其中沿其長度之至少一部份爲成錐狀者,以便於其輸入端 部處具有一個較其輸出端部處爲小的截面積,並且包含從 其輸入端部至其輸出端部的方向上之一個彎曲區域,該彎 曲區域之後係爲一個錐形區域,而錐形區域之後係爲一個 平直非錐形區域,因此提供了 S型的形狀。 3'根據申請專利範圍第2項所述之光線傳送引導件 陣列,其包括一個於彎曲區域與錐形區域之間的平直非錐 型區域。 鲁 4、 根據申請專利範圍第1,2或3項所述之光線傳 送引導件陣列,其中該第二材料係空氣。 5、 根據申請專利範圍第1項至第3項中任何一項所 述之光線傳送引導件惲列,其沿其長度而爲實質上均勻地 呈錐狀者。 6、 根據申請專利範圍第1項至第3項中任何一項所 述之光線傳送引導件陣列’其中,其於截面區域中具有一 38 1323351 種呈階梯狀的變化。 7、 根據申請專利範圍第1項所述之光線傳送引導件 陣列,其中引導件之輸入端部與輸出端部係以非吸收性膠 膠粘在一起,該非吸收性膠較佳的是具有低折射率。 8、 根據申請專利範圍第1項至第3項中任何一項所 述之光線傳送引導件陣列,其中,該第一材料係實質上呈 透明的玻璃或塑膠材料。 9、 根據申請專利範圍第1項或第7項所述之光線傳 送引導件陣列,其中,該第二材料係實質上呈透明的玻璃 # 或塑膠材料。 1 0、根據申請專利範圍第1項至第3項中任何一項 所述之光線傳送引導件陣列,其中,光線引導區域係具有 在徑向上分級之折射係數,以便促進藉由折射所施行之光 線引導。 1 1、根據申請專利範圍第1項至第3項中任何一項 所述之光線傳送引導件陣列,其中,該反射性塗層係爲由 一金屬材料所製成者。 _ 1 2、根據申請專利範圍第1項至第3項中任何一項 所述之光線傳送引導件陣列,其中,該塗層係由一或多層 介電材料所形成。 1 3、根據申請專利範圍第1項至第3項中任何一項 所述之光線傳送引導件陣列,其具有方形之輸出端部。 1 4、根據申請專利範圍第1項至第3項中任何一項 所述之光線傳送引導件陣列,其具有矩形 '多角形、或是 39 1323351 梯形之輸出端部。 1 5、一種影像顯示器,其係包括有: 一個影像顯示裝置,其係具有一個像素部件陣列:以 及 一個影像引導件,其係具有一個光線傳送引導件陣列 ,每一個光線傳送引導件係沿其長度之至少一部份爲成錐 狀者,以便於其輸入端部處具有一個較其輸出端部處爲小 的截面積,該光線傳送引導件之輸入端部係被配置以接收 來自影像顯示裝置之像素部件的光線,並且光線傳送引導 件之輸出端部係提供一個影像線輸出表面; 其中每一個光線傳送引導件係包括有一個用以促進藉 由折射以及/或者全內反射之光線傳播的光線引導區域, 以及一個位在光線引導區域上而用以促進在區域-塗層介面 處之鏡面反射的反射性塗層。 1 6、根據申請專利範圍第1 5項所述之顯示器,其 中,至少某些光線傳送引導件係在一個從其輸入端部至其 輸出端部的方向上包括有一個彎曲區域,該彎曲區域之後 係爲一個錐形區域,而錐形區域之後係爲一個平直非錐形區 域。 1 7、根據申請專利範圍第1 5項或第1 6項所述之 顯示器,其中,至少某些光線傳送引導件在平行於引導件 之縱向軸線的不同平面中具有不同程度之錐狀。 1 8、根據申請專利範圍第1 5項或第1 6項所述之 顯示器,其中,像素部件係包括有提供紅色、綠色、以及 1323351 藍色發光之主要顏色部件。 1 9、根據申請專利範圍第1 5項或第1 6項所述之 顯示器,其中,光線傳送引導件陣列係被配置成使得位在 影像輸出表面處的影像較影像顯示裝置所顯示的影像爲大 〇 2 0、根據申請專利範圍第1 9項所述之顯示器,其 中,光線傳送引導件之輸出端部係成棋盤格狀,用以形成 位在影像輸出表面處之大致上接近密集之陣列。 2 1、根據申請專利範圍第1 5項或第1 6項所述之 顯示器,其中,光線傳送引導件之輸入端部係成棋盤格狀 ,用以形成位在影像顯示裝置處之一大致上接近密集之陣 列。 2 2、根據申請專利範圍第1 5項或第1 6項所述之 顯示器,其中,光線傳送引導件陣列係被配置成使得位在 影像輸出表面處的影像能夠相對於藉由影像顯示裝置所顯 示的影像而側向地平移。 2 3、根據申請專利範圍第1 5項或第1 6項所述之 顯示器,其中,每一個光線傳送引導件的輸入端部係接收 來自於一群個別主要顏色部件之光線,每一個光線傳送引 導件係被配置以混合來自於主要顏色部件個別群的光線, 以使得在一群主要顏色部件內的像素結構在光線傳送引導 件的輸出端部處係爲大致上不可識別者。 2 4、根據申請專利範圍第2 3項所述之顯示器,其 中’每一群主要顏色部件係針對每一主要顏色而包括有一 41 1323351 個像素部件。 2 5、根據申請專利範圍第2 3項所述之顯示器,其 中’每一群主要顏色部件係針對每一主要顏色而包括有η 個像素部件,其中η係爲大於1的整數。 2 6、根據申請專利範圍第2 5項所述之顯示器,其 中’每一像素部件係能夠在m個不同的發光程度下操作, 顯示器係包括有用於供應像素資訊至諸群主要顏色部件的 定址邏輯,以使得每一個主要顏色能夠在m X η個不同發 光程度的任一個發光程度下顯示。 籲 2 7、根據申請專利範圍第1 5項或第1 6項所述之 顯示器’其係包括被安置在影像引導件之輸出處的擴散屏幕 〇 2 8、根據申請專利範圍第1 5項或第1 6項所述之 顯示器,其中,光線傳送引導件之輸入端部以及輸出端部 係具有不同的個別截面形狀。 2 9、根據申請專利範圍第1 5項或第1 6項所述之 顯示器,其中,該等像素部件係爲離散式發光裝置。 鲁 3 0、根據申請專利範圍第2 9項所述之顯示器,其 中,該發光裝置係爲半導體裝置。 31、根據申請專利範圍第15項或第16項所述之 顯示器,其中,該影像顯示裝置包括光線調變像素之平面 陣列以及背光配置。 3 2、根據申請專利範圍第1 5項或第1 6項所述之 顯示器,其中該顯示器具有配置爲諸群主要顔色部件的像 42 1323351 素部件陣列;以及 一個影像引導件,其係具有一個光線傳送引導件陣列 ’該光線傳送引導件之輸入端部係被配置以接收來自影像 顯示裝置之像素部件的光線,並且光線傳送引導件之輸出 端部係提供一個影像輸出表面; 其中每一個光線傳送引導件的輸入端部接收來自於主 要顏色部件個別群的光線,每一個光線傳送引導件係被配 置以混合來自於主要顏色部件個別群的光線,以使得在一 群主要顏色部件內的像素結構在光線傳送引導件的輸出端 嫌 部處係爲大致上不可識別者。 3 3、一種與具有像素部件陣列之影像顯示裝置一起 使用的影像引導件,其係包括: 如申請專利範圍第1項至第1 4項任一項的光線傳送 引導件陣列,該光線傳送引導件之輸入端部係被配置以接 收來自影像顯示裝置之像素部件的光線,並且光線傳送引 導件之輸出端部係提供影像輸出表面。 拾壹、圖式 鲁 如次頁。 431323351 Pickup, Patent Application Range J.............../1, An array of light-transmitting guides that are tapered along at least a portion of their length so as to have an input end thereof a smaller cross-sectional area at its output end and having an s shape, the ray-transmissive guide array comprising a priming guide region that promotes light propagation by refraction and/or total internal reflection. The core of the first material 'the first material is surrounded by the second material, wherein the refractive index of the first material is greater than the refractive index of the second material. 2. The array of light-transmitting guides according to item 1 of the patent application, wherein at least a portion of the length thereof is tapered, so that the input end has a smaller portion than the output end thereof. a cross-sectional area and a curved region in a direction from its input end to its output end, the curved region being followed by a tapered region, and the tapered region is followed by a flat non-tapered region, thus An S-shaped shape is provided. 3' The light transmission guide array of claim 2, comprising a flat, non-tapered region between the curved region and the tapered region. 4. The light transmission guide array according to claim 1, 2 or 3, wherein the second material is air. 5. A light transmission guide array according to any one of claims 1 to 3 which is substantially evenly tapered along its length. 6. The light-transmitting guide array ‘ according to any one of claims 1 to 3 wherein there is a stepwise change of 38 1323351 in the cross-sectional area. 7. The light transmission guide array according to claim 1, wherein the input end and the output end of the guiding member are adhered together by a non-absorbent glue, and the non-absorbent adhesive preferably has a low density. Refractive index. The light transmission guide array according to any one of the preceding claims, wherein the first material is substantially transparent glass or plastic material. 9. The light transmission guide array of claim 1 or 7, wherein the second material is substantially transparent glass # or plastic material. The light-transmitting guide array according to any one of claims 1 to 3, wherein the light guiding region has a refractive index graded in the radial direction to facilitate the implementation by refraction. Light guides. The light-transmitting guide array according to any one of claims 1 to 3, wherein the reflective coating is made of a metal material. The light-transmitting guide array of any one of clauses 1 to 3, wherein the coating is formed of one or more layers of dielectric material. The light-transmitting guide array according to any one of claims 1 to 3, which has a square output end. The light-transmitting guide array according to any one of claims 1 to 3, which has a rectangular 'polygon' or an output end of a 39 1323351 trapezoid. 15. An image display comprising: an image display device having an array of pixel components: and an image guide having an array of light delivery guides, each of the light delivery guides being associated therewith At least a portion of the length is tapered such that its input end has a smaller cross-sectional area than its output end, and the input end of the light-transmitting guide is configured to receive image display The light of the pixel component of the device, and the output end of the light transmitting guide provides an image line output surface; wherein each of the light transmitting guides includes a light propagation for promoting refraction and/or total internal reflection a light guiding area, and a reflective coating positioned on the light guiding area to promote specular reflection at the area-coating interface. The display of claim 15, wherein at least some of the light-transmitting guides comprise a curved region in a direction from the input end to the output end thereof, the curved region It is then a tapered area, which is followed by a flat, non-tapered area. The display of claim 15 or claim 16, wherein at least some of the light-transmitting guides have different degrees of taper in different planes parallel to the longitudinal axis of the guide. The display of claim 15 or claim 16, wherein the pixel component comprises a primary color component that provides red, green, and 1323351 blue illumination. The display of claim 1, wherein the light transmission guide array is configured such that an image displayed on the image output surface is displayed by the image display device. The display of claim 19, wherein the output end of the light-transmitting guide is in a checkerboard pattern to form a substantially close-packed array at the image output surface. . The display device according to claim 15 or claim 16, wherein the input end of the light transmission guide is in a checkerboard shape to form a position substantially at one of the image display devices. Close to the dense array. 2. The display of claim 1 or claim 16, wherein the light transmission guide array is configured such that an image positioned at the image output surface is capable of being relative to the image display device The displayed image is translated laterally. 2. The display of claim 15, wherein the input end of each of the light-transmitting guides receives light from a group of individual primary color components, each of which transmits light. The pieces are configured to mix light from individual groups of primary color components such that the pixel structures within a group of primary color components are substantially unrecognizable at the output end of the light delivery guide. The display of claim 23, wherein each of the main color components comprises a total of 41 1323351 pixel components for each primary color. The display of claim 2, wherein each of the main color components comprises n pixel components for each primary color, wherein η is an integer greater than one. 2. The display of claim 25, wherein 'each pixel component is capable of operating at m different levels of illumination, and the display includes addressing for supplying pixel information to the primary color components of the group The logic is such that each of the primary colors can be displayed at any level of illumination of m x η different degrees of illumination. The display of the invention according to claim 15 or claim 16 includes a diffusing screen disposed at the output of the image guide, according to item 15 of the patent application or The display of claim 16, wherein the input end portion and the output end portion of the light transmission guide have different individual cross-sectional shapes. The display of claim 15 or claim 16, wherein the pixel components are discrete illumination devices. The display device according to claim 29, wherein the light-emitting device is a semiconductor device. The display of claim 15 or claim 16, wherein the image display device comprises a planar array of light modulated pixels and a backlight configuration. 3. The display of claim 15, wherein the display has an array of 42 1323351 element components configured as primary color components of the group; and an image guide having a The light transmission guide array 'the input end of the light transmission guide is configured to receive light from the pixel component of the image display device, and the output end of the light transmission guide provides an image output surface; each of the light rays The input end of the transport guide receives light from individual groups of primary color components, each light directing guide configured to mix light from individual groups of primary color components such that pixel structures within a group of primary color components At the output end of the light transmission guide, it is substantially unrecognizable. An image guide for use with an image display device having an array of pixel components, comprising: a light transmission guide array according to any one of claims 1 to 14, the light transmission guide The input end of the device is configured to receive light from a pixel component of the image display device, and the output end of the light delivery guide provides an image output surface. Pick up, graphic Lu Ruru page. 43
TW092102362A 2002-02-06 2003-02-06 Display TWI323351B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0202789A GB0202789D0 (en) 2002-02-06 2002-02-06 Display
GB0202780A GB0202780D0 (en) 2002-02-06 2002-02-06 Display
GB0222415A GB0222415D0 (en) 2002-02-06 2002-09-26 Display

Publications (2)

Publication Number Publication Date
TW200302925A TW200302925A (en) 2003-08-16
TWI323351B true TWI323351B (en) 2010-04-11

Family

ID=45074048

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092102362A TWI323351B (en) 2002-02-06 2003-02-06 Display

Country Status (2)

Country Link
KR (1) KR100993954B1 (en)
TW (1) TWI323351B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI412789B (en) * 2010-07-29 2013-10-21 Hon Hai Prec Ind Co Ltd Three-dimensional vsiual display device and display system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI413037B (en) * 2007-06-15 2013-10-21 Creator Technology Bv Electronic device with a variable angulation of a flexible display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI412789B (en) * 2010-07-29 2013-10-21 Hon Hai Prec Ind Co Ltd Three-dimensional vsiual display device and display system

Also Published As

Publication number Publication date
TW200302925A (en) 2003-08-16
KR20040089609A (en) 2004-10-21
KR100993954B1 (en) 2010-11-11

Similar Documents

Publication Publication Date Title
US20050243415A1 (en) Display with optical fibre face plate
JP6709278B2 (en) Backlighting with multicolor grid coupling
JP2021517351A (en) Lighting device
CN110709758B (en) Microstructured multibeam element backlight
US8373630B2 (en) Display device
JP3383412B2 (en) Light guide group, row light guide, light source device, and liquid crystal display device
TW201932940A (en) Mode-switchable backlight, display, and method
TWI658293B (en) Multiview display and method having a reflective support structure
JP2006140139A (en) System and method for raising optically function of video and/or light element
CN104197247A (en) Illumination system, luminaire and backlighting unit
JP2011059680A (en) Brightness enhancement film and backlight module
JP2000047038A (en) Back light device and display device
KR20080104475A (en) Display device
TW201043867A (en) Brightness enhancement film and backlight module
JP7245931B2 (en) Multi-view display and method with shifted color sub-pixels
TW201314311A (en) Non-dark border and seamless video wall device
US7477814B2 (en) Method of making a louver device for a light guide screen
US7421180B2 (en) Light guide apparatus for use in rear projection display environments
TW201629551A (en) Display device with directional control of the output, and a backlight for such a display device
TWI323351B (en) Display
WO2013081038A1 (en) Light source device, surface light source device, display device and lighting device
US7431488B2 (en) Light guide display with antireflection film
TWI700528B (en) Bar collimator, multiview backlight system and method of collimating light
JP3927490B2 (en) Flat lighting device
WO2013089172A1 (en) Light source device, planar light source device, display device, and illumination device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees