TWI321640B - Pressure difference sun tracking system - Google Patents

Pressure difference sun tracking system Download PDF

Info

Publication number
TWI321640B
TWI321640B TW096138763A TW96138763A TWI321640B TW I321640 B TWI321640 B TW I321640B TW 096138763 A TW096138763 A TW 096138763A TW 96138763 A TW96138763 A TW 96138763A TW I321640 B TWI321640 B TW I321640B
Authority
TW
Taiwan
Prior art keywords
pressure
tracking system
pressure difference
sun
pneumatic cylinder
Prior art date
Application number
TW096138763A
Other languages
Chinese (zh)
Other versions
TW200918835A (en
Inventor
Hsi Hsun Tasi
Dung Sheng Jeng
Hui Ping Feng
Original Assignee
Lin Jeffery
Feng Yen Jung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lin Jeffery, Feng Yen Jung filed Critical Lin Jeffery
Priority to TW096138763A priority Critical patent/TWI321640B/en
Priority to US11/972,877 priority patent/US20090101137A1/en
Publication of TW200918835A publication Critical patent/TW200918835A/en
Application granted granted Critical
Publication of TWI321640B publication Critical patent/TWI321640B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7861Solar tracking systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Photovoltaic Devices (AREA)

Description

1321640 9622TWJ1差式追日系統 九、發明說明: 【發明所屬之技術領域】 本技藝屬於追日系統,特別是使用太陽扉板兩邊之冷媒儲壓罐的壓力 差作爲太陽偏移之偵測與位置調整系統之追日系統。 【先前技術】 圖1先前技藝 顯示一個傳統的太陽能板的追日系統,其光線感測單元係由四個光線 感測元件101,102,103,104,安置在基材105的中心四個方位,一個套 筒120具有與基材1〇5平行之平面開口於上方,罩蓋在感測元件 101,102,1〇3,1〇4周邊。套筒120具有一個高度均一的邊壁,構成傳統 之追日系統。光電單元108安置在基材105的表面周邊,接受太陽光 能’然後將太陽光能轉換成爲電能。當太陽由正上方直射到這種傳統 之追日系統時,理論上,四個光線感測元件101,102,103,104受光量均 —。爲了使得光電單元108可以一直接受到較強之太陽光的照射,光 電單元108必需一直面對著太陽所在的位置,因此,控制基材105之 方位使其追蹤太陽的方位而可以一直自動修正位置對著太陽,使得光 電元件108可以一直接收到直射的太陽光,對於太陽能光電系統是很 重要的。 此一追日系統的理論爲:當太陽偏移離開正上方位置時,套筒120之 5 1321640 %22TWJg差式逭日系統 \ · 邊壁影子會逐漸遮住鄰近的光線感測元件,導致於四個光線感測元件 分別偵測到光線之增強與減弱,這些訊號傳送到控制單元以後,便可 以驅動追日系統調整方向使偏向於一定的方向,而使得光電單元可以 再度接收到直射的太陽光。 . • 參考圖1,假設,現在太陽在感測系統正上方,四個光線感測元件 101〜104接收到相同強度之光線;當太陽向左邊移動時,光線R1照 φ 射至套筒120,光線感測元件101逐漸被套筒120的邊壁的陰影所遮 蔽,光線感測元件101所接收到的光線強度相對於光線感測元件103 爲弱,這些訊號傳遞至控制單元以後,便可以驅動步進馬達,將追日 系統轉向一定的方向,因而可以達到追日效果,而使得光電單元108, 可以一直保持有相對較強之光線照射。 習知技藝的缺點是光線感測元件只提供太陽偏移信號,無法提供動力 讓太陽能板偏轉至希望的位置,這種系統需要電力給偏轉系統,用以 * 提供太陽能板之讎。 【發明内容】 本技藝提供一種冷媒儲壓罐,可以偵測太陽偏移信號,同時也提供動 力讓太陽能板偏轉至希望的位置,這種系統不需要提供額外的電力給 偏轉系統。 【實施方式】 6 9622TWJ1差式追曰系統 圖示顯示前一圖示的控制系統26,由壓力差致動裝置23與機械賴合單 元25結合完成。壓力差致動裝置23包含有致動桿233、第一氣壓缸 231與第二氣壓缸232。第一冷媒儲壓罐201藉著壓力傳輸管線241連 通至第一氣壓缸231 ’第二冷媒儲壓罐2〇2藉著壓力傳輸管線242連通 至第二氣壓缸232 ;當第一氣壓缸231與第二氣壓缸232壓力相等時, 致動桿233靜止不動。當第一氣壓缸231的壓力大於第二氣壓缸232 壓力時’致動桿233被第一壓力推動向上。當第一氣壓缸231的壓力 大於第二氣壓缸232的壓力時,致動桿233被推動向上。當第一氣壓 缸231的壓力小於第二氣壓缸232的壓力時,致動桿233被推動向下。 這個向上與向下的推力’藉著機械稱合單元25之運作,可以調整太陽 能板基材105向著一定的方向偏移,而達到追日功能。 圖4.本技藝實施例三之壓差式追曰系統 圖中顯示本案前面得實施例,尙可以增加一個壓力調節閥27於壓力傳 輸管線241中,用以調整冷媒儲壓罐201與第一氣壓缸231之間的壓 力平衡之靈敏度。 圖5.本技藝之功能方塊圖 顯示本案技藝之原理’第一冷媒儲壓罐201產生第一氣壓,傳送至控 制系統26 ;第二冷媒儲壓罐202產生第二氣壓,傳送至控制系統26 ; 當第一氣壓與第二氣壓有壓力差時,依據事先設定的方式偏轉太陽能 板基材一定角度。 13216401321640 9622TWJ1 Differential Chasing System 9. Invention: 【Technical Fields of the Invention】 This technology belongs to the chasing system, especially the pressure difference between the refrigerant accumulators on both sides of the solar raft is used as the detection and location of the sun offset. Adjust the system's chase system. [Prior Art] The prior art of FIG. 1 shows a conventional solar panel chasing system in which the light sensing unit is disposed in four centers of the center of the substrate 105 by four light sensing elements 101, 102, 103, 104. A sleeve 120 having a plane parallel to the substrate 1〇5 is opened above, and the cover is around the sensing elements 101, 102, 1〇3, 1〇4. The sleeve 120 has a highly uniform side wall that forms a conventional day tracking system. Photovoltaic unit 108 is disposed around the surface of substrate 105 to receive solar energy' and then convert solar energy into electrical energy. When the sun is directed from directly above to this conventional chasing system, in theory, the four light sensing elements 101, 102, 103, 104 receive a uniform amount of light. In order to allow the photovoltaic unit 108 to receive strong sunlight, the photovoltaic unit 108 must always face the position where the sun is located. Therefore, the orientation of the substrate 105 can be controlled to track the position of the sun and the position can be automatically corrected. Against the sun, the optoelectronic component 108 can receive direct sunlight all the time, which is important for solar photovoltaic systems. The theory of this chasing system is: when the sun is offset from the directly above position, the sleeve 120 is 5 1321640 % 22 TWJg differential day system \ · the side wall shadow will gradually cover the adjacent light sensing elements, resulting in The four light sensing components respectively detect the enhancement and attenuation of the light. After these signals are transmitted to the control unit, the tracking system can be driven to adjust the direction to a certain direction, so that the photoelectric unit can receive the direct sun again. Light. • Referring to Figure 1, it is assumed that the sun is now directly above the sensing system, and the four light sensing elements 101-104 receive light of the same intensity; when the sun moves to the left, the light R1 strikes the sleeve 120 according to φ. The light sensing element 101 is gradually obscured by the shadow of the side wall of the sleeve 120. The light intensity received by the light sensing element 101 is weak relative to the light sensing element 103. After these signals are transmitted to the control unit, they can be driven. The stepping motor turns the tracking system to a certain direction, so that the tracking effect can be achieved, so that the photovoltaic unit 108 can always maintain relatively strong light illumination. A disadvantage of the prior art is that the light sensing element only provides a sun offset signal that does not provide power to deflect the solar panel to a desired location. Such a system requires power to the deflection system to provide the same solar panel. SUMMARY OF THE INVENTION The present technology provides a refrigerant accumulator that can detect a sun offset signal while also providing power to deflect the solar panel to a desired position. Such a system does not require additional power to the deflection system. [Embodiment] 6 9622TWJ1 Differential Tracking System The control system 26 shown in the previous figure is shown in the figure, and is connected by the pressure difference actuating device 23 and the mechanical matching unit 25. The differential pressure actuating device 23 includes an actuating lever 233, a first pneumatic cylinder 231 and a second pneumatic cylinder 232. The first refrigerant accumulator tank 201 is connected to the first pneumatic cylinder 231 by the pressure transmission line 241. The second refrigerant accumulator tank 2 is connected to the second pneumatic cylinder 232 via the pressure transmission line 242; when the first pneumatic cylinder 231 When the pressure of the second pneumatic cylinder 232 is equal, the actuating lever 233 is stationary. When the pressure of the first pneumatic cylinder 231 is greater than the pressure of the second pneumatic cylinder 232, the actuating lever 233 is pushed upward by the first pressure. When the pressure of the first pneumatic cylinder 231 is greater than the pressure of the second pneumatic cylinder 232, the actuating lever 233 is pushed upward. When the pressure of the first pneumatic cylinder 231 is less than the pressure of the second pneumatic cylinder 232, the actuating lever 233 is pushed downward. This upward and downward thrust 'by the operation of the mechanical weighing unit 25 can adjust the solar panel substrate 105 to shift in a certain direction to achieve the function of chasing the sun. Figure 4 is a differential pressure tracking system of the third embodiment of the present invention. The foregoing embodiment of the present invention is shown. A pressure regulating valve 27 can be added to the pressure transmission line 241 for adjusting the refrigerant accumulator tank 201 and the first embodiment. The sensitivity of the pressure balance between the pneumatic cylinders 231. Figure 5. Functional block diagram of the present technology shows the principle of the art of the present invention. The first refrigerant accumulator 201 generates a first air pressure and transmits it to the control system 26; the second refrigerant accumulator 202 generates a second air pressure for transmission to the control system 26 When there is a pressure difference between the first air pressure and the second air pressure, the solar panel substrate is deflected at a certain angle according to a preset manner. 1321640

9622TW壓差式追日系統 前述係對於本技藝之較佳實施例之具體說明,惟該些實施例並非用以 限制本技藝之專利範圍,凡未脫離本技藝精神所爲之等效實施或是變 更,均屬於本案權利人所欲保護之範圍,並以後續之專利範圍加以界 定。 9The <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Changes are within the scope of the rights of the rights holders of this case and are defined by the scope of subsequent patents. 9

Claims (1)

1321640 9622TWJS差式追曰系統 5.如申請專利範圍第2項所述之壓差式追日系統,更包含: 壓力調節閥,安置於前述之壓力傳輸管線中,用以調整輸出的壓力大 小。1321640 9622TWJS differential chasing system 5. The differential pressure chasing system described in claim 2, further comprising: a pressure regulating valve disposed in the aforementioned pressure transmission line for adjusting the pressure of the output. 1212
TW096138763A 2007-10-17 2007-10-17 Pressure difference sun tracking system TWI321640B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW096138763A TWI321640B (en) 2007-10-17 2007-10-17 Pressure difference sun tracking system
US11/972,877 US20090101137A1 (en) 2007-10-17 2008-01-11 Sun tracking system pressure differential driving system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW096138763A TWI321640B (en) 2007-10-17 2007-10-17 Pressure difference sun tracking system

Publications (2)

Publication Number Publication Date
TW200918835A TW200918835A (en) 2009-05-01
TWI321640B true TWI321640B (en) 2010-03-11

Family

ID=40562207

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096138763A TWI321640B (en) 2007-10-17 2007-10-17 Pressure difference sun tracking system

Country Status (2)

Country Link
US (1) US20090101137A1 (en)
TW (1) TWI321640B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1999414A1 (en) * 2006-02-28 2008-12-10 Vital Earth Technologies Pty Limited Apparatus for tracking solar radiation
US7910870B2 (en) * 2008-01-07 2011-03-22 Atomic Energy Council - Institute Of Nuclear Energy Research Solar tracker
KR100940479B1 (en) * 2009-10-23 2010-02-04 (주)오로라테크놀로지 Solar tracking apparatus
US20110100354A1 (en) * 2009-10-29 2011-05-05 Cn-J Technology Co., Ltd. Non-electrically-powered sun-tracking solar system
CN102436263A (en) * 2010-12-08 2012-05-02 苏州嘉言能源设备有限公司 Needle projection type solar tracker
US20130061845A1 (en) * 2011-09-12 2013-03-14 Zomeworks Corporation Radiant energy driven orientation system
JP6155446B2 (en) * 2013-09-17 2017-07-05 哲 湯田 Solar tracking power generation and hot water system
US20150136944A1 (en) * 2013-11-21 2015-05-21 Avraham Segev Sunlight tracking sensor and system
CN109308079A (en) * 2018-08-21 2019-02-05 中冶华天南京工程技术有限公司 A kind of shading type solar-cell panel support system for automatically regulating angles

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027651A (en) * 1976-02-17 1977-06-07 Robbins Jr Roland W Solar-energy-powered sun tracker
NL7610401A (en) * 1976-09-20 1978-03-22 Philips Nv SOLAR COLLECTOR EQUIPPED WITH SOLAR TRACKS.
US4090493A (en) * 1977-01-11 1978-05-23 Kneer Manfred M Solar heater
NL7701812A (en) * 1977-02-21 1978-08-23 Philips Nv SOLAR COLLECTOR, PROVIDED WITH SOLVENTS.
US4185615A (en) * 1977-10-11 1980-01-29 Bottum Edward W Solar collector structure
US4175391A (en) * 1977-12-12 1979-11-27 Dow Corning Corporation Self reorienting solar tracker
US4226502A (en) * 1978-07-24 1980-10-07 Thomas Gunzler Self-contained solar tracking device
US4306541A (en) * 1979-06-27 1981-12-22 University Of Florida Solar energy powered sun tracking device
US4351319A (en) * 1979-08-17 1982-09-28 Robbins Jr Roland W Radiant energy tracker
US4262654A (en) * 1979-08-24 1981-04-21 Ward Carter J Solar-energy-powered sun tracker
USRE30961E (en) * 1980-07-07 1982-06-08 Solar-energy-powered sun tracker
US4396006A (en) * 1981-10-13 1983-08-02 Cross Jr Roger H Solar powered, solar aiming device
US4476854A (en) * 1983-11-14 1984-10-16 Zomeworks Corporation Gas spring solar tracker
US4519381A (en) * 1984-02-07 1985-05-28 Tremblay Gerald J Solar heating apparatus and method
AU3419193A (en) * 1991-12-31 1993-07-28 Wattsun Corporation Method and apparatus for tracker control
US5227618A (en) * 1992-02-28 1993-07-13 Jefferson Shingleton Variably pressurable support and tracking apparatus and method for tracking moving radiation source
ATE556184T1 (en) * 2000-03-28 2012-05-15 Kaneka Corp SOLAR CELL MODULE AND ROOF EQUIPPED WITH GENERATOR FUNCTION FOR USE THEREOF
CA2388195A1 (en) * 2002-05-28 2003-11-28 Alberta Research Council Inc. Hybrid solar energy collector
US20050133082A1 (en) * 2003-12-20 2005-06-23 Konold Annemarie H. Integrated solar energy roofing construction panel

Also Published As

Publication number Publication date
US20090101137A1 (en) 2009-04-23
TW200918835A (en) 2009-05-01

Similar Documents

Publication Publication Date Title
TWI321640B (en) Pressure difference sun tracking system
WO2013170563A1 (en) Real-time solar energy tracking system
WO2011011651A3 (en) Calibration system for solar collector installation
WO2006102317A3 (en) Multi-junction solar cells with an aplanatic imaging system
CN201233371Y (en) Glimmer image detecting instrument for crystalline silicon solar energy cell
WO2008117297A3 (en) Solar energy collecting system
US20090107486A1 (en) Solar panel with a coolant vapor pressure driving system
WO2008157560A3 (en) Solar concentrator with simplified tracking
CN106843286B (en) A kind of solar street light automatically tracks the control method of sun angle
CN102893099A (en) Reflector, receiver arrangement, and sensor for thermal solar collectors
CN110687933A (en) Solar power generation system, control device and method, and computer-readable storage medium
EP1580830A3 (en) Fuel cell control system and related method
JP2004146745A (en) Sun tracking apparatus
US20050279953A1 (en) Heliostat alignment system
CN201518463U (en) Full process sun tracker
CN102566601B (en) Sun tracking sensor
CN104991570B (en) Sun-tracking sensor based on one-dimensional PSD
WO2002066763A8 (en) Insolation shield system, insolation shield and method
CN101420194A (en) Pressure difference type solar tracking system
CN103453877B (en) Self-powered monolithic integration digital sensor for detection of light source direction
Lu et al. Investigation of Street Lamp With Automatic Solar Tracking System
CN209044272U (en) Passive thermal control type lunar surface camera
CN103885462B (en) A kind of single-axis solar tracking sensing device
CN101458529A (en) Sun tracking positioning device
AU2006100879A4 (en) The solar powered air conditioner 2

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees