TWI320055B - Adjuvant for chemical mechanical polishing slurry - Google Patents

Adjuvant for chemical mechanical polishing slurry Download PDF

Info

Publication number
TWI320055B
TWI320055B TW094146707A TW94146707A TWI320055B TW I320055 B TWI320055 B TW I320055B TW 094146707 A TW094146707 A TW 094146707A TW 94146707 A TW94146707 A TW 94146707A TW I320055 B TWI320055 B TW I320055B
Authority
TW
Taiwan
Prior art keywords
group
adjuvant
polyelectrolyte
weight
monomer
Prior art date
Application number
TW094146707A
Other languages
Chinese (zh)
Other versions
TW200704760A (en
Inventor
Gi Ra Yi
Jong Pil Kim
Jung Hee Lee
Jeong Jin Hong
Young Jun Hong
No Ma Kim
An Na Lee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of TW200704760A publication Critical patent/TW200704760A/en
Application granted granted Critical
Publication of TWI320055B publication Critical patent/TWI320055B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

1320055 九、發明說明: 【發明所屬之技術領域】 本發明係關係一種用於CMP(化學機械研磨)漿料的佐 劑,或關於一種用於進行帶陽離子電荷與帶陰離子電荷材 5 料同步研磨之佐劑,其係在帶陽離子電荷材料上形成一吸 附層,以增加選擇帶陰離子電荷材料的能力。1320055 IX. OBJECTS OF THE INVENTION: TECHNICAL FIELD The present invention relates to an adjuvant for CMP (Chemical Mechanical Polishing) slurry, or to a method for performing synchronous polishing of a cationically charged and anionic charged material 5 An adjuvant that forms an adsorbent layer on a cationically charged material to increase the ability to select an anionically charged material.

10 1510 15

20 【先前技術】 隨著微電子裝置不斷地趨向高度整合,以平坦化製程 製造此種微電子裝置變得越來越重要。為了獲得高度整合 微電子裝置,通常使用多重互連技術與多層堆疊技術於半 導體晶圓方面。然而,發生在上述任一技術實施後的非平 坦化導致許了多問題。因此,平坦化製程被使用於微電子 裝置製造過程的各步驟中,以將晶圓表面的不平整減到最 少〇 CMP(chemical mechanical polishing)為其中一種平坦 化技術。在CMP過程中,晶圓表面被一研磨墊所壓置,且 研磨墊相對於晶圓表面旋轉,同時在此過程中,於研磨墊 上加入一種所謂的CMP漿料之化學藥劑。此種CMP技術便 藉由化學作用與物理作用之方式,完成晶圓表面之平坦 化。換句話說,CMP技術係藉由將晶圓表面藉由研磨墊壓 置,並相對於晶圓表面旋轉,並同時提供具化學作用之漿 料予具一圖案之晶圓表面,以完成晶圓表面之平坦化。 STI(shallow trentch isolation,淺溝渠隔離)係為應用 5 1320055 CMP技術之一具體實施例。在此S71技術中,相對淺溝渠形 成’且此溝渠用於形成場區(fieldregions)以隔離晶圓表面 的主動區(active regions)。20 [Prior Art] As microelectronic devices continue to become highly integrated, it is becoming increasingly important to fabricate such microelectronic devices in a planarization process. In order to achieve highly integrated microelectronic devices, multiple interconnect technologies and multilayer stacking techniques are commonly used for semiconductor wafers. However, the non-flatization that occurs after the implementation of any of the above techniques has caused a number of problems. Therefore, the planarization process is used in various steps of the microelectronic device fabrication process to minimize wafer surface roughness to a minimum of CMP (chemical mechanical polishing). During the CMP process, the surface of the wafer is pressed by a polishing pad and the polishing pad is rotated relative to the surface of the wafer, while a chemical called a CMP slurry is added to the polishing pad during the process. This CMP technique completes the planarization of the wafer surface by chemical and physical effects. In other words, the CMP technique completes the wafer by pressing the surface of the wafer by a polishing pad and rotating it relative to the surface of the wafer while providing a chemically active paste to the surface of the wafer. The surface is flattened. STI (shallow trentch isolation) is a specific embodiment of the application 5 1320055 CMP technology. In this S71 technique, relatively shallow trenches are formed' and the trenches are used to form field regions to isolate active regions of the wafer surface.

10 如圖1所示,在STI製程中,成功地形成二氧化石夕墊層 101與氮化矽(SiN)層102於半導體晶圓之上。接著,形成 光阻圖案於氮化矽層102上。接著,以光阻圖案作為光罩, 對氮化矽層102、二氧化矽墊層101與半導體晶圓100進行部 份蝕刻,便形成複數個溝渠103。 更進一步地,利用低壓化學氣相沉積(low pressure chemical vapor deposition,LPCVD)、電聚增強化學氣相沉 積(plasma enhanced chemical vapor deposition » PECVD) 或高密度電聚化學蒸氣沉積(high density plasma chemical vapor deposition ,HDPCVD)技術沉積絕緣二氧化石夕層 104,以形成場區,如此一來,溝渠103便填滿了絕緣二氧 15 化矽層104,而且氮化矽層102表面亦為絕緣二氧化矽層104 所覆蓋。As shown in FIG. 1, in the STI process, a dioxide oxide mat layer 101 and a tantalum nitride (SiN) layer 102 are successfully formed over the semiconductor wafer. Next, a photoresist pattern is formed on the tantalum nitride layer 102. Next, the tantalum nitride layer 102, the ceria pad layer 101, and the semiconductor wafer 100 are partially etched using the photoresist pattern as a mask to form a plurality of trenches 103. Further, low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD) or high density plasma chemical vapor deposition (high density plasma chemical vapor deposition) The deposition, HDPCVD technique deposits an insulating SiO2 layer 104 to form a field region. Thus, the trench 103 is filled with an insulating dioxin 15 layer 104, and the surface of the tantalum nitride layer 102 is also insulated and oxidized. The layer 104 is covered.

20 接著,研磨絕緣二氧化矽層104直到氮化矽層102暴露 出來為止。此外,與二氧化矽墊層102—樣位於兩相鄰主動 區之間的氮化矽層101亦被蝕刻移除。最後,形成一閘極二 氧化矽層105於半導體晶圓表面。 其中,在進行移除絕緣二氧化矽層104的CMP製程過程 中,由於物理與化學性質的不同,絕緣二氧化矽層104與氮 化矽層102展現了不同的移除速率。 絕緣二氧化矽層相對氮化矽層的移除速率比即所謂 6 132005520 Next, the insulating ceria layer 104 is ground until the tantalum nitride layer 102 is exposed. In addition, the tantalum nitride layer 101, which is located between the two adjacent active regions, is also etched away from the ceria pad layer 102. Finally, a gate erbium oxide layer 105 is formed on the surface of the semiconductor wafer. Among them, during the CMP process for removing the insulating ceria layer 104, the insulating ceria layer 104 and the hafnium nitride layer 102 exhibit different removal rates due to physical and chemical properties. The ratio of the removal rate of the insulating ceria layer to the tantalum nitride layer is called 6 1320055

10 1510 15

20 CMP漿料的選擇能力。 當CMP漿料的選擇能力降低,為漿料所移除的氮化矽 層亦隨之增加。較佳的是,氮化石夕層未被移除。換句話說, 絕緣二氧化矽層對比氮化矽層選擇能力應該無限大較好。 然而,傳統的CMP漿料具有低的絕緣二氧化矽層對氮化矽 層研磨選擇能力,約為4:1。於是,氮化矽層被研磨至超出 一實際的CMP製程可接受範圍的程度。 結果,氮化矽層圖案可能不均勻地移除,其取決於製 程過程中晶圓中的位置。因此,覆於一整個晶圓上之氮化 矽層具有多種的厚度。尤其是對同時具有高密度圖案與低 密度圖案半導體晶圓而言,這是個嚴重的問題。 由於上述問題之故,含場區之最終結構有了主動區場 區間水平差,結果導致接下來的製造半導體裝置步驟中的 邊緣縮減,以及電晶體與裝置的品質下降。簡而言之,傳 統的製程的問題致力在於,即使經過CMP製程移除氧化層 後,也無法獲得厚度均勻的氮化矽層圖案。 為了解決這問題,最近已有許多研究嘗試製造能一種 漿料组成,以期能控制絕緣二氧化矽層移除速率,使之高 過氮化矽層研磨速率。舉例而言,諸如此類的漿料揭露於 美國專利案號5,614,444 ;日本早期公開案號1998-106988, 1998-154672 , 1998-270401 , 2001-37951 , 2001-35820與 2001- 319900 ;以及韓國早期公開案號2001-108048, 2002- 0015697,2003-0039999,2004-0057653,2004-0013299 and 2003-0039999 ° 7 1320055 單元,以供吸附帶 如一含如叛酸基之 此,主鏈較佳地可包含一大量的陰離子 陽離子電荷材料結構之用。舉例來說, 吕月匕基作為其一部份之陰離子單元。 …側鏈對靜電㈣㈣_度低於域。因此,側鏈並 必須帶陰離子電荷。但侧鏈不可帶陽離子電性^側鍵主要 作為形成大厚度吸附彼覆層之用。 〜較佳的是,接枝型聚合電解質側鏈包含—巨單元,其20 CMP slurry selection ability. As the selectivity of the CMP slurry is reduced, the layer of tantalum nitride removed for the slurry also increases. Preferably, the nitride layer is not removed. In other words, the insulating germanium dioxide layer should be infinitely better than the tantalum nitride layer. However, conventional CMP slurries have a low insulating ceria layer for the ability to selectively grind the tantalum nitride layer, which is about 4:1. Thus, the tantalum nitride layer is ground to an extent beyond the acceptable range of an actual CMP process. As a result, the tantalum nitride layer pattern may be unevenly removed depending on the position in the wafer during the process. Therefore, the tantalum nitride layer overlying an entire wafer has a variety of thicknesses. This is a serious problem especially for semiconductor wafers having both high density patterns and low density patterns. Due to the above problems, the final structure of the field containing region has an active zone field level difference, resulting in edge reduction in the subsequent steps of fabricating the semiconductor device, and degradation of the quality of the transistor and device. In short, the problem of the conventional process is that even after the oxide layer is removed by the CMP process, a uniform thickness of the tantalum nitride layer pattern cannot be obtained. In order to solve this problem, many studies have recently attempted to produce a slurry composition in order to control the removal rate of the insulating cerium oxide layer to be higher than the cerium nitride layer polishing rate. For example, such a slurry is disclosed in U.S. Patent No. 5,614,444; Japanese Laid-Open Patent Publication Nos. 1998-106988, 1998-154672, 1998-270401, 2001-37951, 2001-35820 and 2001-319900; No. 2001-108048, 2002- 0015697, 2003-0039999, 2004-0057653, 2004-0013299 and 2003-0039999 ° 7 1320055 units for the adsorption band to contain, for example, a tick acid group, the main chain preferably comprises a A large number of anionic cationic charge material structures. For example, Lu Yueji is a part of its anion unit. ... side chain to static (four) (four) _ degrees below the domain. Therefore, the side chain must have an anionic charge. However, the side chain can not be provided with a cationic electric side key mainly for forming a large thickness to adsorb the coating layer. ~ Preferably, the graft type polyelectrolyte side chain comprises - a giant unit,

ίο 15Ίο 15

20 Τ生自L基、&基與/或含如冑基㈣、残和單體之聚合 j聚合作用。而且,接枝型聚合電解質主鏈包含一衍生 自έ緩基~系不飽和單體之一單元。 -般而言,研磨用漿料以水作為分散介質。因此,較 :的是,使接枝型聚合電解質溶解於水。因此,較佳的亦 為,接枝型聚合電解質中形成的側鏈巨單元為親水性,而 ί更佳地可包含射自具高親水性單體之單元(如趣基、竣 土、與/或含磺酸基烯系不飽和單體)。 巨單元係為—短鏈聚合物,且衍生自8〜16個次單體之 聚合’並以-官能基封端之巨單體。因為若包含巨單元之 :鏈二長’會有結塊現象發生,而若包含巨單元之側鏈太 短,則聚合電解質無法發揮保護作用。 本發明所述之聚合電解質鹽pH值為45〜88,較佳地; 财Μ。細值低於4.5或大於8.8,便無法獲得程心 夠的研磨選擇能力。 12 132005520 agglomerated from the L group, & base and / or polymerization containing such as thiol (four), residues and monomers. Further, the graft type polyelectrolyte main chain comprises a unit derived from a thiol-unsaturated monomer. In general, the slurry for polishing uses water as a dispersion medium. Therefore, it is more effective to dissolve the graft type polyelectrolyte in water. Therefore, it is also preferred that the side chain macro unit formed in the graft type polyelectrolyte is hydrophilic, and more preferably, the unit may be injected from a unit having a highly hydrophilic monomer (e.g., interesting base, alumina, and / or containing sulfonic acid ethylenically unsaturated monomers). The macro unit is a short-chain polymer and is derived from a polymerized monomer of 8 to 16 sub-monomers and is blocked with a -functional macromonomer. Because if the giant unit is included: the chain length will cause agglomeration, and if the side chain containing the giant unit is too short, the polyelectrolyte will not play a protective role. The polyelectrolyte salt of the present invention has a pH of 45 to 88, preferably; If the fine value is lower than 4.5 or greater than 8.8, the grinding selection ability of the process is not obtained. 12 1320055

10 1510 15

20 物側鏈之巨單體;以及(ii)共聚合該巨單體與一形成接枝 型聚合物主鏈之單體。 本發明所述之製備接枝型聚合電解質方法,一較佳具 體實施例包含步驟為:(i)實施羥基、羧基與/或含磺酸基 烯系不飽和單體的自由基聚合,以獲得一形成接枝型聚合 物側鏈之巨單體;以及(ii)共聚合該巨單體,與形成接枝 型聚合物主鏈之一含羧基烯系不飽和單體。 一般而言,巨單體可獲之方法,係包括以鏈轉化劑 (chain transfer agent)如鲸基丙酸(mercapt〇pr0pi〇nic acid) 引入羧基於聚合物終端,並接著添加甲基丙烯酸縮水甘油 酯(glycidyl methacrylate)進入其中,以引入烯系不飽和官能 基於聚合物終端(日本早期公開案號:昭43-11224);製備巨 單體之方法,係利用 2,4-二苯基-4-甲基-1戊烯 (4-diphenyl-4-methyl-l-pentene)作為添加-裂解型鍵轉化劑 (addition-cleavage type chain transfer agent)達成(日本早期 公開案號:平7-002954);或製備巨單體之方法,係利用鈷 基金屬錯合物達成(曰本早期公開案號:平6-23209與平 7-35411,及美國專利案號4,694,054與4,886,861)。然而, 於本發明中,較佳地可利用鈷基金屬錯合物製備巨單體。 鈷基金屬錯合物係在分子量分佈,與最終巨單體純度控制 方面,展現出優越的特性。 較佳的是,使用於步驟⑴之含羥基烯系不飽和單體, 較佳可為C1〜C12之經烧基甲基丙烯酸g旨(hydroxyalkyl methacrylate),特別是其實施例包含經乙基甲基丙烯酸酯 13 1320055 520 a macromonomer of the side chain; and (ii) a copolymerization of the macromonomer with a monomer forming a graft polymer backbone. In the method for preparing a graft type polyelectrolyte according to the present invention, a preferred embodiment comprises the steps of: (i) performing a radical polymerization of a hydroxyl group, a carboxyl group and/or a sulfonic acid group-containing ethylenically unsaturated monomer to obtain a macromonomer forming a side chain of the graft type polymer; and (ii) copolymerizing the macromonomer and forming a carboxyl group-containing ethylenically unsaturated monomer in one of the graft type polymer backbones. In general, macromonomers are available by introducing a carboxyl group into the polymer terminal with a chain transfer agent such as mecapt(R) pr0pi〇nic acid, followed by the addition of methacrylic acid. Glycidyl methacrylate enters therein to introduce an ethylenically unsaturated functional polymer-based terminal (Japanese Laid-Open Patent Publication No. Sho 43-11224); a method for preparing a macromonomer using 2,4-diphenyl- 4-diphenyl-4-methyl-l-pentene is achieved as an addition-cleavage type chain transfer agent (Japanese Early Disclosure Case No.: 7-002954) Or a method of preparing a macromonomer is achieved by using a cobalt-based metal complex (Japanese Patent Publication No. Hei 6-23209 and Hei 7-35411, and U.S. Patent Nos. 4,694,054 and 4,886,861). However, in the present invention, it is preferred to use a cobalt-based metal complex to prepare a macromonomer. The cobalt-based metal complex exhibits superior properties in terms of molecular weight distribution and purity control of the final macromonomer. Preferably, the hydroxyalkyl-containing unsaturated monomer used in the step (1) is preferably a C1-C12 hydroxyalkyl methacrylate, and particularly the embodiment thereof comprises ethyl methacrylate. Acrylate 13 1320055 5

10 1510 15

20 (hydroxyethyl methacrylate),經丙基甲基丙烯酸酷 (hydroxypropyl methacrylate),羥丁 基甲基丙烯酸 g 旨 (hydroxybutyl methacrylate),或其他類似等。此外,亦可 使用含羧基烯系不飽和單體,包括羧酸單體如丙稀酸 (acrylic acid),甲基丙烯酸(methacrylic acid)、異康酸 (itaconic acid)或順丁 浠二酸(maleic acid)。更且,亦可使 用含磺酸基烯系不飽和單體,包括苯乙烯磺酸(styrene sulfonic acid) or奈黃酸(naphthalene sulfonic acid)。 若需要的話,巨單體可藉共聚合羥基、與/或含磺酸基 烯系不飽和單體,以及含羧基烯系不飽和單體,製備得到。 在本例中,較佳地可使用曱基丙烯酸(methacrylic acid)或丙 稀酸(acrylic acid)。 經基與/或含罐酸基烯系不飽和單體,較佳地可與含鼓 基烯系不飽和單體,以100:0〜70:30重量比混合,更甚較佳 地是以95:5〜85:15重量比混合。若含羧基烯系不飽和單體 使用量大於30重量份,最終漿料組成將可提供高選擇能力 與足夠的穩定性。 烯系不飽和單體可利用作為鏈轉化劑之鈷基金屬錯合 物進行聚合。此聚合作用係藉由利用有機溶劑當作自由基 聚合起始劑之溶液聚合法達成。另一方面,此烯系不飽和 單體’可藉在水中進行乳膠聚合作用聚合獲得。具體而言, 較佳地可利用溶液聚合法達成。 作為鏈轉化劑之钻基金屬錯合物,係包括二水雙 (diaquabis)((boron difluoro-dimethyl glyoxime cobalt (II), 删二氟二甲基二乙圬)鈷(II)),或二水雙(diaquabis)((boron 25 1320055 difluoro-diphenyl glyoxime) cobalt (II),硼二氟二笨基二乙 圬)鈷(II))。20 (hydroxyethyl methacrylate), hydroxypropyl methacrylate, hydroxybutyl methacrylate, or the like. In addition, carboxyl-containing ethylenically unsaturated monomers may be used, including carboxylic acid monomers such as acrylic acid, methacrylic acid, itaconic acid or cis-succinic acid ( Maleic acid). Further, a sulfonic acid group-containing ethylenically unsaturated monomer, including styrene sulfonic acid or naphthalene sulfonic acid, may also be used. If desired, the macromonomer can be prepared by copolymerizing a hydroxyl group, and/or a sulfonic acid ethylenically unsaturated monomer, and a carboxyl group-containing ethylenically unsaturated monomer. In this case, methacrylic acid or acrylic acid is preferably used. The base group and/or the canister-containing ethylenically unsaturated monomer, preferably mixed with the drum-containing ethylenically unsaturated monomer, in a weight ratio of from 100:0 to 70:30, more preferably 95:5~85:15 weight ratio mixed. If the carboxyl group-containing unsaturated monomer is used in an amount of more than 30 parts by weight, the final slurry composition will provide high selectivity and sufficient stability. The ethylenically unsaturated monomer can be polymerized using a cobalt-based metal complex as a chain reforming agent. This polymerization is achieved by a solution polymerization method using an organic solvent as a radical polymerization initiator. On the other hand, the ethylenically unsaturated monomer ' can be obtained by latex polymerization polymerization in water. Specifically, it is preferably achieved by a solution polymerization method. A drill-based metal complex as a chain conversion agent, including diaquabis (boron difluoro-dimethyl glyoxime cobalt (II), defluorinated dimethyldiacetium) cobalt (II)), or two Diaquabis ((boron 25 1320055 difluoro-diphenyl glyoxime) cobalt (II), borodifluorodiphenylphosphonium) cobalt (II)).

10 1510 15

20 較佳的是,鈷基金屬錯合物使用量可為佔製備巨單體 之單體濃度5〜1000 ppm。若若此量小於5 ppm,最終巨單 體分子量則會遽增。若此量大於1 〇〇〇 ppm,姑基金屬錯合 物則對最終漿料組成品質造成不良影響。 可使用之聚合起始劑’係包括有機過氧化基或偶氮基 起始劑。較佳的是,偶氮基起始劑,如2,2-偶氮-4-甲氧 基 -2 ’ 4_ 二 甲基伐 里洛腈 (2,2-azobis-4-methoxy-2,4-dimethylvaleronitrile) > 2,2- 偶氮-2 ’ 4-伐里洛腈(2,2-azobis-2,4-dimethylvaleronitrile)、 2,2-偶氮-偶氮雙異丁腈(2,2-azobis-isobutyronitrile)、2,2 偶氮 2-曱基丁腈(2,2-azobis-2-methyl-butyronitrile)、2,2-偶氮-環己烧甲腈(2,2-azobis-cyclohexanecarbonitrile),或 2,2-偶氮-氰基戍院(2,2-32〇1^8-0>^11〇卩61^116),皆可使用。 聚合起始劑的使用量,係佔製備巨單體用的單體之總 重0.1〜5重量份。若此量低於0.1重量份,則單體的轉換率 低。若此量大於5重量份,則生成巨單體的純度低。 可使用之有機溶劑包括芳香族化合物(aromatic compounds)、脂肪族化合物(aliphatic compound)、酮 (ketone) ’ 二醇鍵(glycol ether)、醋酸酯(acetate)、醇(alcohol) 或其他類似等。尤其是使用包括下列有機溶劑之實施例: 甲基乙基 _ (methyl ethyl ketone)、異丙醇(isopropyl alcohol) 以及丙二醇曱基醚乙酸6旨(propylene glycol methyl ether 15 1320055 and n-butanol) ° 接下來,係使上述獲得之巨單體與形成主鏈之接枝型 聚合物之單體進行共聚合,如用以供最終接枝型聚合電解 質之含羧基烯系不飽和單體。 當要使用此類含羧基烯系不飽和單體時,較佳地可使 用曱基丙烯酸(methacrylic acid)或丙稀酸(acrylic acid)。含 羧基烯系不飽和單體的使用量為65〜1〇〇重量份,更甚較佳Preferably, the cobalt-based metal complex is used in an amount of from 5 to 1000 ppm based on the monomer concentration of the macromonomer. If the amount is less than 5 ppm, the final macromonomer molecular weight will increase. If the amount is greater than 1 〇〇〇 ppm, the agglomerate of the base metal adversely affects the final slurry composition quality. The polymerization initiator "which can be used" includes an organic peroxy group or an azo initiator. Preferably, an azo initiator such as 2,2-azo-4-methoxy-2'4-dimethyl valerocarbonitrile (2,2-azobis-4-methoxy-2,4) -dimethylvaleronitrile) > 2,2-azo-2' 4- 2,2-azobis-2,4-dimethylvaleronitrile, 2,2-azo-azobisisobutyronitrile (2, 2-azobis-isobutyronitrile, 2,2-azo-2-mercaptobutyronitrile, 2,2-azo-cyclohexanone (2,2-azobis) -cyclohexanecarbonitrile), or 2,2-azo-cyanoquinone (2,2-32〇1^8-0>^11〇卩61^116), can be used. The polymerization initiator is used in an amount of 0.1 to 5 parts by weight based on the total weight of the monomers for preparing the macromonomer. If the amount is less than 0.1 part by weight, the conversion ratio of the monomer is low. If the amount is more than 5 parts by weight, the purity of the macromonomer is low. The organic solvent which can be used includes aromatic compounds, aliphatic compounds, ketone 'glycol ethers, acetates, alcohols, and the like. In particular, examples using the following organic solvents are used: methyl ethyl ketone, isopropyl alcohol, and propylene glycol methyl ether 15 1320055 and n-butanol ° Next, the macromonomer obtained above is copolymerized with a monomer of a graft-type polymer forming a main chain, such as a carboxyl group-containing ethylenically unsaturated monomer for use in a final graft type polyelectrolyte. When such a carboxyl group-containing ethylenically unsaturated monomer is to be used, it is preferred to use methacrylic acid or acrylic acid. The carboxyl group-containing unsaturated monomer is used in an amount of 65 to 1 part by weight, more preferably

地為使用里佔主鏈總重7〇重量份。若此使用量低於65重量 份,便無法獲得足夠的靜電吸引力,以致於生成之聚合物 10 選擇性地吸附於帶陽離子電荷材料結構(例如,氮化矽卜 因此,由於研磨選擇能力下降,便無法使此結構免於被研 磨。 14巨單體一起共聚合時,若有需要,可使用含羧基烯 系不飽和單體與同樣能與巨單體共聚合的可聚合性含烯基 15 單體之組合。 _然對可聚合之含聚烯基體無特別限制,基於優良的 反應率較it地可使用(甲基)丙婦酸酯單體,而且此種單體 使用塁係至J佔主鏈總重35重量份。若此使用量大於^重 量份,則無法藉由靜電吸引力吸收。更甚者,若作為界面 活性劑a^j·,含疏水性烯基單體會增加主鏈的疏水性,因此 最終襞料組成中的氣泡隨之變多。 用於形成接枝型聚合電解質主鏈的起始劑,較佳地可 f用有機過氧化基起始劑。尤其是使用包括下列起始劑之 貧施例過氧化苯甲醯(benzoyl peroxide),十二烷基過氧 1320055 用於此CMP漿μ々m治. 0/备 抖之研磨粒的使用量係為〇 1〜10The ground is 7 parts by weight of the total weight of the main chain. If the amount used is less than 65 parts by weight, sufficient electrostatic attraction cannot be obtained, so that the formed polymer 10 is selectively adsorbed to the structure with a cationically charged material (for example, tantalum nitride, therefore, the ability to be selected for polishing is lowered The structure cannot be prevented from being ground. When the 14 macromonomers are copolymerized together, if necessary, a carboxyl group-containing ethylenically unsaturated monomer and a polymerizable alkenyl group which can also be copolymerized with the macromonomer can be used. 15 Combination of monomers _ However, the polymerizable polyalkenyl group-containing body is not particularly limited, and based on the excellent reaction rate, (meth) propyl acrylate monomer can be used, and the monomer is lanthanized to J accounts for 35 parts by weight of the main chain. If the amount used is more than 2 parts by weight, it cannot be absorbed by electrostatic attraction. Moreover, if it is used as a surfactant a^j·, it contains a hydrophobic ethylenic monomer. Increasing the hydrophobicity of the main chain, so that the bubbles in the final composition of the crucible become more. The initiator for forming the main chain of the graft type polyelectrolyte is preferably an organic peroxy group-based initiator. Is using the poor starting materials including the following Example benzoyl peroxide (benzoyl peroxide), peroxy 1,320,055 dodecyl CMP slurry μ々m cure for this. The amount of abrasive grains 0 / square is prepared based shaking of 1~10

Wt/o »若此量低於〇 1 丄 充分地it忐装十 對氧化層的向移除速率便無法 會變差。 ®咖大於一’渡料穩定性則 γ使用奈米尺寸級陶竞研磨粒作為研磨粒,如化 石夕、氧化銘、氧化錯、二氧化欽或氧化飾。較佳的是,使 用氧化鋅顆粒。 瞻·料可製備自於溶解於溶射(例如,水)之聚合電 解質鹽’或分布於分散介質(例如,水)中的研磨粒。較佳的 是’聚合電解質鹽水溶液之漠度介於3〜35 wt%,而研磨 粒的水分散體濃度則介於4〜6 wt%之間。 15 因此,形成CMP漿料的水,可來自於聚合電解質鹽組 成,或類似水溶液的研磨粒組成之中的水。水的用量係多 到接近漿料總重的100 Wt%。較佳的是,水的使用量介於94 〜99.8 Wt%之間。若此量低於94 wt%,漿料穩定性會變差。 若此量大於99.8 wt%,移除速率則會降低。 本發明更進一步地提供一種使用此CMP漿料之STI方 法。 使用本發明所述之CMP漿料時,由於二氧化石夕層對氣 20 化石夕層的高選擇能力之故,在製程期間能均勻地移除晶圓 全區的氮化矽層。因此’能厚度的不均勻減到最低。結果, 使主動區層與場區層之間差異極小,同時也不會對電晶禮 與微電子裝置的品質造成不利的影響。除此之外,亦能藉 由使用研磨選擇能力高與研磨粒結塊度低之漿料組成,以 18 1320055 5Wt/o » If the amount is lower than 〇 1 丄, the removal rate of the pair of oxide layers will not be deteriorated. ® coffee is larger than one. The stability of γ uses nano-sized ceramics as abrasive particles, such as fossils, oxidized, oxidized, dioxygenated or oxidized. Preferably, zinc oxide particles are used. The material may be prepared from a polymer electrolyte salt dissolved in a spray (e.g., water) or abrasive particles distributed in a dispersion medium (e.g., water). Preferably, the polyelectrolyte salt aqueous solution has an indifference of from 3 to 35 wt%, and the abrasive particles have an aqueous dispersion concentration of from 4 to 6 wt%. Thus, the water forming the CMP slurry may be derived from a composition of a polyelectrolyte salt composition, or a mixture of abrasive particles similar to an aqueous solution. The amount of water used is as close as 100 Wt% of the total weight of the slurry. Preferably, the amount of water used is between 94 and 99.8 Wt%. If the amount is less than 94 wt%, the stability of the slurry may be deteriorated. If the amount is greater than 99.8 wt%, the removal rate will decrease. The present invention still further provides an STI method using the CMP slurry. When the CMP slurry of the present invention is used, the tantalum nitride layer in the entire region of the wafer can be uniformly removed during the process due to the high selectivity of the silica dioxide layer to the gas layer. Therefore, the thickness unevenness is minimized. As a result, the difference between the active layer and the field layer is extremely small, and at the same time, it does not adversely affect the quality of the electro-ceramic and microelectronic devices. In addition, it is also possible to use a slurry composition with a high grinding selectivity and a low degree of agglomeration of the abrasive particles to 18 1320055 5

右。接著,將0.032克的雙(硼二氟二苯基二乙圬)姑 (II)[bis(boron difluorodiphenyl glyoxime)Co (II)]溶解於8〇 克的曱基乙基顚I (methyl ethyl ketone),之後持續滴入上述 反應裝置中約270分鐘。與此同時,將單體與聚合起始劑分 別以240分鐘與270分鐘滴入,其中,單體包含10重量份甲 基丙烯酸(methacrylic acid))與90重量份經乙基甲基丙婦酸 醋(hydroxyethyl methacrylate),而聚合起始劑包含 1 克 2,2 偶氮 2-甲基丁腈(2,2-azobis (2-methylbutyronitrile))溶解於 49克異丙醇(isopropyl alcohol)之中。加入聚合起始劑之 10 後,使反應混合物在迴流溫度下維持約30分鐘,接著冷卻 至室溫,以獲得具35%固體含量的巨單體溶液。 以核磁共振光譜儀(NMR spectrometer)分析此巨單 體,結果顯示此巨單體分子量為1300,聚合度10。熱重分 析儀(thermogravimetry)分析後得知,巨單體純度為92%。 15right. Next, 0.032 g of bis(boron difluorodiphenyl glyoxime Co (II)] was dissolved in 8 g of methyl ethyl ketone. After that, it was continuously dropped into the above reaction apparatus for about 270 minutes. At the same time, the monomer and the polymerization initiator were added dropwise at 240 minutes and 270 minutes, respectively, wherein the monomer contained 10 parts by weight of methacrylic acid and 90 parts by weight of ethyl methyl propyl acrylate. Hydroxyethyl methacrylate, and the polymerization initiator contains 1 g of 2,2-azobis (2-methylbutyronitrile) dissolved in 49 g of isopropyl alcohol. . After the addition of 10 of the polymerization initiator, the reaction mixture was maintained at reflux temperature for about 30 minutes, followed by cooling to room temperature to obtain a macromonomer solution having a solid content of 35%. The macromonomer was analyzed by a nuclear magnetic resonance spectrometer (NMR spectrometer), and the macromonomer had a molecular weight of 1,300 and a degree of polymerization of 10. After analysis by thermogravimetry, the purity of the macromonomer was 92%. 15

20 (製備接枝型聚合電解質(Graft Type polyelectrolyte)) 於一裝配有攪拌器、溫度計、氮氣入口與冷凝器的500 毫升四頸燒瓶,加入120重量份的異丙醇(isopropyl alcohol), 30重量份的上述巨單體、2.9重量份的曱基丙烯酸甲酯 (methyl methacrylate)、2.9重量份的丙稀酸(acrylic acid)與 4·2重量份的曱基丙豨酸(methacrylic acid),令此混合物在 迴流溫度下發泡10分鐘左右。 於此混合物中,滴入0.2重量份第三戊烷基過氧丁基酯 (t-amyl peroxy pivalate)之起始劑與單體,持續兩小時左 右,其中,此單體包含17.2重量份的曱基丙烯酸甲酯(methyl 20 132005520 (Preparation of Graft Type polyelectrolyte) in a 500 ml four-necked flask equipped with a stirrer, thermometer, nitrogen inlet and condenser, 120 parts by weight of isopropyl alcohol, 30 weight Parts of the above macromonomer, 2.9 parts by weight of methyl methacrylate, 2.9 parts by weight of acrylic acid and 4.2 parts by weight of methacrylic acid, This mixture was foamed at a reflux temperature for about 10 minutes. Into this mixture, 0.2 part by weight of a t-amyl peroxy pivalate initiator and a monomer were added dropwise for about two hours, wherein the monomer contained 17.2 parts by weight. Methyl methacrylate (methyl 20 1320055

10 1510 15

20 11^113(^1316)、17.2重量份的丙稀酸(扣1*沖(;狀1(1)與25 6重 量份的曱基丙烯酸(methacrylic acid))與1.0重量份的第=戊 烧基過氧丁基酯(t-amyl peroxy pivalate)。 接著,將〇 3重 量份第三戊烧基過氧丁基酯(t-amyl peroxy pivalate)持續滴 入上述混合物10分鐘,並令此反應混合物在迴流溫度下維 持約10分鐘,接著冷卻至室溫,以獲得具38%左右固體含量 的接枝型聚合電解質。以膠體滲透層析法(GPC ; Gel Permeation Chromatography)分析該反應產物後,結果得知 該接枝型聚合電解之平均分子量為1〇〇〇〇。經核磁共振光譜 儀與熱重分析儀分析該反應產物後,顯示並無不飽和碳原 子的特徵波峰存在。 (製備接枝型聚合電解質鹽) 於上述獲得之接枝型聚合電解質中,加入氫氧化銨水 溶液將聚合電解質轉化成聚合電解質鹽,接著在減壓後的 真空中移除剩下的異丙醇,便可獲得具35%固體含量、ph 值6.5的接枝型聚合電解質鹽。 (製備CMP漿料用的佐劑) 接枝型聚合電解質鹽加入水,將濃度稀釋至3 wt〇/0為 止。於此稀釋溶液加入氫氧化銨,以將溶液PH值控制在 7.1。最後,便可獲得CMP漿料用的佐劑》 實施例2製備CMP漿料用的佐劑 (製備巨單體) 以相同於上述實施例1方法製造巨單體。 (製備接枝型聚合電解質) 21 1320055 於一裝配有攪拌器、溫度計、氮氣入口與冷凝器的500 毫升四頸燒航,加入120重量份的異丙醇(isopropyl alcohol), 30重量份的上述巨單體、2.9重量份的曱基丙烯酸甲酯 (methyl methacrylate)、7.1 重量份的丙稀酸(acrylic acid), 5 令此混合物在迴流溫度下發泡10分鐘左右。20 11^113 (^1316), 17.2 parts by weight of acrylic acid (deduction 1* rush (; 1 (1) and 25 6 parts by weight of methacrylic acid) and 1.0 part by weight of pent T-amyl peroxy pivalate. Next, 3 parts by weight of t-amyl peroxy pivalate was continuously added dropwise to the above mixture for 10 minutes. The reaction mixture was maintained at reflux temperature for about 10 minutes, and then cooled to room temperature to obtain a graft type polyelectrolyte having a solid content of about 38%. After analyzing the reaction product by colloidal permeation chromatography (GPC; Gel Permeation Chromatography) As a result, it was found that the average molecular weight of the graft type polymerization electrolysis was 1 〇〇〇〇. After analysis of the reaction product by a nuclear magnetic resonance spectrometer and a thermogravimetric analyzer, it was found that no characteristic peak of the unsaturated carbon atom existed. Branch type polyelectrolyte salt) In the graft type polyelectrolyte obtained above, an aqueous solution of ammonium hydroxide is added to convert the polyelectrolyte into a polyelectrolyte salt, and then the remaining isopropanol is removed in a vacuum after depressurization. Obtained 35% a graft type polyelectrolyte salt having a solid content and a pH of 6.5. (Preparation for preparing a CMP slurry) The graft type polyelectrolyte salt is added to water to dilute the concentration to 3 wt〇/0. Hydrogen is added to the diluted solution. Ammonium oxide to control the pH of the solution to 7.1. Finally, an adjuvant for the CMP slurry can be obtained. Example 2 Preparation of a CMP slurry for the preparation of an adjuvant (preparation of a macromonomer) The same method as in the above Example 1 Making a giant monomer. (Preparation of a graft type polyelectrolyte) 21 1320055 A 500 ml four-necked seabucker equipped with a stirrer, a thermometer, a nitrogen inlet and a condenser was charged with 120 parts by weight of isopropyl alcohol. 30 parts by weight of the above macromonomer, 2.9 parts by weight of methyl methacrylate, and 7.1 parts by weight of acrylic acid, 5, the mixture was foamed at a reflux temperature for about 10 minutes.

10 1510 15

於此混合物中,滴入0.2重量份第三戊烷基過氧丁基酯 (t-amyl peroxy pivalate)之起始劑與單體,持續兩小時左 右,其中,此單體包含17.2重量份的甲基丙烯酸甲酯(methyl methacrylate)、42.8重量份的丙稀酸(acrylic acid)與 1 _0重量 份的第三戊烧基過氧丁基醋(t-amyl peroxy pivalate)。接 者’將0.3重置份第二戍烧基過氧丁基醋(t-amyl peroxy pivalate)持續滴入上述混合物10分鐘,並令此反應混合物在 迴流溫度下維持約10分鐘,接著冷卻至室溫,以獲得具37% 左右固體含量的接枝型聚合電解質。以膠體滲透層析法 (GPC ; Gel Permeation ChromatograpH值y)分析該反應產物 後’結果得知該接枝型聚合電解之平均分子量為經 核磁共振光譜儀與熱重分析儀分析該反應產物後,顯示並 無不飽和碳原子的特徵波峰存在。 (製備接枝型聚合電解質鹽) 20 以相同於上述實施例1方法’獲得接枝型聚合電解質 鹽。 (製備CMP漿料用的佐劑) 以相同於上述實施例1方法’獲得CMP聚料用的佐劑。 實施例3製備CMP漿料用的佐劑 22 1320055 (製備巨單體) 循相同於上述實施例1方法,但以100重量份羥乙基甲基 丙烯酸酯(hydroxyethyl methacrylate)取代包含10重量份曱 基丙烯酸(methacrylic acid)之單體,依此獲得之巨單體溶液 5 與90重量份經乙基曱基丙稀酸醋(hydroxyethyl methacrylate)混合。本實施例獲得之巨單體,分子量為 1000,聚合度8,純度96%。Into this mixture, 0.2 part by weight of a t-amyl peroxy pivalate initiator and a monomer were added dropwise for about two hours, wherein the monomer contained 17.2 parts by weight. Methyl methacrylate, 42.8 parts by weight of acrylic acid and 1 _0 parts by weight of t-amyl peroxy pivalate. The receiver's continued to drip 0.3 parts of the second t-amyl peroxy pivalate into the mixture for 10 minutes, and allowed the reaction mixture to stand at reflux temperature for about 10 minutes, followed by cooling to At room temperature, a graft type polyelectrolyte having a solid content of about 37% was obtained. After analyzing the reaction product by colloidal permeation chromatography (GPC; Gel Permeation Chromatogra pH value y), it was found that the average molecular weight of the graft-type polymerization electrolysis was analyzed by a nuclear magnetic resonance spectrometer and a thermogravimetric analyzer. There are no characteristic peaks of unsaturated carbon atoms. (Preparation of graft type polyelectrolyte salt) 20 A graft type polyelectrolyte salt was obtained in the same manner as in the above Example 1. (Adjuvant for preparing CMP slurry) An adjuvant for obtaining a CMP aggregate was obtained in the same manner as in the above Example 1. Example 3 Preparation of an adjuvant for a CMP slurry 22 1320055 (Preparation of a macromonomer) Following the same procedure as in the above Example 1, except that 100 parts by weight of hydroxyethyl methacrylate was substituted for 10 parts by weight of hydrazine. The monomer of methacrylic acid, the macromonomer solution 5 thus obtained is mixed with 90 parts by weight of hydroxyethyl methacrylate. The macromonomer obtained in this example has a molecular weight of 1000, a degree of polymerization of 8, and a purity of 96%.

10 1510 15

20 (製備接枝型聚合電解質) 於一裝配有攪拌器、溫度計、氮氣入口與冷凝器的5〇〇 毫升四頸燒瓶,加入120重量份的異丙醇(iSOpr〇pyi· aic〇h〇i), 30重量份的上述巨單體、4.3重量份的甲基丙烯酸甲醋 (methyl methacrylate)、5.3重量份的丙稀酸(acrylic acid), 令此混合物在迴流溫度下發泡10分鐘左右。 於此混合物中,滴入0.2重量份第三戊烷基過氧丁基西旨 (t-amyl peroxy pivalate)之起始劑與單體,持續兩小時左 右,其中,此單體包含25.7重量份的甲基丙烯酸曱酯(methyl methacrylate)、34.3重量份的丙稀酸(acrylic acid)與25.6 重 量份的曱基丙烯酸(methacrylic acid))與1.0重量份的第三戊 烧基過氧丁基酯(t-amyl peroxy pivalate)。 接著,將〇 3重 量份第三戊院基過氧丁基酯(t-amyl peroxy pivalate)持續滴 入上述混合物10分鐘,並令此反應混合物在迴流溫度下、维 持約10分鐘,接著冷卻至室溫,以獲得具38。/〇左右固體含量 的接枝型聚合電解質。以膠體滲透層析法(GPC ; 〇el Permeation ChromatograpH值y)分析該反應產物後,結果得 23 1320055 知該接枝型聚合電解之平均分子量為1 〇〇〇〇。經核磁共振光 譜儀與熱重分析儀分析該反應產物後,顯示並無不飽和碳 原子的特徵波峰存在。 (製備接枝型聚合電解質鹽) 5 以相同於上述實施例1方法,獲得接枝型聚合電解質 鹽。 (製備CMP漿料用的佐劑) 以相同於上述實施例1方法,獲得CMP漿料用的佐劑。 實施例4製備CMP漿料 10 15 以1:3:3體積比,混合5 wt%作為研磨粒組成之氧化鈽漿 料(HIHC-1, LG Chem.,Ltd.)、實施例1所述之CMP漿料用的 佐劑與水,製得CMP漿料。 實施例5製備CMP漿料 循相同於上述實施例4方法,但以實施例2所述之CMP 漿料用的佐劑取代實施例1所述之CMP漿料用的佐劑,製得 CMP漿料。 實施例6製備CMP漿料 循相同於上述實施例4方法,但以實施例3所述之CMP漿 料用的佐劑取代實施例1所述之CMP漿料用的佐劑,製得 20 CMP漿料。 進行接下來的實驗,以量測出實施例4〜6所述之CMP 漿料的pH值、平均結塊粒徑(nm)、氮化層移除速率(A/min.) 與研磨選擇能力。其結果顯示於下表1。 (a)pH值係由pH值量測裝置量測得知(Corning pH meter 24 445)。 1320055 (b) 平均結塊粒徑由光散射置量測得知(Dynamic Light Scattering, Microtrap UPA150, Honeywell Inc., USA) ° (c) 氧化層移除速率得自於,以Nanometrics公司的 5 Nanospec 6100量測研磨前後的氧化層厚度,接著計算 厚度差異。20 (Preparation of graft type polyelectrolyte) In a 5 〇〇 ml four-necked flask equipped with a stirrer, thermometer, nitrogen inlet and condenser, 120 parts by weight of isopropanol (iSOpr〇pyi· aic〇h〇i) was added. 30 parts by weight of the above macromonomer, 4.3 parts by weight of methyl methacrylate, and 5.3 parts by weight of acrylic acid, and the mixture was foamed at a reflux temperature for about 10 minutes. Into this mixture, 0.2 part by weight of a t-amyl peroxy pivalate initiator and a monomer were added dropwise for about two hours, wherein the monomer contained 25.7 parts by weight. Methyl methacrylate, 34.3 parts by weight of acrylic acid and 25.6 parts by weight of methacrylic acid and 1.0 part by weight of tripentyl peroxybutyl acrylate (t-amyl peroxy pivalate). Next, 3 parts by weight of t-amyl peroxy pivalate was continuously added dropwise to the above mixture for 10 minutes, and the reaction mixture was maintained at reflux temperature for about 10 minutes, followed by cooling to At room temperature, obtain 38. A graft type polyelectrolyte having a solid content of about 〇. After analyzing the reaction product by colloidal permeation chromatography (GPC; 〇el Permeation Chromatogra pH value y), it was found that 23 1320055, the average molecular weight of the graft type polymerization electrolysis was 1 Torr. Analysis of the reaction product by a nuclear magnetic resonance spectrometer and a thermogravimetric analyzer revealed that there were no characteristic peaks of unsaturated carbon atoms. (Preparation of graft type polyelectrolyte salt) 5 In the same manner as in the above Example 1, a graft type polyelectrolyte salt was obtained. (Adjuvant for preparing CMP slurry) An adjuvant for the CMP slurry was obtained in the same manner as in the above Example 1. Example 4 Preparation of CMP Slurry 10 15 In a volume ratio of 1:3:3, 5 wt% of cerium oxide slurry (HIHC-1, LG Chem., Ltd.) as an abrasive particle was mixed, as described in Example 1. The CMP slurry was prepared by using an adjuvant for the CMP slurry and water. Example 5 Preparation of CMP Slurry The same procedure as in the above Example 4 was followed, except that the adjuvant for the CMP slurry described in Example 2 was replaced with the adjuvant of the CMP slurry described in Example 2 to prepare a CMP slurry. material. Example 6 Preparation of CMP Slurry The same procedure as in the above Example 4 was followed, except that the adjuvant for the CMP slurry described in Example 3 was replaced with the adjuvant of the CMP slurry described in Example 3 to obtain 20 CMP. Slurry. The following experiment was conducted to measure the pH value, average agglomerate particle size (nm), nitride layer removal rate (A/min.) and polishing selection ability of the CMP slurry described in Examples 4 to 6. . The results are shown in Table 1 below. (a) The pH value was measured by a pH measuring device (Corning pH meter 24 445). 1320055 (b) Average agglomerate particle size is determined by light scattering (Dynamic Light Scattering, Microtrap UPA150, Honeywell Inc., USA) ° (c) Oxide removal rate is obtained from Nanometrics' 5 Nanospec The thickness of the oxide layer before and after the grinding was measured by 6100, and then the thickness difference was calculated.

1010

(d) 氮化層移除速率得自於,以Nanometrics的公司 Nanospec 6100量測研磨前後的氧化層厚度,接著計算 厚度差異。 (e) 研磨選擇能力由氧化層移除速率除以氮化層移除速 率量測得知。 [表1] 實施例4 實施例5 實施例6 CMP漿料用佐劑的濃度(wt%) 1.3 1.3 1.3 PH值 7.66 7.35 7.00 '一 平均結塊粒徑(nm) 535 685 734 氧化層移除速率(A/min) 3,134 3,935 3,201 氮化層移除速率(A/min) ~42~ ' 43 —1 43 研磨選擇能力 "74^6 ~ 91.5 74.4 對照組實施例1與實施例7〜10製備cmp装料 15 首先’ 5 wt%之氧化鈽漿料組成(研磨粒組成,ηιη〇μ, 1^〇16!11.,1^(!.)與實施例1所述之(:1^1>毁料用的佐劑,以體 積比1:7混合。接著’將此混合物以水稀釋,將cmp聚料用 的佐劑調整至Owt% (對照組實施例1)、〇.42 wt% (實施例 7)、0_85 wt% (實施例 8)、1.3 wt°/。(實施例 5 wt% (實 20 施例10)。 25 1320055 對照組實施例1與實施例7〜10所述之CMP漿料,以上述 相同之方法其pH值、平均結塊粒徑(nm)、氧化層移除速率 (A/min·)、氮化層移除速率(A/min.)與研磨選擇能力。其結 果顯示於下表2。 5 [表 2] 對照組 實施例 1 實施例 7 實施例 8 實施例 9 實施例 10 CMP漿料用佐劑的濃度 (wt%) 0.0 0.42 0.85 1.3 1.5 pH值 7.84 7.93 7.83 7.72 7.67 平均結塊粒徑(nm) 240 881 835 617 557 氧化層移除速率 3,854 3,516 3,145 2,944 2,761 氮化層移除速率(A/min) 829 66 37 38 40 研磨選擇能力 5 53 85 77 69 對照組實施例2 (製備CMP漿料用的佐劑)(d) The nitride layer removal rate was obtained by measuring the thickness of the oxide layer before and after the grinding with a Nanospecs company Nanospec 6100, and then calculating the thickness difference. (e) The grinding selectivity is determined by the oxide removal rate divided by the nitride removal rate. [Table 1] Example 4 Example 5 Example 6 Concentration (wt%) of adjuvant for CMP slurry 1.3 1.3 1.3 PH value 7.66 7.35 7.00 'One average agglomerate particle size (nm) 535 685 734 Oxide removal Rate (A/min) 3,134 3,935 3,201 Nitride removal rate (A/min) ~42~ '43 -1 43 Grinding selection ability"74^6 ~ 91.5 74.4 Control Example 1 and Examples 7 to 10 Preparation of cmp charge 15 First '5 wt% of cerium oxide slurry composition (abrasive grain composition, ηιη〇μ, 1^〇16!11., 1^(!.) and described in Example 1 (:1^ 1> The adjuvant for the disintegration was mixed at a volume ratio of 1: 7. Then, the mixture was diluted with water, and the adjuvant for the cmp aggregate was adjusted to Owt% (Control Example 1), 〇.42 wt % (Example 7), 0_85 wt% (Example 8), 1.3 wt ° / (Example 5 wt% (real 20 Example 10). 25 1320055 Control Example 1 and Examples 7 to 10 CMP slurry, pH value, average agglomerate particle size (nm), oxide layer removal rate (A/min·), nitride layer removal rate (A/min.) and grinding selection in the same manner as above The results are shown in Table 2 below. 5 [Table 2] Example 1 Example 7 Example 8 Example 9 Example 10 Concentration (wt%) of adjuvant for CMP slurry 0.0 0.42 0.85 1.3 1.5 pH 7.84 7.93 7.83 7.72 7.67 Average agglomerate particle size (nm) 240 881 835 617 557 Oxide removal rate 3,854 3,516 3,145 2,944 2,761 Nitride removal rate (A/min) 829 66 37 38 40 Grinding selectivity 5 53 85 77 69 Control Example 2 (Preparation for preparation of CMP slurry)

重複實施例1步驟以提供CMP漿料用的佐劑,但使用了 氫氧化鈉與一種聚合電解質鹽溶液,其包含一線陰離子聚 合電解質,該聚合電解質為具平均分子量10000之聚丙稀 酸。 (製備CMP漿料) 作為研磨粒組成之5 wt%氧化飾聚料組成(HIHC-1, 15 LG Chem.,Ltd.)、上述獲得之CMP漿料用的佐劑與水,以 體積比1:3:3混合,製得CMP漿料。 對照組實施例3 (製備CMP漿料用的佐劑) 26 1320055 重複實施例1步驟以提供CMP漿料用的佐劑,但使用了 氫氧化納與一種商業應用之滑動劑(Trade name CD-WB, LG Chem.,Ltd.),即一種聚合電解質鹽溶液,其具平均分 子量21000,並包含圖2所示結構表現之陰離子聚合電解 5 質。 (製備CMP漿料)The procedure of Example 1 was repeated to provide an adjuvant for the CMP slurry, but using sodium hydroxide and a polyelectrolyte salt solution containing a linear anionic polymer electrolyte having a polyacrylic acid having an average molecular weight of 10,000. (Preparation of CMP slurry) As a composition of 5 wt% oxidative sizing of the abrasive grain composition (HIHC-1, 15 LG Chem., Ltd.), an adjuvant for the CMP slurry obtained above and water, in a volume ratio of 1 : 3:3 mixing to prepare a CMP slurry. Control Example 3 (Adjuvant for preparation of CMP slurry) 26 1320055 The procedure of Example 1 was repeated to provide an adjuvant for the CMP slurry, but using sodium hydroxide and a commercial application slip agent (Trade name CD- WB, LG Chem., Ltd.), a polyelectrolyte salt solution having an average molecular weight of 21,000 and comprising an anionic polymeric electrolytic material of the structure shown in FIG. (Preparation of CMP slurry)

10 1510 15

20 作為研磨粒組成之5 wt%氧化鈽漿料組成(HIHC-1, LG Chem” Ltd·)、上述獲得之CMP漿料用的佐劑與水,以 體積比1:3:3混合,製得CMP漿料。 對照組實施例4 (製備CMP漿料用的佐劑) 重複實施例1步驟以提供CMP漿料用的佐劑,但使用了 氫氧化納與一種商業應用之滑動劑(Trade name CD-WB, LG Chem·,Ltd.),即一種聚合電解質鹽溶液,其具平均分 子量25000 ’並包含圖2所示結構表現之陰離子聚合電解 質。 (製備CMP漿料) 作為研磨粒組成之5 wt%氧化鈽漿料組成(HIHC-1,LG Chem.,Ltd.)、上述獲得之CMP漿料用的佐劑與水,以體積 比1:3:3混合,製得CMP漿料。 對照組實施例1與實施例2〜4所述之CMP聚料,以上述 相同之方法其pH值、平均結塊粒徑(nm)、氧化層移除速率 (A/min.)、氮化層移除速率(A/min.)與研磨選擇能力。其結 果顯示於下表3。 27 1320055 [表3] 對照組實施 例2 對照組實施 例3 對照組實施 例4 CMP漿料用佐劑的濃度 (wt%) 1.3 1.3 1.3 pH值 7.29 8.25 7.93 平均結塊粒徑(nm) 967 806 758 氧化層移除速率(A/min) 2,703 4,092 4,117 氮化層移除速率(A/min) 49 903 408 研磨選擇能力 55 4.5 10.120 as a 5 wt% cerium oxide slurry composition of abrasive grains (HIHC-1, LG Chem" Ltd.), an adjuvant for the CMP slurry obtained above, and water, mixed at a volume ratio of 1:3:3. CMP slurry was obtained. Control Example 4 (Adjuvant for preparing CMP slurry) The procedure of Example 1 was repeated to provide an adjuvant for the CMP slurry, but using sodium hydroxide and a commercial application slip agent (Trade Name CD-WB, LG Chem., Ltd.), a polyelectrolyte salt solution having an average molecular weight of 25,000 Å and comprising an anionic polyelectrolyte represented by the structure shown in Fig. 2. (Preparation of CMP slurry) A 5 wt% cerium oxide slurry composition (HIHC-1, LG Chem., Ltd.), an adjuvant for the CMP slurry obtained above, and water were mixed at a volume ratio of 1:3:3 to prepare a CMP slurry. The CMP polymer of the control example 1 and the examples 2 to 4, in the same manner as above, its pH value, average agglomerate particle size (nm), oxide layer removal rate (A/min.), nitridation Layer removal rate (A/min.) and grinding selection ability. The results are shown in Table 3 below. 27 1320055 [Table 3] Control Example 2 Control group implementation Example 3 Control Example Example 4 Concentration (% by weight) of adjuvant for CMP slurry 1.3 1.3 1.3 pH 7.29 8.25 7.93 Average agglomerate particle size (nm) 967 806 758 Oxide removal rate (A/min) 2,703 4,092 4,117 Nitride removal rate (A/min) 49 903 408 Grinding selection capability 55 4.5 10.1

5 105 10

15 如上述表3所示,使用該分子量大於20000之聚合電解 質後,造成了研磨選擇能力的減低。 因此,由上述表1〜3所示結果可見,本發明所述之CMP 漿料(實施例4〜10)與對照組實施例1〜4所述各CMP漿料比 較後,顯示出相同或提升之平均結塊粒徑、氧化層移除速 率與氮化層移除速率。尤其是,本發明所述之CMP漿料可 以提供優越的研磨選擇能力。 工業應用 如前述所見,本發明所述之CMP漿料佐劑係應用於同步 研磨帶陽離子電荷材料與帶陰離子電荷材料之加工製程, 其中,該佐劑包含一聚合電解質鹽,其包含平均分子量控 制在1000〜20000之接枝型聚合電解質。 於此,聚合電解質鹽在帶陽離子電荷材料結構上形成一吸 附層,以提升帶陰離子電荷材料之研磨選擇能力,並使研 磨粒結塊減到最少。 上述實施例僅係為了方便說明而舉例而已,本發明所 28 1320055 主張之權利範圍自應以申請專利範圍所述為準,而非僅限 於上述實施例。 【圖式簡單說明】 圖1係傳統的STI製程流程圖。 ® 2係本發明所述之較佳實施例之接枝型聚合電解質之示 意圖。 元件符號說明】 100 101 102 103 104 10515 As shown in Table 3 above, the use of the polymer electrolyte having a molecular weight of more than 20,000 resulted in a decrease in the grinding selectivity. Therefore, as can be seen from the results shown in the above Tables 1 to 3, the CMP slurry (Examples 4 to 10) of the present invention showed the same or improved after comparison with the respective CMP slurries described in Comparative Examples 1 to 4. The average agglomerate particle size, oxide layer removal rate, and nitride layer removal rate. In particular, the CMP slurry of the present invention provides superior abrasive selection capabilities. Industrial Applicability As seen from the foregoing, the CMP slurry adjuvant of the present invention is applied to a process for synchronously grinding a cationically charged material and an anionically charged material, wherein the adjuvant comprises a polyelectrolyte salt comprising an average molecular weight control A graft type polyelectrolyte at 1000 to 20000. Here, the polyelectrolyte salt forms an absorbing layer on the structure of the cationically charged material to enhance the abrasive selection ability of the anionically charged material and to minimize the agglomeration of the abrasive grains. The above-mentioned embodiments are merely examples for convenience of description, and the scope of the claims of the present invention is based on the scope of the patent application, and is not limited to the above embodiments. [Simple description of the diagram] Figure 1 is a traditional STI process flow chart. ® 2 is intended to be a graft type polyelectrolyte of the preferred embodiment of the present invention. Component Symbol Description 100 101 102 103 104 105

半導體晶圓 一氧化妙塾層 氮化石夕層 溝渠 絕緣二氧化矽層 閉極一氧化;g夕層 29Semiconductor wafer, oxidized layer, nitride layer, trench, insulated, ceria layer, closed-pole oxidation, g-layer

Claims (1)

丄以0055 '^TXTU 年月日 修正 十、申請專利範圍: 荷材^之―係詩㈣科電荷㈣與帶陰離子電 荷材料$ 該㈣形成—吸附層於料陽離子電 力,甘上以增加該帶陰離子電荷材料的研磨選擇能 /、該佐劑具有一聚合電解質鹽,其係包含: ⑷-帶陰離子接枝型聚合電解質,其具有之平均分子 里為1000〜20000,並包含一主鏈與一側鏈,·以及 (b)—驗性材料。 10 2·—種用於CMP(化學機械研磨)漿料之佐劑,係具有 —聚合電解質鹽,包含: 旦⑷-帶陰離子接枝型聚合電解質,其具有之平均分子 里為1000〜20000,並包含一主鏈與一側鏈;以及 (b) —驗性材料。 3.如申請專利範圍第1項或第2項所述之佐劑,其中該 15側鏈具有對應於分子量·〜2_之長度,且該主鏈具有對 .應於分子量5〇〇〜15000之長度。 4·如申請專利範圍第1項或第2項所述之佐劑,其中該 接枝型聚合電解質包含: 作為該側鏈之一巨單元,其係由烯系不飽和單體的聚合 2〇或共聚合反應衍生得,該烯系不飽和單體係包含至少一官 月匕基該至少一 g月匕基選自一經基(hydroxyl group )、一缓 基(carboxyl group)以及一績酸基(suif〇nic acid gr〇Up )所組 成之群組;以及 作為該主幹之一單元,係由含羧基之烯系不飽和單體衍 1320055 生得。 5·如申請專利範圍第丨項或第2項所述之佐劑,立 由一方法獲得,其步驟包含: ’、a ⑴聚合至少—次單體以獲得—巨單體,形成該接枝型 5 聚合物之該側鏈;以及 (11)共聚合該巨單體與一單體,其中該單體係形成該接 枝型聚合物之主鏈。 6.如+請專利範圍第5項所述之佐劑,其中該接枝型 聚合電解質藉由一方法獲得,其步驟包含: 1〇 ⑴實行烯系不飽和單體之自由基聚合反應以獲得一巨 該㈣不飽和單體係包含至少—官能基,該至少一 B倉b基選自羥基、一缓基以及一項酸基所組成之群組; 以及 ' (H)共聚合該巨單體與一含羧基之烯系不飽和單體。 15 7·如申請專利範圍第6項所述之佐劑,其中該含羥基 之烯系不飽和單體係為一 C1〜C12羥烷基曱基丙烯酸酯 > (hydroxyalkyl methacrylate)。 8. 如申叫專利紅圍第4項所述之佐劑,其中該巨單元 二藉由υ 3至;>、一g能基之烯系不飽和單體,與含缓基之 稀系不飽和單體的共聚合反應獲得,該至少一官能基係選 自一羥基、一羧基及一磺酸基所組成之群組。 9. 如申睛專利範圍第8項所述之佐劑,其中該含羧基 烯系不飽和單體之使用量係佔該烯系不飽和單體總重至 夕3 〇重里伤,g玄婦系不飽和單體係包含至少一官能基,該 31 1320055 至少一g能基係選自一羥基、一羧基及一磺酸基所組成之 群組。 10-如申請專利範圍第4項所述之佐劑,其中由呈現於 ,接枝型聚合電解質之該主鏈上之該含祕之㈣不飽和 5早體衍生得之該單元,係由甲基丙烯酸(methacrylic acid) 或丙烯酸(acrylic acid)衍生得。 11.如申請專利範圍第4項所述之佐劑,其中由呈現於 ‘ ^接枝魏合電解質线續上之該含祕之㈣不飽和 單體衍生得之該單元,其使用量係佔該主鏈總重65〜100重 10 量份。 12·如申請專利範圍第6項所述之佐劑,其中該含羧基 之烯系不飽和單體,係與一含可聚合稀基之單體組合使用 於步驟(ii)之中。 人13.如申請專利範圍第12項所述之佐劑,其中該可聚 。烯基之單體係為(甲基)丙烯酸醋單體((meth)acrylate monomer) ° • 14’如申請專利範圍第1項或第2項所述之佐劑,盆中 該驗性材料(b)係為氯氧化錄(ammonium hydroxide)或二基 胺(basic amine)。 2〇 ^ 15•如申請專利範圍第1項或第2項所述之佐劑,其中 該聚合電解質鹽之pH值為45〜88。 16. —種CMP (化學機械研磨)漿料,係包含: (a) 申請專利範圍第1或2項所定義之該佐劑; (b) 研磨粒;以及 _t 32 1320055 0)水。 17. 如申請專利範圍第16項所述之CMP漿料,該係包 含0.1〜10 wt%之該佐劑;〇」〜1〇 wt%之該研磨粒;以 及佔該漿料總重1 〇〇 wt%之該平衡量的水。 18. —種STI(淺溝渠隔離)方法,係使用申請專利範圍 第I6項所定義之該CMP漿料。 19. 一種防止一帶陽離子電荷材料在研磨加工期間被 研磨的方法,其係藉由使用一聚合電解質鹽,該聚合電解 質鹽係包括: (a) —種帶陰離子接枝型聚合電解質,其具有1〇〇〇〜 20000之平均分子量,並句含—Φ左去办 , 里业匕3 主鏈與一側鏈;以及 (b) —驗性材料。 33丄 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 005 The abrasive selection energy of the anion charge material/, the adjuvant has a polyelectrolyte salt, which comprises: (4) an anion graft type polyelectrolyte having an average molecular weight of 1000 to 20000 and comprising a main chain and a Side chain, · and (b) - test materials. 10 2 - an adjuvant for a CMP (Chemical Mechanical Polishing) slurry, comprising a polyelectrolyte salt comprising: a (4)-anionically grafted polyelectrolyte having an average molecular weight of from 1000 to 20000, And includes a main chain and a side chain; and (b) an inspection material. 3. The adjuvant according to claim 1 or 2, wherein the 15 side chain has a length corresponding to a molecular weight of ~2_, and the main chain has a molecular weight of 5〇〇~15000. The length. 4. The adjuvant according to claim 1 or 2, wherein the graft type polyelectrolyte comprises: as a macro unit of the side chain, which is polymerized by an ethylenically unsaturated monomer. Or derived from a copolymerization reaction, the ethylenically unsaturated single system comprising at least one guanyl group, the at least one g sulfhydryl group being selected from the group consisting of a hydroxyl group, a carboxyl group, and a hydroxy group. a group consisting of (suif〇nic acid gr〇Up ); and as a unit of the backbone, derived from a carboxyl group-containing ethylenically unsaturated monomer derivative 1320055. 5. The adjuvant according to the scope of claim 2 or 2, obtained by a method, the steps comprising: ', a (1) polymerizing at least - a monomer to obtain - a macromonomer, forming the graft The side chain of the type 5 polymer; and (11) copolymerizing the macromonomer with a monomer, wherein the single system forms the backbone of the graft polymer. 6. The adjuvant according to claim 5, wherein the graft-type polyelectrolyte is obtained by a method comprising the steps of: 1) (1) performing a radical polymerization reaction of an ethylenically unsaturated monomer to obtain a large (four) unsaturated single system comprising at least a functional group, the at least one B-bar group b is selected from the group consisting of a hydroxyl group, a slow group and an acid group; and '(H) copolymerizing the giant single And a carboxyl group-containing ethylenically unsaturated monomer. The adjuvant according to claim 6, wherein the hydroxyl group-containing ethylenically unsaturated single system is a C1 to C12 hydroxyalkyl methacrylate. 8. The adjuvant according to claim 4, wherein the macro unit is made of υ 3 to; >, a g-energy ethylenically unsaturated monomer, and a slow-containing base The copolymerization of an unsaturated monomer is obtained, and the at least one functional group is selected from the group consisting of a monohydroxy group, a monocarboxy group, and a monosulfonic acid group. 9. The adjuvant according to claim 8, wherein the carboxyl group-containing unsaturated monomer is used in an amount of up to 3 〇 in the total weight of the ethylenically unsaturated monomer. The unsaturated mono system comprises at least one functional group, and the 31 1320055 at least one g energy group is selected from the group consisting of a monohydroxy group, a monocarboxy group, and a monosulfonic acid group. 10. The adjuvant according to claim 4, wherein the unit is derived from the secreted (tetra) unsaturated 5 precursor present on the main chain of the graft type polyelectrolyte. Derived from methacrylic acid or acrylic acid. 11. The adjuvant according to claim 4, wherein the unit is derived from the (tetra) unsaturated monomer present on the '^ grafted Wei electrolyte line. The main chain has a total weight of 65 to 100 and a weight of 10 parts. 12. The adjuvant according to claim 6, wherein the carboxyl group-containing ethylenically unsaturated monomer is used in combination with a polymerizable dilute group-containing monomer in the step (ii). Human 13. The adjuvant of claim 12, wherein the polymerizable. The single system of the alkenyl group is a (meth) acrylate monomer (the (meth)acrylate monomer) ° 14 'as the adjuvant described in claim 1 or 2, the test material in the pot ( b) is an ammonium hydroxide or a basic amine. 2〇 ^ 15• The adjuvant according to claim 1 or 2, wherein the polyelectrolyte salt has a pH of 45 to 88. 16. A CMP (Chemical Mechanical Polishing) slurry comprising: (a) the adjuvant as defined in claim 1 or 2; (b) abrasive particles; and _t 32 1320055 0) water. 17. The CMP slurry according to claim 16, wherein the system comprises 0.1 to 10% by weight of the adjuvant; 〇" to 1% by weight of the abrasive particles; and the total weight of the slurry is 1 〇 〇wt% of this balance of water. 18. An STI (Shallow Trench Isolation) method using the CMP slurry as defined in claim I. 19. A method of preventing a cationically charged material from being ground during a grinding process by using a polyelectrolyte salt, the polyelectrolyte salt comprising: (a) an anion graft type polyelectrolyte having 1 〇〇〇 ~ 20000 average molecular weight, and the sentence contains - Φ left to do, Liye 匕 3 main chain and one side chain; and (b) - test materials. 33
TW094146707A 2004-12-29 2005-12-27 Adjuvant for chemical mechanical polishing slurry TWI320055B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20040114824 2004-12-29
KR1020050113758A KR100786950B1 (en) 2004-12-29 2005-11-25 Supplement agent for chemical mechanical polishing slurry

Publications (2)

Publication Number Publication Date
TW200704760A TW200704760A (en) 2007-02-01
TWI320055B true TWI320055B (en) 2010-02-01

Family

ID=37168609

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094146707A TWI320055B (en) 2004-12-29 2005-12-27 Adjuvant for chemical mechanical polishing slurry

Country Status (4)

Country Link
JP (1) JP4712813B2 (en)
KR (1) KR100786950B1 (en)
CN (1) CN101068901B (en)
TW (1) TWI320055B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100786948B1 (en) * 2005-12-08 2007-12-17 주식회사 엘지화학 Adjuvant capable of controlling a polishing selectivity and chemical mechanical polishing slurry comprising the same
KR100786949B1 (en) * 2005-12-08 2007-12-17 주식회사 엘지화학 Adjuvant capable of controlling a polishing selectivity and chemical mechanical polishing slurry comprising the same
KR100832993B1 (en) 2006-04-14 2008-05-27 주식회사 엘지화학 Adjuvant for chemical mechanical polishing slurry
WO2009104334A1 (en) * 2008-02-18 2009-08-27 Jsr株式会社 Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
US8822339B2 (en) 2009-10-13 2014-09-02 Lg Chem, Ltd. Slurry composition for CMP, and polishing method
JP5637500B2 (en) * 2011-02-01 2014-12-10 三菱レイヨン株式会社 Method for producing vinyl polymer and vinyl polymer
EP2826827B1 (en) * 2013-07-18 2019-06-12 Basf Se CMP composition comprising abrasive particles containing ceria
KR101353315B1 (en) * 2013-08-07 2014-01-21 소문식 Composition for cutting wheel and cutting wheel comprising the same
KR102475282B1 (en) 2017-03-29 2022-12-07 삼성전자주식회사 Slurry composition for chemical mechanical polishing
CN111378973A (en) * 2018-12-28 2020-07-07 安集微电子科技(上海)股份有限公司 Chemical mechanical polishing solution and application thereof
CN112872916B (en) * 2020-12-28 2023-03-10 富联裕展科技(深圳)有限公司 Polishing system and polishing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4744656B2 (en) * 1998-10-08 2011-08-10 日立化成工業株式会社 CMP polishing agent and substrate polishing method
JP4555936B2 (en) * 1999-07-21 2010-10-06 日立化成工業株式会社 CMP polishing liquid
US6258140B1 (en) * 1999-09-27 2001-07-10 Fujimi America Inc. Polishing composition
US6964923B1 (en) * 2000-05-24 2005-11-15 International Business Machines Corporation Selective polishing with slurries containing polyelectrolytes
US6776810B1 (en) * 2002-02-11 2004-08-17 Cabot Microelectronics Corporation Anionic abrasive particles treated with positively charged polyelectrolytes for CMP
KR100539983B1 (en) * 2003-05-15 2006-01-10 학교법인 한양학원 Ceria Abrasives for CMP and Methods of Fabricating the Same

Also Published As

Publication number Publication date
KR20060076190A (en) 2006-07-04
TW200704760A (en) 2007-02-01
KR100786950B1 (en) 2007-12-17
CN101068901A (en) 2007-11-07
CN101068901B (en) 2012-05-09
JP2008521242A (en) 2008-06-19
JP4712813B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
TWI320055B (en) Adjuvant for chemical mechanical polishing slurry
JP5240478B2 (en) Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
US7459398B2 (en) Slurry for CMP, polishing method and method of manufacturing semiconductor device
TWI313209B (en) Cmp slurry and method for polishing semiconductor wafer using the same
US20080121839A1 (en) Slurry Composition for Chemical Mechanical Polishing and Precursor Composition Thereof
KR100786948B1 (en) Adjuvant capable of controlling a polishing selectivity and chemical mechanical polishing slurry comprising the same
TWI304090B (en) Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
WO2007069488A1 (en) Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersion for chemical mechanical polishing
TW200525020A (en) Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
JPWO2004068570A1 (en) CMP abrasive and polishing method
JP2007088424A (en) Aqueous dispersing element for chemical mechanical polishing, kit for preparing the same aqueous dispersing element, chemical mechanical polishing method and manufacturing method for semiconductor device
EP1844122B1 (en) Adjuvant for chemical mechanical polishing slurry
US8652967B2 (en) Adjuvant for controlling polishing selectivity and chemical mechanical polishing slurry comprising the same
TW201243039A (en) A chemical mechanical polishing (CMP) composition comprising two types of corrosion inhibitors
JP2004319715A (en) Slurry for polishing, and method of polishing semiconductor wafer using the same