TWI318773B - Field emission microelectronic device - Google Patents

Field emission microelectronic device Download PDF

Info

Publication number
TWI318773B
TWI318773B TW95126705A TW95126705A TWI318773B TW I318773 B TWI318773 B TW I318773B TW 95126705 A TW95126705 A TW 95126705A TW 95126705 A TW95126705 A TW 95126705A TW I318773 B TWI318773 B TW I318773B
Authority
TW
Taiwan
Prior art keywords
field emission
electrode layer
electronic device
micro
insulating layer
Prior art date
Application number
TW95126705A
Other languages
Chinese (zh)
Other versions
TW200807476A (en
Inventor
Pi-Jin Chen
Zhao-Fu Hu
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW95126705A priority Critical patent/TWI318773B/en
Publication of TW200807476A publication Critical patent/TW200807476A/en
Application granted granted Critical
Publication of TWI318773B publication Critical patent/TWI318773B/en

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Description

* 1318773 9 . 九、發明說明: -- 【發明所屬之技術領域】 本發明係涉及-種微型場發射電子器件,尤其涉及一 種工作在大氣壓惰性氣體環境下的奈米級場發射電子器 件。 【先前技術】 現代電腦的發明係從電子管開始的,早期的二極體、 三極管都剌真空電子管實現,世界上第—台電腦即用約 1麵個真空電子管製造出來。1947年,貝爾實驗室發明 電晶體,由於電晶體具有能耗低、易於微型化與集成化、 適於大規模製造且成本低廉等優點,它在絕A多數應用場 合迅速取代了真空電子管’並且使得微處理⑽出現與電 腦的大規模普及成爲可能。然而,在某些_的場合,真 空電子管健具有電晶體不可替代的優勢,如極高頻率、 動態範圍大、抗反向擊穿、A功率,以及能夠在高溫、高 輕射%合下工作的特性。真空電子管的優點具體體現爲: 其一 ’ %發射電子在10伏特的真空加速電壓下的運動速度 約爲1.87xl〇8cm/s,比單晶矽中電子的漂移速率 1.5xl〇7cm/s (i〇4v/cm電場)大一個數量級,只要電子管 的陰-陽極間距足夠小(如1〇〇nm),就可做成開關速度遠 快於電晶體的元H件;其次,溫度對半導㈣件的性能影 響很大’傳統的矽基半導體工作溫度一般不能超過35(rc, 石反化矽、金剛石等寬禁帶半導體可工作在600°C,而真空 電子官的工作原理對溫度並不敏感,理論上可以在高溫下 1318773 參 r , 穩定地1作;其三,高能輻射粒子對半導體ϋ件的影響係 巨大的,在一定的輻照強度下不僅會使器件性能不穩定, 而且可能造成不可逆轉的硬體損壞,而真空電子管的工作 狀態則基本不受高能粒子的影響。真空電子管的這些特性 ^空探索、地質勘探、反應堆監控、煉鋼、嘴氣發動機 等高溫場合即時監測、超高速通訊與信號處理等領域具有 不可替代的價值。 統電子管-般具有龐大的體積與重#,因此其無法 集成化,不能滿足稍微複雜的信號處理需求,針對於此, 從20世紀60年代開始,人們開始研究微型真空電子管, 並製造出了微型真空三極管。微型真空電子管的工作原理 與傳統電子管基本相同,並且,高真空環境對於傳統電子 W微型電子管都係、必須的。其原因在於:真空中的殘餘 氣體如果被電子電離,就會破壞電子管的工作狀態;正離 丨子會增加電子官’聲;過量的正離子會轟擊損壞陰極;陰 • 極表面的氣體吸附也會造成發射性能不穩定。對於傳統^ 子官,真空可以用吸氣劑來維持,但微型電子管由於其内 部空間狹小’比表面積大,維持高真空係非常困難的。因 此,對於微型真空電子管來說,維持微小體積内的高真空 環境係一個極難解決的技術難題,使得微型真空電子管難 以實用化。 有鑒於此,提供一種工作在惰性氣體環境下的微型場 發射電子器件’它具有與微型真空電子管相似的優越性能 與應用前景,且能避開微型真空電子管封裝中的真空維持 7 1318773 =纖實用化的新型電子元器件及其積體電路 【發明内容】 以下,將以若干實施例說明_種工作在惰性氣 ;型!發T器件’其具有極快的開關速度,以: 月匕夠在咼 >皿、面輻射場合下工作的特點。 -種微型場發射電子器件,其包括:—基底; 絕緣層與m緣層相隔—定距離設置於基底上;寸 極電極層與-陽極電極層分別設置於第一絕緣層盘第二: ί層上,該陰極電極層具有—場發射端正對該陽極電極 層’鎌型場發射電子ϋ㈣⑽有舰氣體,且滿足條 件式· Α<4 ’其巾—,h爲陰極電極層的場發射端與陽極電 極層之間的間距;Ie爲電子在惰性氣體環境中的自由程。 該微型場發射電子器件進一步包括一第三絕緣層間隔 設置於第-輯層與第二絕緣層之間,—栅極電極層設置 於該第一絕緣層上’位於陰極電極層與陽極電極層之間。 該柵極電極層在對應於場發射端位置設置有一開口。 該微良%發射電子益件進一步包括一柵極電極層設置 於基底上,位於陰極電極層與陽極電極層之間。 該柵極電極層設置於場發射端與基底之間。 該場發射端爲微尖結構。 該場發射端材料爲金屬材料或半導體材料表面鍍金屬 材料薄膜。 該場發射端表面形成有低逸出功材料薄膜。 1318773 . ,例優選爲特徵尺寸hl小於電子自由程又的1/1〇。 $特徵尺寸hl遠小於惰性氣體環境中的電子自由程 又時’電子在飛行過程中幾乎不與惰性氣體原子144 碰才里此時可認爲電子能夠自由運動到達陽極電極層 18 ° 本貫施例中,電子在氣體中的自由程又可由 p 其中’η爲氣體分子密 πησ* 1318773 9. Illustrated: - Technical Field of the Invention The present invention relates to a field-type micro-field emitting electronic device, and more particularly to a nano-scale field emission electronic device operating in an atmospheric inert gas atmosphere. [Prior Art] The invention of modern computers began with electron tubes. The early diodes and triodes were all realized by vacuum tubes. The world's first computer was manufactured with about one vacuum tube. In 1947, Bell Labs invented the transistor, which quickly replaced the vacuum tube in most applications due to its low energy consumption, ease of miniaturization and integration, high-scale manufacturing, and low cost. It has made it possible for micro-processing (10) to appear and large-scale popularization of computers. However, in some cases, vacuum tube has the advantages of irreplaceable transistors, such as extremely high frequency, large dynamic range, anti-backward breakdown, A power, and the ability to work under high temperature and high light shots. Characteristics. The advantages of the vacuum tube are as follows: The movement speed of a '% emitted electron at a vacuum acceleration voltage of 10 volts is about 1.87xl 〇 8cm/s, which is 1.5xl 〇7cm/s than the drift rate of electrons in a single crystal 矽 ( The i〇4v/cm electric field is one order of magnitude larger. As long as the cathode-anode spacing of the tube is small enough (eg, 1〇〇nm), the switching speed can be made much faster than the element of the transistor. Second, the temperature is semi-conductive. (4) The performance of the parts has a great influence. 'The traditional 矽-based semiconductor operating temperature can't generally exceed 35 (rc, stone anti-chemical, diamond and other wide-bandgap semiconductors can work at 600 ° C, while vacuum electronic officials work on temperature and Insensitive, in theory, it can be stably operated at 1387738 at high temperature; thirdly, the influence of high-energy radiation particles on semiconductor components is huge, and it will not only make the device performance unstable under certain irradiation intensity, but also It may cause irreversible hardware damage, and the working state of the vacuum tube is basically not affected by high-energy particles. These characteristics of vacuum tubes, air exploration, geological exploration, reactor monitoring, steel making, mouth It has irreplaceable value in real-time monitoring, ultra-high-speed communication and signal processing in high-temperature applications such as engines. The tube has a large volume and weight, so it cannot be integrated and cannot meet the requirements of slightly complicated signal processing. Therefore, since the 1960s, people began to study micro vacuum tubes and fabricated miniature vacuum transistors. The working principle of micro vacuum tubes is basically the same as that of traditional tubes, and the high vacuum environment is used for traditional electronic W micro tubes. The reason is that the residual gas in the vacuum will destroy the working state of the electron tube if it is ionized by electrons; the electrons will increase the sound of the electrons; the excess positive ions will bombard the cathode; the surface of the cathode Gas adsorption can also cause unstable emission performance. For conventional applications, the vacuum can be maintained by a getter, but the microtube has a small internal space and has a large specific surface area. It is very difficult to maintain a high vacuum system. For vacuum tubes, maintain a small volume The vacuum environment is an extremely difficult technical problem, making micro vacuum tubes difficult to put into practical use. In view of this, a micro field emission electronic device operating in an inert gas environment is provided, which has superior performance and application similar to micro vacuum tubes. Prospect, and can avoid the vacuum maintenance in the micro vacuum tube package 7 1318773 = new electronic components and their integrated circuit for practical use of the fiber [Summary of the Invention] Hereinafter, the operation will be described in several embodiments. The T device has a very fast switching speed, which is characterized by: Moonlight is enough to work in the case of dish and surface radiation. - A miniature field emission electronic device, including: - substrate; insulating layer and m The edge layers are spaced apart - a fixed distance is disposed on the substrate; the inch electrode layer and the - anode electrode layer are respectively disposed on the second insulating layer of the first insulating layer, the cathode electrode layer has a field emission end facing the anode electrode layer镰-type field emission electron ϋ (4) (10) has a ship gas, and satisfies the conditional formula · Α < 4 'the towel -, h is the field emission end and the anode electrode layer of the cathode electrode layer Spacing between; Ie is an electron free path in an inert gas atmosphere. The micro field emission electronic device further includes a third insulating layer disposed between the first layer and the second insulating layer, wherein the gate electrode layer is disposed on the first insulating layer 'on the cathode electrode layer and the anode electrode layer between. The gate electrode layer is provided with an opening at a position corresponding to the field emission end. The micro-% electron-emitting component further includes a gate electrode layer disposed on the substrate between the cathode electrode layer and the anode electrode layer. The gate electrode layer is disposed between the field emission end and the substrate. The field emission end is a microtip structure. The field emitting material is a metal material or a thin film of a metal material on the surface of the semiconductor material. A film of a low work function material is formed on the surface of the field of the field. 1318773 . , Preferably, the feature size hl is less than 1/1 又 of the electron free path. The characteristic dimension hl is much smaller than the electron free path in an inert gas environment. When the electrons are hardly in contact with the inert gas atom 144 during the flight, the electron can be freely moved to reach the anode electrode layer at 18 °. In the example, the free path of electrons in the gas can be p from which 'η is the gas molecule density πησ

公式計算:!- 4 4kT 度,σ爲氣體分子的有效直徑;38χι〇-23 j/κ, 爲波爾知又系數,T爲絕對溫度;p爲氣體壓力。在 T 300K彳目大氣麼環境下,各種惰性氣體環境下的 電子自由程如表1所示: 表1 氣體 氦 氖 義 氪 氙 "i^iaorsy™™" 2. 18 2. 6 1 3. 7 4 2 Λ Q 電子自由程(urn) 太會故加.m 1. 07 TTrT [~vw~ 0. 29 . ί7 0. 22 ρ产 %、柯私軋,隹一個大氣壓的 氧氣土中工作的微型場發射電子ϋ件10,只要特徵尺寸 hi遠小於場發射端16所發射電子在氦氣巾自由程^ :二7广即可認爲電子能夠自由運動到達陽極電 極層18。另外,如表2戶斤+ 士由 衣所7^ ’本實施例優選爲特徵尺 了二在氣氣中的自由程“ _ 二〇=此時,91%的電子在飛行過程中不與He原 子發生碰撞。 11 1318773 表2 特徵尺寸 0. 01 X 0.1 Ιβ lie 5 Xe 自由運動(不碰 撞)的幾率 0. 99 〇. 91 0.37 0. 007Formula calculation:! - 4 4kT degrees, σ is the effective diameter of the gas molecule; 38χι〇-23 j/κ, which is the Bohr coefficient, T is the absolute temperature; p is the gas pressure. In the T 300K atmosphere, the electron free path in various inert gas environments is shown in Table 1: Table 1 Gas 氪氙 氪氙 "i^iaorsyTMTM" 2. 18 2. 6 1 3. 7 4 2 Λ Q electron free path (urn) too will add.m 1. 07 TTrT [~vw~ 0. 29 . ί7 0. 22 ρ% production, Ke private rolling, 微型 working in an atmospheric pressure oxygen soil The field emission electronic component 10 can be considered to be free to move to the anode electrode layer 18 as long as the feature size hi is much smaller than the electron emission from the field emission terminal 16 in the free path of the helium towel. In addition, as shown in Table 2, the households + 士士衣所7^ 'This embodiment is preferably a characteristic ruler of the free path in the gas" _ 〇 = = at this time, 91% of the electrons do not with the He atom during flight Collision occurs. 11 1318773 Table 2 Characteristic dimensions 0. 01 X 0.1 Ιβ lie 5 Xe The probability of free motion (no collision) 0. 99 〇. 91 0.37 0. 007

其二,由於特徵尺寸hi小於電子自由程ι 發射端16的尖端與陽極電極層18的間距極小,e ’ _ 本實施例微型場發射電子器件10發射電子所鸾灸& 發射電壓較小’因而電子從陰極電極層14與陽 極層18之間的加速電壓所獲得的能量較小。表3電 示爲各種惰性氣體的第一電離能。本實施例中,春恭 子從加速電壓所獲得的能量小於所充惰性氣體的第 一電離能時’氣體原子不會電離;當電子從加速電壓 所獲得的能量等於或略大於所充惰性氣體的第一電 離能時,氣體原子的電離率較低亦可以忽略。因此, 本實施例微型場發射電子器件10發射電子即使與惰 性氣體原子144碰撞也基本不會使惰性氣體原子144 發生電離。 表3 氣磕 氦 氖 氬 氪 氣 第一電離能(eV) 24.587 21.564 15. 759 13. 999 12. 130 其三,由於本實施例微型場發射電子器件1〇工 作於惰性氣體環境中,惰性氣體原子144不僅不會吸 附在場發射端16表面,且,在—個大氣壓下高密度 的惰性氣體原子144由於熱運動會持續不斷地轟擊該 場發射端16,可在一定程度上起到清潔作用,去除在 12 1318773 暂2程或其他過程中吸附在場發射端16表面的雜 乱分子γ維持場發射電子器件10的正常工作f 般’器件内部,單位面積上的氣體分子的轟擊 頻率可按下述公式計算·· ηυ 4 p-na 扣mQkT ~^2nMRT ’其中’ n爲氣體分子密 3 ^爲氣體分子熱運動平均速度;P爲壓力;Μ爲氣 體为子量;NA=6.02xl〇23m〇广爲阿佛加德羅常數1 爲絕對溫度值;R=8.31 J/(m〇1K)。 本實施例中,在300K,一個大氣壓的氦氣環境 下’,型場發射電子器件10内部的場發射端16表 面’單2位面積上的惰性氣體原子146的轟擊頻率爲 :7x10 /m s。而場發射端a表面吸附的一個雜質氣 體分子,如水蒸氣分子的面積約爲l(T19m2,因此,該 水蒸氣分子被轟擊的頻率是7.7xl〇Vs。如此高的轟 擊頻率能起到很強的清洗作用,可以保證場發射端16 不會因爲雜質氣體原子的吸附而改變其場發射特性。 另,本實施例中,基底12材料可選擇爲矽(si)、 錯(Ge)、氮化鎵(GaN)、氧化鋁(Ah〇3)或金剛石 等半導體材料。絕緣層122,124材料可選擇爲二氧 化矽(Si〇2)、氮化矽(Si^4)等纟邑緣材料。陽極電極 層18材料可選擇爲金(Au)、鉑(Pt)、銀(Ag)、鈦 (^)、銅(|:11)、鋁(^1)、鎢(界)、翻(|^0)、组(了3)、 銖(Re)、鈮(Nb)、鎳(Ni)、鉻(Cr)、锆(Zr)或 13 1318773Second, since the feature size hi is smaller than the distance between the tip end of the electron free-path emitting end 16 and the anode electrode layer 18, e '_ the micro field-emitting electron device 10 of the present embodiment emits electrons and the moxibustion & Thus, the energy obtained by the electrons from the accelerating voltage between the cathode electrode layer 14 and the anode layer 18 is small. Table 3 shows the first ionization energy of various inert gases. In this embodiment, when the energy obtained by the Chungongzi from the accelerating voltage is less than the first ionizing energy of the charged inert gas, the gas atoms do not ionize; when the electrons obtain energy from the accelerating voltage is equal to or slightly larger than the charged inert gas. At the first ionization energy, the ionization rate of the gas atoms is low and can be ignored. Therefore, the electron emission electrons of the micro field emission electronic device 10 of the present embodiment do not substantially ionize the inert gas atoms 144 even if they collide with the inert gas atoms 144. Table 3: Gas argon helium gas first ionization energy (eV) 24.587 21.564 15. 759 13. 999 12. 130 Third, since the micro field emission electronic device of the present embodiment operates in an inert gas atmosphere, an inert gas The atom 144 is not only adsorbed on the surface of the field emission terminal 16, but at a pressure of one atmosphere, the high density inert gas atom 144 continuously bombards the field emission end 16 due to thermal motion, which can play a cleaning role to some extent. Removal of the chaotic molecule γ adsorbed on the surface of the field emission terminal 16 during the 12 1318773 period 2 or other process maintains the normal operation of the field emission electron device 10. The internal bombardment frequency of the gas molecules per unit area can be pressed. Formula calculation··ηυ 4 p-na buckle mQkT ~^2nMRT 'where 'n is the gas molecule density 3 ^ is the average velocity of gas molecular thermal motion; P is the pressure; Μ is the gas is the sub-quantity; NA=6.02xl〇23m 〇广为阿佛加德罗 constant 1 is the absolute temperature value; R = 8.31 J / (m 〇 1K). In the present embodiment, at 300 K in an atmosphere of helium atmosphere, the bombardment frequency of the inert gas atom 146 on the surface of the field emission terminal 16 inside the field emission electron-emitting device 10 is: 7 x 10 / m s. The surface of an impurity gas molecule adsorbed on the surface of the field emission terminal a, such as water vapor molecules, has an area of about 1 (T19 m2. Therefore, the frequency at which the water vapor molecules are bombarded is 7.7 x 1 〇Vs. Such a high bombardment frequency can be strong. The cleaning action can ensure that the field emission end 16 does not change its field emission characteristics due to the adsorption of impurity gas atoms. In addition, in this embodiment, the material of the substrate 12 can be selected from the group consisting of bismuth (si), error (Ge), and nitridation. A semiconductor material such as gallium (GaN), aluminum oxide (Ah〇3) or diamond. The insulating layers 122 and 124 may be selected from the group consisting of germanium dioxide (Si〇2) and tantalum nitride (Si^4). The material of the anode electrode layer 18 can be selected from gold (Au), platinum (Pt), silver (Ag), titanium (^), copper (|: 11), aluminum (^1), tungsten (boundary), and turned (|^). 0), group (3), yttrium (Re), niobium (Nb), nickel (Ni), chromium (Cr), zirconium (Zr) or 13 1318773

铪(Hf)等半導體産業中常用的金屬材料,也可選用 矽(Si)、鍺(Ge)或氮化鎵(GaN)等半導體材料, 或上述半導體材料上鍍上述金屬材料薄膜的導電結 構。陰極電極層14與陽極電極層18的材料相同。其 %發射鈿16可進一步沈積低逸出功材料薄膜如以六 硼化鑭(LaB6)爲主的金屬硼化物或以氧化鑭()、 氧化釔(Y2〇3)、氧化釓(GdzO3)或氧化鏑(j)y2〇3)等 爲主的稀土氧化物,以提高電子發射效率。另,陰極 電極層14還可採用稀土氧化物(氧化鑭、氧化記、 氧化釓、氧化鏑等)、碳化物(碳化鈇、碳化锆、碳化 鈦、碳化钽等)與高熔點金屬(鎢、鉬、鈮、鍊、鉑 等)壓制燒結形成的具有微尖場發射^ 16的薄膜, 或將奈米碳管或半導體奈米線附著于上述任一微尖 结構表面作爲場發射端16。另外,本技術領域技術Γ 員應明白’奈米碳管、半導體奈⑽或其組成的陣列 亦可直接形成於陰極電極層14相對於陽極電極声Μ 的一端作爲場發射端16。 本實施例微型場發射電子器件1G在應用時, 發射電祕陰極電極層u與陽極 勢叠降低和變窄,當場發…端表、 度窄到可與電子波長相 病的表面勢叠】 皮長相比擬時,電子由於㈣㈣$ 壯發射端16尖端表面勢壘微^ 舞件1G内部,並在電 ^讀射電^ 下運動到陽極電極層18 1318773 從而實現電子發射。 請參閱圖2,本發明第二實施例提供一種微型場 發射電子器件20,該微型場發射電子器件20包括一 基底22,相隔一定距離形成於基底22上的第一絕緣 層222與第二絕緣層224, 一陰極電極層24與一陽極 電極層28分別形成於該第一絕緣層222與第二絕緣 層224上。該陰極電極層24具有一微尖結構的場發 射端26,用於發射電子。該微型場發射電子器件20 内部密封有惰性氣體,且該微型場發射電子器件20 的特徵尺寸h2,即場發射端26的尖端與陽極電極層 28之間的間距小於電子在該惰性氣體中的自由程。該 第二實施例提供的微型場發射電子器件20與本發明 第一實施例的微型場發射電子器件10的結構基本相 同,其區別在於:第二實施例的微型場發射電子器件 20爲三極型結構,其進一步包括一第三絕緣層226間 隔設置於第一絕緣層222與第二絕緣層224之間,一 柵極電極層282形成於該第三絕緣層226上,位於陰 極電極層24與陽極電極層28之間。該栅極電極層282 與陰極電極層24及陽極電極層28基本平行,該柵極 電極層282與第三絕緣層226在對應於場發射端26 位置設置有一開口 284。 本實施例微型場發射電子器件20中基底、絕緣 層及各電極層材料均與第一實施例的微型場發射電 子器件10中相同,栅極電極層282的材料與陽極電 15 1318773 ,. 極層28相同。在應用時,本實施例微型場發射電子 器件20通過在栅極電極層282施加電壓控制場發射 端26發射電子,並在陽極電極層28施加電壓使電子 加速運動到陽極電極層28。 請參閱圖3,本發明第三實施例提供一種微型場 發射電子器件30,該微型場發射電子器件30包括一 基底32,相隔一定距離形成於基底32上的第一絕緣 I 層322、第二絕緣層324與第三絕緣層326間隔設置 於第一絕緣層322與第二絕緣層324之間,一陰極電 極層34與一陽極電極層38分別形成於該第一絕緣層 322與第二絕緣層324上,一柵極電極層382形成於 該第三絕緣層326上,位於陰極電極層34與陽極電 極層38之間,該栅極電極層382與第三絕緣層326 在對應於場發射端36位置設置有一開口 384。該陰極 電極層34具有一微尖結構的場發射端36,用於發射 ! 電子。該微型場發射電子器件3〇内部密封有惰性氣 體,且該微型場發射電子器件30的特徵尺寸h3,即 場發射端36的場發射尖端362與陽極電極層38之間 的間距小於電子在該惰性氣體中的自由程。該第三實 施例提供的微型場發射電子器件3〇與本發明第二實 施例的微型場發射電子器件20的結構基本相同,其 區別在於:第三實施例的微型場發射電子器件3〇内 部密封有兩種以上的惰性氣體,本實施例優選爲採用 氮氣344與氖氣346的混合氣體。其中混合氣體中的 16 1318773 氦氣344可以提南電子自由程,降低微型場發射電子 器件30 f士特徵尺寸h3的要求。錢氣灿的分子量 較$,具有更好的清潔場發射端36表面、去除場發 射端36表面吸附的雜質氣體的效果。 «月參閱圖4,本發明第四實施例提供一種微型場 發射電子器件40,該微型場發射電子器件40包括一 基底42,相隔一定距離形成於基底42上的第一絕緣 層422與第二絕緣層424,一陰極電極層與一陽極 電極層48分別形成於該第—絕緣層422與第二絕緣 層424上。該陰極電極層44具有一微尖結構的場發 射端46,用於發射電子。該微型場發射電子器件4〇 内部密封有惰性氣體,且該微型場發射電子器件4〇 的特徵尺寸h4,即場發射端46的尖端與陽極電極層 48之間的間距小於電子在該惰性氣體中的自由程。該 第四實施例提供的微型場發射電子器件4〇與本發明 第一實施例的微型場發射電子器件1〇的結構基本相 同,其區別在於:第四實施例的微型場發射電子器件 40爲背栅三極型結構,其進一步包括一柵極電極層 482形成於基底42上,位於陰極電極層24與陽極電 極層28之間。該栅極電極層482與陰極電極層44及 陽極電極層48基本平行,且設置於場發射端46與基 底42之間。另外,第四實施例的微型場發射電子器 件40内部密封有兩種以上的惰性氣體,本實施例優 選爲採用氦氣444與氖氣446的混合氣體。其中混合 17 1318773 氣體中的氦氣444可以提高電子自由程,降低微塑場 發射電子器件40對特徵尺寸h4的要求。而氮氣祕 的分子量較大,具有更好的清潔場發射端46表面、 去除場發射端46表面吸附_質氣體的效果。 另外,本發明第—實施例二極型的微型場發射電 子器件10也可同樣在其内部密封兩種以上的惰性氣 體,以分子量較大的惰性氣體原子轟擊場發射端表面 具有更好地清潔仙,分子量較小的惰性氣體原子可 以提高電子自由程。 本技術領域技術人員應明白’本發明各實施例提 供的微型場發射電子器件爲薄膜型器件,Μ構可採 用習㈣電子束光刻結合幹法、濕法糾UX;真空鑛 膜技術實現。器件的封裝工藝可先抽真空再充入〆定 工作氣壓的惰性氣體,也可以在流動的卫作氣壓惰性 氣體環境下封裝,免條真”如提高生產速度、 降低成本。另,本發明提供的二極型、三極型場發射 電子器件結構可集成在同—個基底上,即可做成積體 電路,以實現複雜的信號處理和運算。 氣體環境下’由於㈣場發射電子器件的特徵 於電子在惰性氣體内的自由程’具有良好的電他 性能;其二,由於微型場發射電子器件的特徵^ 小’其場發射電壓可以降低至幾乎不弓丨起惰性氣體: :發明的微型場發射電子器件的優點在 於•其一,表發子哭从〒n坤 18 1318773 子電離的數值’在微型場發射電子器件工作時氣體電 離的幾率極小;其三,惰性氣體原子不僅不會吸附於 %發射端表面影響其發射性能,而且惰性氣體原子會 持續不斷地轟擊場發射端表面,可以去除場發射端表 面吸附的雜質氣體分子’維持微型場發射電子器件正 常工作;其四’本發明提供的微型場發射電子器件具A metal material commonly used in the semiconductor industry such as hafnium (Hf) may be selected from a semiconductor material such as bismuth (Si), germanium (Ge) or gallium nitride (GaN), or a conductive structure in which the above-mentioned metal material film is plated on the above semiconductor material. The cathode electrode layer 14 is the same material as the anode electrode layer 18. The % emission 钿16 can further deposit a thin film of work function material such as lanthanum hexaboride (LaB6)-based metal boride or yttrium oxide (Y2), yttrium oxide (Y2〇3), yttrium oxide (GdzO3) or A rare earth oxide such as yttrium oxide (j) y2 〇 3) is used to improve electron emission efficiency. In addition, the cathode electrode layer 14 may also be a rare earth oxide (cerium oxide, oxidized cerium oxide, cerium oxide, cerium oxide, etc.), a carbide (barium carbide, zirconium carbide, titanium carbide, tantalum carbide, etc.) and a high melting point metal (tungsten, A film having a microtip field emission 16 formed by press sintering, or a carbon nanotube or a semiconductor nanowire is attached to the surface of any of the microtip structures as the field emission end 16. In addition, those skilled in the art will appreciate that an array of 'nanocarbon tubes, semiconductor tubes (10) or compositions thereof may also be formed directly at the end of the cathode electrode layer 14 relative to the sonar of the anode electrode as the field emission end 16. In the embodiment, the micro field emission electronic device 1G is applied, the emission potential electrode layer u and the anode potential stack are reduced and narrowed, and the surface of the field is narrowed to a surface surface which can be correlated with the wavelength of the electron. When compared to the pseudo-time, the electrons due to (four) (four) $ swells the end of the 16-tip surface barrier micro-^ inside the dance piece 1G, and moves under the electric reading ^ to the anode electrode layer 18 1318773 to achieve electron emission. Referring to FIG. 2, a second embodiment of the present invention provides a micro field emission electronic device 20 including a substrate 22, a first insulating layer 222 and a second insulating layer formed on the substrate 22 at a distance. A layer 224, a cathode electrode layer 24 and an anode electrode layer 28 are formed on the first insulating layer 222 and the second insulating layer 224, respectively. The cathode electrode layer 24 has a field-emitting end 26 of a microtip structure for emitting electrons. The micro field emission electronic device 20 is internally sealed with an inert gas, and the characteristic dimension h2 of the micro field emission electronic device 20, that is, the distance between the tip end of the field emission terminal 26 and the anode electrode layer 28 is smaller than that of electrons in the inert gas. Free journey. The micro field emission electronic device 20 provided by the second embodiment has substantially the same structure as the micro field emission electronic device 10 of the first embodiment of the present invention, and the difference is that the micro field emission electronic device 20 of the second embodiment is a three-pole. The structure further includes a third insulating layer 226 spaced between the first insulating layer 222 and the second insulating layer 224. A gate electrode layer 282 is formed on the third insulating layer 226 at the cathode electrode layer 24. Between the anode electrode layer 28. The gate electrode layer 282 is substantially parallel to the cathode electrode layer 24 and the anode electrode layer 28. The gate electrode layer 282 and the third insulating layer 226 are provided with an opening 284 at a position corresponding to the field emission terminal 26. In the micro field emission electronic device 20 of the present embodiment, the substrate, the insulating layer and the electrode layer materials are the same as those in the micro field emission electronic device 10 of the first embodiment, and the material of the gate electrode layer 282 and the anode are 15 1318773. Layer 28 is the same. In use, the micro field emission device 20 of the present embodiment emits electrons by applying a voltage controlled field emitter 26 at the gate electrode layer 282 and applying a voltage to the anode electrode layer 28 to accelerate the movement of electrons to the anode electrode layer 28. Referring to FIG. 3, a third embodiment of the present invention provides a micro field emission electronic device 30. The micro field emission electronic device 30 includes a substrate 32, a first insulating I layer 322 formed on the substrate 32 at a distance, and a second The insulating layer 324 is spaced apart from the third insulating layer 326 between the first insulating layer 322 and the second insulating layer 324. A cathode electrode layer 34 and an anode electrode layer 38 are formed on the first insulating layer 322 and the second insulating layer, respectively. On the layer 324, a gate electrode layer 382 is formed on the third insulating layer 326 between the cathode electrode layer 34 and the anode electrode layer 38. The gate electrode layer 382 and the third insulating layer 326 correspond to field emission. An opening 384 is provided at the end 36. The cathode electrode layer 34 has a field-exciting end 36 of a microtip structure for emitting ! electrons. The micro field emission electronic device 3 is internally sealed with an inert gas, and the characteristic dimension h3 of the micro field emission electronic device 30, that is, the distance between the field emission tip 362 of the field emission terminal 36 and the anode electrode layer 38 is smaller than that of the electron. Free path in an inert gas. The micro field emission electronic device 3A provided by the third embodiment has substantially the same structure as the micro field emission electronic device 20 of the second embodiment of the present invention, and the difference is that the micro field emission electronic device of the third embodiment is internally: Two or more kinds of inert gases are sealed, and in this embodiment, a mixed gas of nitrogen gas 344 and helium gas 346 is preferably used. Among them, 16 1318773 helium 344 in the mixed gas can lift the electron free path and reduce the requirement of the micro-field emission electronic device 30 f characteristic size h3. The molecular weight of the money is better than $, which has the effect of cleaning the surface of the field emitting end 36 and removing the impurity gas adsorbed on the surface of the field emitting end 36. Referring to FIG. 4, a fourth embodiment of the present invention provides a micro field emission electronic device 40 including a substrate 42 having a first insulating layer 422 and a second formed on the substrate 42 at a distance. An insulating layer 424, a cathode electrode layer and an anode electrode layer 48 are formed on the first insulating layer 422 and the second insulating layer 424, respectively. The cathode electrode layer 44 has a microtip structure field emitter terminal 46 for emitting electrons. The micro field emission electronic device 4 is internally sealed with an inert gas, and the characteristic size h4 of the micro field emission electron device 4, that is, the distance between the tip end of the field emission terminal 46 and the anode electrode layer 48 is smaller than that of the electron in the inert gas. Freedom in the middle. The micro field emission electronic device 4A provided by the fourth embodiment has substantially the same structure as the micro field emission electronic device 1A of the first embodiment of the present invention, and the difference is that the micro field emission electronic device 40 of the fourth embodiment is The back gate triode structure further includes a gate electrode layer 482 formed on the substrate 42 between the cathode electrode layer 24 and the anode electrode layer 28. The gate electrode layer 482 is substantially parallel to the cathode electrode layer 44 and the anode electrode layer 48 and is disposed between the field emission terminal 46 and the substrate 42. Further, the micro field emission electronic device 40 of the fourth embodiment is internally sealed with two or more kinds of inert gases, and this embodiment is preferably a mixed gas of helium gas 444 and helium gas 446. The mixing of helium 444 in the gas of 17 1318773 can increase the electron free path and reduce the requirement of the characteristic size h4 of the microplastic field transmitting electronic device 40. The nitrogen molecular weight has a larger molecular weight, and has a better effect of cleaning the surface of the field emission end 46 and removing the surface adsorbing gas from the field emission end 46. In addition, the dipole type micro field emission electronic device 10 of the first embodiment of the present invention can also seal two or more inert gases in the same manner, and bombard the field emission end surface with a larger molecular weight inert gas atom for better cleaning. Xian, a small molecular weight inert gas atom can increase the electron free path. Those skilled in the art should understand that the micro field emission electronic device provided by the embodiments of the present invention is a thin film type device, and the structure can be realized by using (4) electron beam lithography combined with dry method, wet method UX, and vacuum ore film technology. The packaging process of the device may be first vacuumed and then filled with an inert gas of a predetermined working pressure, or may be packaged under a flowing atmosphere of an inert gas atmosphere, such as improving the production speed and reducing the cost. Further, the present invention provides The structure of the two-pole and three-pole field-emission electronic devices can be integrated on the same substrate to form an integrated circuit to realize complex signal processing and calculation. In the gas environment, due to (four) field emission electronic devices Characterized by the free path of electrons in an inert gas's good electrical properties; second, due to the characteristics of micro-field-emitting electronic devices, the field emission voltage can be reduced to almost no inert gas: The advantages of micro-field emission electronics are: • One, the hair of the watch is crying from the value of 子n-kun 18 1318773 sub-ionization'. The probability of gas ionization is minimal when working on micro-field emission electronics; third, the inert gas atoms are not only not Adsorption on the surface of the % emitting end affects its emission performance, and the inert gas atoms continuously bombard the surface of the field emission end, which can remove the field emission. The impurity gas molecules adsorbed on the surface of the surface maintain the micro field emission electron device to operate normally; and the micro field emission electron device provided by the present invention

有極快的開關速度,且能夠在高溫、高輻射等環境正 常工作。 綜上所述’本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以錄制本案之”專利顧。舉凡誠本案技藝 j人士援依本發明之精神所狀等絲飾錢化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】It has extremely fast switching speed and can work normally in high temperature, high radiation and other environments. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application in accordance with the law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to record the patent of the case. The person who is in charge of the skill of the present invention, such as the spirit of the present invention, should be covered. Within the scope of the following patent application. [Simplified illustration]

圖1係本發明第一實 體結構示意圖。 施例的微型場發射電子器件的立 圖2係本發明第二實 體結構示意圖。 施例的微型場發射電子器件的立 圖3係本發明第三實 體結構示意圖。 施例的微型場發射電子器件的立 圖4係本發明第 體結構示意圖。 四實施例的微場發射電子器件的立 【主要元件符號說明】 微型場發射電子器件 10 , 20 ’ 3〇 , 19 422 1318773 基底 12 , 22 , 32 , 42 第一絕緣層 122 , 222 , 322 , 第二絕緣層 124 , 224 , 324 , 陰極電極層 14 , 24 , 34 , 44 惰性氣體原子 144 場發射端 16 , 26 , 36 , 46 陽極電極層 18 , 28 , 38 , 48 第三絕緣層 226 , 326 柵極電極層 282 , 382 , 482 開口 284 , 384 氦氣 344 , 444 氖氣 346 , 446 424 20BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a schematic view showing the structure of a first embodiment of the present invention. Fig. 2 of the micro field emission electronic device of the embodiment is a schematic view of the second embodiment of the present invention. Fig. 3 of the micro field emission electronic device of the embodiment is a schematic view of the third embodiment of the present invention. Fig. 4 of the micro field emission electronic device of the embodiment is a schematic view of the first structure of the present invention. The micro-field emission electronic device of the fourth embodiment [main element symbol description] micro field emission electronic device 10, 20 ' 3〇, 19 422 1318773 substrate 12, 22, 32, 42 first insulating layer 122, 222, 322, Second insulating layer 124, 224, 324, cathode electrode layer 14, 24, 34, 44 inert gas atom 144 field emission end 16, 26, 36, 46 anode electrode layer 18, 28, 38, 48 third insulating layer 226, 326 gate electrode layer 282, 382, 482 opening 284, 384 helium 344, 444 helium 346, 446 424 20

Claims (1)

1318773 十、申請專利範圍 1. 一種微型場發射電子器件,其包括: 一基底; 一第一絕緣層與一第二絕緣層相隔一定距離設置於 基底上;以及 一陰極電極層與一陽極電極層分別設置於第一絕緣 層與苐一絕緣層上,該陰極電極層具有一場發射端正對 該1%極電極層; 其改進在於,該微型場發射電子器件内密封有惰性 氣體,且滿足條件式:/!<人,其中,匕爲陰極電極層的 場發射端與陽極電極層之間的間距;又爲電子 體環境中的自由程。 ;; 2. 如申請專利範圍第1項所述的微型場發射電子器件,其 中,進一步包括一第三絕緣層間隔設置於第一絕緣 層於第二絕緣層之間,一柵極電極層設置於該第三 絕緣層上,位於陰極電極層與陽極電極層之間。— 3. 如申請專利範圍第2項所述的微型場發射電子器件,其 中,該栅極電極層在對應於場發射端位置設置有二 開口。 4. 如申料纖圍第丨項所述的微型場發射電子器件,其 中’進一步包括-栅極電極層設置於基底上,位^ 陰極電極層與陽極電極層之間。 5. 如申請專利範圍第4項所述的微型場發射電子器件,其 中’該栅極電極層設置於場發射端與基底之間。、 211318773 X. Patent Application Range 1. A micro field emission electronic device comprising: a substrate; a first insulating layer and a second insulating layer disposed on the substrate at a distance; and a cathode electrode layer and an anode electrode layer Separately disposed on the first insulating layer and the first insulating layer, the cathode electrode layer has a field emission end facing the 1% pole electrode layer; and the improvement is that the micro field emission electronic device is sealed with an inert gas and satisfies the conditional expression : /! < Person, where 匕 is the spacing between the field emission end and the anode electrode layer of the cathode electrode layer; and is the free path in the electron body environment. 2. The micro field emission electronic device of claim 1, further comprising a third insulating layer disposed between the first insulating layer and the second insulating layer, and a gate electrode layer On the third insulating layer, between the cathode electrode layer and the anode electrode layer. 3. The micro field emission electronic device of claim 2, wherein the gate electrode layer is provided with two openings at positions corresponding to the field emission end. 4. The micro field emission electronic device of claim 1, wherein the further comprising a gate electrode layer disposed on the substrate between the cathode electrode layer and the anode electrode layer. 5. The micro field emission electronic device of claim 4, wherein the gate electrode layer is disposed between the field emission end and the substrate. , twenty one
TW95126705A 2006-07-21 2006-07-21 Field emission microelectronic device TWI318773B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95126705A TWI318773B (en) 2006-07-21 2006-07-21 Field emission microelectronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95126705A TWI318773B (en) 2006-07-21 2006-07-21 Field emission microelectronic device

Publications (2)

Publication Number Publication Date
TW200807476A TW200807476A (en) 2008-02-01
TWI318773B true TWI318773B (en) 2009-12-21

Family

ID=44766677

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95126705A TWI318773B (en) 2006-07-21 2006-07-21 Field emission microelectronic device

Country Status (1)

Country Link
TW (1) TWI318773B (en)

Also Published As

Publication number Publication date
TW200807476A (en) 2008-02-01

Similar Documents

Publication Publication Date Title
JP4938568B2 (en) Field emission device
US20080030117A1 (en) Field emission microelectronic device
JP5345953B2 (en) Alkali or alkaline earth metal supply device stable in air
CN109273337B (en) On-chip miniature X-ray source and manufacturing method thereof
CN107248489A (en) A kind of surface tunnelling micro electric component and its array and implementation method
US10431412B2 (en) Compact ion beam sources formed as modular ionizer
Chen et al. A microionizer for portable mass spectrometers using double-gated isolated vertically aligned carbon nanofiber arrays
US20140285084A1 (en) Self-aligned gated emitter tip arrays
WO2017112937A1 (en) Electron transparent membrane for cold cathode devices
Late et al. Field emission studies on well adhered pulsed laser deposited LaB6 on W tip
US11798772B2 (en) On-chip miniature X-ray source and manufacturing method therefor
CN104979388A (en) Semiconductor device and manufacture method thereof
TWI318773B (en) Field emission microelectronic device
CN104078293B (en) A kind of field emitting electronic source and preparation method thereof
Subramanian et al. Nanocrystalline diamond lateral vacuum microtriode
TW200805428A (en) Field emission microelectronic device
Fomani et al. Low-voltage field ionization of gases up to torr-level pressures using massive arrays of self-aligned gated nanoscale tips
RU192377U1 (en) Solid-state ionic metal nanoprinter
US3382397A (en) Ion source having a high work function material coating the outer surface of the ionizer
Grzebyk et al. Improved properties of the MEMS-type ion-sorption micropump
Jayanty Miniaturized electron-impact-ionization pumps using double-gated isolated vertically aligned carbon nanotube arrays
Yoshimoto et al. Temperature dependence of field-emission characteristics from a p-type Si single emitter with real surface
Barik et al. Cathode Technologies for Terahertz Source
UTSUMI Historical overview
Joshi et al. Arc plasma synthesized Si nanotubes: A promising low turn on field emission source