TW200805428A - Field emission microelectronic device - Google Patents

Field emission microelectronic device Download PDF

Info

Publication number
TW200805428A
TW200805428A TW95124909A TW95124909A TW200805428A TW 200805428 A TW200805428 A TW 200805428A TW 95124909 A TW95124909 A TW 95124909A TW 95124909 A TW95124909 A TW 95124909A TW 200805428 A TW200805428 A TW 200805428A
Authority
TW
Taiwan
Prior art keywords
field emission
micro
electronic device
electron
electron emitter
Prior art date
Application number
TW95124909A
Other languages
Chinese (zh)
Other versions
TWI342581B (en
Inventor
Pi-Jin Chen
Zhao-Fu Hu
Liang Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW95124909A priority Critical patent/TWI342581B/en
Publication of TW200805428A publication Critical patent/TW200805428A/en
Application granted granted Critical
Publication of TWI342581B publication Critical patent/TWI342581B/en

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

A field emission microelectronic device includes a substrate, a cathode electrode having an emitter disposed on the substrate, and an anode electrode spaced from the cathode electrode. An inert gas is filled in the inner of the microelectronic device. The following conditional formula is satisfied: h<λe, where h indicates a distance between the emitter and the anode electrode, hλe indicates a free path of an electron in the inert gas.

Description

200805428 九、發明說明: h \ 【發明所屬之技術領域】 本發明係涉及一種微型場發射電子器件,尤其涉及一 種工作在大氣壓惰性氣體環境下的奈米級場發射電子器 件。 、 【先兩技術】 現代電腦的發明係從電子管開始的,早期的二極體、 ⑩ =極管都制真空電子管實現,世界上第-台電腦即用約 18_個真空電子管製造出來。1947年,㈣實驗室發明 了 %晶體,由於電晶體具有能耗低、易於微型化與集成化、 適於大規模製造且成本低廉等優點,它在絕大多數應用場 合迅速取代了真空電子管,並且使得微處理器的出現與電 腦的大規模普及成爲可能。然而,在某些特殊的場合,真 空電子管仍然具有電晶體不可替代的優勢,如極高頻率、 馨 動態範圍大、抗反向擊穿、大功率,以及能夠在高溫、高 輻射場合下工作的特性。真空電子管的優點具體體現爲: 其一,場發射電子在10伏特的真空加速電壓下的運動速度 約爲1· 87xl08cm/s,比單晶矽中電子的漂移速率 L 5xl〇 cm/s (l〇4V/cm電場)大一個數量級,只要電子管 的陰一陽極間距足夠小(如1〇〇nm),就可做成開關速度遠 快於電晶體的元器件;其次,溫度對半導體器件的性能影 響彳艮大,傳統的矽基半導體工作溫度一般不能超過35〇〇c, 碳化石夕、金剛石等寬禁帶半導體可工作在600°C,而真空 電子管的工作原理對溫度並不敏感,理論上可以在高溫下 200805428 穩定地工作,其二,咼能輻射粒子對半導體器件的影響係 巨大的纟-疋的輻照強度下不僅會使器件性能不穩定, 而士可成不可逆轉的硬體損壞,而真空電子管的工作 狀態則基本衫高錄子的影響。毅f子管的這些特性 探纟地質勘探、反應堆監控、煉鋼、喷氣發動機 專咼/m昜5即化監測、超咼速通訊與信號處理等領域具有 不可替代的價值。 傳統電子管一般具有龐大的體積與重量,因此其無法 集成化’不能滿足稍微複雜的信號處理需求,針對於此, 攸20世紀60年代開始,人烟始研究微型真空電子管, 亚製造出了微型真空三極管。微型真空電子管的工作原理 2傳統電子官基本拥,並且,高真空環境躲傳統電子 管或微型電子管都係必須的。其原因在於:真空中的殘餘 氣體如果被電子電離,就會破壞電子管的工作狀態;正離 子會增加電子管噪聲;過量的正離子會轟擊損壞陰極;陰 極表面的氣體吸附也會造成發射性能不穩定。對於傳統電 子管,真空可以用吸氣劑來維持,但微型電子管由於其内 4空間狹小’比表面積大,維持高真空係非常困難的。因 此,對於微型真空電子管來說,維持微小體積内的高真空 環境係一個極難解決的技術難題,使得微型真空電子管難 以實用化。 有鑒於此,提供一種工作在惰性氣體環境下的微型場 發射電子器件,它具有與微型真空電子管相似的優越性能 與應用前景,且能避開微型真空電子管封裝中的真空維持 7 200805428 難題,有賴如卵化_贱子 實為必要。 命什汉具積體電路 【發明内容】 以下,將以若干實施例說明一種工 境下的微型場發射電子器件,A 乳體環 如仟,其具有極快的開 度,以及能夠在高溫、高輻射場合下工作的特點、 一種微型場發射電子器件,其包括:— 陰極電極設置於基録面,雜極電 =’— 射體;與一陽極電極相對該陰極電極設置,該微:二 發射電子器件⑽封有惰性氣體,且滿足條件, 办〈人’其中’h爲電子發射體的媒恭 μ - 琢發射尖端與陽極電 間的間距^爲電子在惰性氣體環境中的自: 該微型場發射電子器件進—步包括—栅極電極 設置於該陰極電極與該陽極電極之間。 談栅極電極在對應於電子發射體位置古一 開孔。 令 該電子發射體爲微尖結構。 該電子發射體材料爲矽、鉬或鎢。 該電子發射體表面形成有低逸出功材料薄膜。 該低逸出功材料薄膜材料爲金屬硼化物或稀土 氧化物。 該電子發射體材料爲稀土氧化物、碳化物與高熔 點金屬。 ^ 200805428 該電子發射體表面設置有奈米碳管或半導體奈 米線。 該電子發射體爲奈米碳管、半導體奈米線或其組 成的陣列。 該惰性氣體的分壓爲0. 1〜10個大氣壓。 該惰性氣體可選擇爲氦、氖、氬、氪、氙及其任 意組合的混合氣體。 該微型場發射電子器件進一步滿足關係式: h〈 — 〇 10 相較於先前技術,所述的工作在惰性氣體環境中 的微型場發射電子器件,由於其陰一陽極間距遠小於 電子在惰性氣體内的自由程,陰極的場發射電壓可以 降低至幾乎不引起惰性氣體原子電離的數值,因此工 作時氣體電離的幾率可以忽略不計,電子的發射不受 影響。其次,惰性氣體原子不僅不會吸附在陰極表面 改變其發射性能,而且一個大氣壓下高密度的惰性氣 體原子會持續不斷地轟擊陰極,可以起到清潔作用, 去除陰極上吸附的雜質氣體分子,維持陰極的正常工 作。並且,所述的微型場發射電子器件可在具有特殊 要求(如極高頻、高溫、高輻射等)的場合替代電晶 體與傳統電子管器件及其電路。 【實施方式】 下面將結合附圖對本發明作進一步的詳細說明。 200805428 请參閱圖1,本發明第一實施例提供一種微型場發 射電子器件10,該微型場發射電子器件10爲二極型 結構’其包括一基底12,一設置於基底12 —表面的 陰極電極14 ’ 一設置於陰極電極14並與該陰極電極 14電〖生連接的電子發射體16,以及一與該陰極電極 14相隔一定距離設置的陽極電極18。該電子發射體 ^具有一場發射尖端162,該場發射尖端162面對該 陽極電極18 ’並與陽極電極18之間相隔一定間距 hl該陰極電極14與陽極電極18之間通過設置一絕 緣層142隔開,並通過該絕緣層142形成一密封空間 U4 °該密封空間144内密封有惰性氣體。本實施例 微型%發射電子器件1〇内密封的惰性氣體的分壓爲 〇·1〜10個大氣壓,優選爲1個大氣壓。惰性氣體可選 擇f 氮(He)、氖(如)、氬(Ar)、氪(Kr)、氙(Xe) 等惰性氣體’優選爲氦。爲使微型場發射電子器件10 j惰性氣體環境下能維持正常的電子發射狀態,本實 靶例$型場發射電子器件1〇還需滿足以下條件式·· _ e /、中hi爲該微型場發射電子器件1 〇的特 徵尺f,即場發射尖端162與陽極電極18之間的間 距;X爲惰性氣體環境中的電子自由程。 較小的特徵尺寸hi以及工作在惰性氣體環境中使 得本實施例微型場發射電子器件1〇具有以下優點: 其一’較小的特徵尺寸hl能使場發射電子器件1〇的 電子發射體16發射的電子在飛行到陽極電極18的過 200805428 程中與惰性氣體原子146的碰撞幾率較小。本實施例 優選爲特徵尺寸hi小於電子自由程X的1/1〇。當特 ,尺寸hi遠小於惰性氣體環境中的電子自由 $,電子在飛行過程中幾乎不與惰性氣體原子146碰 撞,此時可認爲電子能夠自由運動到達陽極電極18。 本實施例中,電子在氣體中的自由程又可由以下 其中 η爲氣體分子密 公式計算:BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a micro field emission electronic device, and more particularly to a nano-scale field emission electronic device operating in an atmospheric inert gas atmosphere. [First two technologies] The invention of modern computers began with electron tubes. The early diodes and 10 = pole tubes were all made of vacuum tubes. The world's first computer was made with about 18 vacuum tubes. In 1947, (4) the laboratory invented % crystal. Because of its low energy consumption, easy miniaturization and integration, suitable for large-scale manufacturing and low cost, it has quickly replaced vacuum tubes in most applications. And it has made the emergence of microprocessors and the large-scale popularization of computers. However, in some special occasions, vacuum tubes still have the irreplaceable advantages of transistors, such as extremely high frequency, large dynamic range, anti-backward breakdown, high power, and the ability to work in high temperature and high radiation applications. characteristic. The advantages of the vacuum tube are as follows: First, the velocity of the field emission electrons under the vacuum acceleration voltage of 10 volts is about 1.87×10 8 cm/s, which is lower than the drift rate of electrons in the single crystal germanium L 5xl〇cm/s (l 〇 4V / cm electric field) is an order of magnitude larger, as long as the cathode-anode spacing of the tube is small enough (such as 1 〇〇 nm), the switching speed can be made much faster than the components of the transistor; secondly, the temperature performance of the semiconductor device The impact is too large, the traditional 矽-based semiconductor operating temperature can not exceed 35 〇〇 c, carbon carbide eve, diamond and other wide bandgap semiconductor can work at 600 ° C, and the working principle of vacuum tube is not sensitive to temperature, theory It can work stably at high temperature 200805428. Secondly, the influence of radiant particles on the semiconductor device is huge. The irradiance of 纟-疋 not only makes the device performance unstable, but can become an irreversible hardware. Damage, and the working state of the vacuum tube is basically affected by the high recording. These characteristics of the Yizi sub-tube are of irreplaceable value in the fields of geological exploration, reactor monitoring, steelmaking, jet engine specialization/m昜5 monitoring, super-idle communication and signal processing. Conventional electron tubes generally have a large volume and weight, so they cannot be integrated 'can not meet the slightly complicated signal processing requirements. For this reason, in the 1960s, human smoke began to study micro vacuum tubes, and sub-manufactured micro vacuum transistors. . The working principle of the micro vacuum tube 2 The traditional electronic officer is basically supported, and the high vacuum environment is necessary to hide the traditional electron tube or the micro tube. The reason is that the residual gas in the vacuum will destroy the working state of the electron tube if it is ionized by electrons; the positive ions will increase the tube noise; the excessive positive ions will bombard the cathode; the gas adsorption on the cathode surface will also cause the emission performance to be unstable. . For a conventional electron tube, the vacuum can be maintained by a getter, but the microtube is extremely difficult to maintain a high vacuum system because of its small space in the space. Therefore, for a micro vacuum tube, maintaining a high vacuum environment within a small volume is an extremely difficult technical problem that makes micro vacuum tubes difficult to use. In view of this, a micro field emission electronic device operating in an inert gas environment is provided, which has similar superior performance and application prospects as micro vacuum tubes, and can avoid the vacuum maintenance in the micro vacuum tube package 7 200805428 Such as egg white _ scorpion is really necessary. The invention relates to a micro field emission electronic device in a working environment, a breast ring such as a crucible, which has an extremely fast opening degree and can be at a high temperature, Features of high-radiation operation, a miniature field-emitting electronic device, comprising: - a cathode electrode disposed on a base recording surface, a hetero-electrode = '-projector; and an anode electrode disposed opposite the cathode electrode, the micro: two The electron-emitting device (10) is sealed with an inert gas and satisfies the condition, and the space between the emitter tip and the anode of the electron emitter is as follows: the electron is in an inert gas environment: The micro field emission electronics further includes a gate electrode disposed between the cathode electrode and the anode electrode. It is said that the gate electrode is open at a position corresponding to the position of the electron emitter. The electron emitter is made to have a microtip structure. The electron emitter material is germanium, molybdenum or tungsten. A film of a low work function material is formed on the surface of the electron emitter. The low work function material film material is a metal boride or a rare earth oxide. The electron emitter material is a rare earth oxide, a carbide and a high melting point metal. ^ 200805428 The surface of the electron emitter is provided with a carbon nanotube or a semiconductor nanowire. The electron emitter is an array of carbon nanotubes, semiconductor nanowires or a combination thereof. The pressure of the inert gas is 0.1 to 10 atmospheres. The inert gas may be selected from the group consisting of helium, neon, argon, krypton, xenon and any combination thereof. The micro field emission electronic device further satisfies the relationship: h< 〇 10 compared to the prior art, the micro field emission electronic device operating in an inert gas environment, because the cathode-anode spacing is much smaller than the electron in the inert gas Within the free path, the field emission voltage of the cathode can be reduced to a value that hardly causes ionization of the inert gas atoms, so the probability of gas ionization during operation is negligible and the emission of electrons is not affected. Secondly, the inert gas atoms not only do not adsorb on the surface of the cathode to change their emission properties, but also a high-density inert gas atom continuously bombards the cathode at one atmosphere, which can clean the electrode and remove the impurity gas molecules adsorbed on the cathode. The normal operation of the cathode. Moreover, the micro field emission electronic device can replace the electric crystal and the conventional electron tube device and its circuit in the occasion of having special requirements (e.g., extremely high frequency, high temperature, high radiation, etc.). [Embodiment] Hereinafter, the present invention will be further described in detail with reference to the accompanying drawings. Referring to FIG. 1, a first embodiment of the present invention provides a micro field emission electronic device 10 having a two-pole structure, which includes a substrate 12, a cathode electrode disposed on the surface of the substrate 12. 14' is an electron emitter 16 disposed on the cathode electrode 14 and electrically connected to the cathode electrode 14, and an anode electrode 18 disposed at a distance from the cathode electrode 14. The electron emitter has a field emission tip 162 facing the anode electrode 18' and spaced apart from the anode electrode 18 by a distance hl. An insulating layer 142 is disposed between the cathode electrode 14 and the anode electrode 18. Separating and forming a sealed space U4 through the insulating layer 142. The sealed space 144 is sealed with an inert gas. The partial pressure of the inert gas sealed in the crucible of the micro-% electron-emitting device 1 is 〇·1 to 10 atm, preferably 1 atm. The inert gas may be selected from the group consisting of inert gases such as nitrogen (He), ruthenium (such as), argon (Ar), krypton (Kr), and xenon (Xe), which are preferably ruthenium. In order to maintain the normal electron emission state in the inert gas environment of the micro field emission electronic device 10j, the actual target type field emission electron device 1〇 must satisfy the following conditional formula: _e /, middle hi is the micro The characteristic dimension f of the field emission electronics 1 is the spacing between the field emission tip 162 and the anode electrode 18; X is the electron free path in an inert gas environment. The smaller feature size hi and operation in an inert gas environment allows the micro field emission electronic device 1 of the present embodiment to have the following advantages: A 'small feature size hl enables the electron emitter 16 of the field emission electron device 1〇 The electrons emitted are less likely to collide with the inert gas atoms 146 during the flight to the anode electrode 18 through 200805428. This embodiment preferably has a feature size hi smaller than 1/1 of the electron free path X. When the size hi is much smaller than the electron free energy in the inert gas environment, the electrons hardly collide with the inert gas atoms 146 during flight, and the electrons can be considered to move freely to the anode electrode 18. In this embodiment, the free path of electrons in the gas can be calculated by the following formula: where η is the gas molecular density formula:

πησ πσ ρ 度,爲氣體分子的有效直徑;k = Ugxl(p23 j/κ, 爲波爾茲曼常數;T爲絕對溫度;p爲氣體壓力。在 00K個大氣壓環丨兄下,各種惰性氣體環境下的 電子自由程如表丨所示: 氣體 氦 有效直徑(i(r1()m) 2· 18 電子自由程(Him) 1.07 本實域惰性氣體優 He中工作的微型場發射電子器件1〇,只要特徵尺、 hi遠小於電子發射體16所發射電子在He中自1程] (1.07mm),即可認爲電子能夠自由運動到達陽極^^ 極18。另外,如表2所示,本實施例優選爲特徵尺^ hi小於電子在He中的自由程I的1/1〇 (l〇7nm), 此時’ 91%的電子在飛行過程中不與原子發生碰撞。 11 200805428 表2 特徵尺寸 0. Olle 0. lie 5 2e 1 0 Je 自由運動(不 碰撞)的幾率 0. 99 0. 91 0. 37 0. 007 4. 5xl0&quot;5 其二,由於特徵尺寸hi小於電子自由程,電子 發射體16的發射尖端162與陽極電極18的間距極 小,使得本實施例微型場發射電子器件10發射電子 所需的場發射電壓較小,因而電子從陰極電極14與 陽極電極18之間的加速電壓所獲得的能量較小。表3 _ 所示爲各種惰性氣體的第一電離能。本實施例中,當 電子從加速電壓所獲得的能量小於所充惰性氣體的 第一電離能時,氣體原子不會電離;當電子從加速電 壓所獲得的能量等於或略大於所充惰性氣體的第一 電離能時,氣體原子的電離率較低亦可以忽略。因 此,本實施例微型場發射電子器件10發射電子即使 與惰性氣體原子146碰撞也基本不會使惰性氣體原子 146發生電離。 表3 氣體 氦 氖 氬 氪 氙 第一電離能(eV) 24.587 21.564 15. 759 13. 999 12. 130 其三,由於本實施例微型場發射電子器件10工作 於惰性氣體環境中,惰性氣體原子146不僅不會吸附 在陰極電極14的電子發射體16表面,而且,在一個 大氣壓下高密度的惰性氣體原子146由於熱運動會持 續不斷地轟擊該電子發射體16,可在一定程度上起到 清潔作用,去除在製作過程或其他過程中吸附在電子 12 200805428 維持場發射電子器 發射體146表面的雜質氣體分子 件10的正常工作。 一般,器件内部,單位面積上的氣體分子的轟 頻率可按下述公式計算·· — ρ·να 4 λ/^γΜ?:Γ ’其中,η爲氣體分子Πησ πσ ρ degree, which is the effective diameter of the gas molecule; k = Ugxl (p23 j/κ, which is the Boltzmann constant; T is the absolute temperature; p is the gas pressure. Under the 00K atmospheric pressure ring, various inert gases The electron free path in the environment is shown in the table: Gas 氦 Effective Diameter (i(r1()m) 2· 18 Electron Free Path (Him) 1.07 This field of inert gas is used in the field of micro-field emission electrons. As long as the characteristic ruler, hi is much smaller than the electron emitted by the electron emitter 16 in He from 1 (1.07 mm), it can be considered that the electron can move freely to reach the anode electrode 18. Further, as shown in Table 2, The embodiment preferably has a characteristic ruler smaller than 1/1 〇 (10 〇 7 nm) of the free path I of electrons in He, where '91% of the electrons do not collide with atoms during flight. 11 200805428 Size 0. Olle 0. lie 5 2e 1 0 Je The probability of free movement (no collision) is 0. 99 0. 91 0. 37 0. 007 4. 5xl0&quot;5 Second, since the feature size hi is smaller than the electron free path, the electron The spacing between the emitter tip 162 of the emitter 16 and the anode electrode 18 is extremely small, such that the present embodiment is miniature The field emission electrons 10 require a small field emission voltage to emit electrons, and thus the energy obtained by the electrons from the accelerating voltage between the cathode electrode 14 and the anode electrode 18 is small. Table 3 _ shows the first of various inert gases. Ionization energy. In this embodiment, when the energy obtained by the electron from the acceleration voltage is less than the first ionization energy of the charged inert gas, the gas atom does not ionize; when the electron is obtained from the acceleration voltage, the energy is equal to or slightly larger than the charge. When the first ionization energy of the inert gas is low, the ionization rate of the gas atom is low and negligible. Therefore, the electron emission electrons of the micro field emission electronic device 10 of the present embodiment do not substantially cause the inert gas atom 146 to occur even if it collides with the inert gas atom 146. Ionization. Table 3 Gas argon argon 氪氙 first ionization energy (eV) 24.587 21.564 15. 759 13. 999 12. 130 Third, since the micro field emission electronic device 10 of the present embodiment operates in an inert gas atmosphere, an inert gas The atom 146 is not only adsorbed on the surface of the electron emitter 16 of the cathode electrode 14, but also a high density inert gas atom 146 at one atmosphere. The electron emitter 16 is continuously bombarded in the thermal motion, and can be cleaned to a certain extent to remove the impurity gas molecules that are adsorbed on the surface of the electron emission device 146 during the manufacturing process or other processes. Normal operation of the device. Generally, the bombing frequency of gas molecules per unit area can be calculated according to the following formula: · ρ·να 4 λ/^γΜ?: Γ 'where η is a gas molecule

爲/體分子熱運動平均速度;Ρ錢力;Μ爲 乳體刀子m G2xl()23 m〇rI爲阿佛加德羅常數; T爲絕對溫度值;R=8 31 J/(m〇1K)。 本實施例中’在讓’-個大氣Μ的氦氣環境下, ,型場發射電子器件1G内部的電子發射體16表面, 單2位面積上的惰性氣體原子146的轟擊頻率爲7 7χ l〇27/m2s。取電子發射體16的電子發射端162頂部爲 半徑lrnn的半球,則其上被轟擊的頻率爲4. 8χ1 〇10/s。 而電子發射體16表面吸附的一個雜質氣體分子,如 水蒸氣分子的面積約爲1(rl9m2,因此,該水蒸氣分子 被轟擊的頻率係7.7xl〇Vs。如此高的轟擊頻率能起 到很強的清洗作用,可以保證電子發射體16不會因 爲雜質氣體原子的吸附而改變其場發射特性。 另外,本實施例中,陽極電極18材料可選擇爲金 (Au)、翻(Pt)、銀(Ag)、鈦(Ti)、銅(Cu)、铭 (A1 )、鎢(W)、翻(Mo)、麵(Ta)、鍊(Re)、銳(Nb)、 鎳(Ni)、鉻(Cr)、鍅(ζΓ)或铪(Hf)等半導體産 業中常用的金屬材料,也可選用矽(Si)、鍺(Ge) 13 200805428 2化鎵㈣)等半導體材料,或上述半導體材料 鍍上逑金屬材料薄膜的導電結構。陰極電極14與 電子發射體16的材料相同。電子發射體16可採用 =鉬麵等材·成微尖,其上可再沈積低逸出功 材料溥膜如以六佩鑭(LaB6)爲主的金相化物或 =化鑭⑽)、氧化釔(Y2〇3)、氧化釓(Gd2〇3)The average velocity of the thermal motion of the /body molecule; the 力 money force; Μ is the milk knives m G2xl () 23 m 〇 rI is the Avogadro constant; T is the absolute temperature value; R = 8 31 J / (m 〇 1K ). In the present embodiment, in the helium environment of the atmosphere, the surface of the electron emitter 16 inside the field emission electron-emitting device 1G, the bombardment frequency of the inert gas atom 146 on the single 2-bit area is 7 7 χ l 〇27/m2s. 8χ1 〇10/s, the frequency of the bombardment on the top of the electron-emitting end 162 of the electron-emitting body 16 is a hemisphere having a radius lrnn. The surface of an impurity gas molecule adsorbed on the surface of the electron emitter 16, such as water vapor molecules, has an area of about 1 (rl9m2, and therefore, the frequency at which the water vapor molecules are bombarded is 7.7xl 〇Vs. Such a high bombardment frequency can be strong. The cleaning action can ensure that the electron emitter 16 does not change its field emission characteristics due to the adsorption of impurity gas atoms. In addition, in this embodiment, the anode electrode 18 material can be selected from gold (Au), turn (Pt), and silver. (Ag), Titanium (Ti), Copper (Cu), Ming (A1), Tungsten (W), Turn (Mo), Face (Ta), Chain (Re), Sharp (Nb), Nickel (Ni), Chromium Metal materials commonly used in the semiconductor industry such as (Cr), germanium (ζΓ) or hafnium (Hf), or semiconductor materials such as germanium (Si), germanium (Ge) 13 200805428 2 gallium (tetra), or the above semiconductor materials may be used. The conductive structure of the upper metal material film. The cathode electrode 14 is made of the same material as the electron emitter 16. The electron emitter 16 can be made of a molybdenum surface or the like and formed into a microtip, on which a low work function material ruthenium film such as a metallization or a ruthenium (10) based on LaB6 is oxidized.钇(Y2〇3), yttrium oxide (Gd2〇3)

或氧化鏑(Dy2G3)等爲主的稀土氧化物。$,電子發 射體16還可採用稀土氧化物(氧化鑭、氧化紀、^ 化乳、氧化鏑等)、航物(魏娃、碳储、礙化鈦、 碳化趣等)與高溶點金屬(H錕、鍊、翻等) 壓制燒結而成的微尖結構’或將奈求礙管或半導體奈 米線附著于上述任—微尖結構表面作爲電子發射體 16。另,本技術領域技術人員應明白,奈米碳管、.半 導體奈米線或其組成㈣列亦可直接形成於陰極電 極14上作爲電子發射體16。 本實施例微型場發射電子器件1G在應麟,通過 施加-場發射電壓於陰極電極14與陽極電極18之 間’利用電場作用使得電子發射體16的場發射尖端 16表面勢土降低與變窄,當場發射尖端的表面 勢壘寬度窄到可與電子波長相比擬時,電子由於隨穿 效應穿透場發射尖端162表面㈣而進人密封空間 144 ’從而實現電子發射。 u閱圖2’本發明第二實施例提供_種微型場發 射電子H件20,職㈣發射電子科2q包括一基 200805428 底22,一陰極電極24,一與該陰極電極24電性連接 的電子發射體26,以及一與該陰極電極24相隔一定Or a rare earth oxide such as yttrium oxide (Dy2G3). $, the electron emitter 16 can also use rare earth oxides (yttrium oxide, oxidized particles, yoghurt, yttrium oxide, etc.), aviation objects (Weiwa, carbon storage, titanium, carbonization, etc.) and high melting point metals (H锟, chain, turn, etc.) Press-sintered microtip structure' or attach a tube or semiconductor nanowire to the surface of any of the above-mentioned microtip structures as the electron emitter 16. Further, it will be understood by those skilled in the art that a carbon nanotube, a semiconductor nanowire or a composition (four) thereof may be directly formed on the cathode electrode 14 as the electron emitter 16. In the present embodiment, the micro field emission electron device 1G reduces and narrows the surface of the field emission tip 16 of the electron emitter 16 by applying an electric field by applying a field emission voltage between the cathode electrode 14 and the anode electrode 18. When the surface barrier width of the field emission tip is narrow enough to be comparable to the electron wavelength, electrons enter the sealed space 144' due to the penetration effect penetrating the surface emission tip 162 surface (4) to achieve electron emission. Referring to FIG. 2', a second embodiment of the present invention provides a micro field emission electron H device 20, and a (4) electron emission device 2q includes a base 200805428 bottom 22, a cathode electrode 24, and a cathode electrode 24 electrically connected thereto. The electron emitter 26 and a certain distance from the cathode electrode 24

距離設置的陽極電極28,該微型場發射電子器件 内部密封有惰性氣體’且該微型場發射電子^件2〇 的特徵尺寸h2 ’即電子發射體26的場發射^端2犯 與陽極電極28之間的間距小於電子在該惰性氣體中 的自由程。該第二實施例提供的微型場發射電子器件 20與本發明第一實施例的微型場發射電子器件1〇的 結構基本相同,其區別在於:第二實施例的微型場發 射電子器件20爲三極型結構,其進一步包括一桃極 電極282設置於陰極電極24與陽極電極26之間,並 通過絕緣層242分別與陰極電極24及陽極電極π隔 開並實現電性絕緣。該柵極電極282在對應於電子= 射體26位置設置有一開孔284。 本實施例微型場發射電子器件20中基底材料 電極材料均與第-實施例的微型場發射電子器件1 中基底材料各電極材料相同,栅極電極找2的材 與陽極電極28相同。在應用時,本實施例微型_ 射電子器件2G通過在柵極電極282施加魏控: 子發射體26發射電子,並在陽極電極28施加電壓: 電子加速運動到陽極電極28。 請參閱圖3,本發明第三實施例提供—種微 射電子器件3〇,該微型場發射電子器件30包括= 底32 ’ -陰極電極34,—與該陰極電極料電性連^ 15 200805428 的電子發射體36,以及一與該陰極電極34相隔一定 距離設置的陽極電極38,一柵極電極382設置於陰極 電極34與陽極電極36之間,並通過絕緣層342 ^別 與陰極電極34及陽極電極36隔開並實現電性絕緣。 該第三實施例提供的微型場發射電子器件3〇與本發 明第二實施例的微型場發射電子器件2〇的結構基本 相同,其區別在於:第三實施例的微型場發射電子器 件30内部密封有兩種以上的惰性氣體,本實施例優 選爲採用fl氣362與氣氣364的混合氣體。其中混人 氣體中的氦氣362可以提高電子自由程,降低微型場 發射電子器件30對特徵尺寸h3的要求。而氖氣 的分子量較大,具有更好的清潔電子發射體36表面、 去除電子發射體36表面吸附的雜質氣體的效果。—An anode electrode 28 is disposed at a distance, and the micro field emission electronic device is internally sealed with an inert gas 'and a characteristic size h2 of the micro field emission electrons 2', that is, a field emission terminal 2 of the electron emitter 26 is erected with the anode electrode 28 The spacing between them is less than the free path of electrons in the inert gas. The micro field emission electronic device 20 provided by the second embodiment has substantially the same structure as the micro field emission electronic device 1 of the first embodiment of the present invention, and the difference is that the micro field emission electronic device 20 of the second embodiment is three. The pole structure further includes a peach electrode 282 disposed between the cathode electrode 24 and the anode electrode 26, and separated from the cathode electrode 24 and the anode electrode π by the insulating layer 242 and electrically insulated. The gate electrode 282 is provided with an opening 284 at a position corresponding to the electron = emitter 26. The base material electrode material in the micro field emission electronic device 20 of the present embodiment is the same as the electrode material of the base material in the micro field emission electronic device 1 of the first embodiment, and the material of the gate electrode is the same as the anode electrode 28. In use, the micro-electron device 2G of the present embodiment applies a control at the gate electrode 282: the sub-emitter 26 emits electrons, and a voltage is applied to the anode electrode 28: electrons accelerate to the anode electrode 28. Referring to FIG. 3, a third embodiment of the present invention provides a micro-electron emitting device 3, which includes a bottom 32'-cathode electrode 34, and is electrically connected to the cathode electrode material. An electron emitter 36, and an anode electrode 38 disposed at a distance from the cathode electrode 34. A gate electrode 382 is disposed between the cathode electrode 34 and the anode electrode 36, and passes through the insulating layer 342 and the cathode electrode 34. The anode electrode 36 is spaced apart and electrically insulated. The micro field emission electronic device 3A provided by the third embodiment has substantially the same structure as the micro field emission electronic device 2A of the second embodiment of the present invention, and the difference is that the inside of the micro field emission electronic device 30 of the third embodiment Two or more kinds of inert gases are sealed, and in this embodiment, a mixed gas of fl gas 362 and gas 364 is preferably used. The helium gas 362 in the mixed gas can increase the electron free path and reduce the requirement of the micro-field electron-emitting device 30 for the feature size h3. The helium gas has a large molecular weight and has a better effect of cleaning the surface of the electron emitter 36 and removing the impurity gas adsorbed on the surface of the electron emitter 36. -

另,本發明第一實施例二極型的微型場發射電子 器件10也可同樣在其内部密封兩種以上的惰性氣 體,以分子量較大的惰性氣體原子轟擊電子發射體= 面,具有更好地清潔作用,分子量較小的惰性氣體原 子可以提高電子自由程。 ’、 本技術領域技術人員應明白,本發明各實施例提 供的微型場發射電子器件可採用電子束光刻梦人幹 法、濕法蝕刻以及真空鍍膜技術實現。器件的封筆工 藝可先抽真空再充入一定工作氣壓的惰性氣體,:可 以在流動的工作氣壓惰性氣體環境下封裝,免去抽直 空步驟以提高生產速度、降低成本。另,本發明提^ 16 200805428 三極型場發射電子器件結構可集成在同一 即可做成積體電路,以實現複雜的信號處In addition, the dipole type micro field emission electronic device 10 of the first embodiment of the present invention can also seal two or more inert gases in its interior, and bombard the electron emitter with a larger molecular weight inert gas atom. Ground cleaning, a small molecular weight inert gas atom can increase the electron free path. Those skilled in the art will appreciate that the micro field emission electronic devices provided by the various embodiments of the present invention can be implemented by electron beam lithography, wet etching, and vacuum coating techniques. The sealing process of the device can be vacuumed and then filled with an inert gas at a certain working pressure. It can be packaged under a flowing working pressure inert gas atmosphere, eliminating the need to take a straight-through step to increase production speed and reduce costs. In addition, the present invention can be integrated into the same structure to form an integrated circuit to realize a complex signal.

的二極型、 個基底上, 理與運算。 ,本發明提供的微型場發射電子器件的優點在於: 首先,本發明的微型場發射電子器件工作於惰性氣體 環境下,由於微型場發射電子器件的特徵尺寸小於電 2在惰性氣體_自由程’具有良好的電子發射性 能;其次,由於微型場發射電子器件的特徵尺寸較 小’其場發射電壓可以降低至幾乎不引起惰性氣體原 子電離的數值,在微型場發射電子器件工作時氣體電 離的幾率極小;再次,惰性氣體原子不僅不會吸附於 電子發射體表面影響其發射性能,而且惰性氣體原子 會持續不斷地轟擊電子發射體表面,可以去除電子發 射體表面吸附的雜質氣體分子,維持微型場發射電子 器件正常工作;並且,本發明提供的微型場發射電子 器件具有極快的開關速度,且能齡高溫、高輻射等 環境正常工作。 綜上所述,本發明確已符合發明專利之要件,遂 依法提出賴申請。惟’以上所述者僅為本發明之較 佳實施例,自不能以此限制本案之申請專利範圍。舉 凡熟悉本案技藝之人士援依本發明之精神所作之等 政修飾或變化,皆應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本發明第-實施例的微型場發射電子器件 200805428 的剖視圖。 圖2係本發明第二實施例的微型場發射電子器件 的剖視圖。 圖3係本發明第三實施例的微型場發射電子器件Dipole, base, and operation. The micro field emission electronic device provided by the present invention has the following advantages: First, the micro field emission electronic device of the present invention operates in an inert gas environment, since the characteristic size of the micro field emission electronic device is smaller than the electric 2 in the inert gas _ free path ' Has good electron emission performance; secondly, due to the small feature size of the micro field emission electronic device, its field emission voltage can be reduced to a value that hardly causes ionization of inert gas atoms, and the probability of gas ionization during operation of the micro field emission electronic device Very small; again, the inert gas atoms not only do not adsorb to the surface of the electron emitter to affect their emission properties, but also the inert gas atoms will continuously bombard the surface of the electron emitter, which can remove the impurity gas molecules adsorbed on the surface of the electron emitter and maintain the micro field. The transmitting electronic device works normally; and the micro field transmitting electronic device provided by the invention has an extremely fast switching speed and can work normally in an environment of high temperature, high radiation, and the like. In summary, the present invention has indeed met the requirements of the invention patent, and the application is filed according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Any modification or variation made by a person familiar with the art of the present invention in accordance with the spirit of the present invention shall be covered by the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a micro field emission electronic device 200805428 of a first embodiment of the present invention. Figure 2 is a cross-sectional view showing a micro field emission electronic device of a second embodiment of the present invention. 3 is a micro field emission electronic device according to a third embodiment of the present invention;

的剖視圖。 【主要元件符號說明】 微型場發射電子器件 10, 20,30 基底 12, 22,32 陰極電極 14, 24,34 絕緣層 142 ,242 , 342 密封空間 144 惰性氣體原子 146 電子發射體 16, 26,36 場發射尖端 162 ,262 陽極電極 18, 28,38 拇極電極 182 ,282 , 382 開孔 284 氦氣 362 氖氣 364 18Cutaway view. [Major component symbol description] Micro field emission electronic device 10, 20, 30 Substrate 12, 22, 32 Cathode electrode 14, 24, 34 Insulation layer 142, 242, 342 Sealed space 144 Inert gas atom 146 Electron emitter 16, 26, 36 field emission tips 162, 262 anode electrodes 18, 28, 38 thumb electrodes 182, 282, 382 openings 284 helium 362 helium 364 18

Claims (1)

200805428 十、申請專利範圍 1· 一種微型場發射電子器件,其包括:一基底;一 陰極電極没置於基底表面,該陰極電極具有一電子 發射體,與一陽極電極相對該陰極電極設置,其改 進之處在於,該微型場發射電子器件内密封有惰性 氣體’且滿足條件式:Λ&lt;Λ,其中,h爲電子發射200805428 X. Patent Application Scope 1. A micro field emission electronic device comprising: a substrate; a cathode electrode not disposed on a surface of the substrate, the cathode electrode having an electron emitter disposed opposite the anode electrode and an anode electrode The improvement is that the micro field emission electronic device is sealed with an inert gas 'and satisfies the conditional formula: Λ &lt;Λ, where h is electron emission 體的場發射尖端與陽極電極之間的間距;无爲電子 在h性氣體環境中的自由程。 2·如申請專利範圍第1項所述的微型場發射電子器 件,其中,進一步包括一柵極電極設置於該陰極電 極與該陽極電極之間。 3·如申明專利範圍第2項所述的微型場發射電子器 件,其中,該柵極電極在對應於電子發射體位 置有一開孔。 4. 6· 如申明專利叙圍第i項所述的微型場發射電子器 件,其中,該電子發射體爲微尖結構。 如申請專利_第4項所述的微型場發㈣Μ 件,其中,該電子發射體材料爲矽、鉬或鎢。σ 如申請專利範圍第5項所述的微型場發雷 =其中,該電子發射體表面形成有低逸出功材=The spacing between the field emission tip and the anode electrode; the free path of electrons in the h-gas environment. 2. The micro field emission electronic device of claim 1, further comprising a gate electrode disposed between the cathode electrode and the anode electrode. 3. The micro field emission electronic device of claim 2, wherein the gate electrode has an opening at a position corresponding to the electron emitter. 4. The micro field emission electronic device of claim i, wherein the electron emitter is of a microtip structure. The micro field hair (four) member according to claim 4, wherein the electron emitter material is tantalum, molybdenum or tungsten. σ The micro-field lightning as described in item 5 of the patent application scope = wherein the surface of the electron emitter is formed with a low-emission material = 如寻利範圍第6項所述的微型場 件,其中,該低逸出功材料薄膜材料爲 威稀土氧化物 電子器 堋化物 19 200805428 8. 如申請專利範圍第4項所述的微型場發射電子器 件,其中,該電子發射體材料爲稀土氧化物、碳化 物與高溶點金屬。 9. 如申請專利範圍第4項所述的微型場發射電子器 件,其中,該電子發射體表面設置有奈米碳管或半 導體奈米線。 10. 如申請專利範圍第1項所述的微型場發射電子器 件,其中,該電子發射體爲奈米碳管、半導體奈米 線或其組成的陣列。 11. 如申請專利範圍第1項所述的微型場發射電子器 件,其中,該惰性氣體的分壓爲0. 1〜10個大氣壓 12. 如申請專利範圍第1項所述的微型場發射電子器 件,其中,該惰性氣體可選擇爲氦、氖、氬、氪、 氣及其任意組合的混合氣體。 13. 如申請專利範圍第1項所述的微型場發射電子器 件,其中,進一步滿足關係式:i。The micro field device according to claim 6, wherein the low work function material film material is a rare earth oxide electronic device telluride 19 200805428 8. The micro field emission according to claim 4 An electronic device in which the electron emitter material is a rare earth oxide, a carbide, and a high melting point metal. 9. The micro field emission electronic device of claim 4, wherein the electron emitter surface is provided with a carbon nanotube or a semiconductor nanowire. 10. The micro field emission electronic device of claim 1, wherein the electron emitter is an array of carbon nanotubes, semiconductor nanowires or a combination thereof. The micro-field emission electron according to claim 1, wherein the partial pressure of the inert gas is 0.1 to 10 atmospheres. 12. The micro-field emission electron according to claim 1 The device wherein the inert gas is selected from the group consisting of helium, neon, argon, xenon, gas, and any combination thereof. 13. The micro field emission electronic device of claim 1, wherein the relationship is further satisfied: i.
TW95124909A 2006-07-07 2006-07-07 Field emission microelectronic device TWI342581B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95124909A TWI342581B (en) 2006-07-07 2006-07-07 Field emission microelectronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95124909A TWI342581B (en) 2006-07-07 2006-07-07 Field emission microelectronic device

Publications (2)

Publication Number Publication Date
TW200805428A true TW200805428A (en) 2008-01-16
TWI342581B TWI342581B (en) 2011-05-21

Family

ID=44766095

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95124909A TWI342581B (en) 2006-07-07 2006-07-07 Field emission microelectronic device

Country Status (1)

Country Link
TW (1) TWI342581B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113555445A (en) * 2020-04-23 2021-10-26 北京大学 On-chip triode, manufacturing method thereof and integrated circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113555445A (en) * 2020-04-23 2021-10-26 北京大学 On-chip triode, manufacturing method thereof and integrated circuit

Also Published As

Publication number Publication date
TWI342581B (en) 2011-05-21

Similar Documents

Publication Publication Date Title
CN101097823B (en) Mini-size field emission electronic device
CN100583350C (en) Mini-field electron transmitting device
US7102157B2 (en) Nanotube-based vacuum devices
Fursey Field emission in vacuum micro-electronics
JP2966842B1 (en) Field emission electron source
US6629869B1 (en) Method of making flat panel displays having diamond thin film cathode
US10431412B2 (en) Compact ion beam sources formed as modular ionizer
CN109273337B (en) On-chip miniature X-ray source and manufacturing method thereof
US10832885B2 (en) Electron transparent membrane for cold cathode devices
WO2003005451A1 (en) Field-effect transistor constituting channel by carbon nano tubes
CN107248489A (en) A kind of surface tunnelling micro electric component and its array and implementation method
JP2003217516A (en) Field emission element having carbon nano-tube covered by protection film
Late et al. Field emission studies on well adhered pulsed laser deposited LaB6 on W tip
US20170365438A1 (en) Compact modular cathode
US7176478B2 (en) Nanotube-based vacuum devices
US20210398769A1 (en) On-chip miniature x-ray source and manufacturing method therefor
Zhao et al. An Al0. 25 Ga0. 75N/GaN lateral field emission device with a nano void channel
TW200805428A (en) Field emission microelectronic device
JP7272641B2 (en) Electron-emitting device and electron microscope
Lewis et al. Energy distributions of field-emitted electrons from silicon: Evidence for surface states
TWI318773B (en) Field emission microelectronic device
Fomani et al. Low-voltage field ionization of gases up to torr-level pressures using massive arrays of self-aligned gated nanoscale tips
Li et al. Environments adaptability and failure analysis of nanoscale vacuum channel transistors
Lee et al. A triode-type carbon nanotube ionizer for micro mass spectrometer
Dyuzhev et al. Vacuum Nanoelectronics Based on Semiconductor Field-Emission Structures: Current State and Development Prospects. Review