TWI314800B - Heterostructure, injection laser, semiconductor amplifying element, and semiconductor optical amplifier - Google Patents
Heterostructure, injection laser, semiconductor amplifying element, and semiconductor optical amplifier Download PDFInfo
- Publication number
- TWI314800B TWI314800B TW95116359A TW95116359A TWI314800B TW I314800 B TWI314800 B TW I314800B TW 95116359 A TW95116359 A TW 95116359A TW 95116359 A TW95116359 A TW 95116359A TW I314800 B TWI314800 B TW I314800B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- refractive index
- leak
- heterostructure
- semiconductor
- Prior art date
Links
Landscapes
- Semiconductor Lasers (AREA)
Description
1314800 九、發明說明: 【發明所屬之技術領域】 本發明係與量子電子工程的關鍵零組件有關,也就是, 與基於半導體化合物的異質結構有關並且與半導體注入式 發射源’特別是注入式雷射、半導體放大元件以及半導體 光學放大器有關。 【先前技術】 異質結構代表一個基礎元件,用於製造有效率、高功 籲率以及小型的半導體注入式發射源(在下文以IES表示), 其中發射源具有很窄的遠場圖案。1314800 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to key components of quantum electronic engineering, that is, to heterogeneous structures based on semiconductor compounds and to semiconductor injection-type emission sources, particularly implanted thunder Related to radiation, semiconductor amplifying components, and semiconductor optical amplifiers. [Prior Art] A heterostructure represents a basic element for manufacturing an efficient, high power rate and small semiconductor injection source (hereinafter referred to as IES) in which the source has a very narrow far field pattern.
用於半導體IES、具有窄遠場圖案之漏入發射的異質 結構見於【美國專利第4063189號,1977年,國際分類H01S 3/19 331/94. 5】、【俄羅斯專利第2142665號,1998年8 月日,國際分類H01S3/19】。 從已解決的技術成效觀點來看,範例的異質結構在【俄 羅斯專利第 2197049 號,V· I. Shveikin,2002 年 2 月 18 日, ^ 國際分類H01S 5/32】中提出《該異質結構原型基於半導 體化合物並且包含至少一個主動層(其由至少一個子層組 成)、位於主動層至少一側的至少一個漏入區(其對雷射作 用是可穿透的)、至少一個該漏入區’其至少具有由至少一 個子層組成之一個發射漏入層。該異質結構之特徵化係異 質結構有效折射係數neff對漏入層折射係數nIN的比例。 在這情況下’至少兩個反射層額外地放置在異質結構 裡’其在主動層的每一邊至少有一個;該反射層具有比neff 6 -1314800 低的折射係數並且至少形成一個子層。漏入區位於主動層 以及相應反射層之間。在該漏入區之中形成兩個額外層, 也就疋位於漏入區的一個侷限層以及漏入區的一個調節 層,相鄰於主動層之表面漏入區形成至少一個由半導體製 成的子層,半導體具有一個超過主動層能隙的能隙,相鄰 於侷限層的表面之漏入區之調節層形成至少一個子層。更 進一步,漏入層位於漏入區裡。在丨減去△到丨加上△的 fe圍内選擇neff對n〖N的比率,其中△的大小是遠小於i。 攻個原型異質結構具有許多重要的優點。這種異質結 構的製造技術係簡化的;基於這種具有漏入發射之異質結 構的IES操作,得到了大約與裂開光學面孔洞垂直的發射 輸出;增加了發射功率輸出;增加了垂直平面中之發射面 積大小,並且相應地降低了發射的角發散。在這同時該異 質結構限制了在其基礎上製造之IES達到高功率及空間特 性的可能。 具有漏入發射並且具有窄遠場圖形之半導體注入式發 射源-實際上為注入式雷射(在下文稱為"注入式雷射,)見於 【美國專利第4063189號,1977年,國際分類H01S 3/19, 331/94· 5H】、【俄羅斯專利第2142665號,1998年8月1〇 曰,國際分類H01S 3/19】。 從技術本質以及已解決的技術成效觀點中,在【俄羅 斯專利第 2197048 號,V. I. Shveikjn,2002 年 2 月 18 日,國 IV、分類7H01 S 5/3 2】中提出了一個範例原型注入式雷射。 該原型注入式雷射包括一個基於半導體化合物的異質 7 ,1314800 結構,其包含至少一個主動層(由至少一個子層組成)、至 少一個發射漏入區(在主動層的至少一側對雷射作用是可穿 透的)、至少一個該漏入區’具有至少一個由發射漏入層所 組成的至少一個子層。這個異質結構之特徵在於,由異質 結構的有效折射係數neff對漏入層折射係數ηίΝ的比率。除 了異質結構,原蜜注入式雷射也包括光學面、反射器、歐 姆接觸以及一個光學諧振器’其中它介質的至少一部分是 由漏入區的至少一部分以及主動層的至少一部分製成。該Heterostructures for semiconductor IES, leaky emission with narrow far-field patterns are found in [US Patent No. 4063189, 1977, International Classification H01S 3/19 331/94. 5], [Russian Patent No. 2142665, 1998 August, International Classification H01S3/19]. From the point of view of the resolved technical results, the heterogeneous structure of the example is proposed in [Russian Patent No. 2197049, V. I. Shveikin, February 18, 2002, ^ International Classification H01S 5/32] Based on a semiconductor compound and comprising at least one active layer (which consists of at least one sub-layer), at least one leak-in region on at least one side of the active layer (which is permeable to laser action), at least one of the leak-in regions 'It has at least one emission leak-in layer composed of at least one sub-layer. The heterostructure is characterized by the ratio of the effective refractive index neff of the heterostructure to the refractive index nIN of the leak-in layer. In this case, 'at least two reflective layers are additionally placed in the heterostructure', which has at least one on each side of the active layer; the reflective layer has a lower refractive index than neff 6 - 1314800 and forms at least one sub-layer. The leak-in area is located between the active layer and the corresponding reflective layer. Forming two additional layers in the leak-in region, that is, a localized layer of the leak-in region and an adjustment layer of the leak-in region, and a surface-draining region adjacent to the active layer forms at least one made of a semiconductor The sub-layer, the semiconductor has an energy gap exceeding the active layer energy gap, and the adjustment layer adjacent to the leakage region of the surface of the localized layer forms at least one sub-layer. Further, the leak-in layer is located in the leak-in area. The ratio of neff to n, N, is selected in the fe circle minus Δ to 丨 plus Δ, where the magnitude of Δ is much smaller than i. There are many important advantages to attacking a prototype heterostructure. The fabrication technique of this heterostructure is simplified; based on this IES operation with a heterostructure leaking into the emission, an emission output approximately perpendicular to the split optical face hole is obtained; the transmit power output is increased; the vertical plane is increased The size of the emission area, and correspondingly reduced angular divergence of the emission. At the same time, this heterogeneous structure limits the possibility of achieving high power and spatial characteristics of the IES manufactured on its basis. A semiconductor injection source having a leaky emission and having a narrow far field pattern - actually an implanted laser (hereinafter referred to as "injected laser,) is found in [US Patent No. 4,063,189, 1977, International Classification). H01S 3/19, 331/94· 5H], [Russian Patent No. 2142665, August 1, 1998, International Classification H01S 3/19]. From the perspective of the nature of technology and the technical achievements that have been solved, an example prototype injection mine is proposed in [Russian Patent No. 2197048, VI Shveikjn, February 18, 2002, National IV, Classification 7H01 S 5/3 2]. Shoot. The prototype implanted laser includes a semiconductor compound-based heterogeneous 7, 1314800 structure comprising at least one active layer (consisting of at least one sub-layer) and at least one emissive in-drain region (on at least one side of the active layer facing the laser) The effect is permeable. At least one of the leak-in regions has at least one sub-layer consisting of an emission leak-in layer. This heterostructure is characterized by the ratio of the effective refractive index neff of the heterostructure to the refractive index ηίΝ of the leak-in layer. In addition to the heterostructure, the original honey-injected laser also includes an optical surface, a reflector, an ohmic contact, and an optical resonator' wherein at least a portion of its medium is made of at least a portion of the leak-in region and at least a portion of the active layer. The
異質結構裡額外地放置至少兩個反射層,其一/ P 一〜, 每一邊有一個;該反射層具有一個比neff更小的折射係數 並且形成至少一個子層,而漏入區係位於主動層以及相應 反射層之間。在該漏入區中放置了二個額外層,首先,一 個偈限層在與主動層表面相鄰之漏入區中;該侷限層由至 少一個子層組成,其由一個能隙超過主動層能隙的一個半 導體製成;其次,一個在該漏入區的調節[其相鄰於該 偶限層之表面;該調節層由至少一個子層組成。更進一步, 該漏入層位於該漏入區之中,其中該反射層的至少一部分 作為光學諧振器的額外介質。在1減去△以及…上“ 粑圍内選擇U niN的比率,其中△的大小係遠小於卜 在給定超過門檻值電流的原型注人式f射操作巾,雷射作 限制在主動層裡,其由異質結構層的組成以及厚度 義,至少是維持雷射作用門檻值所需要值。 在垂=注入式雷射的主要優點是增加了雷射輸出功率、 垂直平面中發射面積大小的增大以及發射角發散的相應 8 1314800 降低'製造注入式雷射之技術的簡化以及發射輸出大約與 裂開光學面之孔洞垂直的實現。在這同時原型注入式雷射 到一個程度上限制低雷射作用門檻值電流的達到,以及在 具有很高的空間特性的同時達到雷射作用之高效率以及高 功率。 半導體注入式發射源,實際上為半導體放大元件(在下 文稱為"SAE”)可見於【雷射焦點世界,2001年9月,73_79 頁】。The heterostructure is additionally provided with at least two reflective layers, one / P - ~, one on each side; the reflective layer has a refractive index smaller than neff and forms at least one sub-layer, and the leak-in region is active Between the layers and the corresponding reflective layer. Two additional layers are placed in the leak-in region. First, a threshold layer is in the leak-in region adjacent to the surface of the active layer; the localized layer is composed of at least one sub-layer, which has an energy gap exceeding the active layer A semiconductor of the energy gap is formed; secondly, an adjustment in the leak-in region [which is adjacent to the surface of the even-limiting layer; the adjustment layer is composed of at least one sub-layer. Still further, the drain layer is located in the drain region, wherein at least a portion of the reflective layer acts as an additional medium for the optical resonator. Select the ratio of U niN in 1 minus △ and ..., where the magnitude of △ is much smaller than the prototype injection-type operation towel given the current exceeding the threshold value, and the laser is limited to the active layer. It consists of the composition of the heterostructure layer and the thickness of the layer, at least the value required to maintain the threshold value of the laser. The main advantage of the vertical-injected laser is the increase in the laser output power and the emission area in the vertical plane. The corresponding increase in the emission angle and the corresponding 8 1314800 reduces the simplification of the technique of manufacturing the injected laser and the realization that the emission output is approximately perpendicular to the hole of the split optical surface. At the same time, the prototype injection laser is limited to a low degree. The reach of the laser threshold current and the high efficiency and high power of the laser while having high spatial characteristics. The semiconductor injection source is actually a semiconductor amplifying element (hereinafter referred to as "SAE ") can be found in [Laser Focus World, September 2001, page 73_79].
從技術本質以及已解決之技術成效觀點,範例的原型 SAE 在【俄羅斯專利 2197047,V. I_ Shveikin,. 2002 年 2 月18曰,7H01S5/32】中提出。 該SAE包括基於半導體化合物的異質結構,其包含至 少一個主動層(由至少一個子層組成),以及至少—個發射 漏入區(在主動層的至少—側並且對於雷射作用是可穿透 的),至少一個該漏入區,至少一個發射漏入層(由至少一 個子層組成)。這種異質結構由異質結構的特徵在於,有效 折射係數neff與該漏入層的折射係數niN的比率。除了異質 結構’原型SAE也包含在光學面、反射器、歐姆接觸以及 在至少-個光學面上的-個清晰膜。纟SAE的操作中,放 大發射的傳播介質係該漏入區的至少一部分以及該主動層 的至乂郤刀在°亥異負結構裡額外放置了至少兩個反射 層’其至少在主動層每-邊有—個;該反射層具有小於〜 的折射係數,並且組成至少_個子層。該漏人區位於該主 動層以及相應的該反射層之間。在該漏入區中放置了二個 * 1314800 額外層;也就是-首先,一個相鄰於該主動層表面之該漏入 區中的侷限層,該侷限層由至少一個子層組成,並且由能 隙超過該主動層能隙的半導體所製成;並且-其次,在該漏 入區内的調節層’其形成至少一個子層並且與該侷限層的 表面相鄰。更進一步’在該漏入區中放置該的漏入層。在 1減去△到1加上△的範圍内選擇neff對niN的比率,其中 △係一個比1小很多的值。在原型SAE的操作方面,放大 發射傳播的額外介質至少是該反射層的一個部分,而侷限 在該主動層裡的放大發射強度由異質結構層的組成及厚度 以及清晰膜的反射係數定義,其被選擇為比它自我激發電 流門檻值密度的大小為小。 SAE原型的主要優點是它製造技術的簡化、與裂開光 學面大約垂直的發射輸出、較大的入口以及出口孔徑、噪 音因子的降低、對輸入主發射極化作用之敏感性的降低以 及很小的發射發散角度。在這同時原型SAE具有對輸入信 號敏感性的不足以及在小信號放大係數大小的一些限制。 半導體注入式發射源-實際上為半導體光學放大器(在 下文稱為SOA)可見於〔IEEE光子技術信息,卷u,n〇. 9, 1999年9月第1099至1101頁】。 從已解決技術成效的觀點,〔俄羅斯專利第2197〇47 號,V. L ShveUdn,2002 年 2 月 18 日,國際分類 7h〇is 5/32】中提出了 一個範例的原型半導 原型包括一個在【俄羅斯第2197〇47:專利,V· L Shmkin,2002年2月18日,國際分類7h〇is5/32】中 10 '1314800 提出的輸入發射光學耦合主源以及SAE原型以及在以上說 明之内容。 原型SOA的主要優點是製造技術的簡化、與裂開光學 面大約垂直的發射輸出、發射分佈在近以及遠場中的改 °以及輸出參數之溫度倚賴性的改善。在具有發射高空 間特性的同時,原型s〇A在輸入發射放大係數值具有一些 限制以及在輸出放大功率值具有一些限制。 【發明内容】 本發明提出之異質結構的技術成效是半導體注入式發 射源在它的基礎上製造時的特性改善,也就是他們的功率 以及工間特性的改善;尤其是高功率、高效率、高可靠性 發射源(包括單頻以及單模)的產生,其同時具有改善的頻 率、速度、光譜以及空間特性、降低的光損耗、較小的發 射發散角、改善的發射功率溫度倚賴性、降低的發射非線 性偏差以及降低的歐姆以及熱阻抗、降低機械應力等級以 及增加的操作資源,同時配合異質結構製造技術的進 — 簡化。 、/於所提出之異質結構,所提出的半導體注入式發射 源(Λ際上為注入式雷射)的技術成效係該半導體注入式發 射源在它的基礎上製造時的特性改善,也就是,它的功率 以及空間的特性改善;尤其是高功率、高效率以及高可靠 度發射源(包括單頻以及單模)的產生,其同時具有改善的 頻率速度、光譜以及空間特性、降低的光損耗、較小的 發射發散角、改善的發射功率溫度倚賴性、降低的發射非 11 T314800 線性偏差、以及降低的歐姆以及熱阻抗性、降低的機械應 力等級以及增加的操作源,同時配合發射源製造技術的進 一步簡化。 基於提出之異質結構,所提議的半導體注入式發射源 (貫際上為半導體放大元件)的技術成效係該半導體注入式 發射源在它的基礎上製造時的特性改善,也就是,它的功 f以及空間的特性改善;尤其是產生高功率、高效率以及 ⑥度可靠發的射源(包括單頻以及單模),同時具有改善的 頻率、速度、光譜以及空間特性、降低的光損耗、較小的 發射發散角、改善的發射功率溫度倚賴性、降低的發射非 線性偏差、以及降低的歐姆以及熱阻抗性、降低的機械應 力等級以及增加的操作資源,同時配合發射源製造技術的 進一步簡化。 基於所提出之異質結構,所提出的半導體注入式發射 源(實際上為半導體光學放大元件)的技術成效係該半導體 注入式發射源在它的基礎上製造時的特性改善,也就是, 它的功率以及空間特性的改善;尤其是產生高功率、高效 率以及高度可靠的發射源(包括單頻以及單模),同時具有 改善的頻率、速度、光譜以及空間特性、降低的光損耗、 較小的發射發散角、改善的發射功率溫度倚賴性、降低的 發射非、線性偏ϋ,以&降低的歐姆以及熱阻抗十生、降低的 機械應力等級以及增加的操作源,同時配合發射源製造的 進一步技術簡化。 本發明的一個觀點是一個基於半導體化合物的異質結 12 1314800 才/其特徵在於異質結構之有效折射係數對漏入層折 射係數:1Ν的比率,也就是neff對nIN的比率係從1加上△ 里拼減去△的範圍中選擇,其中△係為遠小於一的值。該 結構包含:至少一個主動層;至少兩個反射層,其至 ^個在主動層的每一邊;在主動層以及相應反射層之間 的至v >(固發射漏入區,其對發射是可穿透的;;以及至 ^品個在漏入區的侷限層,其由至少一個子層組成,該漏 品括至個發射漏入層具有一個折射係數niN並且 組成至少一個子層,該反射層由至少一個子層組成並且具 有異貝、纟σ構有效折射係數neff小的折射係數。在這個情 形下,主要調節層係額外地被引入至漏入區裡,該主要調 節層由至少—個子層組成,並且至少一個子層的折射係數 不小於於漏入層的折射係數nIN,並且其一個表面與主動層 相郴。在该主要調節層的相反面上具有一個該侷限層,侷 限層具有比主要調節層折射係數更小的折射係數。 提出之異質結構(在下文稱為HS)的特性在於包含漏入 區之薄層的原創性以及非顯而易見性、他們的功能性目 的、在漏入區中的配置、他們組成以及厚度。主動層以及 調節層的位置以及侷限層在漏入區裡的位置已經改變。在 提出的HS裡的主動層不包含子層並且可以是至少一個主 動層。當主動層形成的時候,額外地引入至漏入區内之主 要调卽層之—邊係與主動層相鄰,而漏入區的侷限層與主 要調節層另一邊相鄰。 基於提出之異質結構的半導體注入式發射源(在下文稱 13 •1314800 為IES)纟功此發生在從主動層之發射漏入的暫態程序附 、匕漏入到漏入區並且進入漏入區附近的一部分反射層 中〜在提出的HS冑的這個漏人處理係由它薄層組成及厚 度疋義,並且它由異質結構的有效折射係數neff對漏入層 勺折射係數ηίΝ @比率所控^。漏入處王里的轉換點係& 對nIN比率等於丨.0所提供。在電流的操作範圍裡,這個比 率大小係在從1加上△至!減去△的範圍内,其中△的大 j大、力是0.01 ’也就是neff對niN的比率在從i 〇1到〇 99 的大小範圍内。注意到在操作元件内的比率隨著 流過HS的電流增加而減低。 在選擇之neff對nIN比率以及流經IES的給定電流密度 下,IES的效率在一個決定程度上取決於主動層内的最終 發射放大值。由最終放大所理解的是,最後的發射放大避 免了在主動層的發射共振損失以及在Hs層内的光損耗。 如計算所顯示並且由試驗數據證實者,在主動層的該 最終放大係由主要調節層(或是他們的子層)位置所精確達 成’以及其厚度及折射係數的選擇達成。因此,提出額外 地引入主要調節層至HS中不僅是控制niN對的比率所 必要的,而且他們也使IES的功率以及空間特性的實質改 善成為可能。 在增加主動層之最終發射放大以及改善1ES功率特徵 的較佳實施例中,該HS至少包含二個主動層,並且在他 們之間有一個主要中央調節層,其由至少一個子層組成並 且具有不小於漏入層折射係數nIN的折射係數。 14 1314800 專級來推雜。 可以有一個漏入區位於主動層的 雜的那一側 取決於漏入區或是漏入層的數目以及位置,可以製造 兩種主要W HS:對稱的HS以及非對稱的hs。在對稱的 HS中,漏入區位於主動層的每—邊,並且大部分具有與關 聯層相等的折射係數以及相等厚度。在非對㈣HS中, ΰΓ I、;女 一 乂m , . — . , „ 側 而大部份在η-型摻 • 纟提W HS的較佳實施例裡,》了在—定的波長發 射,漏入區之漏入層裡的至少一子層具有與基板相同或是 接近的組成’異質結構係放置在基板上。 換句話說,選擇-個與半導體基板的組成(或是折射係 數)相同或是接近的漏入層的組成(或是折射係數)是可能 的’其對於發射是可穿透的。 _无。斂而s基板係二元半導體化合物(例如砷化鎵、 填化銦、氮化鎵、錦化鎵),並且漏入層的厚度通常為所有 籲HS層厚度的大部分’那麼在HS裡的壓縮機械應力將大量 降低,歐姆以及熱阻抗也將降低,這造成效率、輸出功率 的增加以及HS的操作壽命及IES可靠性增加。 在流經IES的相同電流中,為了增加大約2、3或更多 L的輸出功率’提出# Hs至少包含兩個主動I,其幾個 孔/同彼此平仃,並且在他們之間放置由兩層薄的P-型及n_ 型重摻雜子層短成中央主要調節層’以在IES操作中提供 伙個主動層到另一個主動層的電流隧道通道。 在本發明中提出的這全新及非顯而易見的HS實質内 16 1314800 今在於.包括漏入區之薄層的原創性以及非顯而易見性、它 ]的力此性目的、在漏入區的位置、他們的組成及厚度。 在:提出將漏人區的組成改變,也就是引人主要調節層、 文在漏入區裡薄層的位置及接續,以形成不包含任何 子層的主動層’並且用來選出(決定、選擇阳s層的合 度及組成。 人所有1!些特性使得獲得兩個hs之主要特性之最佳組From the point of view of the nature of technology and the technical achievements that have been solved, the prototype prototype SAE is proposed in [Russian Patent 2197047, V. I_ Shveikin, February 18, 2002, 7H01S5/32]. The SAE comprises a semiconductor compound-based heterostructure comprising at least one active layer (consisting of at least one sub-layer) and at least one emission leak-in region (at least on the side of the active layer and transparent to the laser effect) At least one of the leak-in areas, at least one of the emission leak-in layers (consisting of at least one sub-layer). This heterostructure is characterized by a heterostructure having a ratio of the effective refractive index neff to the refractive index niN of the leaked layer. In addition to the heterostructure structure, the prototype SAE also contains an optical surface, a reflector, an ohmic contact, and a clear film on at least one optical surface. In the operation of the 纟SAE, the propagation medium that amplifies the emission is at least a portion of the leak-in region and the knives of the active layer are additionally placed at least two reflective layers in the structure of the hemi-negative structure, at least in the active layer. - one side - the reflective layer has a refractive index smaller than ~ and constitutes at least _ sub-layers. The drain area is located between the active layer and the corresponding reflective layer. Two additional layers of *1314800 are placed in the leak-in area; that is, first, a localized layer adjacent to the leak-in region of the active layer surface, the localized layer consisting of at least one sub-layer, and A semiconductor having an energy gap exceeding the active layer energy gap; and - secondly, an adjustment layer in the leak-in region - which forms at least one sub-layer and is adjacent to the surface of the localized layer. Further, the leak-in layer is placed in the leak-in area. The ratio of neff to niN is selected in the range of 1 minus Δ to 1 plus Δ, where Δ is a value much smaller than 1. In terms of operation of the prototype SAE, the additional medium that amplifies the emission propagation is at least a portion of the reflective layer, and the amplified emission intensity confined in the active layer is defined by the composition and thickness of the heterostructure layer and the reflection coefficient of the clear film. It is chosen to be smaller than the self-excited current threshold density. The main advantages of the SAE prototype are its simplification of manufacturing techniques, approximately perpendicular emission output from the split optical surface, large inlet and exit apertures, reduced noise factor, reduced sensitivity to input main emission polarization, and Small launch divergence angle. At the same time, the prototype SAE has a lack of sensitivity to the input signal and some limitations on the size of the small signal amplification factor. A semiconductor injection type emitter - actually a semiconductor optical amplifier (hereinafter referred to as SOA) can be found in [IEEE Photonics Information, Vol. u, n., September 1999, pages 1099 to 1101]. From the point of view of the technical achievements that have been solved, [Russian Patent No. 2197〇47, V. L ShveUdn, February 18, 2002, International Classification 7h〇is 5/32] presents an example prototype semi-conducting prototype including a The input-emission optical coupling main source and the SAE prototype proposed by 10'1314800 in [Russian 2197〇47: Patent, V·L Shmkin, February 18, 2002, International Classification 7h〇is5/32] and the above description content. The main advantages of the prototype SOA are the simplification of the manufacturing technique, the approximately perpendicular emission output from the split optical surface, the change in the emission profile in the near and far fields, and the improvement in temperature dependence of the output parameters. While having high-emission characteristics, the prototype s〇A has some limitations on the input transmit amplification factor value and some limitations on the output amplification power value. SUMMARY OF THE INVENTION The technical effect of the heterostructure proposed by the present invention is that the characteristics of the semiconductor injection source are improved on the basis of its manufacture, that is, the improvement of their power and inter-work characteristics; especially high power, high efficiency, Highly reliable source (including single frequency and single mode) with improved frequency, speed, spectral and spatial characteristics, reduced optical loss, small emission divergence angle, improved transmit power temperature dependence, Reduced emission nonlinearity and reduced ohmic and thermal impedance, reduced mechanical stress levels, and increased operational resources, combined with advancement and simplification of heterostructure manufacturing techniques. / / In the proposed heterostructure, the technical effect of the proposed semiconductor injection source (injected laser on the helium) is the improvement of the characteristics of the semiconductor injection source when it is manufactured, that is, , its power and space characteristics improve; especially high-power, high-efficiency and high-reliability transmission sources (including single-frequency and single-mode), with improved frequency speed, spectral and spatial characteristics, reduced light Loss, small emission divergence angle, improved transmit power temperature dependence, reduced emissions, non-11 T314800 linearity deviation, and reduced ohmic and thermal resistance, reduced mechanical stress levels, and increased operating sources, while supporting the source Further simplification of manufacturing technology. Based on the proposed heterostructure, the technical effect of the proposed semiconductor injection source (semiconductor amplifying element) is the improvement of the characteristics of the semiconductor injection source when it is manufactured, that is, its work f and the improvement of the characteristics of the space; in particular, the production of high-power, high-efficiency and 6-degree reliable sources (including single-frequency and single-mode), with improved frequency, speed, spectral and spatial characteristics, reduced optical loss, Smaller emission divergence angle, improved transmit power temperature dependence, reduced emission nonlinearity, and reduced ohmic and thermal resistance, reduced mechanical stress levels, and increased operational resources, coupled with further development of the emitter manufacturing technology simplify. Based on the proposed heterostructure, the technical effect of the proposed semiconductor injection source (actually a semiconductor optical amplifying element) is that the semiconductor injection source is improved in its manufacture on the basis of its structure, that is, its Improvements in power and spatial characteristics; in particular, high-power, high-efficiency, and highly reliable sources (including single-frequency and single-mode) with improved frequency, speed, spectral and spatial characteristics, reduced optical loss, and small Emission divergence angle, improved transmit power temperature dependence, reduced emission non-linearity, linear hemiplegia, & reduced ohms and thermal impedance, reduced mechanical stress levels, and increased operating sources, combined with source fabrication Further technical simplification. One aspect of the present invention is a semiconductor compound-based heterojunction 12 1314800 / which is characterized by the ratio of the effective refractive index of the heterostructure to the leakage index of the leaked layer: 1 ,, that is, the ratio of neff to nIN is from 1 plus Δ The selection is made in the range of △ minus Δ, where Δ is a value much smaller than one. The structure comprises: at least one active layer; at least two reflective layers to each side of the active layer; to v > between the active layer and the corresponding reflective layer (solid emission leak-in region, which is emitted Permeable; and to a localized layer in the leak-in region, which is composed of at least one sub-layer, the leak-in which the emission leak-in layer has a refractive index niN and constitutes at least one sub-layer, The reflective layer is composed of at least one sub-layer and has a refractive index of a different refractive index neff of the different shells and 纟σ. In this case, the main regulating layer is additionally introduced into the leak-in area, the main regulating layer is At least one sub-layer is composed, and the refractive index of at least one sub-layer is not less than the refractive index nIN of the leak-in layer, and one surface thereof is opposite to the active layer. There is one confinement layer on the opposite side of the main adjustment layer, The localized layer has a refractive index smaller than the refractive index of the main conditioning layer. The proposed heterostructure (hereinafter referred to as HS) is characterized by the originality and non-obviousness of the thin layer containing the leak-in region. Their functional purpose, their configuration in the leak zone, their composition, and thickness. The position of the active and regulated layers and the location of the restricted layer in the leaked area have changed. The active layer in the proposed HS does not contain sub- The layer may be at least one active layer. When the active layer is formed, it is additionally introduced into the main buffer layer of the leak-in region - the edge layer is adjacent to the active layer, and the localized layer of the leak-in region and the main adjustment layer The other side is adjacent. The semiconductor injection source based on the proposed heterostructure (hereinafter referred to as 13 • 1314800 is IES), this occurs in the transient program that leaks from the active layer, and leaks into the leak. The zone enters a portion of the reflective layer near the leak-in zone. The leaky treatment of the proposed HS胄 is composed of its thin layer and thickness, and it is refracted by the effective refractive index neff of the heterostructure. The coefficient ηίΝ @ ratio is controlled by ^. The transition point in the king of the leak is & the ratio of nIN is equal to 丨.0. In the current operating range, the ratio is subtracted from 1 plus Δ to ! △ Within the range, where △ is large and the force is 0.01', that is, the ratio of neff to niN is in the range from i 〇1 to 〇99. Note that the ratio in the operating element varies with the current flowing through the HS. Increase and decrease. Under the selected neff vs. nIN ratio and the given current density through the IES, the efficiency of the IES depends on the final emission amplification value in the active layer to a certain extent. It is understood by the final amplification that the last The emission amplification avoids the emission resonance loss in the active layer and the optical loss in the Hs layer. As shown by the calculation and confirmed by the experimental data, the final amplification in the active layer is dominated by the main adjustment layer (or their sub- The position of the layer) is precisely achieved and the choice of its thickness and refractive index is achieved. Therefore, it is necessary to additionally introduce the main adjustment layer into the HS not only to control the ratio of the niN pairs, but also to make the power and spatial characteristics of the IES Substantial improvement is possible. In a preferred embodiment for increasing the final transmit amplification of the active layer and improving the 1ES power characteristics, the HS includes at least two active layers with a primary central adjustment layer between them, which is comprised of at least one sub-layer and has Not less than the refractive index of the leak-in layer refractive index nIN. 14 1314800 Special level to push the mix. There may be a leaky area on the side of the active layer. Depending on the number of leaking or leaking layers and the location, two main W HSs can be fabricated: symmetric HS and asymmetric hs. In a symmetric HS, the leak-in regions are located on each side of the active layer, and most have a refractive index equal to the associated layer and an equal thickness. In the non-pair (four) HS, ΰΓ I, 乂 乂 m, . . . , „ 侧 大 大 大 大 大 大 大 大 大 大 较佳 较佳 较佳 较佳 较佳 较佳 较佳 较佳 较佳 较佳 较佳 较佳 较佳At least one sub-layer in the leak-in layer of the leak-in region has the same or close composition as the substrate. The heterostructure is placed on the substrate. In other words, the composition of the semiconductor substrate (or the refractive index) is selected. The composition of the same or close leaky layer (or refractive index) is possible 'it is permeable to the emission. _ None. s substrate binary semiconductor compound (eg gallium arsenide, indium filled) , gallium nitride, gallium nitride), and the thickness of the leak-in layer is usually the majority of the thickness of all the HS layers. Then the compressive mechanical stress in the HS will be greatly reduced, and the ohmic and thermal impedance will also be reduced, which will result in efficiency. Increase in output power and increase in operational life of the HS and IES reliability. In the same current flowing through the IES, in order to increase the output power of about 2, 3 or more L, the #Hs contains at least two active Is, a few holes / flat with each other, and at A two-layer thin P-type and n-type heavily doped sub-layer is placed between the short central-level adjustment layers to provide a current tunneling path for the active layer to the other active layer in the IES operation. The new and non-obvious HS essence proposed in this article 16 1314800 is here. The originality and non-obviousness of the thin layer including the leaking area, its purpose, the location in the leaking area, their composition And thickness. In: propose to change the composition of the leaking area, that is, to introduce the main adjustment layer, the position and connection of the thin layer in the leaked area, to form the active layer without any sub-layer' and to select (Determining and selecting the combination and composition of the yang layer. People all 1! Some characteristics make the best group of the main characteristics of the two hs
合成為可能,也就是,當獲#⑽的最佳發射功率以及空 ^特11 4 ’主動層的最終放大值以及neff對nIN的比率值之 敢佳纟且合成為可能。 …在本發明提出& HS &技術實現係基於已知的基礎技 标私2 Θ基礎技術程序目前係受完善開發並且廣泛使用 這個提出方案滿足"產業利用性"的準則。 在本發明提出、在上面描述的冑HS卩及它所有的特 眭係包含在IES裡-其係量子電子工程的關鍵主動元件·注 入式雷射、半導體放大元件、以及半導體光學放大器。 本土明的一個觀點是半導體注入式發射源,實際上注 :式雷射(在下文稱為雷射),包括基於半導體化合物的異 、^構’其特徵為異f結構的有效折射係》neff與漏入層 ^折射係'數的比率,也就是,〜對nIN的比率由從i減 △到1加上△的範圍中選擇,其中△為遠小於i的值; 該異貝結構包含:至少一個主動層;i少兩個反射層,在 邊…一個反射層;位於主動層以及相應反 a s n -發射m其對發射是可穿透的;以 17 1314800 及在漏入區裡的至少-個偈限層,至少由一個子層組成; 上述的反射層由至少-個子層組成並且具有比異質結構的 有效折射係數neff小的折射係數;上述的漏入區包括至+ 一個發射漏入層,其具有niN的折射係數並且由至少一= 子層、、且成,。雷射也包括光學面、反射器、歐姆接觸、以 及-光學諸振器,其中它的介質的至少一部分由漏入區的 至少—部分、主動層的至少-部分、以及反射層的至少— 部分製造。光學错振器之反射器的反射係數以及異質 層的組成以及厚度之選擇係使得在雷射操作時在主動;内 的瑕終發射放大足以維持整個操作電流範圍中的雷射^ 門櫪值。在這個情形下,額外地將-個主要調節層引入漏 入區;該主要調節層由至少-個子層組成,並且且有不:, 於漏入層折射係數niN的折射係數用於其至少—個/、 =它的-個表面與主動層相鄰,主要調節層的反面與漏 :侷限層的另—面相鄰’其具有一個小於主要調 射係數的折射係數。在雷射 s折 eff 你由耵作用門檻值電流的範圍中, 比率物1減去”"加上r的大小範圍中: ’、r的大小係為比△更小的數目。 顯而IT出的非顯而易見之雷射的主要特性包括新的及非 根據它而製造了雷其它層的產生, 入「 、, 了雷射。在廷個情形下將主要調節層弓丨入 入S亚且改變了漏 引入漏 辟U士 匕的層位置。在提出的HS裡,主@ 層不含有子層而且可以具有至少—個主動主動 主動層的情況下,額外地在溫入Γ 2| 在形成一個 在漏入區引入主要調節層,其一 18 1314800 邊與主動層相鄰,而主要調節層的另-邊與在漏入區的侷 2層相#基於提出的異質結構的雷射功能在發射漏入的 暫態程序附近從主動層發生,並且它漏入漏入區内。 口此我們係達成了前述本發明的技術成效。 、在某一電流值過度的發射漏入可能造成振盈消失。為 了避免這個問題,光學增括哭+ c & '' ^ 尤干扁振态之反射器的反射係數以及Hs 層的組成及厚度選摆方+炎 . ^ _ 擇方式為:在操作雷射期間在主動層的 發射最終放大足以維4* Μ. /ΐϊΐ 4® ik- 、、寺整個刼作電流範圍中的雷射 檀值。在雷射HS裡的漏入程 乍用門 你π 1示田Hb層的組成以及厚声 決疋,並且由異質結構的有 又 後紅 有效折射係數Iff對漏入層折射 、的比率所控制。漏人程序的轉換點在neff對niN的 的情況。在電流的操作範圍中,係從1加^ △ 至,J 1減去△的大小笳圍Φ、登视^ , a 奶θ j㈣中選擇這個㈣,其中Δ的大小大 -,、勺疋〇.〇1。注意在操作元件中 的電流增加而降低。 eff對nIN的比率隨流過Hs 為了得到雷射的低雷射作用門檻值電流〜對 比率應該從一個比從〗Λ】, m的 楼…到〇.99的範圍更小的範圍中選 擇。在起始(門檻值)電流範圍 ,ΛΑ 1皇 甲對niN這個的比率係在 1的兩邊附近來選擇,也就 、 ,λ r 甘a 穴J從1加上r到1減去γ 的靶圍,其中系大小比△ 7 .^ . 的個值,大約是0.005。 在選擇的neff對nm比率中, 一個程产上取本私少 雷射的雷射作用門檻值電流在 出之雪射& ^ ~ 3令的务射最終放大值。如對提 出之雷射的汁鼻以及由試驗數 厚度的選擇以及主要$ Γ厗 〜,,只要透過位置及 要5周即層的折射係數以-個^對ηίΝ的 19 1314800 率攸1.005到〇·995範圍中選擇,可以取得雷射作用門 檀值電流的最小值。 因此,叉特別文排配置且額外地引進到提出之HS的 主要調節層’不僅是控制〜"對ηΙΝ比率所必要的,它們也 使起始技術問題的解決成為可能_首先,基本上改善雷射的 ”參數(門檻值電流、效率、輸出功率)以及空間特性(在 近場的發射分佈、遠場的發射角發散ρ 在降低雷射作用門檻值電流的較佳實施例中,提出了 具有上述HS㈣射,其包含至少兩個主動層並且在他們 ,間有主要中央調節層’中央調節層由至少一個子層組成 亚且具有-個不小於漏入層折射係數的折射係數。 對些雷射來說,主要調節層的厚度增加會有一些限 制,最好是’輔助調節層配合主要調節層同時引入漏二區 中而且讓輔助調節層與侷限層的表面相鄰,其由至少一個 子層所形成並且具有一個折射係數不小於且大於漏入層折 射係數ηΙΝ。 為了提供雷射的高功率參數以及空間特性,主要調節 層、主要中央調節層以及輔助調節層係由折射係數不小於 漏入層折射絲η1Ν製作出,並且該調節層的厚度係從大 約0.005微米到大約u微米及更大的範圍中選出。 為了得到電子以及電洞在主動層的有效限制,並且因 此改善溫度的倚賴性及增加雷射作用的效率,肖限層的厚 度係從大約0.01微米到大約〇 3〇微米的範圍中選擇。 為了降低在垂直平面裡的發射角發散並且增加雷射的 20 1314800 效率,在漏入區之漏入層的厚度係從 ίο與本《 ®丄 Α·υ城米到大約 从未及更大的範圍中選擇;此外,反 層悬杯叙’層的至少一個子 取好與漏入層相鄰,其係以接 係數的方式製造。 層折射係數之折射 為了間化製造的技術程序,在雷射的— 少—個漏入層呈有一個算於徂j ~實也例中至 内部光損耗界定了雷射效率,在而 Ί 較佳實施例裡,主要調節層、主要中央調:。先知耗的 話)、輔助調節層(如果有的話、:曰如果有的 的至少-個及Μ )漏入層以及與漏入層相鄰 個反射層的一部分係以低等級摻雜,該等级1古 合適的摻雜雜質從大約1015 …、有 ;里木 到3x10丨7厢半-3 偈限層係由從大約1〇17厘米_3到3χΐ〇1 二’ 雜雜質等級所摻雜。 、的口適的摻 取決於漏入區(或是漏入層 造兩種的主要带射._ 的數目乂及位置’可以製 檀的主要田射.一個對稱雷射以及 在對稱雷射裡,漏入區位以㈣特1^\射。 具有與關聯層相等的折射係數以及相等的厚声了 邛分 雷射裡,漏入區為―個,Α在 &。在非對稱 型推雜的一邊。 〃在主動層的-側,大部分在n_ 在提出之特定波長雷射的較佳實施例中, 入層的至少一個子層具有— 、區之漏 成,在其上放置了異質結構。 接近的組 換句選擇—個漏入層的組成(或是折射係 …、半導體基板的組成(或是折射係數)相同或是接近是)可 21 !3148〇〇 月b的’其對發射是可穿透的。 般而3 ’因為基板是二元半導體化合物(例如石申化 錄、磷化銦、氮化鎵、銻化鎵),並且漏入層的厚度通常成 為HS層厚度的大部分。在這個情形下,將大量地降低壓 &機械的應力等級、降低歐姆以及熱阻抗,其造成提出之 雷射的效率、輸出功率的增加以及操作壽命及可靠性增 加。 在相同的操作電流中,為了增加大約2、3倍以及更多 倍的輸出功率,提出的雷射中,該HS包含至少兩個主動 層,其孔洞彼此平行,並且在他們之間放置一個中央主要 °周節層’其由兩個薄的P-型及η-型重摻雜子層組成,重摻 雜子層在雷射的操作中從一個主動層到另一個主動層提供 了電流隧道通道。Synthesis is possible, that is, when the optimal transmit power of #(10) and the final amplification value of the null 11 4 ' active layer and the ratio of neff to nIN are obtained, the synthesis is possible. In the present invention, the & HS & technology implementation is based on the known basic technology. The basic technical program is currently well developed and widely used. This proposed solution satisfies the criteria of "industrial use". The 胄HS卩 and all of its features described above in the present invention are included in IES, which are key active components of quantum electronic engineering, injection lasers, semiconductor amplifying elements, and semiconductor optical amplifiers. A point of view of the local Ming is the semiconductor injection source, which is actually a laser (hereinafter referred to as laser), including an effective refractive system based on the heterogeneous structure of the semiconductor compound. The ratio of the number of leaking layers to the refractive index 'that is, the ratio of ~ to nIN is selected from the range from i minus Δ to 1 plus Δ, where Δ is a value much smaller than i; the different shell structure contains: At least one active layer; i less two reflective layers, on the side... a reflective layer; located in the active layer and corresponding anti-asn-emitter m which is transparent to the emission; at 17 1314800 and at least in the leak-in region - a limiting layer comprising at least one sub-layer; the reflective layer consisting of at least one sub-layer and having a refractive index smaller than an effective refractive index neff of the heterostructure; the above-mentioned leakage-in region includes to + one emission leak-in layer It has a refractive index of niN and consists of at least one sub-layer, and. The laser also includes an optical surface, a reflector, an ohmic contact, and an optical vibrator, wherein at least a portion of its medium consists of at least a portion of the leak-in region, at least a portion of the active layer, and at least a portion of the reflective layer. Manufacturing. The reflection coefficient of the reflector of the optical damper and the composition and thickness of the heterogeneous layer are selected such that during laser operation the active final emission is sufficient to maintain the laser threshold in the entire operating current range. In this case, additionally, a main adjustment layer is introduced into the leak-in region; the main adjustment layer is composed of at least one sub-layer, and there is:: the refractive index of the leakage coefficient niN of the leak-in layer is used for at least - The /, = its surface is adjacent to the active layer, the opposite side of the main adjustment layer and the drain: the other side of the localized layer adjacent to it has a refractive index smaller than the main modulation coefficient. In the laser s fold eff you are in the range of the 槛 threshold current, the ratio 1 minus "" plus r in the size range: ', r size is a smaller number than △. The main characteristics of the non-obvious lasers include the creation of new layers that are not based on them, and the generation of lasers. In the case of the court, the main adjustment layer is smashed into S and Changed the leakage introduced into the layer position of the leaked U. In the proposed HS, the main @ layer does not contain sub-layers and can have at least one active active layer, additionally in the temperature input | 2| One introduces a main adjustment layer in the leak-in area, one of which is adjacent to the active layer, and the other side of the main adjustment layer and the two-layer phase in the leak-in area are based on the proposed laser function of the heterostructure. The transient program near the emission occurs from the active layer, and it leaks into the leakage area. Here we have achieved the technical effect of the foregoing invention. The excessive leakage of a certain current value may cause vibration. Disappeared. In order to avoid this problem, optical additions cry + c & '' ^ The reflection coefficient of the reflector of the eucalyptus and the thickness of the Hs layer and the thickness of the reflector + inflammation. ^ _ The choice is: the final amplification of the emission in the active layer during the operation of the laser is sufficient Dimensions 4* Μ. /ΐϊΐ 4® ik- ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The decision is made by the ratio of the late red effective refractive index If of the heterostructure to the refractive index of the leaked layer. The transition point of the leaking procedure is in the case of neff versus niN. In the operating range of the current, 1 plus ^ △ to, J 1 minus the size of △ 笳 Φ, Deng ^ ^, a milk θ j (four) select this (four), where the size of Δ is large -,, spoon 疋〇 〇 1. Note in the operating elements The current increases and decreases. The ratio of eff to nIN flows through Hs. In order to get the laser's low laser action, the threshold current ~ the ratio should be from a ratio from Λ ,, m to the 〇.99 range. Choose from a small range. In the starting (threshold) current range, the ratio of 皇 1 皇 to niN is on both sides of 1 Select nearby, that is, λ r 甘 a acupoint J minus 1 from r to 1 minus the target range of γ, where the ratio of the size ratio Δ 7 . ^ . is about 0.005. In the selected neff pair In the nm ratio, the laser strike threshold current of a private laser with a small amount of laser emission is the final amplification value of the snow shot & ^ ~ 3 command, such as the juice nose of the proposed laser and The choice of the thickness of the test number and the main value of Γ厗~, as long as the transmission position and the refractive index of the layer to be 5 weeks are selected from the range of 19 1314800 攸1.005 to 〇·995 of ηίΝ, the laser effect can be obtained. The minimum value of the gate value current. Therefore, the special arrangement of the forks and the additional introduction to the proposed HS's main adjustment layer 'is not only necessary to control the ratio of ηΙΝ, but also makes it possible to solve the initial technical problem. First, basically improve The laser's "parameters (threshold current, efficiency, output power) and spatial characteristics (in the near-field emission distribution, the far-field emission angle divergence ρ in the preferred embodiment of reducing the laser threshold current), There is the above HS (four) shot, which comprises at least two active layers and between them, there is a main central adjustment layer 'the central adjustment layer consists of at least one sub-layer and has a refractive index not less than the refractive index of the leak-in layer. In the case of lasers, there is some limitation to the increase in the thickness of the main conditioning layer. Preferably, the 'auxiliary adjustment layer is combined with the main adjustment layer and introduced into the drain region and the auxiliary adjustment layer is adjacent to the surface of the confinement layer. The sub-layer is formed and has a refractive index not less than and greater than the leakage layer refractive index η ΙΝ. In order to provide high power parameters of the laser and space The main adjustment layer, the main central adjustment layer, and the auxiliary adjustment layer are made of a refractive index not less than the leakage layer refractive yarn η1Ν, and the thickness of the adjustment layer is from about 0.005 micrometers to about u micrometers and more. In order to obtain effective limits of electrons and holes in the active layer, and thus improve temperature dependence and increase the efficiency of laser action, the thickness of the barrier layer is selected from the range of about 0.01 micron to about 〇3〇 micron. In order to reduce the emission angle divergence in the vertical plane and increase the efficiency of the laser 20 1314800, the thickness of the leakage layer in the leakage area is from ίο and this "丄Α υ υ 米 到 约 约 约 约 约 约 约 约In addition, at least one of the layers of the anti-layer suspension cup layer is adjacent to the leak-in layer, which is manufactured by means of a coefficient. The refractive index of the layer is determined by the technical procedure of the inter-layer manufacturing. The laser-less-leak-in layer has a calculation of the laser efficiency, which defines the laser efficiency. In the preferred embodiment, the main adjustment layer, the main medium Tune: the prophet consumes), the auxiliary adjustment layer (if any, if at least - and Μ if there is), the leakage layer and a portion of the reflective layer adjacent to the leakage layer are doped at a low level. The level 1 suitable doping impurity is from about 1015 ..., there; the lining to the 3x10 丨 7 compartment half -3 偈 limited layer is from about 1 〇 17 cm _ 3 to 3 χΐ〇 1 ' impurity impurity level Doping. The proper doping of the mouth depends on the leakage zone (or the main band of the two types of holes that are created by the leakage layer. The number and location of the _ can be used to make the main field of Tan. A symmetrical laser and in symmetry In the laser, the leakage into the location is (4) special 1^\ shot. It has the same refractive index as the associated layer and the equal thick sound. In the laser, the leakage area is “one, Α in & Type the side of the mix. In the preferred embodiment of the active layer, at least one sub-layer of the incoming layer has a leak of -, a region on which a heterostructure is placed. Close group selection - the composition of the leaking layer (or the refractive system..., the composition of the semiconductor substrate (or the refractive index) is the same or close to the) can be 21! 3148 〇〇 month b's Penetrating. Generally, the substrate is a binary semiconductor compound (for example, Shishen Chemical, Indium Phosphide, Gallium Nitride, Gallium Antimonide), and the thickness of the leak-in layer is usually a large part of the thickness of the HS layer. In this case, the stress level of the pressure & mechanical, the ohmic and the thermal impedance are greatly reduced, which results in an increase in the efficiency of the proposed laser, an increase in output power, and an increase in operational life and reliability. In the same operating current, in order to increase the output power by about 2, 3 times and more, in the proposed laser, the HS contains at least two active layers whose holes are parallel to each other and a central portion is placed between them. The main ° segment layer is composed of two thin P-type and η-type heavily doped sublayers, and the heavily doped sublayer provides current tunneling from one active layer to the other in laser operation. aisle.
在提出之雷射的一個較佳實施例中,侷限發射區域位 於電流條紋區兩側,在離開條紋區兩個橫向邊的至少一個 特之距離,其深度受加深成一特定深度,當那些侷限區域 的折射係數少於異質結構漏入層的折射係數時,該深度超 過主動層位置的深度。 應該注意到在提出的雷射中,造成雷射束空間不穩定 性及尚功率注入式雷射輸出功率之限制的非線性失真被大 量地降低【Ρ· G. Eliseev,Yu. Μ· ρ〇ρ〇ν, 灿削如,24,Ν〇. 12(1997),1〇67_1〇79】。這是因為在 提出的雷射中,雷射作用的大部分通量(大約99 99%)係通 過透明漏入層(-種線性介質)傳播,並且报小部分的通量 22 * 1314800 (大約0.G1%且更少)係通過非線性主動介f傳播。這確定 達到高輸出功率,包括單頻雷射作用及譜線寬度的降低、 頻率漂移的減少、提出雷射的高頻及高速調變特性的改 善,其在現代光纖連結以及其他應用中具有非常實際的 要性。 在本發明提出之非顯而易見雷射的實質内容包括Hs 漏入區以及其他層的原創性以及非顯而易見性,雷射係根In a preferred embodiment of the proposed laser, the confinement emission regions are located on either side of the current stripe region, and at least one particular distance away from the two lateral sides of the stripe region, the depth is deepened to a specific depth, when those confined regions When the refractive index is less than the refractive index of the heterostructure leakage layer, the depth exceeds the depth of the active layer position. It should be noted that in the proposed laser, the nonlinear distortion caused by the spatial instability of the laser beam and the power injection laser output power is greatly reduced [Ρ·G. Eliseev, Yu. Μ· ρ〇 Ρ〇ν, 灿削如,24,Ν〇. 12(1997),1〇67_1〇79]. This is because in the proposed laser, most of the flux of the laser action (about 99 99%) propagates through the transparent leak-in layer (-linear medium), and the small portion of the flux 22 * 1314800 (about 0. G1% and less) is propagated through a nonlinear active medium f. This determines high output power, including single-frequency laser and spectral line width reduction, frequency drift reduction, laser-induced high frequency and high-speed modulation characteristics, which are very common in modern fiber optic connections and other applications. The actual nature. The substance of the non-obvious laser proposed by the present invention includes the originality and non-obviousness of the Hs leakage zone and other layers, and the laser rooting
:此而製作,而且他們的厚度以及組成也是如&。在這個 月兄下原先放置在與主動層(不包含子層)表面相鄰的主要 調節層被額外引入漏入區,並且提出的主要及辅助調節 層、侷限層、漏人層以及它們的子層 '反射層以及他們的 子層的其他原創特性(位置、組成、厚度、摻雜等級),使 得經由適當選# HS層之厚度及組成而實現兩個主要特性 的最佳組合是可能的’主要特性為主動層中的最終放大以 及起始(門播值)電流範圍内的U對nIN比率達到了雷射的 最佳功率以及空間特性。 本發明提出的雷射技術實現係基於已知的基本技術程 序,4基本技術程序目前係良好地發展並且廣泛地使用。 本發明這個提出方案滿足產業利用性的準則。 本發明的一個觀點是半導體注入式發射源,實際上為 半‘體放大TL件(在下文稱為SAE) ’其包括基於半導體化 口物的^貝、.’α構’其特徵為異質結構有效折射係數對 漏入層折射係數nIN的比率’也就是^對η…的比率在i 加上Δ以及與i減去△的範圍中選擇,其中△是遠小於工 23 1314800: This is made, and their thickness and composition are also like & In this month, the main adjustment layer originally placed adjacent to the surface of the active layer (excluding the sub-layer) is additionally introduced into the leak-in area, and the proposed main and auxiliary adjustment layers, localized layers, leaking layers, and their children are proposed. The layers 'reflective layers and other original properties of their sub-layers (position, composition, thickness, doping level) make it possible to achieve the best combination of the two main characteristics via the appropriate selection of the thickness and composition of the # HS layer' The main characteristic is that the final amplification in the active layer and the U-to-nIN ratio in the initial (doorcast value) current range achieve the optimal power and spatial characteristics of the laser. The laser technology implementation proposed by the present invention is based on known basic technical procedures, and 4 basic technical procedures are currently well developed and widely used. The proposed solution of the present invention satisfies the criteria of industrial applicability. One aspect of the present invention is a semiconductor injection-type emission source, which is actually a semi-body-amplified TL device (hereinafter referred to as SAE), which includes a semiconductor-based device, which is characterized by a heterostructure. The ratio of the effective refractive index to the leak-in layer refractive index nIN, that is, the ratio of η to η, is selected in the range of i plus Δ and i minus Δ, where Δ is much smaller than the work 23 1314800
#值;該異質結構包含:至少-個主動層;至少兩個反射 層,至少在主動層的每一邊有一個;至少一個放在主動層 以及相應反射層之間的發射漏入區,其對發射是可穿^ 的;以及在漏入區裡的至少一個侷限層,其由至少—個子 層組成;該反射層由至少一個子層組成並且具有折射係數 小於異質結構有效折射係數neff的折射係數;m區包 括至少一個具有折射係數nIN的發射漏入層並且由至少一 個子層組成。SAE也包括光學面、歐姆接觸以及在至少一 個光學面上的至少一個清晰膜。在光學面上清晰臈的反射 係數以及異質結構層的組成以及厚度之選擇方式係使得在 主動層之發射的最終放大值在整個操作電流的範圍中不超 過該放大值,該放大值導致操作半導體放大元件的自我激 發’其中放大發射的傳播介質係漏入區的至少一部分、主 動層的至少一部分、以及與漏入層相鄰之反射層的至少一 部分。在這個情形下,主要調節層額外地引入至漏入區中; 該主要調節層由至少一個子層組成,並且至少具有一個子 層,其折射係數不小於漏入層的折射係數niN,並且它與該 主動層的表面相鄰,而在該主要調節層的反面上具有該侷 限層’其具有小於該調節層折射係數的折射係數。 提出的SAE的主要特性在於產生了原創的以及非顯而 易見的漏入區以及HS的其他主動層(他們的厚度以及組 成)-基於這些製造SAE。在這個情況下,將主要調節層引 入漏入區中,也改變了漏入區的薄層位置。在提出之HS 裡的主動層不包含子層並且可以至少是單一個主動層。當 24 *1314800 入漏入區中,其— 主要調節層的另一 形成主動層時,額外地將主要調節層引 邊與主動層相鄰,而漏入區的侷限層與 邊相鄰。 、基於提出之HS,SAE功能在發射漏 近產生,漏溢係來自主動層並且漏進漏入區。 附 因此我們達成了前述的技術成效。 層的組成以及厚度定 neff對漏入層折射係 neff對nIN的比率係#值; the heterostructure comprises: at least one active layer; at least two reflective layers, at least one on each side of the active layer; at least one emission leaking region between the active layer and the corresponding reflective layer, the pair The emission is wearable; and at least one localized layer in the leak-in region, which is composed of at least one sub-layer; the reflective layer is composed of at least one sub-layer and has a refractive index smaller than a refractive index of the heterostructure effective refractive index neff The m region includes at least one emission leak-in layer having a refractive index nIN and is composed of at least one sub-layer. The SAE also includes an optical face, an ohmic contact, and at least one clear film on at least one optical face. The clear reflection coefficient on the optical surface and the composition and thickness of the heterostructure layer are selected such that the final amplification value of the emission at the active layer does not exceed the amplification value over the entire range of operating currents, which results in operating the semiconductor Self-excitation of the amplifying element 'where the propagation medium that amplifies the emission is at least a portion of the leak-in region, at least a portion of the active layer, and at least a portion of the reflective layer adjacent the leak-in layer. In this case, the main conditioning layer is additionally introduced into the leakage-in region; the primary conditioning layer is composed of at least one sub-layer and has at least one sub-layer having a refractive index not less than the refractive index niN of the leak-in layer, and it Adjacent to the surface of the active layer, the confinement layer on the reverse side of the main conditioning layer has a refractive index smaller than the refractive index of the conditioning layer. The main characteristics of the proposed SAE are the creation of original and non-obvious leak-in areas and other active layers of HS (their thickness and composition) - based on these manufacturing SAEs. In this case, the main adjustment layer is introduced into the leak-in area, and the position of the thin layer in the leak-in area is also changed. The active layer in the proposed HS does not contain sublayers and can be at least a single active layer. When 24 * 1314800 enters the leak-in region, the other of the main conditioning layers forms an active layer, additionally with the main regulating layer leading edge adjacent to the active layer, and the confined layer of the leaking region adjacent to the edge. Based on the proposed HS, the SAE function is generated in the emission leakage, and the leakage is from the active layer and leaks into the leakage area. Therefore, we have achieved the aforementioned technical results. The composition of the layer and the thickness of the neff to the ratio of the refractive index of the leaked layer neff to nIN
在SAE裡的漏入程序係由HS 義’並且由異質結構之有效折射係數 數A的比率所控制。在操作電流場中 在大約1.01到大約0.99的範圍。 SAE對輸入信號的敏感性以及噪音等級、放大係數 給定操作電流下以及選定的之neff對nm比率下的輸出功率 係取決於在主動層内的最終放大發射值。如對提出之SAE 的汁算顯示,在由主要調節層(或是它的子層)之位置以及 厚度及折射係數所確切地選定的!!1>4對neff比率中,該最終 放大的最大值可以在一定的操作電流中達成。 因此,額外地將原始放置的主要調節層引入到提出的 HS之中,可以使技術問題的解決成為可能,也就是,實質 上改善SAE的主要參數:輸入信號、噪音等級、放大係數、 輪出功率的敏感性、以及增加入口及出口的孔徑大小、降 低極化作用敏感性以及在遠場令的發射角發散。 為了使SAE的放大模式穩疋,在光學面上清晰膜的反 射係數以及異質結構層的組成及厚度可被選擇而使得在一 個操作電流不超過放大值時,在主動層中的最終發射放大 25 Ϊ314800 值‘致操作半導體放大元件的自我激發。 在增加輸入信號敏感性以及婵 ^ 叹〜加放大係數的較佳實施 ⑴里提出了-個原創SAE,其基於上述Hs並且包含至少 兩個主動層’並且在他們之間有一 ,個主要中央調節層,其 =至少—個子層並且具有不小於漏人層折射係數 折射係數。 對-些SAE來說,因為㈣_ _ % ㈣ =厚度增加的限制,因此最好伴隨主要調節層將輔助調 即層引入漏入區中並且與侷限層表面相鄰,形成至少一個 子層並且具有一個不小於且多於漏入層折射係u斤 射係數。為了使SAE的主要參數最佳化,主要調節層、主 要中央調節層以及輔助調節層係由不小於漏入層折射係數 niN的折射係數來製造,並且上述調節層的厚度在從大約 0.005微米到大約u微米且更大的㈣内選擇。 為了改善SAE參數的溫度倚賴性,侷限層由一個從大 約0.01微米到大約0.30微米之範圍内選擇的厚度來製造。 為了降低噪音係數並且降低SAE之放大發射角發散, 漏入區的漏人層在從大約U微米到大约Μ微米並且更大 的厚度祀圍内選擇,並且反射層之至少—個子層係位於漏 入層附近,其由接近漏人層折射係數的折射係數所製造。 為了簡化製造的技術程序在—些的實施例中, 漏入區之至少-個漏入層係由與揭限層折射係數相同的折 射係數所製造。 光損耗定義了 SAE效率’在用於降低内部光損耗的較 26 1314800 佳1"施例裡’主要調銘 要调即層、主要中央調節層(如果有的話)、 辅助調卽層(如果有的 的忐)、漏入層以及與漏入層相鄰之至 y 一反射層的一部分信μ .·* 7 ^低準位、大約從1015厘米-3到3χ 里7只"的σ適摻雜雜質所摻雜,並且侷限層係以大約 〗0厘米到3xl〇i8m級的#雜雜質所摻雜。 取決於漏入區 LI次疋漏入層)的數目以及位置,可以製 造兩種主要的ς A F非丄 λ 、 Ε•對稱的SAE以及非對稱的SAE。在對The leaking procedure in the SAE is controlled by the HS sense and by the ratio of the effective refractive index number A of the heterostructure. It is in the range of about 1.01 to about 0.99 in the operating current field. The sensitivity of the SAE to the input signal as well as the noise level, amplification factor, and the output power at a given operating current and at the selected ratio of neff to nm are dependent on the final amplified emission value within the active layer. As shown by the juice calculation of the proposed SAE, it is exactly selected by the position of the main adjustment layer (or its sub-layer) and the thickness and refractive index! In the ratio of !1>4 to neff, the maximum value of this final amplification can be achieved in a certain operating current. Therefore, the introduction of the original primary adjustment layer into the proposed HS can make the solution of the technical problem possible, that is, substantially improve the main parameters of the SAE: input signal, noise level, amplification factor, rounding The sensitivity of the power, as well as increasing the aperture size of the inlet and outlet, reducing the sensitivity of the polarization and the divergence of the emission angle at the far field. In order to stabilize the amplification mode of the SAE, the reflection coefficient of the clear film on the optical surface and the composition and thickness of the heterostructure layer can be selected such that when an operating current does not exceed the amplification value, the final emission amplification in the active layer is 25 Ϊ 314800 value 'causes self-excitation of operating semiconductor amplifying elements. In a preferred implementation (1) of increasing input signal sensitivity and 叹 〜 加 plus amplification factor, an original SAE is proposed, which is based on the above Hs and contains at least two active layers 'and has a major central adjustment between them A layer, which is at least one sub-layer and has a refractive index of not less than the refractive index of the drain layer. For some SAEs, because (4) _ _ % (4) = thickness increase limit, it is preferable to introduce the auxiliary tuned layer into the leak-in region along with the main adjustment layer and adjacent to the surface of the localized layer to form at least one sub-layer and have One is not less than and more than the leakage coefficient of the leaking layer. In order to optimize the main parameters of the SAE, the primary conditioning layer, the primary central conditioning layer, and the auxiliary conditioning layer are fabricated from a refractive index that is not less than the refractive index niN of the leak-in layer, and the thickness of the conditioning layer is from about 0.005 micron to Choose within about four microns and larger (four). To improve the temperature dependence of the SAE parameters, the localized layer is fabricated from a thickness selected from the range of from about 0.01 microns to about 0.30 microns. In order to reduce the noise figure and reduce the divergence emission angle divergence of the SAE, the drain layer of the leak-in region is selected within a thickness range from about U micron to about Μ micron and larger, and at least one sub-layer of the reflective layer is located in the drain Near the entrance layer, it is made by a refractive index close to the refractive index of the drain layer. In order to simplify the manufacturing process, in some embodiments, at least one of the leak-in layers of the leak-in region is made of the same refractive index as the refractive index of the uncover layer. Optical loss defines the SAE efficiency 'in the 26 1314800 best 1" in the example used to reduce the internal light loss. The main adjustment is to adjust the layer, the main central adjustment layer (if any), the auxiliary layer (if Some 忐), the leak-in layer, and a portion of the y-reflective layer adjacent to the leak-in layer. μ *·* 7 ^ low level, about 10 from 1015 cm -3 to 3 & σ The doping impurities are doped, and the confined layer is doped with # impurity impurities of about 0 cm to 3 x 10 〇 i8 m. Depending on the number and location of the leakage zone, the two major ς A F non-丄 λ , Ε symmetrical SAE and asymmetric SAE can be fabricated. In the right
稱的SAE裡’漏入區放置在主動層的每一邊,並且很大一 部分具有與關聯層相等的折射係數以及相等的厚度。在非 對稱的SAE裡,可以古 . J以有一個漏入區位於主動層的一側,有 很大一部分在n-型摻雜的一側。 在提出之SAE的較佳實施例中,在特定波長漏入區 内漏入層的至少一個子層具有―個與基板相同或是㈣ 基板的組成,異質結構係放置於基板上。 /句話說,選擇一個相同或是接近半導體基板之组成 (或疋折射係數)的漏入層是可能的,基板對於發射是可穿 透的。 由於基板一般而言係二元半導體化合物(例如砷化鎵、 磷化銦、氮化鎵、銻化鎵),並且漏入層的厚度通常製作成 所有HS層的大部分厚度,如此將大量地降低壓縮機械應 力的專、.及降低^姆以及熱阻抗,使得增加了效率、增加 了輸出功率以及操作壽命以及提出之SaE的可靠性。 在相同的操作電流下,為了增加大約2、3倍且更多倍 的放大發射輸出功率,在提出的SAE裡,該HS包含至少 27 •1314800 兩個主動層,其孔洞彼此平行’並且在他們之間敌置中央 主要調節層,其由兩個薄的重摻雜卜及n_型子層組成,提 仏了操作SAE時從一個主動層到另一個主動層的電流隧 通道。 在提出之SAE裡的較佳實施例中,位於電流之條紋區 兩邊的侷限發射區域,至少在從條紋區兩橫側面的—個特 定距離,受加深的為特定的深度,其超過主動層位置的深 度,而侷限區的折射係數比異質結構之漏入層的折射率 小 0 為了獲得SAE的極化不敏感性,在漏入區的漏入層厚 度以大約等於條紋(或是凸形條紋)區的宽度來製造。 在提出之SAE裡,如果電流條紋區製作成對光學面孔 洞為合適的傾斜度角,可以減低對清晰膜的額外要求。 對提出之SAE的個別實施例來說,入口以及出口孔徑 係以與光纖孔徑一致的方式形成。在這個情形下為了將輸 入k號輸入以及將放大發射輪出,SAE光學面的反面(清晰 膜施加於其上)’不僅使用光學耦合元件來與光纖光學耦 合,並且也直接與光纖緊密接觸。降低輸入發射的輸入損 失使得SAE噪音係數降低。 在本^發明中所提出的新的、具有漏入發射的非顯而易 見SAE實質内容在於漏入區以及提出HS之其他薄層的原 創性以及非顯而易見性、他們的厚度以及組成。在這個情 形下,在漏入區原始地放置的額外主要調節層係以緊鄰主 動層的方式引入漏入區,而且提出了主要及辅助調節層、 28 ^314800 偈限層、漏入層及其子層、反射層以及其子層的其他原創 特性(位置、組成、厚度、掺雜等級),這使得大幅改善SAE 的主要特性成為可能,尤其是-增加對輸入信號的敏感性、 效率、輸出功率、降低放大發射的角發散、降低在輸入及 輪出的發射光損耗、降低噪音等級,在簡化對準技術的同 時增加操作壽命以及可靠性。 在本發明提出之SAE的技術實現係基於已知的基礎技 術程序’該基礎技術程序目前係良好發展並且廣泛使用。 本發明這個提出方案滿足"產業利用性,,的準則。 本發明的其他觀點是提出了半導體注入式發射源,實 際上為半導體光學放大器(在下文稱為s〇A),其包括輸入 發射的光學耦合主源以及半導體放大元件,其由基於半導 體化合物的異質結構組成,其特徵為異質結構之有效折射 係數neff對漏入層折射係數^的比率,也就是,^對^ 的比率從I加△到i減去△的範圍中選擇,其中:係一個N 遠小於-的值;該異質結構包含:至少一個主動層;至少 兩個反射層,i少在主動層的每—邊有一個;至少一個發 射漏入區’其對發射是可穿透的,漏人區位於主動層以及 相歧射層之間’·以及在漏入區裡的至少—個侷限;,其 由至少一個子層組成;該反 目古—μ, ^ 個子層組成並且 具有一個小於異質結構有效折射 % A ^ ^ , 、數eff的折射係數;該 漏入&包括至少一個發射漏層, 並且由至少—個子r曰#具有—個折射係數nIN 個子層,、且成。併人在SQA㈣从 學面、歐姆接觸以及至少在 匕括光 在先學面上的清晰膜。在光學面 29 1314800 上之β晰膜的反射係數以及異質結構層的組成及厚度係受 ^擇使得在整個操作電流的範圍中,在主動層中之發射最 、’S放大不超過該導致操作SAE時產生自我激發的放大值, 其中放大發射的傳播介質是漏入區的至少一部分、主動層 的至少一部分以及反射層的至少一部分,反射層的邊界有 漏入層。在這個情形下額外地將主要調節層引入漏入區 中,該主要調節層由至少一個子層組成,並且它的子層的 至少一個具有不小於漏入層折射係數niN的折射係數,其 中匕的一個表面與主動層相鄰,而在主要調節層相反表面 上有該侷限層’其具有一個比主要調節層折射係數更小的 折射係數。The leaked area in the called SAE is placed on each side of the active layer, and a large portion has the same refractive index and equal thickness as the associated layer. In the asymmetric SAE, it is possible to have a leak-in region on one side of the active layer, and a large portion on the side of the n-type doping. In a preferred embodiment of the proposed SAE, at least one of the sub-layers of the leak-in layer in the leakage region of the particular wavelength has a composition that is the same as the substrate or (iv) a substrate on which the heterostructure is placed. In other words, it is possible to select a leak-in layer that is the same or close to the composition of the semiconductor substrate (or the refractive index of the germanium), which is permeable to the emission. Since the substrate is generally a binary semiconductor compound (such as gallium arsenide, indium phosphide, gallium nitride, gallium antimonide), and the thickness of the leak-in layer is usually made to a majority of the thickness of all HS layers, so that a large amount of Reducing the compression mechanical stress, the reduction, and the thermal impedance increase efficiency, increase output power and operating life, and the reliability of the proposed SaE. In the same operating current, in order to increase the amplified emission output power by about 2, 3 times and more times, in the proposed SAE, the HS contains at least 27 • 1314800 two active layers whose holes are parallel to each other' and in them The main central adjustment layer is sandwiched between two thin heavily doped and n_type sublayers, which enhances the current tunneling path from one active layer to the other active layer when operating SAE. In a preferred embodiment of the proposed SAE, the confined emission regions on either side of the fringe region of the current, at least at a particular distance from the lateral sides of the stripe region, are deepened to a particular depth that exceeds the active layer location. Depth, and the refractive index of the confined region is smaller than the refractive index of the leaky layer of the heterostructure. To obtain the polarization insensitivity of the SAE, the thickness of the leak-in layer in the leak-in region is approximately equal to the stripe (or convex stripe). The width of the area is manufactured. In the proposed SAE, if the current stripe area is made to a suitable tilt angle for the optical face, additional requirements for clear film can be reduced. For the individual embodiments of the proposed SAE, the inlet and outlet apertures are formed in a manner consistent with the fiber aperture. In this case, in order to input the input k and to amplify the emission, the reverse side of the SAE optical surface (on which the clear film is applied)' is optically coupled not only to the optical fiber but also to the optical fiber. Reducing the input loss of the input emissions reduces the SAE noise figure. The new, non-obvious SAE substance proposed in the present invention is essentially the originality and non-obviousness of the leak-in area and the other thin layers of the HS, their thickness and composition. In this case, the additional primary conditioning layer originally placed in the leak-in area is introduced into the leak-in area in the immediate vicinity of the active layer, and the primary and secondary conditioning layers, the 28^314800 barrier layer, the leak-in layer and Other original characteristics (position, composition, thickness, doping level) of the sub-layer, the reflective layer and its sub-layers make it possible to greatly improve the main characteristics of the SAE, in particular - increase sensitivity, efficiency, output to the input signal Power, reduced angular divergence of amplified emissions, reduced emission loss at the input and turn-off, reduced noise levels, increased operational life and reliability while simplifying alignment techniques. The technical implementation of the SAE proposed by the present invention is based on known basic technical procedures. The basic technical program is currently well developed and widely used. The proposed solution of the present invention satisfies the criteria of "industrial utilization." A further aspect of the present invention is to provide a semiconductor implanted emission source, actually a semiconductor optical amplifier (hereinafter referred to as s〇A), which includes an optically coupled main source of input and a semiconductor amplifying element, which are based on a semiconductor compound. The heterostructure structure is characterized by the ratio of the effective refractive index neff of the heterostructure to the refractive index of the leaked layer, that is, the ratio of ^ to ^ is selected from the range of I plus Δ to i minus Δ, where: N is much smaller than the value of -; the heterostructure comprises: at least one active layer; at least two reflective layers, i having less than one per side of the active layer; at least one emitting and leaking region 'which is transparent to the emission , the missing area is located between the active layer and the phase difference layer and/or at least one limitation in the leaked area; it is composed of at least one sub-layer; the anti-mesh, μ, ^ sub-layers and have one a refractive index smaller than the effective refractive index % A ^ ^ , , and eff of the heterostructure; the leakage & includes at least one emission drain layer, and has at least one of the sub-r曰# having a refractive index nIN Layer and to ,,. The SQA (4) is a clear film from the face, ohmic contact, and at least in the light of the light. The reflection coefficient of the β-clear film on the optical surface 29 1314800 and the composition and thickness of the heterostructure layer are selected such that in the range of the entire operating current, the emission in the active layer is the most, and the 'S amplification does not exceed the operation. The SAE produces a self-excited amplification value, wherein the propagation medium that amplifies the emission is at least a portion of the leakage region, at least a portion of the active layer, and at least a portion of the reflective layer, and the boundary of the reflective layer has a leak-in layer. In this case, a main conditioning layer is additionally introduced into the leakage region, the primary conditioning layer consisting of at least one sublayer, and at least one of its sublayers has a refractive index not less than the refractive index niN of the leakage layer, wherein One surface is adjacent to the active layer, and the confined layer on the opposite surface of the primary conditioning layer has a refractive index that is less than the refractive index of the primary conditioning layer.
所提出的SOA係基於原創以及非明顯的SAE(見本說 月曰月i述·^明内4)’其主要特性包括產生原創及非顯而易 見的漏入區以及新的Hs的其他層,基於此而製造SAE。 在這個情形下,將主要調節層引人漏人區,改變了漏入區 缚層的位置。在提出的Hs裡,主動層不包含子層並且可 以至少是-個主動層。如果當一個主動層形成日夺,額外地 引入的漏人區主要調節層的—邊係與主動層相冑,而漏入 區的偈限層與主要調節層的另一邊相鄰”乂 Μ併入於 ::的架構中’ SOA的作用產生在從主動層之發射漏溢的 暫恶程序附近以及在它漏入漏入區時。 並且由異質 的比率所控 因此達成了本發明前述的技術成效。 漏入程序由HS層的組成以及厚度定義 結構有效折射係數neff對漏入層折射係數η 30 1314800 制。在電流的操作範圍裡,neff對nIN的比率在從丨加上△ 到1減去△的範圍内,也就是,從大約1.01到大約0.99。 。在選擇的ne ff對niN比率值下,放大、輸出功率以及 喿:等、及提出之S 0 Α對輸入信號的敏感性,取決於發射 的取終放大值,該發射在給定的操作電流中在SAE HS的 動層發射。如對提出的s〇A之計算顯示,透過主要調節 層(或是它子層)的位置以及厚度及折射係數的精確選擇, 可以達到最終放大的最大值。 因此原始放置的主要調節層係額外地引入提出的HS 中,使得技術問題的解決成為可能,首先,實質上改善了 SOA的上述參數並且增加入口及出口孔徑的大小,降低了 極化敏感性以及在遠場的發射角發散。 為了使SOA放大模式穩定,在SAE光學面上之清晰 膜的反射係數以及異質結構層的組成及厚度之選擇方式係 使得在一個操作電流中在主動層中的發射最終放大值不超 _過導致SOA操作之自我激發的該放大值。 在增加對輪入信號敏感性以及增加s〇A放大係數的較 佳實施例中,基於該HS提出該SAE,包含至少二個主動 層,並且在他們之間具有主要令央調節層,其由一個子層 組成並且具有一個不小於漏入層折射係數nw的折射係數。 對一些SOA來說,有幾個有關SAE HS之主要調節層 的厚度增加的限制,因此最好伴隨主要調節層將辅助調節 層引入漏入區,輔助調節層在侷限層表面附近,其形成至 少一個子層並且具有一個折射係數不小於漏入層的折射係 31 1314800The proposed SOA is based on original and non-obvious SAEs (see this section). Its main features include the creation of original and non-obvious leaking areas and other layers of new Hs. And making SAE. In this case, the main adjustment layer is introduced to the leaking area, and the position of the leaking interlayer is changed. In the proposed Hs, the active layer does not contain sub-layers and can be at least one active layer. If an active layer forms a divergence, the extra-leading area of the main adjustment layer is opposite to the active layer, and the infinity layer of the leak-in area is adjacent to the other side of the main adjustment layer. In the architecture of ::: 'The role of SOA is generated near the temporary spoofing procedure from the emission of the active layer and when it leaks into the leaking area. And controlled by the heterogeneous ratio thus achieving the aforementioned technique of the present invention The leakage procedure consists of the composition of the HS layer and the thickness definition structure. The effective refractive index neff is determined by the leakage index η 30 1314800. In the current operating range, the ratio of neff to nIN is subtracted from 丨 to Δ1. In the range of Δ, that is, from about 1.01 to about 0.99. Under the selected ne ff to niN ratio, the amplification, output power, and 喿: etc., and the sensitivity of the proposed S 0 Α to the input signal, Depending on the final amplification value of the transmission, the emission is transmitted in the moving layer of the SAE HS in a given operating current. As shown in the calculation of the proposed s〇A, the position through the main adjustment layer (or its sublayer) is shown. And thickness and refractive system The precise selection can achieve the maximum value of the final amplification. Therefore, the original adjustment layer of the original placement is additionally introduced into the proposed HS, making the solution of the technical problem possible. Firstly, the above parameters of the SOA are substantially improved and the inlet and The size of the exit aperture reduces the polarization sensitivity and the emission angle at the far field. In order to stabilize the SOA amplification mode, the reflection coefficient of the clear film on the SAE optical surface and the composition and thickness of the heterostructure layer are selected. The final amplification value of the emission in the active layer in an operating current is not exceeded - the amplification value that results in self-excitation of the SOA operation. Preferred embodiment for increasing the sensitivity to the wheeling signal and increasing the amplification factor of s〇A The SAE is proposed based on the HS, comprising at least two active layers, and having a main central adjustment layer between them, which is composed of one sub-layer and has a refractive index not less than the refractive index nw of the leak-in layer. For some SOAs, there are several restrictions on the thickness increase of the main conditioning layer of SAE HS, so it is best to accompany the main adjustment. The layer introduces an auxiliary conditioning layer into the leak-in region, the auxiliary conditioning layer is near the surface of the localized layer, which forms at least one sub-layer and has a refractive system having a refractive index not less than the leak-in layer 31 1314800
lIN 為了使S〇A的主要參數最佳化,主要調節&、主要中 央調節層以及SAEHS的輔助調節層係^小於漏入异折 射係數nIN的折射係數製造,並且該調節層的厚度從二 0-005微米到大約10微米及更大的範圍中選擇。又 為了改善SOA參數的溫度倚賴性,SAE Hs的 係由厚度在大約0·01微米到大約〇.3〇微求的範圍内選擇。 為了降低嗓音係數並且降低S〇A放大發射的角發散, SAEHS漏入區的漏入層厚度係從大約1〇冑米到大約w 微米以及更大的範圍中選擇,並且反射層的至少一個子層 最好與漏入層相鄰,其係由一個接近漏入層折射係數 射係數所製造。 1 為了簡化製造的技術程序,在—些s〇A的實施例中, SAE HS㉟入區的至少一個漏入層係以—個㈣μ 射係數的折射係數製造。 光損耗界定了 SAEHS之S0A效率,在用來降低内, 光損耗的較佳實施例中,主要調節層、主要中央調節層(如 果有的話)、輔助調節層(如果有的話)、漏人層以及與漏入 層相鄰的至少一個反射層的一部分,係以從大約i〇is厘米 3到3Xl0-厘米·3的低等級適當摻雜雜質來摻雜,並且偈限 層以從大.約厘米、適當摻雜雜質: 摻雜。 取決於漏入區(或是漏入層)的數目以及位置,可以製 造兩種主要的SOA-對稱的S0A以及非對稱的s〇a。在包 32 1314800 含於對稱之SOA的SAE中,漏入區位於主動層的每一邊, 並且在大部份具有相關層的相等折射係數以及相等厚度。 在包含於非對稱S0A @ SAE中,漏入區可以是位於主動 層的一側,大部份在n_型摻雜的一側。 在提出的SOA較佳實施例裡,在一定的雷射作用波長 下,漏入區之漏入層的至少一個子層具有一個與基板相同 或是接近的組成,異質結構係放置於基板上。 m說’選擇-個漏入層的組成(或是折射係數)使 其相同或疋接近於半導體基板的組成(或是折射係數)是可 能的’基板對發射是可穿透的。 既^基板一般是二元的半導體化合物(例如砷化鎵、磷 化銦、氮化鎵、銻化鎵),並且漏入層的厚度通常製作所有 層厚度的較大部分,那麼在這個情況下壓縮機械應力的 等級將大量地降低,歐姆以及熱阻抗也將降低,這將導致 效率、輸出功率的增加以及提出之S0A的操作壽命及可靠 性增加。 在相同的操作電流中,為了增加大約二、三倍以及更 多倍的放大發射輸出功率,在提出的S0A裡,該Hs包含 至少兩個主動層,其孔洞是彼此平行,並且在他們之間放 置一個中央主要調節層,其包括兩個薄的重摻雜P-型以及 η-型子層,在S0A操作中,其提供從一個主動層到另一個 主動層的電流隧道通道。 在該SAE(併入所提出之s〇A中)的較佳實施例裡,有 4個偈限發射區位於電流條紋區的兩側,在從兩個條紋區 33 1314800 的橫向兩側的一個特定距離處,侷限發射區被加深至—特 定深度,其超過主動層位置的深度,而那些侷限區域的折 射係數比異質結構漏入層的折射率小。 為了獲得SOA的極化不敏感性,在SAE HS漏入區的 漏入層係以大約等於電流條紋區寬度的厚度製造。 在提出的SOA裡,為了額外降低對清晰膜的需求,sae 電流條紋(或是凸形條紋)區係製作成對光學面孔洞傾斜— 個適當角度。 ' 'lIN In order to optimize the main parameters of S〇A, the main adjustment & main central adjustment layer and the auxiliary adjustment layer of SAEHS are manufactured smaller than the refractive index of the leak-in isolating coefficient nIN, and the thickness of the adjustment layer is from two. Choose from 0-005 microns to about 10 microns and larger. Also, in order to improve the temperature dependence of the SOA parameters, the SAE Hs is selected from a thickness ranging from about 0. 01 micrometers to about 〇.3 〇. In order to reduce the arpeggio coefficient and reduce the angular divergence of the S〇A amplified emission, the leakage layer thickness of the SAEHS leakage region is selected from a range of about 1 〇胄m to about w μm and larger, and at least one of the reflective layers Preferably, the layer is adjacent to the leak-in layer and is made by a refractive index coefficient close to the leak-in layer. 1 In order to simplify the manufacturing process, in some embodiments of the s〇A, at least one of the leak-in layers of the SAE HS35 entry region is made with a refractive index of a (four) μ coefficient. Optical loss defines the S0A efficiency of SAEHS. In a preferred embodiment for reducing internal light loss, the primary conditioning layer, the primary central conditioning layer (if any), the auxiliary conditioning layer (if any), and the drain The human layer and a portion of the at least one reflective layer adjacent to the leak-in layer are doped with a low-level appropriate doping impurity from about 3 μs to 3×10 −3·3·3, and the germanium layer is thickened About cm, properly doped impurities: doping. Depending on the number and location of the leak-in areas (or leak-in layers), two main SOA-symmetric SOAs and asymmetric s〇a can be fabricated. In the SAE of the package 32 1314800 contained in a symmetric SOA, the leak-in region is located on each side of the active layer, and has an equal refractive index and an equal thickness in most of the relevant layers. In inclusion in the asymmetric SOA @ SAE, the leak-in region can be on one side of the active layer, mostly on the side of the n-type doping. In a preferred embodiment of the proposed SOA, at a certain laser wavelength, at least one of the sub-layers of the leak-in region of the leak-in region has a composition that is the same as or close to the substrate, and the heterostructure is placed on the substrate. m says that the 'selection—the composition of the leak-in layer (or the refractive index) makes it the same or close to the composition (or refractive index) of the semiconductor substrate. The substrate is permeable to emission. The substrate is generally a binary semiconductor compound (such as gallium arsenide, indium phosphide, gallium nitride, gallium antimonide), and the thickness of the leak-in layer is usually made to a larger portion of the thickness of all layers, then in this case The level of compressive mechanical stress will be greatly reduced, and ohmic and thermal impedance will also be reduced, which will result in increased efficiency, increased output power, and increased operational life and reliability of the proposed SOA. In the same operating current, in order to increase the amplified emission output power by about two, three times and more, in the proposed SOA, the Hs contains at least two active layers whose holes are parallel to each other and between them A central primary conditioning layer is placed that includes two thin heavily doped P-type and n-type sub-layers that provide current tunneling from one active layer to another in SOA operation. In a preferred embodiment of the SAE (incorporating the proposed s〇A), there are four infinite emission regions located on either side of the current stripe region, one specific at the lateral sides from the two stripe regions 33 1314800 At the distance, the confinement emitters are deepened to a specific depth that exceeds the depth of the active layer locations, while those confined regions have a lower refractive index than the heterogeneous structure leaks into the layer. In order to obtain the polarization insensitivity of the SOA, the leakage layer in the SAE HS leakage region is fabricated with a thickness approximately equal to the width of the current stripe region. In the proposed SOA, in order to additionally reduce the need for clear film, the sae current stripe (or convex stripe) region is made to tilt the optical face hole at an appropriate angle. ' '
對於提出之SOA的個別實施例中,SAE的入口及出 口孔係製作成與光纖孔匹配。在這個情形下,為了將輸入 信號輸入以及將放大發射輸出,清晰膜係被施加於SAE的 光學面的反面上,不僅使用那些已知的光纖耦合元件來盥 光纖光學H合’也直接與SAE緊密接觸。降低輸入發射^ 它輸入到光纖的損失造成S 〇 A效率的增加。 在為了獲得SOA高品質放大發射耠屮 x町掏出的較佳實施例 裡,輸入發射的主源係由注入式雷射製造。為了增加s〇A 的效率以及輸出功率,主注人式雷射最好選擇為在本發明 提出之上述的雷射。對於這個SOA的會祐仓丨^ j T %例,主雷射以及 SAE的有效率光學耦合可以由在他們 們之間緊密接觸而達 成’而不使用光學麵合元件。在這個悟麻丁 閒形下,SOA實施例 是較佳的,其中主雷射以及SAE係由相π & ±Ι 即田相同的異質結構製 作。高功率SOA的實施也是可能,直, ” T引入的SAE電流 條紋區的寬度選擇為比主雷射的引入停纹 I度更大,或 是SAE電流條紋區的寬度是以能夠加宽 見的方式製作。 34 * 1314800 雷射以及併入SOA的SAE致使内部光損耗的顯著降 低(導致SAE效率的增加)以及非線性失真的降低(失真會導 致放大發射的空間不穩定性,並且導致高功率s〇A的輸出 功率限制)。這是因為在提出的s〇A中放大發射的極大部 分(大約99.9%並且更多)係通過透明漏入層(一種線性介 質)傳播,並且通量的很小一部分(大約〇.丨%及更小)係通 過非線性的主動介質傳播。這不僅確定獲得高輸出功率, 也降低了發射頻譜線的寬度、降低它的頻率漂移、改善了 SOA的局頻及高速調變特性。 在本發明提出的新穎的非顯而易見的S0A、輸入發射 相關主源(主雷射)以及新穎的非顯而易見的SAE實質内容 漏入區以及其他層(他們的厚度以及組成)的原創性以及非 顯而易見性,這些層由係主雷射及SAE的新穎及非顯而易 見HS所开Μ。原㉟放置的額外主要調節層相鄰於主動層 被引入漏入區,主要及輔助調節I、揭限層、漏入層以: 他們子層、反射層以及他們子層的其他原創特性(位置、&In the individual embodiment of the proposed SOA, the inlet and outlet apertures of the SAE are made to match the fiber aperture. In this case, in order to input the input signal and to amplify the emission output, a clear film is applied to the opposite side of the optical surface of the SAE, using not only those known fiber-coupled components, but also optical fiber H-' directly with SAE. Close contact. Reduce the input emission ^ The loss of its input to the fiber causes an increase in the efficiency of S 〇 A. In a preferred embodiment for obtaining a high quality magnified emission of SOA, the main source of the input emission is fabricated by an injection laser. In order to increase the efficiency of s〇A and the output power, the main injection laser is preferably selected as the above-described laser proposed in the present invention. For this SOA, the efficient laser coupling of the main laser and the SAE can be achieved by close contact between them without using optically facing components. In this idle form, the SOA embodiment is preferred, in which the main laser and the SAE are made of the same heterostructure of the phase π & The implementation of high-power SOA is also possible, straight, "the width of the SAE current stripe zone introduced by T is chosen to be greater than the introduction of the main laser, or the width of the SAE current stripe zone is to be widened. Method of fabrication 34 * 1314800 Laser and SAE incorporating SOA cause a significant reduction in internal optical loss (resulting in increased SAE efficiency) and a reduction in nonlinear distortion (distortion causes spatial instability of amplified emissions and leads to high power s〇A's output power limit). This is because the large part of the amplified emission (about 99.9% and more) in the proposed s〇A propagates through the transparent leak-in layer (a linear medium), and the flux is very A small part (about 〇.丨% and smaller) propagates through a nonlinear active medium. This not only determines the high output power, but also reduces the width of the emission spectral line, reduces its frequency drift, and improves the local frequency of the SOA. And high-speed modulation characteristics. In the novel non-obvious S0A proposed by the present invention, the input emission related main source (main laser) and the novel non-obvious SAE essence The originality and non-obviousness of the leak-in zone and other layers (their thickness and composition), these layers are opened by the main and non-obvious HSs of the main laser and SAE. The original main placement layer of the original 35 is adjacent The active layer is introduced into the leak-in area, mainly and auxiliary adjustment I, the uncover layer, and the leak-in layer to: their sub-layers, reflective layers, and other original characteristics of their sub-layers (position, &
成、厚度、摻雜等級)係已提出,使得實質上可改盖s〇A 的最t要特性:放大發㈣㈣、輸出功率以及角發散、 輸入以及輸出的光損耗、操作壽命以及可隸同時簡化對 準的技術。 在本發明中提出的SOA的拮術音t目总甘# 幻筏術貫現係基於已知的基本 技術程序,該基本技術程序目前係良好發展並w泛地使 用。這個提出方案滿足”產業利用性,,的準則。 35 1314800 分別以已知的6x10”厘米_3到3xl0i7厘米d雜質摻雜,漏 入層12、13以及ρ-型及η_型反射層5以及6之第一子層 i4、16分別摻雜到lxl〇n厘米-3,並且ρ_型及卜型反射^ 5以及6的第二子層15、17分別摻雜到2xl〇ls厘米3。 在0.3kA/cm2以及丨〇kA/cm2電流密度所提供之選定 1層組成以及厚度係分別計算neff對nw的比率得到 1.000006以及0.99964 在電流密度〇. 35kA/cm2時主動層 中的最終放大為7.8cm」。在1〇kA/cm2電流密度在垂直平 面裡計算的發散角Θ丄是6.0度(在下文稱為FWHM)。 下列HS1的實施例與上面的不同,其中漏入層12以 及13在這個實施例中具有相同的2 5微米厚度。在這情況 下,在0.3 IcA/cm2以及10 kA/cm2電流密度時計算的n" 對nIN比率分別I 0.刚92以及〇.99933。在電流密度 〇.3kA/Cm2時最終放大為㈣厘米〜在職A/em2電流密 度時在垂直平面計算的發散角㊀丄為9〇度。 下列的HS1實施例(見圖2)與圖丄的實施例不同:在 這個實施例中,漏入層12以及 、, 夂 u 你由 A1〇.〇5Ga0.95As 所長 ,亚且額外地將兩個輔助調節層18以及19與主要調節 層8以及9 一起引入到漏入區, ^ ^ ^ 成稀助碉郎層係由砷化鎵 作並且位於主動層的每-邊在揭限層1〇、U以及12、13 之間。如此獲得的在層12、n w g ς , ν 曰U 13以及5、6令有較低的 勿’降低了歐姆以及熱阻抗以及壓縮機械應力。 下列的H S 1貫施例(目同〇 \ , 耳δ例(見圖3)不同於® 1的實施例,在 &貧施例中漏入層12以及13 的与度刀別為〇·5微米以及 37 1314800 7.0微米’並且主要調節層8的厚度是0.06微米。對於HSl 的這個貫細*例在電流密度0.3kA/cm2以及1 OkA/cm2時計 算的neff對比率分別是i 〇〇〇〇4以及〇 99984。在 0.3kA/cm2電流密度時最終放大是1〇 2厘米-,。在i〇kA/cm2 電流密度時計算的發散角Θ ±在垂直平面是8.1度。 下列的HS1實施例(見圖4)不同於上述實施例,其中 在這個實細例中形成兩個相同主動層2,砷化鎵的主要中 央調節層20具有〇.〇丨2微米的厚度’其位於被引入之主動 層之間’並且主要調節層8的厚度為0.03微米。對於HS 1 的這個實施例,在〇.3kA/cm2以及i〇kA/cm2電流密度時計 算的neff對n1N比率分別為丨〇〇〇〇2以及〇 99984。在 0.3kA/cm2的電流密度時最終放大是8·9厘米“。在i〇kA/cm2 電流密度時計算的發散角㊀丄在垂直平面上為81度。 下列的HS1實施例不同於圖4表示的實施例,其中在 這個實施例中,主要中央調節層2〇包括兩個薄的卜型及p_ 型子層(每一個具有0.005微米的厚度),分別以碲以及碳 摻雜到5xl〇!9厘米-3的濃度。n_型子層位於在p_型反射層 的邊上並且P-型子層位於在η-型反射層以及.型基板的 一邊上。 下列的HS1 這個實施例裡, 實施例不同於圖1表示的實施例,其中在 漏入層12及13與侷限層9以及10以相 同的組成(因此具有相同的折射係數)製作 也就是以The thickness, doping level) has been proposed to substantially change the most important characteristics of s〇A: amplification (4) (4), output power and angular divergence, input and output optical loss, operational lifetime, and A technique that simplifies alignment. The antagonistic sound of SOA proposed in the present invention is based on known basic technical procedures, which are currently well developed and widely used. This proposed solution satisfies the criteria of "industrial availability." 35 1314800 is doped with known 6x10" cm_3 to 3xl0i7 cm d impurities, leaking into layers 12, 13 and p-type and n-type reflective layers 5 And the first sub-layers i4, 16 of 6 are doped to lxl〇n cm-3, respectively, and the second sub-layers 15, 17 of the p-type and the b-type reflections ^5 and 6 are respectively doped to 2xl〇ls cm3 . The ratio of neff to nw is calculated for each of the selected 1-layer composition and thickness system provided by the current density of 0.3 kA/cm 2 and 丨〇 kA/cm 2 to obtain 1.000006 and 0.99964. The final amplification in the active layer at current density 〇 35 kA/cm 2 is 7.8cm". The divergence angle 计算 calculated in the vertical plane at a current density of 1 〇 kA/cm 2 is 6.0 degrees (hereinafter referred to as FWHM). The following HS1 embodiment differs from the above in that the leak-in layers 12 and 13 have the same 25 micron thickness in this embodiment. In this case, the ratio of n" to nIN calculated at a current density of 0.3 IcA/cm2 and 10 kA/cm2 is I 0. just 92 and 〇.99933, respectively. When the current density is 〇.3kA/Cm2, it is finally enlarged to (four) cm. When the current A/em2 current density is used, the divergence angle calculated in the vertical plane is 9 degrees. The following HS1 embodiment (see Fig. 2) differs from the embodiment of Fig. 2: in this embodiment, the leaking layer 12 and, 夂u you are grown by A1〇.〇5Ga0.95As, and additionally two The auxiliary adjustment layers 18 and 19 are introduced into the leak-in region together with the main adjustment layers 8 and 9, and the ^ ^ ^ thin layer is made of gallium arsenide and is located on each side of the active layer in the uncovering layer 1 U and between 12 and 13. The layers 12, n w g ς , ν 曰 U 13 and 5, 6 thus obtained have lower ohms and thermal impedance and compressive mechanical stress. The following examples of HS 1 (the same as 〇, and the δ case of the ear (see Figure 3) are different from the embodiment of ® 1, in the & lean example, the degree of leakage into layers 12 and 13 is 〇· 5 μm and 37 1314800 7.0 μm' and the thickness of the main conditioning layer 8 is 0.06 μm. For this fine example of HS1, the neff contrast ratio calculated at current densities of 0.3 kA/cm 2 and 1 OkA/cm 2 is i 〇〇 〇〇4 and 〇99984. The final amplification at a current density of 0.3 kA/cm2 is 1〇2 cm-, and the divergence angle Θ± calculated at the current density of i〇kA/cm2 is 8.1 degrees in the vertical plane. The following HS1 The embodiment (see Fig. 4) differs from the above embodiment in that two identical active layers 2 are formed in this practical example, and the main central conditioning layer 20 of gallium arsenide has a thickness of 〇. 2 μm. The thickness of the main adjustment layer 8 is introduced between the active layers and the thickness of the primary adjustment layer 8 is 0.03 μm. For this embodiment of HS 1 , the ratio of neff to n1N calculated at current densities of 〇3 kA/cm 2 and i 〇 kA/cm 2 are respectively 丨〇〇〇〇2 and 〇99984. The final amplification at a current density of 0.3 kA/cm2 is 8. 9 cm". In i The divergence angle calculated at kA/cm2 current density is 81 degrees in the vertical plane. The following HS1 embodiment is different from the embodiment shown in Fig. 4, in which, in this embodiment, the main central conditioning layer 2 includes two Thin p-type and p_-type sub-layers (each having a thickness of 0.005 μm) doped with yttrium and carbon to a concentration of 5 x 1 〇! 9 cm -3 respectively. The n_-type sub-layer is located in the p-type reflective layer The side and P-type sub-layers are located on one side of the n-type reflective layer and the type substrate. The following HS1 In this embodiment, the embodiment is different from the embodiment shown in Fig. 1, in which the leaking layers 12 and 13 are present. The same composition (and therefore the same refractive index) as the confined layers 9 and 10 is
Alo.Wa^As並且反射層5及6(沒有子層)具有 A1〇.45GaQ.55AS組成。當與先前的—個相比較時,hs的這個 38 / 1314800 、 子層14以及16係分別由低成分鋁的Alo.wGao 95As 以及 /。·。6 a〇94As製造。在這個情形下輔助調節層18以 —」系由0·24微米相等厚度的砰化鎵所製成。雷射3〇的 坆個:施例具有增加的效率、功率以及操作可靠性。 提出的田射30(見圖7)係使用在圖3裡表示的非對稱 的實知例製造,其中漏入層1 2以及13有相同的組成, :、有刀別A 0.5以及7 〇微米的厚度。透過主要調節層8 、+的厚度選擇,得到了 〇.3kA/cm2的門檻值電流密度。 在垂直平面裡’計算出的發散角Θ丄起初從7·5度(在 〇.3kA/Cm2的電流密度)降到7.2度(在3kA/cm2)並且然後 增加到8·1度(在lGkA/em2)。在這個狀況下,在諧振器輸 出光學面巾’發射區(在〇13等級)的大小在垂直平面裡最 初從4_6微米增加到7.2微米從崎低到6.0微米。 下列雷射3G的實施例不同於前面的實施例,其中在這 個a施中漏入層12以及j 3具有與侷限層9以及i 〇相 同的、、且成也就疋,Al0 “Gao "As。反射層5、6(沒有子層) 係由A1().45Ga°.55As製成。與先前的實施例比較,雷射30 的這個實施例含有較小數量的HS層。 提出的雷射3〇(見圖8)係使用在圖4裡提出之非對稱 HS1的實施例所製造,在其中製造了兩個相同的主動層2, 並且在他們之間放置了具有0.012微米厚度的主要中央調 郎層20。在14個雷射3〇的實施例中,門植值電流密度降 低到 0.25kA/cm2。 下列雷射30的實施例不同於上面的實施例,其中主要 1314800 兩個η-型及p-型的子層,其每一個具 ,分別以相同的5 X1 〇19厘米-3電流載 °在雷射3 0的操作中,這個子層提 —個主動層的電流隧道通道,然而在 中央調節層20包含 有0.005微米的厚度 體?辰度的碳及妙摻雜 供從一個主動層到另 相同的屯•但疋大約二倍的施加電壓中係増加了兩倍輸出 功率。 也在SOA裡使用的提出的SAE 4〇係基於在圖^裡表 示的HS1實施例來製作。這们AE 4㈣實施例以及它的 製造方法與在圖5表示的雷射30的實施例完全一致,除 了 HS1的裂開面之外,其上施加了具有〇 〇1%之相等反射 係數R,以及I的清晰膜。在所有的電流值下,在主動層 中的最終放大(由異質結構層的組成及厚度定義並且由反射 係數R,以及R_2定義)係小於它的自我激發門檻值,直到 10kA/cm2以及更大的電流密度。當電流密度超過〇 3kA/cm2 的值時開始滿足從主動層漏到漏入層的發射漏入狀態(具有 在輸入時的一個信號)。漏入角φ在這個情形下從〇.3kA/cm2 的 0 度增加到 10kA/cm2 的 1.53 度。在 10kA/cm2 時,SAE 40 的入口孔係8xl〇e m2,並且角口徑大約是6.0度χ5·7度。 下列使用於SOA中的SAE 40 (見圖9)實施例與上一 個實施例不同’其中電流之條紋區寬度等於8微米、HS 1 層的組成以及厚度為1 305奈米發射波長所設計、並且具 有清晰膜41以及42之光學面31 (其中R,以及R2為相同 的並且等於0.01%)係與光纖耦合、輸入光纖43用於通過 輪入光學面31的發射輸入,其中光學面具有清晰膜41; -1314800 以及輪出光纖44用於從光學面31之相反面的發射輸出, 其中,光學面具有清晰膜42。SAE 4〇之入口及出口孔徑 大小等於10x10微米2,其與已知光纖的孔徑相符,使輸入 光纖43及輸出光纖44可直接耦合到相應覆層41以及42 之光干面3 1,其與SAE 40緊密接觸。這個sAE 4〇的實施 例可以作為現代光纖連結的高效率功率放大器、光開關、 光學波長轉換器。它的主要優點係降低噪音,該噪音之降 低係因它輸入到SAE 40之低損失輸入發射。噪音係數在 這個情況下是可以與光纖以及拉曼放大器相比較的。1〇〇 认米放大發射之近方形傳播區域使SAE 40實際上對輸入 信號的極化作用不敏感。在這種SAE 4〇裡,可以得到超 過35分貝低信號放大的信號,並且未 率可以達請及更多。SAE40的一個優點是它的輸出: 大發射係實際上對稱並且具有低角度發散。 下列在SOA中使用# SAE 4〇實施例不同於上述實施 例,其中引入的電流凸形條紋區係製成與光學面孔洞傾斜 7度角。這使得可以大約-個因次大小〇〇倍)降低反射係 數Ri及R2的需求值。 也在SOA裡使用的提出的SAE 4〇係根據在圖2裡提 出的·實施例製造。這個SAE 4〇的實施例以及它的製 作方法完全與在圖6裡提出的雷射3〇的實施例一致,除 了 HS1的裂開面之外,其上施加了具有〇 〇1%之相等反射 係數R,以及R2的清晰膜。 也在SOA裡使用之提出的SAE 4〇係根據在圖3裡表 42 .1314800 示的HS1實施例製作,並且完全與在圖7裡表示的雷射3〇 的實施例一致,除了 HS1的裂開面之外,其上施加了具有 0.01 %之相等反射係數R!以及\的清晰膜。 也在SOA裡使用之提出的SAE 4〇係根據在圖4裡表 不的HS 1實施例製作,並且完全與在圖8裡表示的雷射% 的實施例一致,除了 HS1的裂開面之外,其上施加了具有 〇.〇1%之相等反射係數尺1以及112的清晰膜41,42。 也在SOA裡使用之下列的SAE 4〇實施例不同於雷射 30的實施例,其中的二個主動層在他們之間具有電流隧道 通道,不同處僅為清晰膜41、42的〇 〇1%反射係數。 所提出的SOA(見圖10)包括一個輸入發射的主源,其 以雷射30與SAE40光學福合的方式製作。雷射%以及sae 40係藉由與前述及於圖i表示之相同的hsi實施例製作。 雷射3〇與前述由圖5表示的實施例一致。SAE 40盥雷射 30的特性在於將具有相等反射係數為0.01%的清晰膜41、 42施加在裂開面31 °雷射30以及SAE 40的電流條紋區 ^相同的8微米寬度製成。雷射30的出口孔徑與SAE4〇 的入口孔相同並且等於8.〇x8.〇微米2,而計算出的發散角 θ丄在1〇kA/Cm2電流密度在垂直的平面中是6.0度。雷射 3〇的輸出功率在兩個橫向係數的單空間模式操作是05W。 很大亚且㈣的主雷射3〇輪出孔以及ME 入口孔可使 主雷射30以及SAE 40在一個長光 之間之最短距離對準而且有足釣Μ對準,其以在他們 一 Α 旱而具有足夠的發射準確性及低損失。 這樣的SOA是一個且有高〇暂扣一 " 八有间4超南功率源的單模及單頻雷 43 !314800 射發射。 【產業利用性】 異質結構係用來產生半導體注入式發射源’例如注入 式雷射、半導體放大元件、半導體光學放大器,其用於光 光=訊以及資料傳輸系統、光學超高速度計算及切換系 先醫學設備、雷射工業設備、倍頻雷射的開發以及用於 激兔式固態以及光纖放大器以及雷射。 【圖式簡單說明】 參考圖1至10可瞭解本發明,其中: 圖1疋個提出的對稱異質結構的橫剖面圖,其具有 -個主動層、兩個主要調節層以及在主動層的每—邊的兩 個相同的漏入層。 —圖2是一個提出㈣稱異質結構的橫剖面圖,其具有 —個主動層、兩個主要以及兩個辅助調節層。 圖3是一個提出的對稱異質結構的橫剖面圖,其Alo.Wa^As and reflective layers 5 and 6 (without sub-layers) have an A1〇.45GaQ.55AS composition. When compared with the previous one, the 38 / 1314800, sub-layer 14 and 16 systems of hs are respectively composed of low-component aluminum Alo.wGao 95As and /. ·. 6 a〇94As manufactured. In this case, the auxiliary adjustment layer 18 is made of gallium antimonide of equal thickness of 0. 24 microns. One of the three lasers: the example has increased efficiency, power and operational reliability. The proposed field shot 30 (see Fig. 7) is fabricated using the asymmetric embodiment shown in Fig. 3, in which the leaking layers 12 and 13 have the same composition, : having a knife A 0.5 and 7 〇 micron thickness of. The threshold current density of 〇.3kA/cm2 is obtained by selecting the thickness of the main adjustment layer 8 and +. The calculated divergence angle 在 in the vertical plane is initially reduced from 7.5 degrees (current density at 〇.3kA/Cm2) to 7.2 degrees (at 3kA/cm2) and then increased to 8.1 degrees (at lGkA) /em2). In this case, the size of the emitter area of the optical output of the resonator (at the 〇13 level) is increased from 4-6 microns to 7.2 microns from the bottom to 6.0 microns in the vertical plane. The following embodiment of the laser 3G differs from the previous embodiment in that the leakage layer 12 and j 3 in this embodiment have the same as the confined layers 9 and i 〇, and are also 疋, Al0 "Gao " As. The reflective layers 5, 6 (without sub-layers) are made of A1().45Ga°.55As. This embodiment of the laser 30 contains a smaller number of HS layers compared to the previous embodiment. The shot 3 (see Figure 8) was fabricated using the embodiment of the asymmetric HS1 proposed in Figure 4, in which two identical active layers 2 were fabricated, and a primary having a thickness of 0.012 microns was placed between them. Central illuminating layer 20. In the embodiment of 14 lasers, the gate current density is reduced to 0.25 kA/cm2. The following embodiment of laser 30 differs from the above embodiment in that the main 1314800 two η -type and p-type sublayers, each of which has the same 5 X1 〇 19 cm -3 current carrying ° in the operation of the laser 30, this sub-layer provides an active layer of current tunneling However, the central conditioning layer 20 contains a thickness of 0.005 micrometers of body carbon and a wonderful doping for a master The layer is connected to the same 屯• 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋 疋The AE 4 (four) embodiment and its method of manufacture are identical to the embodiment of the laser 30 shown in Figure 5, except that the split surface of HS1 is applied with an equal reflection coefficient R of 〇〇1%, and Clear film of I. At all current values, the final amplification in the active layer (defined by the composition and thickness of the heterostructure layer and defined by the reflection coefficients R, and R_2) is less than its self-excitation threshold until 10kA /cm2 and greater current density. When the current density exceeds the value of 〇3kA/cm2, it begins to meet the emission leakage state from the active layer leakage to the leakage layer (having a signal at the input). The leakage angle φ is In this case, it increases from 0 degrees of 〇3kA/cm2 to 1.53 degrees of 10kA/cm2. At 10kA/cm2, the inlet hole of SAE 40 is 8xl〇e m2, and the angular aperture is about 6.0 degrees χ5·7 degrees. The following SAE 40 (see Figure 9) used in SOA The example is different from the previous embodiment, in which the stripe width of the current is equal to 8 micrometers, the composition of the HS 1 layer, and the emission wavelength is 1 305 nanometers, and the optical surface 31 of the clear films 41 and 42 (where R, And R2 is the same and equal to 0.01%) coupled to the fiber, the input fiber 43 is used for the emission input through the wheeled optical surface 31, wherein the optical surface has a clear film 41; -1314800 and the wheeled fiber 44 is used to optically The opposite side of the emission output of 31, wherein the optical surface has a clear film 42. The inlet and outlet aperture sizes of the SAE 4 are equal to 10 x 10 microns 2, which is consistent with the aperture of the known fiber such that the input fiber 43 and the output fiber 44 can be directly coupled to the optical dry surface 3 of the respective cladding 41 and 42. SAE 40 is in close contact. This sAE 4〇 embodiment can be used as a modern fiber-optic high-efficiency power amplifier, optical switch, and optical wavelength converter. Its main advantage is the reduction of noise, which is caused by its low loss input input to the SAE 40. The noise figure is comparable to fiber and Raman amplifiers in this case. 1〇〇 The near-square propagation area of the amplified meter emission makes the SAE 40 virtually insensitive to the polarization of the input signal. In this SAE 4〇, a signal with a low signal amplification of more than 35 dB can be obtained, and the unreachable rate can be reached and more. One advantage of the SAE 40 is its output: the large launch system is actually symmetrical and has a low angle divergence. The following use of the #SAE 4 〇 embodiment in SOA differs from the above embodiment in that the current embossed stripe pattern is introduced at an angle of 7 degrees to the optical face hole. This makes it possible to reduce the demand values of the reflection coefficients Ri and R2 by about a factor of magnitude. The proposed SAE 4 也在 used in SOA is also manufactured according to the embodiment presented in Fig. 2. This SAE 4 〇 embodiment and its fabrication method are fully consistent with the embodiment of the laser 3 提出 proposed in Figure 6, except that the split surface of HS1 is applied with an equivalent reflection of 〇〇1%. The coefficient R, and the clear film of R2. The proposed SAE 4 也在 used in SOA is also fabricated in accordance with the HS1 embodiment shown in Table 421. 1314800 in Figure 3, and is fully consistent with the embodiment of the laser 3 表示 shown in Figure 7, except for the split of HS1. Outside the opening, a clear film having an equal reflection coefficient R! and \ of 0.01% is applied thereto. The proposed SAE 4 也在 used in SOA is also fabricated according to the HS 1 embodiment shown in Figure 4, and is fully consistent with the embodiment of the laser % shown in Figure 8, except for the split face of HS1. Further, clear films 41, 42 having equal reflection coefficient scales 1 and 112 of 〇.〇1% were applied thereto. The following SAE 4 〇 embodiment, also used in SOA, differs from the embodiment of laser 30 in that the two active layers have current tunneling channels between them, differing only in the clear film 41, 42. %Reflection coefficient. The proposed SOA (see Figure 10) includes a primary source of input emissions that is fabricated in a manner that is compatible with the laser 30 and the SAE 40. Laser % and sae 40 are produced by the same hsi embodiment as described above and shown in Figure i. The laser 3 is identical to the embodiment described above by FIG. The SAE 40-inch laser 30 is characterized in that clear films 41, 42 having an equal reflection coefficient of 0.01% are applied to the cracked surface 31 ° laser 30 and the current stripe region of the SAE 40 are the same 8 micron width. The exit aperture of the laser 30 is the same as the entrance aperture of the SAE4〇 and is equal to 8.〇x8.〇2, and the calculated divergence angle θ丄 is 6.0 degrees in the vertical plane at 1〇kA/Cm2. The output power of the laser 3 在 is 05W in a single spatial mode with two lateral coefficients. The large and (4) main laser 3 turns and the ME inlet hole allow the main laser 30 and the SAE 40 to be aligned at the shortest distance between a long light and have a full fishing rod aligned with them. A dry and sufficient emission accuracy and low loss. Such an SOA is a single-mode and single-frequency lightning 43!314800 shot launch with a high-speed temporary deduction of a " eight-to-four super-South power source. [Industrial Applicability] Heterogeneous structures are used to generate semiconductor injection-type emission sources, such as injection lasers, semiconductor amplifying components, and semiconductor optical amplifiers, which are used in optical and optical signals and data transmission systems, optical ultra-high speed calculation and switching. It is the development of medical equipment, laser industrial equipment, frequency-doubled lasers, and for the use of rabbit solid-state and fiber amplifiers and lasers. BRIEF DESCRIPTION OF THE DRAWINGS The present invention can be understood by referring to Figs. 1 to 10, wherein: Fig. 1 is a cross-sectional view of a proposed symmetric heterostructure having an active layer, two main adjustment layers, and each of the active layers. - Two identical leaking layers on the side. - Figure 2 is a cross-sectional view of a (four) heterogeneous structure having an active layer, two primary and two auxiliary conditioning layers. Figure 3 is a cross-sectional view of a proposed symmetrical heterostructure,
—個主動層、兩個主要調節舞 文"π即層以及位於主動層每一邊且有 不同厚度的兩個漏入層。 八^ 丨回從出的對稱異質結構的橫剖 個主要中央調節層以及 二個主動層、兩個主要調節層 兩個具有不同厚度的漏入層。 圖5疋一個提出的對摇垂·惠 +挪Α丨^ *曰]对%雷射縱剖面圖,其具有在 面上的反射覆層、具有一個主私 個主動層、兩個主要調節層以 位於主動層的每一邊的兩個相同漏入層。 圖6是一個提出的對稱雷射縱剖面圖,其具有在光學 44 •1314800 面上的反射覆層,具有—個 助調節層。 主動層 、兩個主要以及兩個輔 m 芦對稱雷射縱剖iS7 B],弄昇有在光 學面上的反射覆層,且古 y 百一個主動層、兩個主要調節層以 及位於主動層每一邊且古π 八有不同厚度的兩個漏入層。 圖8是一個提出的非 非對%雷射縱剖面圖,其具有 學面上的反射覆層,呈右系加 仕元 ^有兩個主動層、兩個主要調節層以 及一個主要中央調節層。An active layer, two main adjustments, "π, and two leaking layers on each side of the active layer with different thicknesses. The cross-section of the symmetrical heterostructure with the main central adjustment layer and the two active layers, two main adjustment layers, and two leakage layers with different thicknesses. Figure 5 is a longitudinal cross-sectional view of a pair of lasers, which has a reflective coating on the surface, a main active layer, and two main adjustment layers. With two identical leaking layers on each side of the active layer. Figure 6 is a schematic longitudinal cross-sectional view of a symmetric laser having a reflective coating on the optical 44 • 1314800 surface with an auxiliary adjustment layer. The active layer, two main and two auxiliary m reaming laser longitudinal profile iS7 B], lifted the reflective coating on the optical surface, and the ancient y hundred active layer, two main adjustment layers and active Two leaking layers of different thicknesses on each side of the layer and ancient π eight. Figure 8 is a schematic longitudinal cross-sectional view of a non-non-p-% laser with a reflective coating on the face, which is a right-handed plus two elements, two active layers, and one main central adjustment layer. .
圖9是-個SAE的縱剖面圖,其具有在光學面上有兩 個光纖與其耦合的清晰臈, 一 畀個主動層、兩個主要調 卽層以及位於主動層每一邊# 文碉 甩母遺的兩個相同漏入層。 圖10是一個SOA的縱剖面圖, 氺風k 圃S0A獨立地位於一個 ::上:在光學面上具有反射覆層的 異i=T:SAE,其由相同的對稱異質結構 、貝、構具有一個主動層、兩個主 声I 、& 調即層以及位於主動 層母一邊的兩個相同漏入層。 王動 【主要元件符號說明】 2:主動層 3、4 :漏入區 3、6 :反射層 7 :砷化鎵基板 8、9 :主要調節層 1 G、11 :侷限層 12、13 :漏入層 45 1314800 14、15 :第一子層 16、17 :第二子層 18、19 :輔助調節層 20 :主要中央調節層 30 :雷射 31 :光學面 32、33 :反射覆層 40 :半導體放大元件 • 41、42 :清晰膜 43 :輸入光纖 44 :輸出光纖 46Figure 9 is a longitudinal cross-sectional view of a SAE having a clear 臈 with two optical fibers coupled to it on the optical surface, one active layer, two main tuned layers, and each side of the active layer #文碉甩母The two remaining leaking layers. Figure 10 is a longitudinal cross-sectional view of a SOA, where hurricane k 圃S0A is independently located on one::: an iso-i=T:SAE having a reflective coating on the optical surface, which is composed of the same symmetrical heterostructure, shell, and structure There is one active layer, two main sounds I, &, and the same leaking layer on the side of the active layer. Wang Dong [Major component symbol description] 2: Active layer 3, 4: Leakage zone 3, 6: Reflective layer 7: Gallium arsenide substrate 8, 9: Main adjustment layer 1 G, 11: Localized layer 12, 13: Leakage Incoming layer 45 1314800 14, 15: first sub-layer 16, 17: second sub-layer 18, 19: auxiliary adjustment layer 20: main central adjustment layer 30: laser 31: optical surface 32, 33: reflective coating 40: Semiconductor Amplifying Element • 41, 42: Clear Film 43: Input Fiber 44: Output Fiber 46
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95116359A TWI314800B (en) | 2006-05-09 | 2006-05-09 | Heterostructure, injection laser, semiconductor amplifying element, and semiconductor optical amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95116359A TWI314800B (en) | 2006-05-09 | 2006-05-09 | Heterostructure, injection laser, semiconductor amplifying element, and semiconductor optical amplifier |
Publications (1)
Publication Number | Publication Date |
---|---|
TWI314800B true TWI314800B (en) | 2009-09-11 |
Family
ID=45072986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW95116359A TWI314800B (en) | 2006-05-09 | 2006-05-09 | Heterostructure, injection laser, semiconductor amplifying element, and semiconductor optical amplifier |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI314800B (en) |
-
2006
- 2006-05-09 TW TW95116359A patent/TWI314800B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210359163A1 (en) | Semiconductor light-emitting device | |
JP5412036B2 (en) | Heterostructure, injection laser, semiconductor amplifier, and semiconductor optical amplifier | |
WO2023142412A1 (en) | High-brightness and high-power semiconductor light-emitting device and preparation method therefor | |
TWI244248B (en) | Semiconductor laser element | |
TW200525845A (en) | Semiconductor laser device and optical apparatus using the same | |
JPS60206081A (en) | Semiconductor laser device | |
JP5505226B2 (en) | Semiconductor optical amplifier | |
TWI314800B (en) | Heterostructure, injection laser, semiconductor amplifying element, and semiconductor optical amplifier | |
JP5653609B2 (en) | Optical semiconductor device, pumping light source for optical fiber amplifier, and method of manufacturing optical semiconductor device | |
CN105048283B (en) | High power coplanar electrodes reveal wave laser | |
JP2010135506A (en) | Semiconductor device | |
KR20060128332A (en) | Electrically-pumped high power vertical cavity surface emitting laser | |
JPS61236189A (en) | Semiconductor laser element | |
US20110002351A1 (en) | Semiconductor laser device | |
JPH0376287A (en) | Broad area laser | |
CN221379986U (en) | Semiconductor laser chip | |
WO2020245866A1 (en) | Optical device | |
JPS592393B2 (en) | Semiconductor laser device and its manufacturing method | |
JP2000151018A (en) | Semiconductor laser | |
JPS59172785A (en) | Semiconductor laser | |
JPS6017979A (en) | Semiconductor laser | |
JP6496906B2 (en) | Semiconductor light emitting device | |
JPS6191991A (en) | Semiconductor laser | |
US20020146048A1 (en) | Semiconductor laser device | |
JPS62283690A (en) | Semiconductor laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |