TWI314559B - Fusion protein of porcine reproductive and respiratory syndrome virus as prrs vaccine - Google Patents

Fusion protein of porcine reproductive and respiratory syndrome virus as prrs vaccine Download PDF

Info

Publication number
TWI314559B
TWI314559B TW95125934A TW95125934A TWI314559B TW I314559 B TWI314559 B TW I314559B TW 95125934 A TW95125934 A TW 95125934A TW 95125934 A TW95125934 A TW 95125934A TW I314559 B TWI314559 B TW I314559B
Authority
TW
Taiwan
Prior art keywords
fusion protein
prrsv
orf5
pqab
sequence
Prior art date
Application number
TW95125934A
Other languages
Chinese (zh)
Other versions
TW200804426A (en
Inventor
Chao Wei Liao
Original Assignee
Animal Technology Inst Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Animal Technology Inst Taiwan filed Critical Animal Technology Inst Taiwan
Priority to TW95125934A priority Critical patent/TWI314559B/en
Publication of TW200804426A publication Critical patent/TW200804426A/en
Application granted granted Critical
Publication of TWI314559B publication Critical patent/TWI314559B/en

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

1314559 九、發明說明: 【發明所屬之技術領域】 本發明係關於融合蛋白質之構築’並據此開發一種具備 誘發豬隻產生PRRSV中和力價反應之融合蛋白次單位疫 苗0 【先前技術】 豬生殖與呼吸道徵候群(Porcine reProductive and respiratory syndrome,PRRS)疋一種由諸生殖與呼吸道徵候 群病毒(PRRSV)感染並以母豬繁殖障礙及各年齡層諸隻的 呼吸道感染為主的豬隻傳染病。PRRSV被視為極頑強之病 毒,其係基於在寄主體内不易誘發具有中和力價之抗體’ 且PRRSV為RNA病毒在寄主細胞内經由簡化的基因複製系 統進行繁殖,基因突變機率非常高。此外’ PRRSV感染可 分為兩階段:A上呼吸道及下呼吸道上皮細胞感染系統; 及B呼吸道週邊組織的單核球及巨嗜細胞。因此,寄主需 同時具備令和力價之體液或黏膜免疫反應機制及細胞免疫 機制清除被感染的細胞以進行防禦。由於抗體對PRRSV影 響不大,甚至會刺激病毒的突變。在抗體-依賴性的增強 作用機制中,抗體的使用可能導致更嚴重的感染。 中華民國第1-2289933號專利提供一種對標靶細胞具專 一性的融合蛋白,該融合蛋白利用綠膿桿菌外毒素部位一 及二之功能區架構PRRSV ORF7核蛋白,並於羧基端添加 KDEL訊碼。該融合蛋白可以大量在大腸桿菌中生產,免 疫豬隻後,可有效降低及清除豬隻攻毒後的病毒血症的發 107547.doc 1314559 生。該專利案之全文係引用記載併入本案中。 在 PRRSV 之 ORF5-6 雜二聚合反應(heterodimerization) 中,0RF5之Cys-34抗原決定部位區域及0RF6之Cys-8抗決 定部位區域對病毒感染及其外套膜裝配(envelope assembly)具關鍵性作用(Snijder Eric J.,Jessica C. et al” Journal of Virology, January 2003,Vol. 77, No. 1:97-104) 〇 PRRSV ORF5 之相 同序列(consensus sequence) YKNTHLDLIYNA,介於胺基酸38至44之間的抗原決定部 位,其係位於PRRSV ORF5之N-端體外區,業經鑑別為一 中和抗原決定部位(Ostrowski M.,J. A. Galeota,et al.,1314559 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to the construction of a fusion protein and develops a fusion protein subunit vaccine having a PRRSV neutralization valence reaction in pigs. [Prior Art] Pig Porcine reproductive and respiratory syndrome (PRRS), a swine infectious disease that is infected by the Reproductive and Respiratory Syndrome Virus (PRRSV) and is a reproductive disorder in sows and respiratory infections of all ages. . PRRSV is considered to be a very tenacious virus based on the fact that it is not easy to induce antibodies with neutralizing power in the host. And PRRSV is an RNA virus that propagates in a host cell via a simplified gene replication system, and the mutation rate is very high. In addition, PRRSV infection can be divided into two stages: A upper respiratory tract and lower respiratory tract epithelial cell infection system; and mononuclear spheres and macrophages in the peripheral tissues of B respiratory tract. Therefore, the host must have both a humoral or mucosal immune response mechanism and a cellular immune mechanism to remove the infected cells for defense. Because antibodies have little effect on PRRSV, they can even mutate the virus. In antibody-dependent potentiating mechanisms, the use of antibodies may result in more severe infections. Patent No. 1-2289933 of the Republic of China provides a fusion protein specific for a target cell, which utilizes the PRRSV ORF7 nuclear protein of the functional region of the Pseudomonas aeruginosa exotoxin site, and adds KDEL to the carboxyl terminus. code. The fusion protein can be produced in a large amount in E. coli, and after the immunization of the pig, it can effectively reduce and eliminate the viremia after the pig is challenged. The entire text of this patent is incorporated herein by reference. In the ORF5-6 heterodimerization of PRRSV, the Cys-34 epitope region of ORF5 and the Cys-8 anti-determination region of ORF6 are critical for viral infection and its envelope assembly. (Snijder Eric J., Jessica C. et al, Journal of Virology, January 2003, Vol. 77, No. 1:97-104) The same sequence of the PRRSV ORF5, the consensus sequence YKNTHLDLIYNA, between the amino acids 38 to The epitope between 44, which is located in the N-terminal region of PRRSV ORF5, has been identified as a neutralizing epitope (Ostrowski M., JA Galeota, et al.,

Journal of Virology, May 2002, Vol. 76, No. 9:4241-4250)。 習知技藝亦曾將ORF5或ORF6整個蛋白架構在PE及 KDEL中間,免疫到豬隻後發現,攻毒的豬隻在肺部反而 發生更嚴重的發炎現象,顯見ORF5或ORF6比ORF7更具有 免疫毒性。因此,欲有效防治豬隻感染PRRS,仍有必要 發展具有高中和力價且安全的疫苗。 【發明内容】 本發明目的之一係提供一種融合蛋白,及其組合方式。 本發明之另一目的係關於利用該等融合蛋白製備具中和 力價融合蛋白組成之次單位PRRS疫苗。 本發明之再一目的係提供醫藥組合物,其包括本發明之 融合蛋白及在藥學上可接受之載劑。 本發明之詳細說明係陳述於下列說明中。在本發明說明 107547.doc 1314559 及申請專利範圍中將顯而易見本發明之其它特徵、目的及 優勢。 【實施方式】 本發明特徵在於發現將0RF5及0RF6大多數之抗原去 除,僅留下0RF5及0RF6之N端數十幾個胺基酸,以此架 構一個雜合胜鏈PQAB,使之嵌入PE及KDEL3中間,該融 合蛋白PE-PQAB-KDEL3經小鼠及豬隻之免疫試驗,確認 具有血清中和力價能力。 為解釋本發明目的,提供下列實例,惟,其並非用以限 制本發明之範圍。 實例1 : PE-PQAB-K3融合蛋白 根據上述病毒感染機轉已知,PRRSV病毒具有中和力價 之區域為ORF6及0RF5之N端之融合蛋白區,即為ORF6結 構蛋白第2至26號胺基酸胜肽區及0RF5結構蛋白第30至63 號胺基酸胜肽區。本實例因此利用該融合區構築一個具有 誘發中和力價免疫保護力之關鍵蛋白質(即抗原決定部位) 之區段進行測試,以達成誘發活體免疫效果。PE-PQAB-K3融合蛋白簡圖及PE(MII)-PQAB質體構築的流程圖分別 如圖1及2所示。 PRRSV之DNA序列係得自美國國立生物技術資料中心 (NCBI)的資料庫,將ORF5及ORF6結構蛋白胺基酸序列譜 成標準品。先將標的胺基酸序列對應之核苷酸對應序列整 理出一條標的核酸序列,該融合蛋白區之序列係如下所 示: 107547.doc 1314559 GSSLDDFCYDSTAPQKVLLAFSITYASNDSSSHLQLIYNL TLCELNGTDWLANKFDWA (SEQ ID NO.2) 即,PRRSV-ORF6-2-26-ORF5-31〜63融合胜肽區,其係 由(ORF6)-G2SSLDDFCYDSTAPQKVLLAFSITY26及(ORF5)-A31SNDSSSHLQLIYNLTLCELNGTDWLANKFDWA63兩片段 所組成,其中,GSSLDDFC片段稱之P、YDSTAPQKVLLAFSITY 片段稱之Q、ASNDSSSHLQLIYNLTLC片段稱之A,且 ELNGTDWLANKFDWA片段稱之B。PQ片段屬於ORF6,而 AB片段屬於ORF5蛋白質片段。 以下說明核苷酸序列之編製,由於胺基酸序列對應之核 苷酸序列會有好多對,可藉由學術資料(如 http://www.kazusa.or.jp/codon)知道在大腸桿菌(五.co/z’)寄 主系統比較適合之核苷酸對應序列,避開大腸桿菌不容易 辨識、表現之核苷酸對應序列。同理,如果這序列要在酵 母菌表現,則亦要選擇適於酵母菌系統或 户/MM spp·)表達之序列。若以適合大腸桿菌寄主系統表現 之核苷酸對應序列為以下之設計,並且在核苷酸對的5·及 3·-末端分別接上限制酵素序列,以利於往後之基因轉殖步 驟。為了增加酵素之切割效率以及利於PCR引子之設計, 該基因兩端可加上一些連續三碼之CCC、AAA、GGG或 TTT ° 表一、PQAB融合肽之遺傳密碼 SEQ ID N0.1:Journal of Virology, May 2002, Vol. 76, No. 9:4241-4250). Traditional techniques have also constructed the entire protein structure of ORF5 or ORF6 in the middle of PE and KDEL. After immunization to pigs, it was found that the infected pigs developed more serious inflammation in the lungs. It is obvious that ORF5 or ORF6 is more immune than ORF7. toxicity. Therefore, in order to effectively prevent pigs from infecting PRRS, it is still necessary to develop vaccines with high and high prices and safe. SUMMARY OF THE INVENTION One object of the present invention is to provide a fusion protein, and a combination thereof. Another object of the present invention relates to the preparation of a subunit PRRS vaccine having the composition of a neutralizing force fusion protein using the fusion proteins. A further object of the invention is to provide a pharmaceutical composition comprising a fusion protein of the invention and a pharmaceutically acceptable carrier. The detailed description of the invention is set forth in the following description. Other features, objects, and advantages of the invention will be apparent from the description and appended claims. [Embodiment] The present invention is characterized in that most of the antigens of ORF5 and ORF6 are removed, leaving only a few amino acids of the N-terminal of 0RF5 and ORF6, thereby constructing a heterozygous PQAB and embedding it in PE. In the middle of KDEL3, the fusion protein PE-PQAB-KDEL3 was tested by immunoassay in mice and pigs to confirm the ability to neutralize the serum. The following examples are provided to illustrate the invention, but are not intended to limit the scope of the invention. Example 1: The PE-PQAB-K3 fusion protein is known to be transfected according to the above-mentioned viral infection. The region of the PRRSV virus with neutralization power is the fusion protein region of the N-terminus of ORF6 and ORF5, which is the ORF6 structural protein No. 2 to 26 Amino acid peptide region and ORF5 structural protein No. 30 to 63 amino acid peptide region. In this example, the fusion region is used to construct a segment of a key protein (i.e., an antigenic determinant) that induces neutralizing valency immunoprotection to achieve an in vivo immune effect. The flow chart of the PE-PQAB-K3 fusion protein and the flow chart of the PE(MII)-PQAB plastid are shown in Figures 1 and 2, respectively. The DNA sequence of PRRSV was obtained from the National Center for Biotechnology Data Center (NCBI) and the ORF5 and ORF6 structural protein amino acid sequences were sequenced into standards. First, the nucleotide sequence corresponding to the target amino acid sequence is sequenced into a target nucleic acid sequence, and the sequence of the fusion protein region is as follows: 107547.doc 1314559 GSSLDDFCYDSTAPQKVLLAFSITYASNDSSSHLQLIYNL TLCELNGTDWLANKFDWA (SEQ ID NO. 2) That is, PRRSV-ORF6 -2-26-ORF5-31~63 fusion peptide region consisting of two fragments (ORF6)-G2SSLDDFCYDSTAPQKVLLAFSITY26 and (ORF5)-A31SNDSSSHLQLIYNLTLCELNGTDWLANKFDWA63, wherein the GSSLDDFC fragment is called P, YDSTAPQKVLLAFSITY fragment is called Q, ASNDSSSHLQLIYNLTLC fragment It is called A, and the ELNGTDWLANKFDWA fragment is called B. The PQ fragment belongs to ORF6, and the AB fragment belongs to the ORF5 protein fragment. The following describes the preparation of the nucleotide sequence. Since there are many pairs of nucleotide sequences corresponding to the amino acid sequence, it can be known in E. coli by academic materials (eg http://www.kazusa.or.jp/codon). (5. co/z') The nucleotide system corresponding sequence suitable for the host system avoids the nucleotide corresponding sequence which is not easily recognized and expressed by E. coli. Similarly, if the sequence is to be expressed in yeast, it is also necessary to select a sequence suitable for expression by the yeast system or the MM spp. The nucleotide sequence corresponding to the expression of the E. coli host system is designed as follows, and the restriction enzyme sequences are respectively attached to the 5' and 3'-ends of the nucleotide pair to facilitate the subsequent gene transfer step. In order to increase the efficiency of enzyme cleavage and facilitate the design of PCR primers, some three consecutive CCC, AAA, GGG or TTT can be added to both ends of the gene. Table 1. Genetic code of PQAB fusion peptide SEQ ID N0.1:

5'-CCC AAA CCC CAT ATG GAA TTC GGT TCC TCC CTG 107547.doc 13145595'-CCC AAA CCC CAT ATG GAA TTC GGT TCC TCC CTG 107547.doc 1314559

G S S LG S S L

GAC GAC TTC TGC TAC GAC TCC ACC GCT CCC CAG DDFC YDS ΤΑ P QGAC GAC TTC TGC TAC GAC TCC ACC GCT CCC CAG DDFC YDS ΤΑ P Q

AAA GTT CTG CTG GCT TTC TCC ATC ACC TAC GCT K V L L A F S I T Y AAAA GTT CTG CTG GCT TTC TCC ATC ACC TAC GCT K V L L A F S I T Y A

TCC AAC GAC TCC TCC TCC CAC CTG CAA CTG ATC S N D S S S HLQ LITCC AAC GAC TCC TCC TCC CAC CTG CAA CTG ATC S N D S S S HLQ LI

TAC AAC CTG ACC CTG TGC GAA CTG AAC GGT ACC YNLTLC EL NGTTAC AAC CTG ACC CTG TGC GAA CTG AAC GGT ACC YNLTLC EL NGT

GAC TGG CTG GCT AAC AAA TTC GAC TGG GCT CTC D WLAN K F D W A GAG AAA AAA-3' 總共204個核苷酸對,當利用酵素剪接時至少會有189至 183核苷酸對長度進入質體内》 利用電腦軟趙(如DNA strider)分析標的核酸序列之限制 酵素的圖譜,根據圖譜結果,續於標的核酸序列兩端安裝 往後進行剪接時所用之限制酵素切位序列,由於產生出來 的標的物須進行限制酵素之剪接,因此最好在標的DNA序 列内不要有剪接用所須之限制酵素切位,因此還須利用常 用之軟體,分析DNA序列中是否有這些切位(restriction map),如果標的核酸序列内有不該含有之限制酵素切位序 列,必須再找胺基酸訊碼,利用此相同胺基酸對應之不同 核苷酸序列改換,使該序列不再有限制酵素切位。 利用前述中華民國第1-2289933號專利所揭示之方法, 根據野生型胺基酸所編碼之核苷酸序列進行改質,使得上 107547.doc 1314559 述蛋白質可藉由大腸桿菌系統大量表現出來;改質之重點 主要在將野生病毒株之核苷酸片段,以在不影響其原本表 現出之胺基酸,而又能有效的在大腸桿菌宿主系統中表現 的狀況下,進行核苷酸序列的改質。此改質後之核苷酸序 列,可分別利用多對引子’以聚合酶連鎖反應進行合成, 所有引子對之對應編號請見表二。 表二:標的抗原PQAB引子對之對應編號 標的抗原 正向引子 序列編號 (Seq.IDNo.) 反向引子 序列編號 (Seq.IDNo.) PQAB F1 3 R1 7 PQAB F2 4 R2 8 PQAB F3 5 R3 9 PQAB F4 6 正向引子及反向引子的序列分別如下所示: 正向引子F1(SEQ ID No.3)係SEQ ID No.l之第81至124號 胺基酸序列,即, 5'-GCT TTC TCC ATC ACC TAC GCT TCC AAC GAC TCC TCC TCC CAC CT-3'; 正向引子F2(SEQ ID Νο·4)係SEQ ID No.l之第48至96號胺 基酸序列,即, 5'-C GAC TCC ACC GCT CCC CAG AAA GTT CTG CTG GCT TTC TCC ATC ACC TA-3'; 正向引子F3(SEQ ID No.5)係SEQ ID No.l之第22至65號胺 基酸序列,即, 107547.doc -10· 1314559 5'-GGT TCC TCC CTG GAC GAC TTC TGC TAC GAC TCC ACC GCT CCC CA-3f ; 正向引子F4(SEQ ID No.6)係SEQ ID No.l之第1至41號胺 基酸序列,即, 5'-CCC AAA CCC CAT ATG GAA TTC GGT TCC TCC CTG GAC GAC T-3'; 反向引子 R1(SEQ ID No.7)係 SEQ ID No.l 之第 148 至 106 號 胺基酸序列,即, 5'-A CAG GGT CAG GTT GTA GAT CAG TTG CAG GTG GGA GGA GGA GTC-3'; 反向引子 R2(SEQ ID No.8)係 SEQ ID No.l 之第 176 至 133 號 胺基酸序列,即, 5'-GC CAG CCA GTC GGT ACC GTT CAG TTC GCA CAG GGT CAG GTT GTA-3'; 反向引子 R3(SEQ ID No_9)係 SEQ ID No.l 之第 204 至 164 號 胺基酸序列,即, 5'-TTT TTT CTC GAG AGC CCA GTC GAA TTT GTT AGC CAG CCA GTC GG-3'; 其中R1、R2及R3係表一基因序碼的逆向互補基因序列。 首先利用無DNA模板的聚合方式,利用正向引子F1以及 反向引子R1進行核苷酸片段的聚合,其中各引子的3·端部 分各有10-18個鹼基是設計為彼此互補的結合,以經由聚合 酵素的讀寫及補足成為一條雙股之DNA模板聚合產物。 完成第一次PCR後,取0.01〜4 μΐ的聚合產物作為第二次 107547.doc •11 - 1314559 PCR的模板DNA,同時加入第二組引子對正向引子F2及反 向引子R2各0.01〜4 μΐ,連同所需的dNTPs、反應試劑以及 Pfu聚合酶等,開始進行第二次PCR ;接著依照相同方式, 分次加入不同引子對F3及R3進行PCR後,再進行引子對F4 及R3之PCR步驟,即可合成出PQAB改質後之204bp核苷酸 序列。 所分別合成出之核苷酸片段經電泳試驗後,可確認其產 物之片段大小與預期相符。PQAB-1段(204bp),如圖3 ; PQAB-產生a、b、c及d共4段DNA片段(a段70bp、b段 129bp、c段186bp、d段204bp)。 實例2 :含標的序列之質體構築 將上述合成出204bp DNA片段,分別以限制酵素EcoRl、 Xhol修飾後接入已帶有一結合與移位功能之胜肽序列,以 及一羧基終端胜太之大腸桿菌質體中,所得質體為pPE-PQAB-K3質體。 構築於含T7啟動子及具抗生素(ampicilin)抗性片段之 pET15質體系統,可表現含有PRRSV PQAB以及去毒性之綠 膿桿菌外毒素 A (户A without domain III)之融合蛋白,質體圖譜係如圖4所示。 最後分別將上述質體轉染於可以表現該融合蛋白質之菌 株或細胞中。 實例3 :標的蛋白質之表現與分析GAC TGG CTG GCT AAC AAA TTC GAC TGG GCT CTC D WLAN KFDWA GAG AAA AAA-3' A total of 204 nucleotide pairs, when using enzyme splicing, there will be at least 189 to 183 nucleotide pairs of length into the plastid. The computer soft Zhao (such as DNA strider) analyzes the restriction enzyme map of the target nucleic acid sequence, and according to the result of the map, the restriction enzyme cleavage sequence used for splicing after the end of the target nucleic acid sequence is installed, since the generated target substance is required For restriction enzyme splicing, it is best not to have the restriction enzyme cleavage required for splicing in the target DNA sequence. Therefore, it is necessary to use the commonly used software to analyze whether there are these restriction maps in the DNA sequence, if the target There is a restriction enzyme cleavage sequence that should not be contained in the nucleic acid sequence, and the amino acid signal must be searched again, and the nucleotide sequence corresponding to the same amino acid is used to change, so that the sequence no longer has a restriction enzyme cleavage position. Using the method disclosed in the aforementioned Patent No. 1-2289933, the nucleotide sequence encoded by the wild type amino acid is modified so that the protein of 107547.doc 1314559 can be expressed in large quantities by the Escherichia coli system; The focus of the reform is mainly on the nucleotide sequence of the wild virus strain, in the condition that it does not affect the original amino acid, and can be effectively expressed in the E. coli host system. The upgrade. The modified nucleotide sequence can be synthesized by polymerase chain reaction using multiple pairs of primers respectively, and the corresponding numbers of all primers are shown in Table 2. Table 2: Target antigen PQAB primer pair corresponding numbered antigen forward primer sequence number (Seq.IDNo.) Reverse primer sequence number (Seq.IDNo.) PQAB F1 3 R1 7 PQAB F2 4 R2 8 PQAB F3 5 R3 9 The sequences of the PQAB F4 6 forward and reverse primers are as follows: Forward primer F1 (SEQ ID No. 3) is the amino acid sequence of Nos. 81 to 124 of SEQ ID No. 1, ie, 5'- GCT TTC TCC ATC ACC TAC GCT TCC AAC GAC TCC TCC TCC CAC CT-3'; Forward primer F2 (SEQ ID Νο.4) is the amino acid sequence No. 48 to 96 of SEQ ID No. 1, ie, 5 '-C GAC TCC ACC GCT CCC CAG AAA GTT CTG CTG GCT TTC TCC ATC ACC TA-3'; Forward primer F3 (SEQ ID No. 5) is amino acid sequence No. 22 to 65 of SEQ ID No. 1. , ie, 107547.doc -10· 1314559 5'-GGT TCC TCC CTG GAC GAC TTC TGC TAC GAC TCC ACC GCT CCC CA-3f ; Forward primer F4 (SEQ ID No. 6) is the SEQ ID No. 1 Amino acid sequence No. 1 to 41, ie, 5'-CCC AAA CCC CAT ATG GAA TTC GGT TCC TCC CTG GAC GAC T-3'; reverse primer R1 (SEQ ID No. 7) is SEQ ID No. Amino acid sequence Nos. 148 to 106, ie, 5'-A CAG GGT CAG G TT GTA GAT CAG TTG CAG GTG GGA GGA GGA GTC-3'; Reverse primer R2 (SEQ ID No. 8) is the amino acid sequence Nos. 176 to 133 of SEQ ID No. 1, ie, 5'-GC CAG CCA GTC GGT ACC GTT CAG TTC GCA CAG GGT CAG GTT GTA-3'; Reverse primer R3 (SEQ ID No_9) is the amino acid sequence of Nos. 204 to 164 of SEQ ID No. 1, ie, 5'-TTT TTT CTC GAG AGC CCA GTC GAA TTT GTT AGC CAG CCA GTC GG-3'; wherein R1, R2 and R3 are the reverse complement gene sequences of the first gene sequence code. First, the polymerization of nucleotide fragments is carried out by means of a polymerization method without a DNA template, using a forward primer F1 and a reverse primer R1, wherein each primer has 10-18 bases each of which is designed to be complementary to each other. In order to become a double-stranded DNA template polymerization product by reading and writing and complementing the polymerase. After the first PCR is completed, 0.01~4 μΐ of the polymerized product is taken as the template DNA of the second 107547.doc •11 - 1314559 PCR, and the second set of primers is added to the positive primer F2 and the reverse primer R2 each 0.01~ 4 μΐ, together with the required dNTPs, reagents, and Pfu polymerase, start the second PCR; then, according to the same method, add different primers to PCR for F3 and R3, and then introduce the primers to F4 and R3. In the PCR step, a 204 bp nucleotide sequence modified by PQAB can be synthesized. After the gel fractions synthesized by the respective electrophoresis tests, it was confirmed that the fragment size of the product was as expected. PQAB-1 segment (204 bp), as shown in Figure 3; PQAB- produces a total of 4 DNA fragments of a, b, c and d (a segment 70 bp, b segment 129 bp, c segment 186 bp, d segment 204 bp). Example 2: plastid construction with the indicated sequence The above-mentioned 204 bp DNA fragment was synthesized by restriction enzymes EcoRl and Xhol, respectively, and the peptide sequence which has a binding and translocation function, and a carboxyl group terminal Shengtai's large intestine were inserted. In the bacilli, the resulting plastid is the pPE-PQAB-K3 plastid. Constructed in a pET15 plastid system containing a T7 promoter and an antibiotic (ampicilin) resistant fragment, which can express a fusion protein containing PRRSV PQAB and a detoxified Pseudomonas aeruginosa exotoxin A (A without domain III), plastid map The system is shown in Figure 4. Finally, the above plastids are separately transfected into a strain or cell which can express the fusion protein. Example 3: Performance and analysis of the target protein

經確定含有以上質體之菌種,90%以上細菌均含有質體及 PQAB基因,個別以甘油保存法於2 ml分裝瓶中保存於-70°C 107547.doc •12· 1314559 溫度下。在無菌室中,將以上保存菌苗取2 ml接種於滅菌之 500 ml三角瓶,其内含有 200 ml LB (+500 pg/ml Amp),於 37°C迴轉式培養箱以150 rpm轉速下培養10〜12小時,完成 種菌培養。該菌苗之OD600應達到1.0±0.4。 在無菌室中,將50 ml菌種液各別接種於滅菌之3000 ml三 角瓶共八瓶,該三角瓶内含有1250 ml LB (+500 pg/ml Amp + 50 ml 10% Glucose),於37°C迴轉式培養箱以150 rpm轉速 下培養2〜3小時,檢測OD600在0.3±0.1時,注入最終濃度為 50 ppm之IPTG蛋白質誘導劑後,於37°C迴轉式培養箱以150 rpm轉速下培養2小時,即完成蛋白生產步驟。 接著,利用8M尿素法萃取及溶出包涵體(inclusion bodies)内之PE-PQAB-K3(圖三)抗原蛋白質片段,各以十公 升細菌液(一小批量,lot)萃取,可得到300〜400 mg抗原 量。利用西方墨點法(Western-blotting method)、coomasie blue染色法、SDS-PAGE電泳分析法,並以密度計 (densitometer)量測電泳條帶之密度,以進行各抗原溶液之 蛋白質定量。將上述抗原蛋白質取0.2±0.02 mg,作為針劑 高劑量之主成份。取0·02±0.002 mg作為針劑低劑量之主成 份,進行諸隻免疫及攻毒之功效性試驗。 實例4:豬隻免疫及攻毒之功效性試驗 在SPF農場中,將豬隻隨機分成三組,每組五隻豬,且每 組豬隻分別飼養在裝設有空調及換氣設備的隔離室内。PE-PQAB-E3接種疫苗組的豬隻在14及28日齡時,藉由肌肉内 分別注射含有1 ml PE-PQAB-E3(含有2〇〇pg蛋白質/劑量), 107547.doc •13- 1314559 在1 ml ISA206 (SEPPIC®法國)中乳化的2 ml疫苗,免疫兩 次。GP5&M免疫組則以PE-ORF5-K3及PE-ORF6-K3(各含有 200μ8蛋白質/劑量)所免疫。對照組豬隻則於無免疫接種下 養育。 在最後的疫苗接種之後二週,對豬隻在肌肉内投予1 OOmg 氣胺酮(ketamine)溶液以達鎮靜作用,接著在鼻内滴下1 ml 之2%利多卡因(Lidocaine)抑制咳漱-反射作用之後,以鼻内 攻毒豬隻。使用新鮮的1 ml之MD-1品系的PRRSV培養物, 以大約lxl07TCID5〇/ml之劑量攻毒每組中之五隻豬。 接種後第14天時,對所有犧牲的豬隻進行完整的解剖。 收集肝臟樣品(自頭蓋葉之兩部份及各來自肝尾狀葉之中間 及附屬部份),並利用10%中性緩衝福馬林予以固定,以進 行後續組織病理學檢驗。該檢驗方式係採用盲模式(blind fashion)並根據間質性肺炎嚴重程度加以評比(Opriessnig T, P.G. Halbur, et al., Journal of Virology, 76(2002):1 1837-11844及Halbur,P.G·,P.S. Paul,et al.,1996. J· Vet. Diagn· Investig. 8:11-20),以〇至6作區分,數字愈大表示病變程度 愈嚴重。 實驗結果 第二次免疫之後兩週,豬隻血液白血球試樣以RT-PCR檢 測PRRSV,結果顯示在PRRSV攻毒之前,所有豬隻均未引 起病毒血症。然而在攻毒之後3、4及14天之後,再次利用 RT-PCR檢測豬隻的血液白血球試樣,結果如表3所示。 107547.doc • 14- 1314559 表3 : PRRSV攻毒後,豬隻PRRS V病毒血症比例 天數 對照組 PE-PQAB-K3 PE-ORF5-K3 PE-ORF6-K3 3 3/5 3/5 2/5 7 3/4(死1*) 2/5 2/4(死2*) 14 3/4(死1*) 2/5 2/4(死2*) *表死亡的豬隻之前均藉由RT-PCR檢測出PRRS V病毒血症 對所有豬隻(包括已經犧牲的豬隻及兩週研究結束時還存 活的豬隻)進行解剖,巨觀檢查顯示,攻毒後豬隻肺臟顯 示,對照組及ORF5&ORF6疫苗組觀察到較廣泛的病變以及 嚴重之間質性肺膜炎,而本發明PE-PQAB-K3疫苗組則未發 現此等廣泛的病變及之間質性肺膜炎。如表4所示,本發明 PE-PQAB-K3疫苗組所表現的巨觀肺臟病變嚴重程度顯著地 較對照組及ORF5&ORF6疫苗組為小。 表4及表5分別例示以PRRSV攻毒後14天對於PRRSV所誘 發的巨觀肺臟病變之比較,及PE-PQAB-K3疫苗組所表現的 巨觀肺臟病變指數之比較。 107547.doc 15- 1314559 表4 :以PRRSV攻毒後14天對於PRRSV-所誘發的巨觀肺臟 病變之比較 豬隻 編號 對照組 病變指數 PE-PQAB-K3疫苗組 病變指數 PE-ORF5-K3, PE-ORF6-K3 疫苗組病變指數 1 6* 5 6 2 6 3 5 3 6 4 6 4 6 4 6 5 5 3 6 平均 5.75 3.80 5.80 指數 ±0.50 ±0.84 ±0.45 *:表示間質性肺炎病變指數。 表5、PE-PQAB-K3疫苗組所表現的巨觀肺臟病變指數以 生物統計具極顯著差異水準較對照組及ORF5&ORF6疫苗組 低(ρ<0.01)More than 90% of the bacteria containing the above plastids contained plastid and PQAB genes, which were stored in a 2 ml aliquot in a glycerol storage method at -70 ° C 107547.doc •12· 1314559. In a sterile room, 2 ml of the above preserved vaccine is inoculated into a sterilized 500 ml flask containing 200 ml LB (+500 pg/ml Amp) at a rotary incubator at 37 ° C at 150 rpm. The culture is carried out for 10 to 12 hours to complete the inoculum culture. The OD600 of the vaccine should reach 1.0±0.4. In a sterile room, inoculate 50 ml of the bacterial solution into a total of eight bottles of sterilized 3000 ml flask containing 1250 ml LB (+500 pg/ml Amp + 50 ml 10% Glucose) at 37 The °C rotary incubator is incubated at 150 rpm for 2 to 3 hours. When the OD600 is detected at 0.3±0.1, the final concentration of 50 ppm IPTG protein inducer is injected, and the rotary incubator is rotated at 150 rpm at 37 °C. The protein production step was completed by incubating for 2 hours. Next, extract and dissolve the PE-PQAB-K3 (Fig. 3) antigen protein fragments in the inclusion bodies by 8M urea method, and extract them in 10 liters of bacterial solution (a small batch, lot) to obtain 300~400. The amount of mg antigen. The Western blotting method, the coomasie blue staining method, the SDS-PAGE electrophoresis method, and the density of the electrophoresis bands were measured by a densitometer to quantify the protein of each antigen solution. The above antigenic protein was taken as 0.2±0.02 mg as a main component of a high dose of an injection. Take 0·02±0.002 mg as the main component of the low dose of the injection, and carry out the efficacy tests of each immunization and challenge. Example 4: Efficacy test for pig immunization and challenge In pig farms, pigs were randomly divided into three groups of five pigs each, and each group was housed separately in isolation with air conditioning and ventilation equipment. indoor. Pigs in the PE-PQAB-E3 vaccinated group received 1 ml of PE-PQAB-E3 (containing 2〇〇pg protein/dose) by intramuscular injection at 14 and 28 days of age, 107547.doc •13- 1314559 2 ml of vaccine emulsified in 1 ml ISA206 (SEPPIC® France), immunized twice. The GP5 & M immunized group was immunized with PE-ORF5-K3 and PE-ORF6-K3 (each containing 200 μ8 protein/dose). The pigs in the control group were raised without immunization. Two weeks after the last vaccination, pigs were intramuscularly administered with 100 mg of ketamine solution for sedation, followed by intranasal drip of 1 ml of 2% lidocaine to inhibit cough. - After the reflex, the pigs were challenged intranasally. Five pigs in each group were challenged with fresh 1 ml of MD-1 strain of PRRSV culture at a dose of approximately 1 x 107 TCID 5 〇 / ml. On the 14th day after inoculation, all sacrificed pigs were completely dissected. Liver samples were collected (from the two parts of the cephalic lobes and from the middle and accessory parts of the hepatic caudate lobe) and fixed with 10% neutral buffered formalin for subsequent histopathological examination. The test was based on blind fashion and was assessed according to the severity of interstitial pneumonia (Opriessnig T, PG Halbur, et al., Journal of Virology, 76 (2002): 1 1837-11844 and Halbur, PG· PS Paul, et al., 1996. J. Vet. Diagn· Investig. 8:11-20), distinguished by 〇 to 6, the greater the number, the more severe the lesion. EXPERIMENTAL RESULTS Two weeks after the second immunization, pig blood leukocyte samples were tested for PRRSV by RT-PCR. The results showed that all pigs did not cause viremia before PRRSV challenge. However, after 3, 4, and 14 days after the challenge, the blood white blood cell samples of the pigs were again detected by RT-PCR, and the results are shown in Table 3. 107547.doc • 14- 1314559 Table 3: Days of PRRS V viremia in pigs after PRRSV challenge control group PE-PQAB-K3 PE-ORF5-K3 PE-ORF6-K3 3 3/5 3/5 2/ 5 7 3/4 (dead 1*) 2/5 2/4 (dead 2*) 14 3/4 (dead 1*) 2/5 2/4 (dead 2*) * The dead pigs were borrowed before PRRS V viremia was detected by RT-PCR for all pigs (including pigs that had been sacrificed and pigs that survived at the end of the two-week study). Giant examinations showed that pigs showed lungs after challenge. A broader range of lesions and severe interstitial pleuropitis were observed in the control group and the ORF5 & ORF6 vaccine group, whereas these extensive lesions and interstitial pneumonia were not found in the PE-PQAB-K3 vaccine group of the present invention. . As shown in Table 4, the severity of the giant lung lesions exhibited by the PE-PQAB-K3 vaccine group of the present invention was significantly smaller than that of the control group and the ORF5 & ORF6 vaccine group. Tables 4 and 5 respectively show a comparison of the giant lung lesions induced by PRRSV 14 days after PRRSV challenge, and a comparison of the giant lung lesion index exhibited by the PE-PQAB-K3 vaccine group. 107547.doc 15- 1314559 Table 4: Comparison of PRRSV-induced macroscopic lung lesions 14 days after PRRSV challenge. Pig number control group lesion index PE-PQAB-K3 vaccine group lesion index PE-ORF5-K3, PE-ORF6-K3 vaccine group lesion index 1 6* 5 6 2 6 3 5 3 6 4 6 4 6 4 6 5 5 3 6 Average 5.75 3.80 5.80 Index ± 0.50 ± 0.84 ± 0.45 *: indicates interstitial pneumonia lesion index . Table 5, the giant lung lesions index of the PE-PQAB-K3 vaccine group showed a very significant difference in biostatistics compared with the control group and the ORF5& ORF6 vaccine group (ρ < 0.01)

組 個數 總和 平均 變異數 對照組 5 29 5.8 0.2 PE-PQAB-K3 組 5 19 3.8 0.7 PE- ORF5&ORF6-K3組 5 29 5.8 0.2 ANOVA 變源 SS 自由度 MS F P-值 臨界值 組間 13.33333 2 6.66666718.18182 0.000233 3.885294 組内 4.4 12 0.366667 總和 17.73333 14 107547.doc -16- 1314559 比較對照組及ORF5&ORF6疫苗組低(p<〇 〇1) 根據以上實驗結果清楚顯示’本發明I>E_pQAB-K3不但 確實可有效保護諸隻免於PRRSV感染,且根據本發明之疫 苗,其相對於其他疫苗(例如PE-ORF5-K3,PE-ORF6-K3)所 表現的間質性肺炎更為輕微。 表6係顯示經免疫諸隻中抗體力價之變化,其中A組雖顯 示具有良好之IgG ELISA力價,但其間接螢光抗體分析 (IFA)力價及中和(NT)力價皆較C組低。再者,如表5之結 果所示,將豬隻以PRRSV ORF5或ORF6免疫及攻毒後,會 產生抗原專一性過敏效應。因此’ ORF5及ORF6並不適宜 用作PRRSV疫苗抗原。 表6、豬免疫實驗之血清力價 組別 包被抗原 IFA 力價 NT 力價* ΡΕ(ΔΙΙΙ) PQGAB IgG-ELISA力價(S/BK) A PE-ABCF-K3 PE-PQGF-K3 12 80 8-16 8-16 B Negative CTL 1 1 <8 <8 C PE-PQG1AB-K3 17 30 32-64 16-64 :該中和力價係藉由將連續稀釋之PRRSV樣本加入 MAC-10A細胞陪樣系統中,測量抑制生長及增生之 程度予以測定。 【圖式簡單說明】 107547.doc 17 1314559Group number average variability control group 5 29 5.8 0.2 PE-PQAB-K3 group 5 19 3.8 0.7 PE- ORF5 & ORF6-K3 group 5 29 5.8 0.2 ANOVA variable source SS DOF MS F P-value threshold between groups 13.33333 2 6.66666718.18182 0.000233 3.885294 Within the group 4.4 12 0.366667 Total 17.73333 14 107547.doc -16- 1314559 The control group and the ORF5& ORF6 vaccine group were low (p<〇〇1). According to the above experimental results, it is clearly shown that the present invention I> E_pQAB-K3 not only effectively protects against PRRSV infection, but the vaccine according to the invention is more resistant to interstitial pneumonia than other vaccines (eg PE-ORF5-K3, PE-ORF6-K3). slight. Table 6 shows the changes in the antibody valence of the immunized antibodies. The A group showed good IgG ELISA, but the indirect fluorescent antibody analysis (IFA) and the neutral (NT) valence were compared. Group C is low. Furthermore, as shown in the results of Table 5, antigen-specific allergic effects were produced after immunization and challenge with pigs with PRRSV ORF5 or ORF6. Therefore, 'ORF5 and ORF6 are not suitable for use as PRRSV vaccine antigens. Table 6. Serum price group of pig immunization experiment coated antigen IFA Price price NT price * ΡΕ (ΔΙΙΙ) PQGAB IgG-ELISA price (S/BK) A PE-ABCF-K3 PE-PQGF-K3 12 80 8-16 8-16 B Negative CTL 1 1 <8 <8 C PE-PQG1AB-K3 17 30 32-64 16-64 : The neutralization price is obtained by adding serially diluted PRRSV samples to MAC-10A In the cell-like system, the degree of inhibition of growth and proliferation was measured and measured. [Simple description of the schema] 107547.doc 17 1314559

圖1表示根據實例1之PE-PQAB-K3融合蛋白之簡圖。 圖2表示根據實例1之PE(AIII)-PQAB質體構築流程圖。 圖3表示根據實例1所合成之核苷酸片段電泳圖,共4段 DNA 片段(a段 70bp、b段 129bp、c段 186bp、d段 204bp)。 圖4表示PE(MII)-PQAB質體圖譜。 107547.doc 18- 1314559 序列袅 <110>財團法人台灣動物科學研究所 <120>作為豬生殖與呼吸道徵候群疫苗之pRRS病毒之融合蛋白 <140> <141> <150> <151> <160> 9 <170〉 Word7.0Figure 1 shows a schematic diagram of the PE-PQAB-K3 fusion protein according to Example 1. 2 is a flow chart showing the construction of a PE(AIII)-PQAB plastid according to Example 1. Fig. 3 is a view showing the electrophoresis pattern of the nucleotide fragment synthesized according to Example 1, which has a total of four DNA fragments (a segment 70 bp, a b segment 129 bp, a c segment 186 bp, and a d segment 204 bp). Figure 4 shows the PE(MII)-PQAB plastid map. 107547.doc 18- 1314559 Sequence 袅<110> Taiwan Institute of Zoological Sciences<120> fusion protein pRRS virus as a vaccine for porcine reproductive and respiratory syndrome<140><141><150>;151><160> 9 <170〉 Word7.0

<211> 204 <212> DNA <213> 人工序列 <400> 1<211> 204 <212> DNA <213> Artificial sequence <400>

1 gac tee acc get ccc cag aaa gtt Asp Ser Thr Ala Pro Gin Lys Val 10 15 get tee aac gac tee tee tee cac Ala Ser Asn Asp Ser Ser Ser His 30 ctg tgc gaa ctg aac ggt acc gac Leu Cys Glu Leu Asn Gly Thr Asp 45 get ctcgagaaaaaa Ala 58 cccaaaccccatatcgaattc ggt Gly tee tee ctg gac gac ttc tgc tac 48 Ser Ser Leu Asp 5 ttc Asp Phe Cys Tyr ctg ctg get tee ate acc tac 96 Leu Leu Ala 20 Phe Ser lie Thr Tyr 25 ctg caa ctg ate tac aac ctg acc 144 Leu Gin 35 Leu lie Tyr Asn Leu 40 Thr tgg ctg get aac aaa ttc gac tgg 152 Trp Leu Ala Asn Lys Phe Asp Trp 50 55 204 <210> 2 <211> 58 <212> PRT <213> 人工序列 <400> 21 gac tee acc get ccc cag aaa gtt Asp Ser Thr Ala Pro Gin Lys Val 10 15 get tee aac gac tee tee tee cac Ala Ser Asn Asp Ser Ser Ser His 30 ctg tgc gaa ctg aac ggt acc gac Leu Cys Glu Leu Asn Gly Thr Asp 45 get ctcgagaaaaaa Ala 58 cccaaaccccatatcgaattc ggt Gly tee tee ctg gac gac ttc tgc tac 48 Ser Ser Leu Asp 5 ttc Asp Phe Cys Tyr ctg ctg get tee ate acc tac 96 Leu Leu Ala 20 Phe Ser lie Thr Tyr 25 ctg caa ctg Ate tac aac ctg acc 144 Leu Gin 35 Leu lie Tyr Asn Leu 40 Thr tgg ctg get aac aaa ttc gac tgg 152 Trp Leu Ala Asn Lys Phe Asp Trp 50 55 204 <210> 2 <211> 58 <212> PRT <213> Manual Sequence <400> 2

Gly Ser Ser Leu Asp 5 Asp Phe Cys Tyr Asp 10 Ser Thr Ala Pro Gin 15 Lys Val Leu Leu Ala 20 Phe Ser He Thr Tyr 25 Ala Ser Asn Asp Ser 30 Ser Ser His Leu Gin 35 Leu lie Tyr Asn Leu 40 Thy Leu Cys Glu Leu 45 Asn Gly Thr Asp Trp 50 Leu Ala Asn Lys Phe 55 Asp Trp Ala 58 107547.doc 44 1314559 <210〉 3 <211> 44 <212〉DNA <213> 人工序列 <400〉3 getttctcca tcacctacgc ttccaacgac tcctcctccc acct <210> 4 <211> 48 <212> DNA <213> 人工序列 <400> 4 48 cgactccacc gctccccaga aagttctgct ggctttctcc atcacctaGly Ser Ser Leu Asp 5 Asp Phe Cys Tyr Asp 10 Ser Thr Ala Pro Gin 15 Lys Val Leu Leu Ala 20 Phe Ser He Thr Tyr 25 Ala Ser Asn Asp Ser 30 Ser Ser His Leu Gin 35 Leu lie Tyr Asn Leu 40 Thy Leu Cys Glu Leu 45 Asn Gly Thr Asp Trp 50 Leu Ala Asn Lys Phe 55 Asp Trp Ala 58 107547.doc 44 1314559 <210> 3 <211> 44 <212>DNA <213> Artificial Sequence <400> 3 getttctcca tcacctacgc ttccaacgac tcctcctccc acct <210> 4 <211> 48 <212> DNA <213> Artificial sequence <400> 4 48 cgactccacc gctccccaga aagttctgct ggctttctcc atcaccta

<210〉 5 <211> 44 <212> DNA <213> 人工序列 <400> 5 44 ggttcctccc tggacgacctt ctgctacgac tccaccgctc ccca <210> 6 <211> 40 <212> DNA <213>人工序列 <400> 6<210> 5 <211> 44 <212> DNA <213> Artificial sequence <400> 5 44 ggttcctccc tggacgacctt ctgctacgac tccaccgctc ccca <210> 6 <211> 40 <212> DNA <213>; manual sequence <400> 6

cccaaacccc atatggaatt cggttcctcc ctggacgact <210> 7 <211> 43 <212〉 DNA <213> 人工序列 <400> 7 40 43 acagggtcag gttgtagatc agttgcaggt gggaggagga gtc <210> 8 <211> 44 <212> DNA <213> 人工序列 <400〉 8 44 gccagccagt cggtaccgtt cagttcgcac agggtcaggt tgta 107547.doc -2- 1314559 <210〉 9 <211> 44 <212> DNA <213> 人工序列 <400〉 9 ttttttctcg agagcccagt cgaatttgtt agcccagccag tcggCcacaacccc atatggaatt cggttcctcc ctggacgact <210> 7 <211> 43 <212> DNA <213> Artificial sequence <400> 7 40 43 acagggtcag gttgtagatc agttgcaggt gggaggagga gtc <210> 8 <211> 44 <212&gt DNA <213> Artificial sequence <400> 8 44 gccagccagt cggtaccgtt cagttcgcac agggtcaggt tgta 107547.doc -2- 1314559 <210> 9 <211> 44 <212> DNA <213> Artificial sequence <400 〉 9 ttttttctcg agagcccagt cgaatttgtt agcccagccag tcgg

107547.doc107547.doc

Claims (1)

1314559 十、申請專利範圍: 1. 一種PE-PQGAB-K3融合蛋白,其包含: —豬生殖和呼吸道徵候群病毒(PRRSV)之ORF6及0RF5 之N端融合蛋白區; 綠膿桿菌外毒素A移位功能部位;及 ―羧基終端部份之KDEL-KDEL-KDEL(KDEL3)。 2. 如請求項1之融合蛋白,其中該PRRSV之0RF6係第2至26 個胺基酸序列。 3. 如請求項1之融合蛋白,其中該PRRSV之0RF5係第30至 63個胺基酸序列。 4. 一種可作為疫苗之醫藥組合物,其包含如請求項1之融 合蛋白及藥學上可接受之載劑。 107547.doc1314559 X. Patent application scope: 1. A PE-PQGAB-K3 fusion protein comprising: - ORF6 of porcine reproductive and respiratory syndrome virus (PRRSV) and N-terminal fusion protein region of ORF5; Pseudomonas aeruginosa exotoxin A The functional site; and the KDEL-KDEL-KDEL (KDEL3) of the carboxyl terminal moiety. 2. The fusion protein of claim 1, wherein the ORF6 of the PRRSV is a 2nd to 26th amino acid sequence. 3. The fusion protein of claim 1, wherein the ORF5 of the PRRSV is a 30th to 63th amino acid sequence. A pharmaceutical composition for use as a vaccine comprising the fusion protein of claim 1 and a pharmaceutically acceptable carrier. 107547.doc
TW95125934A 2006-07-14 2006-07-14 Fusion protein of porcine reproductive and respiratory syndrome virus as prrs vaccine TWI314559B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95125934A TWI314559B (en) 2006-07-14 2006-07-14 Fusion protein of porcine reproductive and respiratory syndrome virus as prrs vaccine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95125934A TWI314559B (en) 2006-07-14 2006-07-14 Fusion protein of porcine reproductive and respiratory syndrome virus as prrs vaccine

Publications (2)

Publication Number Publication Date
TW200804426A TW200804426A (en) 2008-01-16
TWI314559B true TWI314559B (en) 2009-09-11

Family

ID=44765844

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95125934A TWI314559B (en) 2006-07-14 2006-07-14 Fusion protein of porcine reproductive and respiratory syndrome virus as prrs vaccine

Country Status (1)

Country Link
TW (1) TWI314559B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9657063B2 (en) 2011-12-06 2017-05-23 Sbc Virbac Limited Porcine circovirus type-2 (PCV2) subunit vaccine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070243587A1 (en) * 2006-04-14 2007-10-18 Healthbanks Biotech Co., Ltd. Using a reverse genetic engineering platform to produce protein vaccines and protein vaccine of avian influenza virus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9657063B2 (en) 2011-12-06 2017-05-23 Sbc Virbac Limited Porcine circovirus type-2 (PCV2) subunit vaccine

Also Published As

Publication number Publication date
TW200804426A (en) 2008-01-16

Similar Documents

Publication Publication Date Title
AU2006213938B2 (en) Fusion protein of porcine reproductive and respiratory syndrome virus as PRRS vaccine
ES2384445T3 (en) SPIKE PROTEIN OF CANINE RESPIRATORY CORONAVIRUS (CRCV), POLYMERASE AND HEMAGLUTININ / ESTERASE.
KR100496249B1 (en) Polynucleotide vaccine formula for treating porcine respiratory and reproductive diseases
CN101691405B (en) Fusion antigen uses as vaccine
JP2005515162A5 (en)
JP2008529558A5 (en)
CN109195623A (en) 2 type of chimeric porcine circovirus type (PCV2) vaccine
TWI473813B (en) Porcine circovirus type 2 (pcv2) subunit vaccine
Wang et al. Recombinant Erns-E2 protein vaccine formulated with MF59 and CPG-ODN promotes T cell immunity against bovine viral diarrhea virus infection
CA3233697A1 (en) Recombinant fusion protein derived from hr region of s2 protein of sars-cov-2 and application of recombinant fusion protein
JP2006526403A (en) SARS virus antigen cell surface expression vector and microorganism transformed with this vector
TWI314559B (en) Fusion protein of porcine reproductive and respiratory syndrome virus as prrs vaccine
EP1882478B1 (en) Fusion protein of porcine reproductive and respiratory syndrome virus as PRRS vaccine
Sanchez-Morgado et al. Molecular characterization of a virulent canine coronavirus BGF strain
TWI385249B (en) Using a reverse genetic engineering platform to produce protein vaccines and protein vaccine of avian influenza virus
Wang et al. Expression of codon-optimized PDCoV-RBD protein in baculovirus expression system and immunogenicity evaluation in mice
Song et al. Knob domain of Fiber 2 protein provides full protection against fowl adenovirus serotype 4
Li et al. Self-assembled ferritin nanoparticles displaying PcrV and OprI as an adjuvant-free Pseudomonas aeruginosa vaccine
JP3245169B2 (en) Canine coronavirus S gene and uses thereof
WO2021207014A2 (en) Reagents and methods for preventing, treating or limiting severe acute respiratory syndrome (sars) coronavirus infection
CN101104641A (en) Fusion protein of PRRS virus used as swine procreation and respiratory tract syndrome vaccine
TWI841146B (en) Porcine bivalent subunit vaccine composition in a single dose
KR20070005867A (en) Low pathogenic avian influenza h9n2 virus strain for vaccine preparation, the vaccine, and the preparation method thereof
WO2005034993A1 (en) Vp1 fusion protein vaccin of recombinant foot-and-mouth disease virus
US20160175426A1 (en) Compositions for mucusal delivery, useful for treating papillomavirus infections