TW200804426A - Fusion protein of porcine reproductive and respiratory syndrome virus as PRRS vaccine - Google Patents
Fusion protein of porcine reproductive and respiratory syndrome virus as PRRS vaccine Download PDFInfo
- Publication number
- TW200804426A TW200804426A TW95125934A TW95125934A TW200804426A TW 200804426 A TW200804426 A TW 200804426A TW 95125934 A TW95125934 A TW 95125934A TW 95125934 A TW95125934 A TW 95125934A TW 200804426 A TW200804426 A TW 200804426A
- Authority
- TW
- Taiwan
- Prior art keywords
- fusion protein
- prrsv
- pqab
- orf5
- kdel
- Prior art date
Links
- 0 C=C*CCCCCC1CC*CC1 Chemical compound C=C*CCCCCC1CC*CC1 0.000 description 1
Landscapes
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
200804426 九、發明說明: 【發明所屬之技術領域】 本發明係關於融合蛋白質之構築,並據此開發一穆具備 誘發豬隻產生PRRSV中和力價反應之融合蛋白次單位疫 苗。 【先前技術】 豬生殖與呼吸道徵候群(porcine reproductive and respiratory syndrome,PRRS)是一種由豬生殖與呼吸道徵候 群病毒(PRRSV)感染並以母豬繁殖障礙及各年齡層豬隻的 呼吸道感染為主的豬隻傳染病。PRRSV被視為極頑強之病 毒,其係基於在寄主體内不易誘發具有中和力價之抗體, 且PRRSV為RNA病毒在寄主細胞内經由簡化的基因複製系 統進行繁殖,基因突變機率非常高。此外,PRRSV感染可 分為兩階段:A上呼吸道及下呼吸道上皮細胞感染系統; 及B呼吸道週邊組織的單核球及巨嗜細胞。因此,寄主需 同時具備中和力價之體液或黏膜免疫反應機制及細胞免疫 機制清除被感染的細胞以進行防禦。由於抗體對PRRSV影 響不大,甚至會刺激病毒的突變。在抗體-依賴性的增強 作用機制中,抗體的使用可能導致更嚴重的感染。 中華民國第1-2289933號專利提供一種對標靶細胞具專 一性的融合蛋白,該融合蛋白利用綠膿桿菌外毒素部位一 及二之功能區架構PRRSV ORF7核蛋白,並於羧基端添加 KDEL訊碼。該融合蛋白可以大量在大腸桿菌中生產,免 疫豬隻後,可有效降低及清除豬隻攻毒後的病毒血症的發 107547.doc 200804426 生。該專利案之全文係引用記載併入本案中。 在 PRRSV 之 ORF5-6 雜二聚合反應(heterodimerization) 中,ORF5之Cys-34抗原決定部位區域及ORF6之Cys-8抗決 定部位區域對病毒感染及其外套膜裝配(envelope assembly)具關鍵性作用(Snijder Eric J·,Jessica C. et al·, Journal of Virology,January 2003,Vol· 77,No. 1:97-104) 〇 PRRSV ORF5 之相同序列(consensus sequence) YKNTHLDLIYNA,介於胺基酸38至44之間的抗原決定部 位,其係位於PRRSV ORF5之N-端體外區,業經鑑別為一 中和抗原決定部位(Ostrowski M·,J· A· Galeota,et al·,200804426 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to the construction of a fusion protein, and according to the development of a fusion protein sub-unit vaccine which induces a PRRSV neutralization valence reaction in pigs. [Prior Art] Porcine reproductive and respiratory syndrome (PRRS) is a kind of infection caused by porcine reproductive and respiratory syndrome virus (PRRSV) and is caused by sow reproductive disorders and respiratory infections of pigs of all ages. The pig is infected with the disease. PRRSV is considered to be a very tenacious virus based on the fact that it is not easy to induce antibodies with neutralizing power in the host, and PRRSV is an RNA virus that propagates in a host cell via a simplified gene replication system, and the probability of gene mutation is very high. In addition, PRRSV infection can be divided into two phases: A upper respiratory tract and lower respiratory epithelial cell infection system; and mononuclear spheres and macrophages in the peripheral tissues of B respiratory tract. Therefore, the host needs to have both a humoral or mucosal immune response mechanism and a cellular immune mechanism to remove the infected cells for defense. Because antibodies have little effect on PRRSV, they can even mutate the virus. In antibody-dependent potentiating mechanisms, the use of antibodies may result in more severe infections. Patent No. 1-2289933 of the Republic of China provides a fusion protein specific for a target cell, which utilizes the PRRSV ORF7 nuclear protein of the functional region of the Pseudomonas aeruginosa exotoxin site, and adds KDEL to the carboxyl terminus. code. The fusion protein can be produced in a large amount in E. coli, and after the immunization of the pig, it can effectively reduce and eliminate the viremia after the pig is challenged. The entire text of this patent is incorporated herein by reference. In the ORF5-6 heterodimerization of PRRSV, the Cys-34 epitope region of ORF5 and the Cys-8 anti-determination region of ORF6 are critical for viral infection and its envelope assembly. (Snijder Eric J., Jessica C. et al., Journal of Virology, January 2003, Vol. 77, No. 1:97-104) The same sequence of 〇PRRSV ORF5 (consensus sequence) YKNTHLDLIYNA, between amino acids 38 The epitope between 44 and 44, located in the N-terminal region of PRRSV ORF5, identified as a neutralizing epitope (Ostrowski M·, J. A. Galeota, et al.,
Journal of Virology,May 2002,Vol. 76,No. 9:4241-4250)° 習知技藝亦曾將ORF5或ORF6整個蛋白架構在PE及 KDEL中間,免疫到豬隻後發現,攻毒的豬隻在肺部反而 發生更嚴重的發炎現象,顯見ORF5或ORF6比ORF7更具有 免疫毒性。因此,欲有效防治豬隻感染PRRS,仍有必要 發展具有高中和力價且安全的疫苗。 【發明内容】 本發明目的之一係提供一種融合蛋白,及其組合方式。 本發明之另一目的係關於利用該等融合蛋白製備具中和 力價融合蛋白組成之次單位PRRS疫苗。 本發明之再一目的係提供醫藥組合物,其包括本發明之 融合蛋白及在藥學上可接受之載劑。 本發明之詳細說明係陳述於下列說明中。在本發明說明 107547.doc 200804426 及申請專利範圍中將顯而易見本發明之其它特徵、目的及 優勢。 【實施方式】 本發明特徵在於發現將ORF5及ORF6大多數之抗原去 除,僅留下ORF5及ORF6之N端數十幾個胺基酸,以此架 構一個雜合胜鏈PQAB,使之嵌入PE及KDEL3中間,該融 合蛋白PE-PQAB-KDEL3經小鼠及豬隻之免疫試驗,確認 具有血清中和力價能力。 為解釋本發明目的,提供下列實例,惟,其並非用以限 制本發明之範圍。 實例1 : PE-PQAB-K3融合蛋白 根據上述病毒感染機轉已知,PRRSV病毒具有中和力價 之區域為ORF6及ORF5之N端之融合蛋白區’即為0RF6結 構蛋白第2至26號胺基酸胜肽區及ORF5結構蛋白第30至63 號胺基酸胜肽區。本實例因此利用該融合區構築一個具有 誘發中和力價免疫保護力之關鍵蛋白質(即抗原決定部位) 之區段進行測試,以達成誘發活體免疫效果。PE-pQAB-K3融合蛋白簡圖及PE(MII)-PQAB質體構築的流程圖分別 如圖1及2所示。 PRRSV之DNA序列係得自美國國立生物技術資料中心 (NCBI)的資料庫,將ORF5及ORF6結構蛋白胺基酸序列譜 成標準品。先將標的胺基酸序列對應之核苷酸對應序列整 理出一條標的核酸序列,該融合蛋白區之序列係如下所 示: 107547.doc 200804426 GSSLDDFCYDSTAPQKVLLAFSITYASNDSSSHLQLIYNL TLCELNGTDWLANKFDWA (SEQ ID NO.2) 即’?化1^\^-0^^6-2〜26-0^^5-31〜63融合胜肤區,其係 由(ORF6)-G2SSLDDFCYDSTAPQKVLLAFSITY26及(ORF5)· A31SNDSSSHLQLIYNLTLCELNGTDWLANKFDWA63兩片段 所組成,其中,GSSLDDFC片段稱之P、YDSTAPQKVLLAFSITY 片段稱之Q、ASNDSSSHLQLIYNLTLC片段稱之A,且 ELNGTDWLANKFD WA片段稱之B。PQ片段屬於ORF6,而 AB片段屬於ORF5蛋白質片段。 以下說明核苷酸序列之編製,由於胺基酸序列對應之核 苷酸序列會有好多對,可藉由學術資料(如 http:"www·kazusa·or.jp/codon)知道在大腸桿菌(五· a")寄 主系統比較適合之核苷酸對應序列,避開大腸桿菌不容易 辨識、表現之核苷酸對應序列。同理,如果這序列要在酵 母菌表現,則亦要選擇適於酵母菌系統(Saee/zaromycw或 P/c/n: spp·)表達之序列。若以適合大腸桿菌寄主系統表現 之核苷酸對應序列為以下之設計,並且在核苷酸對的5’及 3*-末端分別接上限制酵素序列,以利於往後之基因轉殖步 驟。為了增加酵素之切割效率以及利於PCR引子之設計, 該基因兩端可加上一些連績三碼之CCC、AAA、GGG或 TTT ° 表一、PQAB融合肽之遺傳密碼 SEQ ID N0.1:Journal of Virology, May 2002, Vol. 76, No. 9: 4241-4250) ° The traditional technique of ORF5 or ORF6 has been constructed in the middle of PE and KDEL. After immunization to pigs, the infected pigs were found. In the lungs, more serious inflammation occurs, and it is clear that ORF5 or ORF6 is more immunotoxic than ORF7. Therefore, in order to effectively prevent pigs from infecting PRRS, it is still necessary to develop vaccines with high and high prices and safe. SUMMARY OF THE INVENTION One object of the present invention is to provide a fusion protein, and a combination thereof. Another object of the present invention relates to the preparation of a subunit PRRS vaccine having the composition of a neutralizing force fusion protein using the fusion proteins. A further object of the invention is to provide a pharmaceutical composition comprising a fusion protein of the invention and a pharmaceutically acceptable carrier. The detailed description of the invention is set forth in the following description. Other features, objects, and advantages of the invention will be apparent from the description of the invention. [Embodiment] The present invention is characterized in that most of the antigens of ORF5 and ORF6 are removed, leaving only a few amino acids at the N-terminus of ORF5 and ORF6, thereby constructing a heterozygous PQAB and embedding it in PE. In the middle of KDEL3, the fusion protein PE-PQAB-KDEL3 was tested by immunoassay in mice and pigs to confirm the ability to neutralize the serum. The following examples are provided to illustrate the invention, but are not intended to limit the scope of the invention. Example 1: The PE-PQAB-K3 fusion protein is known to be transfected according to the above-mentioned viral infection. The region of the PRRSV virus with neutralizing power is the fusion protein region of the N-terminus of ORF6 and ORF5, which is the 0RF6 structural protein No. 2 to 26 Amino acid peptide region and amino acid peptide region of ORF5 structural protein Nos. 30 to 63. In this example, the fusion region is used to construct a segment of a key protein (i.e., an antigenic determinant) that induces neutralizing valency immunoprotection to achieve an in vivo immune effect. The flow chart of the PE-pQAB-K3 fusion protein and the flow chart of the PE(MII)-PQAB plastid are shown in Figures 1 and 2, respectively. The DNA sequence of PRRSV was obtained from the National Center for Biotechnology Data Center (NCBI) and the ORF5 and ORF6 structural protein amino acid sequences were sequenced into standards. The nucleotide sequence corresponding to the target amino acid sequence is first ligated to a target nucleic acid sequence, and the sequence of the fusion protein region is as follows: 107547.doc 200804426 GSSLDDFCYDSTAPQKVLLAFSITYASNDSSSHLQLIYNL TLCELNGTDWLANKFDWA (SEQ ID NO. 2) ie? 1^\^-0^^6-2~26-0^^5-31~63 fusion skin area, which consists of two segments (ORF6)-G2SSLDDFCYDSTAPQKVLLAFSITY26 and (ORF5)·A31SNDSSSHLQLIYNLTLCELNGTDWLANKFDWA63, among them, GSSLDDFC The fragment is called P, the YDSTAPQKVLLAFSITY fragment is called Q, the ASNDSSSHLQLIYNLTLC fragment is called A, and the ELNGTDWLANKFD WA fragment is called B. The PQ fragment belongs to ORF6, and the AB fragment belongs to the ORF5 protein fragment. The following describes the preparation of the nucleotide sequence. Since there are many pairs of nucleotide sequences corresponding to the amino acid sequence, it can be known in the academic literature (such as http:"www·kazusa.or.jp/codon) in Escherichia coli. (5 · a ") The host system is more suitable for the nucleotide corresponding sequence, avoiding the nucleotide corresponding sequence that E. coli is not easy to identify and express. Similarly, if the sequence is to be expressed in yeast, it is also necessary to select a sequence suitable for expression by the yeast system (Saee/zaromycw or P/c/n: spp.). The nucleotide sequence corresponding to the expression of the E. coli host system is designed as follows, and the restriction enzyme sequences are respectively attached to the 5' and 3*-termini of the nucleotide pair to facilitate the subsequent gene transfer step. In order to increase the efficiency of enzyme cleavage and facilitate the design of PCR primers, the gene can be added with three consecutive CCC, AAA, GGG or TTT °. Table 1. Genetic code of PQAB fusion peptide SEQ ID N0.1:
5!.CCC AAA CCC CAT ATG GAA TTC GGT TCC TCC CTG 107547.doc 2008044265!.CCC AAA CCC CAT ATG GAA TTC GGT TCC TCC CTG 107547.doc 200804426
G S S LG S S L
GAC GAC TTC TGC TAC GAC TCC ACC GCT CCC CAG DDFC YDS ΤΑ P QGAC GAC TTC TGC TAC GAC TCC ACC GCT CCC CAG DDFC YDS ΤΑ P Q
AAA GTT CTG CTG GCT TTC TCC ATC ACC TAC GCT K V L L A F S I T Y AAAA GTT CTG CTG GCT TTC TCC ATC ACC TAC GCT K V L L A F S I T Y A
TCC AAC GAC TCC TCC TCC CAC CTG CAA CTG ATC S N D S S S HLQ LITCC AAC GAC TCC TCC TCC CAC CTG CAA CTG ATC S N D S S S HLQ LI
TAC AAC CTG ACC CTG TGC GAA CTG AAC GGT ACC YNLTLC EL NGTTAC AAC CTG ACC CTG TGC GAA CTG AAC GGT ACC YNLTLC EL NGT
GAC TGG CTG GCT AAC AAA TTC GAC TGG GCT CTC D WLAN K F D W A GAG AAA AAA-3, 總共204個核苷酸對,當利用酵素剪接時至少會有189至 183核苷酸對長度進入質體内。 利用電腦軟體(如DNA strider)分析標的核酸序列之限制 酵素的圖譜,根據圖譜結果,續於標的核酸序列兩端安裝 往後進行剪接時所用之限制酵素切位序列,由於產生出來 的標的物須進行限制酵素之剪接,因此最好在標的DNA序 列内不要有剪接用所須之限制酵素切位,因此還須利用常 用之軟體,分析DNA序列中是否有這些切位(restriction map),如果標的核酸序列内有不該含有之限制酵素切位序 列,必須再找胺基酸訊碼,利用此相同胺基酸對應之不同 核苷酸序列改換,使該序列不再有限制酵素切位。 利用前述中華民國第1-2289933號專利所揭示之方法, 根據野生型胺基酸所編碼之核苷酸序列進行改質,使得上 107547.doc 200804426 述蛋白質可藉由大腸桿菌系統大量表現出來;改質之重點 主要在將野生病毒株之核苷酸片段,以在不影響其原本表 現出之胺基酸’而又能有效的在大腸桿菌宿主系統中表現 的狀況下,進行核苷酸序列的改質。此改質後之核苷酸序 列,可分別利用多對引子,以聚合酶連鎖反應進行合成, 所有引子對之對應編號請見表二。 表二:標的抗原PQAB引子對之對應編號 標的抗原 正向引子 序列編號 (Seq. ID No.) 反向引子 序列編號 (Seq. ID No.) PQAB F1 3 R1 7 PQAB F2 4 R2 8 PQAB F3 5 R3 9 PQAB F4 6 正向引子及反向引子的序列分別如下所示: 正向引子F1(SEQ ID Νο·3)係SEQ ID Νο·1之第81至124號 胺基酸序列,即, 5’-GCT TTC TCC ATC ACC TAC GCT TCC AAC GAC TCC TCC TCC CAC CT-31 ; 正向引子F2(SEQ ID Νο·4)係SEQ ID No.l之第48至96號胺 基酸序列,即, 5f-C GAC TCC ACC GCT CCC CAG AAA GTT CTG CTG GCT TTC TCC ATC ACC TA-3f ; 正向引子F3(SEQ ID Νο·5)係SEQ ID Νο·1之第22至65號胺 基酸序列’即5 107547.doc -10- 200804426 5,-GGT TCC TCC CTG GAC GAC TTC TGC TAC GAC TCC ACC GCT CCC CA-3f ; 正向引子F4(SEQ ID No.6)係SEQ ID No.l之第1至41號胺 基酸序列,即, 5f-CCC AAA CCC CAT ATG GAA TTC GGT TCC TCC CTG GAC GAC T-3,; 反向引子R1(SEQ ID Νο·7)係 SEQ ID No.l之第 148至 106號 胺基酸序列,即, 5f-A CAG GGT CAG GTT GTA GAT CAG TTG CAG GTG GGA GGA GGA GTC-3f ; 反向引子R2(SEQ ID Νο·8)係 SEQ ID No.l 之第 176 至 133 號 胺基酸序列,即, 5*-GC CAG CCA GTC GGT ACC GTT CAG TTC GCA CAG GGT CAG GTT GTA-31 ; 反向引子R3(SEQ ID Νο·9)係 SEQ ID No.l之第 204至 164號 胺基酸序列,即, 5»-TTT TTT CTC GAG AGC CCA GTC GAA TTT GTT AGC CAG CCA GTC GG-3,; 其中R1、R2及R3係表一基因序碼的逆向互補基因序列。 首先利用無DNA模板的聚合方式,利用正向引子F1以及 反向引子R1進行核苷酸片段的聚合,其中各引子的;T端部 分各有10-18個鹼基是設計為彼此互補的結合,以經由聚合 酵素的讀寫及補足成為一條雙股之DNA模板聚合產物。 完成第一次PCR後,取0.01〜4 μΐ的聚合產物作為第二次 107547.doc 200804426 PCR的模板DNA,同時加入第二組引子對正向引子F2及反 向引子R2各0.01〜4 μΐ,連同所需的dNTPs、反應試劑以及 Pfu聚合酶等,開始進行第二次PCR ;接著依照相同方式, 分次加入不同引子對F3及R3進行PCR後,再進行引子對F4 及R3之PCR步驟,即可合成出PQAB改質後之204bp核苷酸 序列。 * 所分別合成出之核苷酸片段經電泳試驗後,可確認其產 物之片段大小與預期相符。PQAB-1段(204bp),如圖3 ; PQAB-產生a、b、c及d共4段DNA片段(a段70bp、b段 129bp、c段 186bp、d段204bp)。 實例2 :含標的序列之質體構築 將上述合成出204bp DNA片段,分別以限制酵素EcoRl、 Xhol修飾後接入已帶有一結合與移位功能之胜肽序列,以 及一羧基終端胜太之大腸桿菌質體中,所得質體為pPE-PQAB-K3質體。 構築於含T7啟動子及具抗生素(ampicilin)抗性片段之 pET15質體系統,可表現含有PRRSV PQAB以及去毒性之綠 腹桿菌外毒素 A exoioxh A without domain III)之融合蛋白,質體圖譜係如圖4所示。 最後分別將上述質體轉染於可以表現該融合蛋白質之菌 株或細胞中。 實例3 :標的蛋白質之表現與分析GAC TGG CTG GCT AAC AAA TTC GAC TGG GCT CTC D WLAN K F D W A GAG AAA AAA-3, a total of 204 nucleotide pairs, at least 189 to 183 nucleotide pairs in length when entering into the plastid when splicing with an enzyme. The computer software (such as DNA strider) is used to analyze the restriction enzyme map of the target nucleic acid sequence, and according to the result of the map, the restriction enzyme cleavage sequence used for splicing after the end of the target nucleic acid sequence is installed, since the generated target substance is required For restriction enzyme splicing, it is best not to have the restriction enzyme cleavage required for splicing in the target DNA sequence. Therefore, it is necessary to use the commonly used software to analyze whether there are these restriction maps in the DNA sequence, if the target There is a restriction enzyme cleavage sequence that should not be contained in the nucleic acid sequence, and the amino acid signal must be searched again, and the nucleotide sequence corresponding to the same amino acid is used to change, so that the sequence no longer has a restriction enzyme cleavage position. Using the method disclosed in the aforementioned Patent No. 1-2289933, the nucleotide sequence encoded by the wild type amino acid is modified so that the protein of 107547.doc 200804426 can be expressed in large quantities by the Escherichia coli system; The focus of the reform is mainly on the nucleotide sequence of the wild-type virus strain, in the condition that it does not affect its originally displayed amino acid, and can be effectively expressed in the E. coli host system. The upgrade. The nucleotide sequence after the modification can be synthesized by a polymerase chain reaction using a plurality of pairs of primers respectively, and the corresponding numbers of all the primers are shown in Table 2. Table 2: Target antigen PQAB primer pair corresponding numbered antigen forward primer sequence number (Seq. ID No.) Reverse primer sequence number (Seq. ID No.) PQAB F1 3 R1 7 PQAB F2 4 R2 8 PQAB F3 5 The sequences of the R3 9 PQAB F4 6 forward and reverse primers are as follows: The forward primer F1 (SEQ ID Νο·3) is the amino acid sequence of Nos. 81 to 124 of SEQ ID Νο·1, ie, 5 '-GCT TTC TCC ATC ACC TAC GCT TCC AAC GAC TCC TCC TCC CAC CT-31 ; Forward primer F2 (SEQ ID Νο·4) is the amino acid sequence of Nos. 48 to 96 of SEQ ID No. 1, ie, 5f-C GAC TCC ACC GCT CCC CAG AAA GTT CTG CTG GCT TTC TCC ATC ACC TA-3f ; Forward primer F3 (SEQ ID Νο·5) is the amino acid sequence 22 to 65 of SEQ ID Νο·1 That is, 5 107547.doc -10- 200804426 5,-GGT TCC TCC CTG GAC GAC TTC TGC TAC GAC TCC ACC GCT CCC CA-3f ; Forward primer F4 (SEQ ID No. 6) is the first of SEQ ID No. To amino acid sequence No. 41, ie, 5f-CCC AAA CCC CAT ATG GAA TTC GGT TCC TCC CTG GAC GAC T-3,; reverse primer R1 (SEQ ID Νο·7) is the 148th of SEQ ID No. To the amino acid sequence of 106, ie 5f-A CAG GGT CAG GTT GTA GAT CAG TTG CAG GTG GGA GGA GGA GTC-3f ; Reverse primer R2 (SEQ ID Νο·8) is the amino acid sequence of Nos. 176 to 133 of SEQ ID No. 1, ie, 5*-GC CAG CCA GTC GGT ACC GTT CAG TTC GCA CAG GGT CAG GTT GTA-31 ; Reverse primer R3 (SEQ ID Νο·9) is the amino acid sequence of Nos. 204 to 164 of SEQ ID No. 1, ie , 5»-TTT TTT CTC GAG AGC CCA GTC GAA TTT GTT AGC CAG CCA GTC GG-3,; wherein R1, R2 and R3 are the reverse complement gene sequences of the first gene sequence code. First, the polymerization of nucleotide fragments is carried out by means of a polymerization method without a DNA template, using a forward primer F1 and a reverse primer R1, wherein each of the primers has 10-18 bases each of which is designed to be complementary to each other. In order to become a double-stranded DNA template polymerization product by reading and writing and complementing the polymerase. After the first PCR is completed, 0.01~4 μΐ of the polymerized product is taken as the template DNA of the second 107547.doc 200804426 PCR, and the second set of primers is added to the positive primer F2 and the reverse primer R2 each 0.01 to 4 μΐ. Along with the required dNTPs, reagents, and Pfu polymerase, the second PCR is started; then, in the same manner, different primers are added to perform PCR on F3 and R3, and then PCR steps of primers on F4 and R3 are performed. The 204 bp nucleotide sequence after PQAB modification can be synthesized. * After the electrophoresis test of the separately synthesized nucleotide fragments, it was confirmed that the fragment size of the product was as expected. PQAB-1 segment (204 bp), as shown in Figure 3; PQAB- produces a total of 4 DNA fragments of a, b, c and d (a segment 70 bp, b segment 129 bp, c segment 186 bp, d segment 204 bp). Example 2: plastid construction with the indicated sequence The above-mentioned 204 bp DNA fragment was synthesized by restriction enzymes EcoRl and Xhol, respectively, and the peptide sequence which has a binding and translocation function, and a carboxyl group terminal Shengtai's large intestine were inserted. In the bacilli, the resulting plastid is the pPE-PQAB-K3 plastid. Constructed in a pET15 plastid system containing a T7 promoter and an antibiotic (ampicilin) resistant fragment, which can express a fusion protein containing a PRRSV PQAB and a detoxified A exoioxh A without domain III), a plastid map system As shown in Figure 4. Finally, the above plastids are separately transfected into a strain or cell which can express the fusion protein. Example 3: Performance and analysis of the target protein
經確定含有以上質體之菌種,90%以上細菌均含有質體及 PQAB基因,個別以甘油保存法於2 ml分裝瓶中保存於-70°C 107547.doc -12- 200804426 溫度下。在無菌室中,將以上保存菌苗取2 ml接種於滅菌之 500 ml三角瓶,其内含有 200 ml LB (+500 pg/ml Amp),於 37°C迴轉式培養箱以150 rpm轉速下培養10〜12小時,完成 種菌培養。該菌苗之OD600應達到1.〇±〇.4。 在無菌室中,將50 ml菌種液各別接種於滅菌之3000 ml三 角報共八瓶,該三角瓶内含有1250 ml LB (+500 pg/ml Amp + 50 ml 10°/。Glucose),於37。(:迴轉式培養箱以150 rpm轉速 下培養2〜3小時,檢測OD600在0·3±0·1時,注入最終濃度為 50 ppm之IPTG蛋白質誘導劑後,於37°C迴轉式培養箱以150 rpm轉速下培養2小時,即完成蛋白生產步驟。 接著,利用8M尿素法萃取及溶出包涵體(inclusion bodies)内之PE-PQAB-K3(圖三)抗原蛋白質片段,各以十公 升細菌液(一小批量,lot)萃取,可得到300〜400 mg抗原 量。利用西方墨點法(Western-blotting method)、coomasie blue染色法、SDS-PAGE電泳分析法,並以密度計 (densitometer)量測電泳條帶之密度,以進行各抗原溶液之 蛋白質定量。將上述抗原蛋白質取〇.2±〇·〇2 mg,作為針劑 高劑量之主成份。取0·02±0·002 mg作為針劑低劑量之主成 份,進行豬隻免疫及攻毒之功效性試驗。 實例4 :豬隻免疫及攻毒之功效性試驗 在SPF農場中,將豬隻隨機分成三組,每組五隻豬,且每 組豬隻分別飼養在裝設有空調及換氣設備的隔離室内。PE-PQAB-E3接種疫苗組的豬隻在14及28日齡時,藉由肌肉内 分別注射含有1 ml PE-PQAB-E3(含有200gg蛋白質/劑量), 107547.doc •13· 200804426 在1 ml ISA206 (SEPPIC®法國)中乳化的2 ml疫苗,免疫兩 次。GP5&M免疫組則以PE-ORF5-K3及PE-ORF6-K3(各含有 200pg蛋白質/劑量)所免疫。對照組豬隻則於無免疫接種下 養育。 在最後的疫苗接種之後二週,對豬隻在肌肉内投予100mg 氣胺酮(ketamine)溶液以達鎮靜作用,接著在鼻内滴下1 ml 之2%利多卡因(Lidocaine)抑制咳漱-反射作用之後,以鼻内 攻毒豬隻。使用新鮮的1 ml之MD-1品系的PRRSV培養物, 以大約lxl07TCID50/ml之劑量攻毒每組中之五隻豬。 接種後第14天時,對所有犧牲的豬隻進行完整的解剖。 收集肝臟樣品(自頭蓋葉之兩部份及各來自肝尾狀葉之中間 及附屬部份),並利用10%中性緩衝福馬林予以固定,以進 行後續組織病理學檢驗。該檢驗方式係採用盲模式(blind fashion)並根據間質性肺炎嚴重程度加以評比(Opriessnig T, P.G. Halbur, et al., Journal of Virology, 76(2002):1 1837-11844及Halbur,P.G·,P.S. Paul,et al·,1996· J. Vet· Diagn· Investig. 8:11-20),以0至6作區分,數字愈大表示病變程度 愈嚴重。 實驗結果 第二次免疫之後兩週,豬隻血液白血球試樣以RT-PCR檢 測PRRSV,結果顯示在PRRSV攻毒之前,所有豬隻均未引 起病毒血症。然而在攻毒之後3、4及14天之後’再次利用 RT-PCR檢測豬隻的血液白血球試樣,結果如表3所示。 107547.doc • 14· 200804426 表3 ·· PRRS V攻毒後,豬隻PRRS V病毒血症比例 天數 對照組 PE-PQAB-K3 PE-ORF5-K3 PE-ORF6-K3 3 3/5 3/5 2/5 7 3/4(死1*) 2/5 2/4(死2*) 14 3/4(死 1” 2/5 2/4(死2*) *表死亡的豬隻之前均藉由RT-PCR檢測出PRRS V病毒血症 對所有豬隻(包括已經犧牲的豬隻及兩週研究結束時還存 活的豬隻)進行解剖,巨觀檢查顯示,攻毒後豬隻肺臟顯 示,對照組及ORF5&ORF6疫苗組觀察到較廣泛的病變以及 嚴重之間質性肺膜炎,而本發明PE-PQAB-K3疫苗組則未發 現此等廣泛的病變及之間質性肺膜炎。如表4所示,本發明 PE-PQAB-K3疫苗組所表現的巨觀肺臟病變嚴重程度顯著地 較對照組及ORF5&ORF6疫苗組為小。 表4及表5分別例示以PRRSV攻毒後14天對於PRRSV所誘 發的巨觀肺臟病變之比較,及PE-PQAB-K3疫苗組所表現的 巨觀肺臟病變指數之比較。 107547.doc 15 200804426 表4 :以PRRSV攻毒後14天對於PRRSV-所誘發的巨觀肺臟 病變之比較 豬隻 編號 對照組 病變指數 PE-PQAB-K3疫苗組 病變指數 PE-ORF5-K3, PE-ORF6-K3 疫苗組病變指數 1 6* 5 6 2 6 3 5 3 6 4 6 4 6 4 6 5 5 3 6 平均 5.75 3.80 5.80 指數 ±0.50 ±0.84 ±0.45 *:表示間質性肺炎病變指數。 表5、PE-PQAB-K3疫苗組所表現的巨觀肺臟病變指數以 生物統計具極顯著差異水準較對照組及ORF5&ORF6疫苗組 低(ρ<0·01) 組 個數 總和 平均 變異數 對照組 5 29 5.8 0.2 PE-PQAB-K3 組 5 19 3.8 0.7 PE- ORF5&ORF6-Κ3組 5 29 5.8 0.2More than 90% of the bacteria containing the above plastids contained plastid and PQAB genes, which were stored in a 2 ml aliquot in a glycerol storage method at -70 ° C 107547.doc -12- 200804426. In a sterile room, 2 ml of the above preserved vaccine is inoculated into a sterilized 500 ml flask containing 200 ml LB (+500 pg/ml Amp) at a rotary incubator at 37 ° C at 150 rpm. The culture is carried out for 10 to 12 hours to complete the inoculum culture. The OD600 of the vaccine should reach 1.〇±〇.4. In a sterile room, 50 ml of the bacterial solution is inoculated separately into a sterilized 3000 ml triangle with a total of eight bottles containing 1250 ml LB (+500 pg/ml Amp + 50 ml 10°/. Glucose). At 37. (: Rotary incubator is incubated at 150 rpm for 2 to 3 hours, and when OD600 is detected at 0·3±0·1, the final concentration of 50 ppm of IPTG protein inducer is injected, and the rotary incubator is at 37 °C. The protein production step was completed by incubating at 150 rpm for 2 hours. Next, the PE-PQAB-K3 (Fig. 3) antigen protein fragments in the inclusion bodies were extracted and dissolved by the 8M urea method, each with ten liters of bacteria. Liquid (a small batch, lot) extraction, can get 300 ~ 400 mg antigen amount. Using Western-blotting method, coomasie blue staining, SDS-PAGE electrophoresis analysis, and density meter (densitometer) The density of the electrophoresis bands was measured to quantify the protein of each antigen solution. The above antigen protein was taken as 22±〇·〇2 mg as the main component of the high dose of the injection. Take 0·02±0·002 mg as the main component. The low-dose main component of the injection is used for the efficacy test of pig immunization and challenge. Example 4: Efficacy test of pig immunization and challenge. In SPF farm, pigs were randomly divided into three groups of five pigs each. And each group of pigs is raised separately In the isolation room with air conditioning and ventilation equipment. Pigs in the PE-PQAB-E3 vaccination group were injected intramuscularly with 1 ml of PE-PQAB-E3 (containing 200 gg protein/dose at 14 and 28 days of age). ), 107547.doc •13· 200804426 2 ml vaccine emulsified in 1 ml ISA206 (SEPPIC® France), immunized twice. GP5 & M immunized group with PE-ORF5-K3 and PE-ORF6-K3 (each containing 200 pg protein/dose was immunized. The control pigs were reared without immunization. Two weeks after the last vaccination, the pigs were intramuscularly administered with 100 mg of ketamine solution for sedation. Then, after intranasal drops of 1 ml of 2% lidocaine to inhibit cough-reflex, the pigs were challenged intranasally. Fresh 1 ml of MD-1 strain of PRRSV culture was used, approximately 1×l07 TCID50 A dose of /ml was used to challenge five pigs in each group. On the 14th day after inoculation, all sacrificed pigs were completely dissected. Liver samples were collected (from the two parts of the hood and each from the hepatic caudate lobe Middle and subsidiary parts) and secured with 10% neutral buffered fumarin For subsequent histopathological examination, the test was based on blind fashion and was assessed according to the severity of interstitial pneumonia (Opriessnig T, PG Halbur, et al., Journal of Virology, 76 (2002): 1 1837-11844 and Halbur, PG·, PS Paul, et al., 1996· J. Vet· Diagn· Investig. 8:11-20), distinguished by 0 to 6. The greater the number, the more severe the lesion. EXPERIMENTAL RESULTS Two weeks after the second immunization, pig blood leukocyte samples were tested for PRRSV by RT-PCR. The results showed that all pigs did not cause viremia before PRRSV challenge. However, after 3, 4, and 14 days after the challenge, the blood leukocyte samples of the pigs were again detected by RT-PCR, and the results are shown in Table 3. 107547.doc • 14· 200804426 Table 3 ·· PRRS V viremia proportion of pigs after PRRS V challenge control group PE-PQAB-K3 PE-ORF5-K3 PE-ORF6-K3 3 3/5 3/5 2/5 7 3/4 (dead 1*) 2/5 2/4 (dead 2*) 14 3/4 (dead 1) 2/5 2/4 (dead 2*) * Table of dead pigs before PRRS V viremia was detected by RT-PCR and all pigs (including pigs that had been sacrificed and pigs that survived at the end of the two-week study) were dissected. The giant examination showed that the pigs showed lung after challenge. In the control group and the ORF5& ORF6 vaccine group, a wide range of lesions and severe interstitial pulmonary inflammation were observed, while the PE-PQAB-K3 vaccine group of the present invention did not find such extensive lesions and interstitial pulmonary membranes. As shown in Table 4, the severity of the giant lung lesions exhibited by the PE-PQAB-K3 vaccine group of the present invention was significantly smaller than that of the control group and the ORF5& ORF6 vaccine group. Tables 4 and 5 respectively illustrate the PRRSV attack. Comparison of macroscopic lung lesions induced by PRRSV 14 days after poisoning, and macroscopic lung lesion index of PE-PQAB-K3 vaccine group 107547.doc 15 200804426 Table 4: 14 after PRRSV challenge Comparison of PRRSV-induced macroscopic lung lesions Pig number control group Lesion index PE-PQAB-K3 vaccine group lesion index PE-ORF5-K3, PE-ORF6-K3 vaccine group lesion index 1 6* 5 6 2 6 3 5 3 6 4 6 4 6 4 6 5 5 3 6 Average 5.75 3.80 5.80 Index ±0.50 ±0.84 ±0.45 *: Indicates the index of interstitial pneumonia. Table 5. Giant view of PE-PQAB-K3 vaccine group The lung lesion index was significantly different from the control group and the ORF5& ORF6 vaccine group (ρ<0·01). The total number of variances in the control group was 5 29 5.8 0.2 PE-PQAB-K3 group 5 19 3.8 0.7 PE- ORF5&ORF6-Κ3 group 5 29 5.8 0.2
ANOVA 變源 SS 自由度 MS F P-值 臨界值 組間 13.33333 2 6.66666718.18182 0.000233 3.885294 組内 4.4 12 0.366667 總和 17.73333 14 107547.doc •16- 200804426 比較對照組及ORF5&ORF6疫苗組低(Ρ<〇·〇1) 根據以上實驗結果清楚顯示,本發明PE-pQAB-K3不但 確實可有效保護豬隻免於PRRSV感染’且根據本發明之疫 苗,其相對於其他疫苗(例如PE-ORF5-K3, PE-ORF6-K3)所 表現的間質性肺炎更為輕微。 表6係顯示經免疫豬隻中抗體力價之變化,其中A組雖顯 示具有良妤之IgG ELISA力價,但其間接螢光抗體分析 (IFA)力價及中和(NT)力價皆較C組低。再者,如表5之結 果所示,將豬隻以PRRSV ORF5或ORF6免疫及攻毒後,會 產生抗原專一性過敏效應。因此,ORF5及ORF6並不適宜 用作PRRSV疫苗抗原。 表6、豬免疫實驗之血清力價 組別 包被抗原 IFA 力價 NT 力價* ΡΕ(ΔΙΙΙ) PQGAB IgG-ELISA力價(S/BK) A PE-ABCF-K3 PE-PQGF-K3 12 80 8-16 8-16 B Negative CTL 1 1 <8 <8 C PE-PQG1AB-K3 17 30 32-64 16-64 :該中和力價係藉由將連續稀釋之PRRSV樣本加入 MAC_ 1 〇A細胞陪樣系統中,測量抑制生長及增生之 程度予以測定。 【圖式簡單說明】 107547.doc -17- 200804426 圖1表示根據實例1之PE-PQAB-K3融合蛋白之簡圖。 圖2表示根據實例1之PE(AIII)-PQAB質體構築流程圖。 圖3表示根據實例1所合成之核苷酸片段電泳圖,共4段 DNA 片段(a段 70bp、b段 129bp、c段 186bp、d段 204bp)。 圖4表示PE(MII)-PQAB質體圖譜。 107547.doc 18· 200804426 序列表 <110>財團法人台灣動物科學研究所 <120>作為豬生殖與呼吸道徵候群(PRRS)疫苗之PRRS病毒(PRRSV)之融合蛋白 <140〉 <141> <150> <151> <160〉 9 <170〉Word7.0 <210> 1 <211> 204 <212> DNA <213> 人工序列 <400> 1 cccaaaccccatatcgaattc ggt Gly tee Ser tee Ser ctg Leu gac Asp 5 ttc gac Asp ttc Phe tgc Cys tac Tyr gac tee acc get ccc cag aaa JL gtt ctg ctg get tee ate acc tac Asp 10 Ser Thr Ala Pro Gin 15 Lys Val Leu Leu Ala 20 Phe Ser lie Thr Tyr 25 get tee aac gac tee tee tee cac ctg caa ctg ate tac aac ctg acc Ala Ser Asn Asp Ser 30 Ser Ser His Leu Gin 35 Leu He Tyr Asn Leu 40 Thr ctg tgc gaa ctg aac ggt acc gac tgg ctg get aac aaa ttc gac tgg Leu Cys Glu Leu 45 Asn Gly Thr Asp Trp 50 Leu Ala Asn Lys Phe 55 Asp Trp 48 96 144 152 204 get ctcgagaaaaaa Ala 58 <210> 2 <211> 58 <212> PRT <213> 人工序列 <400〉 2ANOVA variable source SS degrees of freedom MS F P-value threshold group 13.33333 2 6.66666718.18182 0.000233 3.885294 group 4.4 12 0.366667 sum 17.73333 14 107547.doc •16- 200804426 comparison control group and ORF5& ORF6 vaccine group low (Ρ< 〇·〇1) According to the above experimental results, it is clear that the PE-pQAB-K3 of the present invention is effective not only to protect pigs from PRRSV infection and the vaccine according to the present invention, which is relative to other vaccines (for example, PE-ORF5-K3) , PE-ORF6-K3) showed milder interstitial pneumonia. Table 6 shows the change in antibody titer in immunized pigs. In group A, the IgG ELISA price of Liangzhu is shown, but the indirect fluorescent antibody analysis (IFA) and the neutralization (NT) price are both Lower than Group C. Furthermore, as shown in the results of Table 5, antigen-specific allergic effects were produced after immunization and challenge with pigs with PRRSV ORF5 or ORF6. Therefore, ORF5 and ORF6 are not suitable for use as PRRSV vaccine antigens. Table 6. Serum price group of pig immunization experiment coated antigen IFA Price price NT price * ΡΕ (ΔΙΙΙ) PQGAB IgG-ELISA price (S/BK) A PE-ABCF-K3 PE-PQGF-K3 12 80 8-16 8-16 B Negative CTL 1 1 <8 <8 C PE-PQG1AB-K3 17 30 32-64 16-64 : The neutralization price is obtained by adding serially diluted PRRSV samples to MAC_ 1 〇 In the A cell-assisted system, the degree of inhibition of growth and proliferation was measured and measured. BRIEF DESCRIPTION OF THE DRAWINGS 107547.doc -17- 200804426 Figure 1 shows a schematic diagram of the PE-PQAB-K3 fusion protein according to Example 1. 2 is a flow chart showing the construction of a PE(AIII)-PQAB plastid according to Example 1. Fig. 3 is a view showing the electrophoresis pattern of the nucleotide fragment synthesized according to Example 1, which has a total of four DNA fragments (a segment 70 bp, a b segment 129 bp, a c segment 186 bp, and a d segment 204 bp). Figure 4 shows the PE(MII)-PQAB plastid map. 107547.doc 18· 200804426 Sequence Listing <110> Taiwan Institute of Zoology, <120> As a Fusion Protein of PRRS Virus (PRRSV) for Porcine Reproductive and Respiratory Syndrome (PRRS) Vaccine<140>141>;<150><151><160> 9 <170>Word7.0 <210> 1 <211> 204 <212> DNA <213> Artificial sequence <400> 1 cccaaaccccatatcgaattc ggt Gly Tee Ser tee Ser ctg Leu gac Asp 5 ttc gac Asp ttc Phe tgc Cys tac Tyr gac tee acc get ccc cag aaa JL gtt ctg ctg get tee ate acc tac Asp 10 Ser Thr Ala Pro Gin 15 Lys Val Leu Leu Ala 20 Phe Ser Lie Thr Tyr 25 get tee aac gac tee tee tee cac ctg caa ctg ate tac aac ctg acc Ala Ser Asn Asp Ser 30 Ser Ser His Leu Gin 35 Leu He Tyr Asn Leu 40 Thr ctg tgc gaa ctg aac ggt acc gac tgg ctg get Aac aaa ttc gac tgg Leu Cys Glu Leu 45 Asn Gly Thr Asp Trp 50 Leu Ala Asn Lys Phe 55 Asp Trp 48 96 144 152 204 get ctcgagaaaaaa Ala 58 <210> 2 <211> 58 <212> PRT <213> Manual Sequence <400〉 2
Gly Ser Ser Leu Asp 5 Asp Phe Cys Tyr Asp 10 Ser Thr Ala Pro Gin 15 Lys Val Leu Leu Ala 20 Phe Ser lie Thr Tyr 25 Ala Ser Asn Asp Ser 30 Ser Ser His Leu Gin 35 Leu lie Tyr Asn Leu 40 Thy Leu Cys Glu Leu 45 Asn Gly Thr Asp Trp 50 Leu Ala Asn Lys Phe 55 Asp Trp Ala 58 107547.doc 200804426 <210> 3 <211> 44 <212> DNA <213> 人工序列 <400〉 3 getttctcca tcacctacgc ttccaacgac tcctcctccc acct <210> 4 <211> 48 <212> DNA <213> 人工序列 <400> 4 cgactccacc gctccccaga aagttctgct ggctttctcc atcaccta <210〉 5 <211> 44 <212> DNA <213> 人工序列 <400> 5 ggttcctccc tggacgacctt ctgctacgac tccaccgctc ccca <210〉 6 <211> 40 <212> DNA <213〉人工序列 <400〉 6 cccaaacccc atatggaatt cggttcctcc ctggacgact <210> 7 <211> 43 <212> DNA <213> 人工序列 <400〉 7 acagggtcag gttgtagatc agttgcaggt gggaggagga gtc <210〉 8 <211> 44 <212> DNA <213>人工序列 <400〉 8 gccagccagt cggtaccgtt cagttcgcac agggtcaggt tgta 44 48 44 40 43 44 107547.doc -2- 200804426 <210〉 9 <211> 44 <212> DNA <213> 人工序列 <400〉 9 ttttttctcg agagcccagt cgaatttgtt agcccagccag tcgg 107547.docGly Ser Ser Leu Asp 5 Asp Phe Cys Tyr Asp 10 Ser Thr Ala Pro Gin 15 Lys Val Leu Leu Ala 20 Phe Ser lie Thr Tyr 25 Ala Ser Asn Asp Ser 30 Ser Ser His Leu Gin 35 Leu lie Tyr Asn Leu 40 Thy Leu Cys Glu Leu 45 Asn Gly Thr Asp Trp 50 Leu Ala Asn Lys Phe 55 Asp Trp Ala 58 107547.doc 200804426 <210> 3 <211> 44 <212> DNA <213> Artificial Sequence <400> 3 Getttctcca tcacctacgc ttccaacgac tcctcctccc acct <210> 4 <211> 48 <212> DNA <213> Artificial sequence <400> 4 cgactccacc gctccccaga aagttctgct ggctttctcc atcaccta <210> 5 <211> 44 <212> DNA <213> Artificial Sequence <400> 5 ggttcctccc tggacgacctt ctgctacgac tccaccgctc ccca <210> 6 <211> 40 <212> DNA <213>Artificial Sequence<400> 6 cccaaacccc atatggaatt cggttcctcc ctggacgact <210> 7 <211> 43 <212> DNA <213> Artificial sequence <400> 7 acagggtcag gttgtagatc agttgcaggt gggaggagga gtc <210> 8 <211> 44 <212> DNA <213>Artificialsequence<400> 8 gccagccagt cggtaccgtt cagttcgcac agggtcaggt tgta 44 48 44 40 43 44 107547.doc -2- 200804426 <210> 9 <211> 44 <212> DNA <213> Artificial sequence< 400> 9 ttttttctcg agagcccagt cgaatttgtt agcccagccag tcgg 107547.doc
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95125934A TWI314559B (en) | 2006-07-14 | 2006-07-14 | Fusion protein of porcine reproductive and respiratory syndrome virus as prrs vaccine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95125934A TWI314559B (en) | 2006-07-14 | 2006-07-14 | Fusion protein of porcine reproductive and respiratory syndrome virus as prrs vaccine |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200804426A true TW200804426A (en) | 2008-01-16 |
TWI314559B TWI314559B (en) | 2009-09-11 |
Family
ID=44765844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW95125934A TWI314559B (en) | 2006-07-14 | 2006-07-14 | Fusion protein of porcine reproductive and respiratory syndrome virus as prrs vaccine |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI314559B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI385249B (en) * | 2006-04-14 | 2013-02-11 | Using a reverse genetic engineering platform to produce protein vaccines and protein vaccine of avian influenza virus | |
TWI473813B (en) * | 2011-12-06 | 2015-02-21 | Sbc Virbac Ltd | Porcine circovirus type 2 (pcv2) subunit vaccine |
-
2006
- 2006-07-14 TW TW95125934A patent/TWI314559B/en active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI385249B (en) * | 2006-04-14 | 2013-02-11 | Using a reverse genetic engineering platform to produce protein vaccines and protein vaccine of avian influenza virus | |
TWI473813B (en) * | 2011-12-06 | 2015-02-21 | Sbc Virbac Ltd | Porcine circovirus type 2 (pcv2) subunit vaccine |
US9657063B2 (en) | 2011-12-06 | 2017-05-23 | Sbc Virbac Limited | Porcine circovirus type-2 (PCV2) subunit vaccine |
Also Published As
Publication number | Publication date |
---|---|
TWI314559B (en) | 2009-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2006213938B2 (en) | Fusion protein of porcine reproductive and respiratory syndrome virus as PRRS vaccine | |
ES2384445T3 (en) | SPIKE PROTEIN OF CANINE RESPIRATORY CORONAVIRUS (CRCV), POLYMERASE AND HEMAGLUTININ / ESTERASE. | |
CN111217917A (en) | Novel coronavirus SARS-CoV-2 vaccine and preparation method thereof | |
KR100496249B1 (en) | Polynucleotide vaccine formula for treating porcine respiratory and reproductive diseases | |
EP0754231B1 (en) | Peptide fragment of the respiratory syncytial virus g protein, immunogenic agent, pharmaceutical composition containing same, and preparation method | |
KR20220132588A (en) | Deoptimized SARS-CoV-2 and methods and uses thereof | |
CN101691405A (en) | Fusion antigen uses as vaccine | |
CN111606981A (en) | SARS-COV coronavirus S1 protein polypeptide and its application | |
EP4410843A1 (en) | Recombinant fusion protein derived from hr region of s2 protein of sars-cov-2 and application of recombinant fusion protein | |
CN111606980A (en) | SARS-COV coronavirus S2 protein polypeptide and its application | |
TW200948959A (en) | Preparation of soluble capsid proteins of picornavirus using SUMO fusion technology | |
EP1882478B1 (en) | Fusion protein of porcine reproductive and respiratory syndrome virus as PRRS vaccine | |
TWI385249B (en) | Using a reverse genetic engineering platform to produce protein vaccines and protein vaccine of avian influenza virus | |
TWI314559B (en) | Fusion protein of porcine reproductive and respiratory syndrome virus as prrs vaccine | |
Sanchez-Morgado et al. | Molecular characterization of a virulent canine coronavirus BGF strain | |
Song et al. | Knob domain of Fiber 2 protein provides full protection against fowl adenovirus serotype 4 | |
JP3245169B2 (en) | Canine coronavirus S gene and uses thereof | |
CN107868130B (en) | Fusion protein containing mycoplasma hyopneumoniae antigen, vaccine composition and application | |
CN101104641A (en) | Fusion protein of PRRS virus used as swine procreation and respiratory tract syndrome vaccine | |
US6602504B2 (en) | Canine coronavirus S gene and uses therefor | |
WO2021207014A2 (en) | Reagents and methods for preventing, treating or limiting severe acute respiratory syndrome (sars) coronavirus infection | |
US20030166139A1 (en) | Rotavirus VP6 subunit | |
JP2019516745A (en) | HEV vaccine | |
WO2005034993A1 (en) | Vp1 fusion protein vaccin of recombinant foot-and-mouth disease virus | |
US20160175426A1 (en) | Compositions for mucusal delivery, useful for treating papillomavirus infections |