TWI313094B - - Google Patents
Download PDFInfo
- Publication number
- TWI313094B TWI313094B TW95103260A TW95103260A TWI313094B TW I313094 B TWI313094 B TW I313094B TW 95103260 A TW95103260 A TW 95103260A TW 95103260 A TW95103260 A TW 95103260A TW I313094 B TWI313094 B TW I313094B
- Authority
- TW
- Taiwan
- Prior art keywords
- motor
- active
- control
- synchronous
- thrust
- Prior art date
Links
Landscapes
- Control Of Multiple Motors (AREA)
- Control Of Position Or Direction (AREA)
Description
1313094 9年8.1巧正替換頁1 九、發明說明: 【發明所屬之技術領域】 本發明是— 種串仃、線性馬達同動控制“,尤指— 同動控制架構,且能對於垂 運動的雙平;:直軸向(z轴) '' 馬達同動控制,以及可配人π μ θ β ΐ ’卞、'先,搭配串—並聯混人六、η ^ 而能有致提升 ¥亚与“匕口式问動控制架構’ 達到高速精…向雙平行線性馬達同動控制性能’並 謂山疋位功效之發明設計。 【先前技術】 按,線性馬遠1亡一 土 ^ ^ '、3局迷、高加速度之牲科,s 4 w Μ 運動速度最大可、4 又&和點(馬達早體 ,™· 至)最大加速度可達釗qnr、 # 運動方式為直接驅 又」達到30G),其 聯軸器等間接傳動2 “透過齒輪、齒條、滚珠螺桿、 非線性及誤差問0構’也沒有機械挽曲和間隙所造成的 漸取代旋轉馬遠口此近成年在直線驅動的應用場合逐 例如磁浮料、⑱4主要驅動元件’包括交通運輸工具’ 例如汽機車工鞏包梯:飛行器發射系統等,與製造加工業, 速切削等場合:、t:半導體製程、雷射切割、放電加工、高 rt, ^ 自利用線性馬達所呈古#古 人直接驅動等特 回速 '高加速度 寸4來加以實現。 上述諸多線,丨4 屬工具機製造產繁馬達應用例中’目前發展最為蓬勃的當 前國内當紅之丰;,尤其隨著科技的曰新月異,無論是目 m ^體與LCD面板£止甚费 ,,θ ^ 機車工業、機械 板〜產業,或是傳統的汽 ^業’均朝向精密化、高速及高加速度 41313094 9 years 8.1 coincidence replacement page 1 IX. Description of the invention: [Technical field of the invention] The present invention is a series of parallel motor, linear motor synchronous control ", especially - the same motion control architecture, and can be used for vertical motion Double flat;: Straight axial (z-axis) '' Motor-driven control, and can be equipped with π μ θ β ΐ '卞, 'first, with string-parallel mixed six, η ^ can improve the purchase of "The mouth-opening type of control structure" achieves the high-speed precision...the performance of the parallel-parallel linear motor with the same dynamic control performance. [Prior Art] Press, linear horse far 1 dead soil ^ ^ ', 3 bureau fans, high acceleration of the animal, s 4 w Μ maximum speed of movement, 4 and & and points (motor early body, TM · to) The maximum acceleration is up to 钊qnr, #Motion mode is direct drive and "up to 30G", and the indirect drive 2 such as coupling is "transparent through gears, racks, ball screws, nonlinear and error". And the gap caused by the gradual replacement of the rotary horse far mouth this near-adult in linear drive applications such as magnetic floating material, 184 main drive components 'including transportation vehicles' such as steam locomotive Gong Bao ladder: aircraft launch system, etc., with manufacturing plus Industrial, speed cutting and other occasions: t: semiconductor process, laser cutting, electric discharge machining, high rt, ^ from the use of linear motors, the ancient #古人 direct drive and other special speeds 'high acceleration inch 4 to achieve. Line, 丨4 is a tool machine manufacturing and production of motor applications. The current development is the most vigorous domestic boomer; especially with the rapid development of technology, both the body and the LCD panel Fee,, θ ^ Locomotive industry, mechanical board ~ industry, or traditional steam industry are all facing precision, high speed and high acceleration 4
1313094 化的方向邁進,而在… 暖 遇進而在每當中的關鍵即是提高工且她 〜 效率。線性馬達所具備的高速、高加速度、大:幾的加工 度等優異:能’正符合高效率工具機的需求。力及高锖 於目前高逮加工技術發屏 仪料展已有相當久的時間 速主軸的發展之外’進給高速化也是相 :了向 件,近年來隨著線性$達 、彳合配條 返有忒!生馬達的發展成熟及廣泛使用下,1313094 The direction of the transformation is progressing, and the key to warmth and then in each of them is to improve the work and her ~ efficiency. The linear motor has excellent speed, high acceleration, and large machining capacity: it can meet the needs of high-efficiency machine tools. Force and sorghum in the current high-speed processing technology screen display material exhibition has a long time before the development of the speed spindle, 'feeding high-speed is also the phase: the direction, in recent years with the linear $ up, match It’s awkward! The development of the motor is mature and widely used,
岐工具機大廠均有推出搭配線性馬達之工具機相關J -,利用線性馬達高推力及高伺服f應的特性,取代 的滾珠導螺桿及伺服馬達定位系統,並利用光學尺位置訊 號的回授’達到南精度的要求。 又,搭載線性馬達為驅動軸的工具機,加工進給速率 可達到90〜18(jm/min,加速度可達,遠遠超過一般 旋轉伺服馬達的規格(多介於25〜4〇m/min,最大不超過 60πι/πηη),因此,可發揮傳統工具機2到3倍的加工效率, 而除了進给速度快,可縮短加工時間外,線性馬達高速工 具機所搭配之高速主軸,更可以有效提升工件之表面光度 與精度。 配合參看第一圖所示’其具有單—進給軸由兩組平行 線性的主動馬達(3 〇 )、從動馬達(7 〇 )共同驅動, 同時兩組線性馬達之間有剛性輕合機構(9 〇 )設計,由 於具有剛性耦合機構(9 0 ),因此在高速、高加速度及 高精度考$下’雙平行線性馬達的同步運動性能非常重 要,若兩組馬達運動特性差異過大,則耦合機構容易產生 撓曲變形’除了影響加工物件的加工精度以及造成加工機 5 1313094 年月日修正替換頁 ^ 1__ 具的損壞之外’甚至有可能危及人員之安全,由此可見雙 平行線性馬達之同動控制實為關鍵技術。 在已知文獻〔R. D. Lorenz and Ρ· B. Schmidt, Synchronized Motion Control for Process Automation, 5, Proceedings of the 1989 IEEE Industry Applications v〇l· 2,pp. 1 693- 1 698,1 989.〕中, Lorenz將同步運動控制之方法分為同步主端命令控制 (ynchronized master command generator control) ' :從控制(C〇nver)ti〇nal Master-Slave.motion control) 矛相對動心、剛f生控制(Relative ⑽“ sHffness m〇ti〇n control) 〇 、处文獻中的同步主端命令控制的特色為兩馬達的控 J k路可獨立5又a十,並依據各軸所需的相同運動要求,而 給予兩馬達相同的位置和速度命令。 而I主攸控制則是將兩軸馬達區分為主動與從動馬 f,以主動馬達的響應輸出作為從動馬達的輸入命令’令 攸動馬達跟隨主動馬達 ^ 逐進仃運動’以達到主從同步運動目 相對動態剛性控制則是一 ,,,疋 I主從控制的延伸,利用兩 軸馬達運動上的差異(位置 的方式達到同牛.速度)回授於從動端,以補償 步運動之效果。 此外,在加工機具之垂吉 當線性$罝進,'合軸(Z軸)驅動應用上, 田猓!·生馬達驅動垂直進給轴進 力加声AA T巧速運動時’由於受到重 刀加速度的影響,將產 ^ 生钱構之衝力太大和不易定位等問 U〇94 丨年Η Βί4ιΕ够悽% 題,空貝、 L。二—:1 易造成加工機1 A。一 此除了需進行、纟士 M /、'知壞和加工物件的精度不良,因 考量重力補償i制的高剛性設計外’伺服系統亦需進一步 -般做法不外乎卩&此頰問題在傳統之臥式工具機上, 置,歸納以上所述用負载配重或是油、氣壓的重力補償裝 用上,須掌握的m對於多轴線性馬達工作平台的控制應 制及垂直丄二有雙平行線性馬達之同步運動控 W里刀補償技術。 【發明内容】 本發明設計目的在於,提供一種「雔 動控制系統」H θ Μ二、 X平行線性馬達同 受'疋以串-亚聯滿入· 4、ρη 乂 雙線性同動控制,並且,在…二式同動控制,實現 性馬達同動控制中,者旦, (Ζ車由)的雙平行線 ^ 里在问加速度運動過程,重力加速 度對控制性能的影f,而提出主動 連 並聯混人π备如立,Α 補仏糸統與串- D式同動控制配合,故能有效提 u m, ^ ^ ^ ^ 1 i 1軸向雙平饤 ’、、、達之同動控制性能,達到高速精密定位效果。 為達成上述目的之技術内容,本發 達同動控制系統」,其具有雙平行線“=行線性馬 « 1主動馬達及從動 馬達為受控體而設置在工具機台的二平行、、取 ..^ 订滑轨上,主動馬 違與從動馬達間有設置一高剛性耦合機構壯 乂 W. ’其係以串 —並聯混合式同動控制技術,將從動馬逵 ^ 咬词服迴路部分設 計為推力控制,並加上一推力命令增益, ^ 使從動馬達透過 5亥比例增益由主動馬達獲得適當之輸入句 ntL歲,以分擔主動 馬達的出力,利用兩組馬達共同出力推動, @進給軸向運動 7 1313094岐Tool machine manufacturers have introduced J-type machine tools with linear motors, using linear motor high thrust and high servo f characteristics, replacing the ball lead screw and servo motor positioning system, and using the optical tape position signal back Grant 'requires the accuracy of the South. In addition, the machine tool with linear motor is the drive shaft, the machining feed rate can reach 90~18 (jm/min, the acceleration can reach, far exceeding the specifications of the general rotary servo motor (more than 25~4〇m/min) , the maximum does not exceed 60πι / πηη), therefore, can be used 2 to 3 times the processing efficiency of the traditional machine tool, and in addition to the fast feed rate, can shorten the processing time, the high-speed spindle with the linear motor high-speed machine tool can Effectively improve the surface luminosity and precision of the workpiece. Refer to the first figure as shown in the first figure. 'The single-feed axis is driven by two sets of parallel linear active motors (3 〇) and driven motors (7 〇). There is a rigid and light mechanism (9 〇) between the linear motors. Due to the rigid coupling mechanism (90), the synchronous motion performance of the 'double parallel linear motor' is very important in high speed, high acceleration and high precision. If the difference between the motor characteristics of the two groups is too large, the coupling mechanism is prone to flexural deformation. In addition to affecting the machining accuracy of the machined parts and causing the processing machine to change the replacement page ^ 13_09 In addition to the damage, it is even possible to endanger the safety of personnel. It can be seen that the simultaneous control of double parallel linear motors is a key technology. In the literature [RD Lorenz and Ρ· B. Schmidt, Synchronized Motion Control for Process Automation, 5, Proceedings of the 1989 IEEE Industry Applications v〇l· 2, pp. 1 693- 1 698, 1 989.], Lorenz divides the synchronous motion control method into synchronized master command generator control (ynchronized master command generator control) ' : From control (C〇nver) ti〇nal Master-Slave.motion control) Spear relative kinetic, R (a) sHffness m〇ti〇n control 〇, synchronous master command control in the literature The characteristic is that the two motor control J k roads can be independent 5 and a ten, and give the same position and speed commands to the two motors according to the same motion requirements required by each axis. The I main control is the two-axis motor. Divided into active and driven horse f, with the response output of the active motor as the input command of the driven motor 'make the motor follow the active motor ^ step forward 仃 movement' to achieve the master-slave The relative dynamic stiffness control of the moving eye is an extension of the master-slave control of the 疋I, using the difference in the motion of the two-axis motor (the position of the same way to reach the same speed.) is fed back to the driven end to compensate for the step motion. effect. In addition, in the processing machine, when the linearity is broken, the 'axis-axis (Z-axis) drive application, Tian Hao! ·The raw motor drives the vertical feed axis to increase the sound AA T when the speed is moving. 'Because of the influence of the heavy knife acceleration, the force will be too large and difficult to position. U〇94 丨年Η Βί4ιΕ % question, empty shell, L. Two -: 1 is easy to cause processing machine 1 A. In addition to the need to carry out, gentleman M /, 'know bad and the accuracy of the processed object is not good, because of the high rigidity design of the gravity compensation i system, the servo system needs to be further - the general practice is nothing more than 卩 & this cheek problem On the traditional horizontal machine tool, the above-mentioned load weight or the gravity compensation of oil and air pressure should be summarized. The control of the multi-axis motor working platform should be mastered and vertical. Synchronous motion control W-knife compensation technology with dual parallel linear motors. SUMMARY OF THE INVENTION The present invention is designed to provide a "pitch control system" H θ Μ two, X parallel linear motor with the same 'string-sub-sub-integration · 4, ρη 乂 bilinear synchronous control, Moreover, in the two-way synchronous control, the realization of the motor-driven control, in the double parallel line of the vehicle, the acceleration motion process, the gravity acceleration on the control performance, and the initiative Even parallel and mixed π, such as vertical, 仏糸 仏糸 与 and string-D-type synchronous control, so it can effectively improve um, ^ ^ ^ ^ 1 i 1 axial double flat 饤 ',,,,, Control performance to achieve high-speed precision positioning. In order to achieve the technical content of the above purpose, the developed synchronous control system has a double parallel line "= line linear horse « 1 active motor and driven motor are controlled bodies and are arranged in the parallel of the tool machine, ..^ On the custom rail, there is a high-rigidity coupling mechanism between the active horse and the driven motor. W. 'The system is based on the series-parallel hybrid control technology, and the slave will be smashed. The loop part is designed as thrust control, and a thrust command gain is added. ^ The driven motor is passed through the 5 hp proportional gain. The active motor obtains the appropriate input sentence ntL years old to share the output of the active motor, and the two sets of motors are used together to promote , @feed axial movement 7 1313094
98, 3. 17 . - J 機構,而能有效平均單一馬達之負擔。 有別於則述先前技術,本控制系統之 馬達是採取順從性(Compl iance)的推力1纟於’從動 出力而力里大小由比例增益適當調整, ib Μ ® -Α ,Λ . ^ 乂達成平均兩組 線丨生馬達推力的目的,降低馬達貞 r Q . _P j N現冢。而剛性 ⑸仙ess)的定位控制則是由主動馬達負責,使 統成適用於具高剛性硬體輕合的運動場合, :、 精密定位功效。 建丨阿速 【實施方式] 配合參看第-圖及第二圖所示之I並聯 抆制架構方塊圖,其構成本發明技 σ工冋動 線性的主動料(30)及從動馬達7;0二有雙平行 設置在工具機台的二平行滑軌上,主動馬彡(控體而 動馬達(7 0 )間設置一剛性輕合機構( )Ά w U J , it 卜 一 Φ -並聯混合式同動控制技術,是將從動馬達(7 迴路部分設計為推力控制’並加上—推力命令御),伺服 0 ),使從動馬達(7 0 )透過該比例增益由主動1盈(5 〇 )獲得適當之輸入訊號,以分擔主動馬達(3 〇、達(3 給轴, 力’利用兩組馬達( 3 0 ) ( 7 0 )共同出力推動進)的出 而洗有效平均單一馬達之負擔。 所述之主動馬達(3 0 )及從動馬達(7 〇 ) 乂 兩平行執道上,主動馬達(3 〇 )及從動馬達(7分設於 構具有位置檢知功能,而在主動馬達(3 〇 ) 〇 )機 词服迴路依 8 1313094 序設置一位置迴路控制器(1 〇 )及—98, 3. 17 . - J mechanism, and can effectively average the burden of a single motor. Different from the prior art, the motor of the control system adopts the thrust of compliance (1) in the 'driven output' and the size is adjusted by the proportional gain, ib Μ ® -Α , Λ . ^ 乂To achieve the goal of the average two sets of line twin motor thrust, reduce the motor 贞r Q . _P j N is now. The positioning control of the rigid (5) fairy ess) is carried out by the active motor, which makes it suitable for sports situations with high rigidity and light weight, and precise positioning. Jianye Aspeed [Embodiment] With reference to the first and second diagrams of the I parallel structure block diagram, which constitutes the active material (30) and the driven motor 7 of the present invention; 0 2 has double parallel arrangement on the two parallel slide rails of the tool machine, and the active stirrup (the control body and the motor (7 0 ) are provided with a rigid light-closing mechanism ( ) Ά w UJ , it 卜 - Φ - parallel mixing The synchronous control technology is a driven motor (the 7-circuit part is designed as thrust control and plus-thrust command), servo 0), so that the driven motor (7 0) transmits the proportional gain from the active 1 surplus ( 5 〇) Obtain the appropriate input signal to share the active motor (3 〇, 达 (3 to the shaft, force 'utilize two groups of motors (30) (7 0) to promote the output) The active motor (30) and the driven motor (7 〇) 乂 two parallel lanes, the active motor (3 〇) and the driven motor (7 points are set in the position detection function, but in Active motor (3 〇) 〇) machine word service loop according to 8 1313094 order to set a position loop control (1 〇 ) and —
, 迷度迴路控制器〔P 0 .屯成控制訊號連接,位於主動馬, the obscurity loop controller [P 0 . 屯 into the control signal connection, located in the active horse
^ 1運〈d 0 )後端連接I 設置—積分器(4 〇 );以及在主動 要 « ^ Γ 7 、、'、( 3 〇 )及從動 馬逆〈7 0 )的控制訊號前端設置— η , J動块是控制器(6 〇 )連接設置在速度迴路控制器(2 n、 推力命令增益 (b 〇 )的訊號輸出端,於從動馬遠 s皿 ^ Φ ^ 建(7 〇)的控制訊號 輸出碥連接設置一積分器(8 〇)。 於本發明中,對於主動馬達( 县針料“ ◦)的位置迴路設計, 疋·十子主動馬達(3 0 )施以剛性之 读(7 η、a <位置控制,而從動馬 達(7 〇 )疋以主動馬達(3 〇 )的推力命令乘 增显為輸入訊號,因此在控制迴路 J 11文〇卞上’首务々、<百 成主動馬達(3 0 )伺服迴路的設 /、凡 性能$ & + t 窗保其位置控制的 月匕之後,方忐進行從動馬達(7 n、 哭〔R η λ ’運1 , 0)端與同動誤差控制 °。( 6 〇 )的設計,而主動馬達 方#d 〇)的位置迴路控制 方塊圖,即如第三圖所示。 配合參看第四圖所示,立係 圖,^ ,、係伺服迴路設計之簡化流程 α 其中,由於絕大多數馬達 你田土 運廠商,並無開放電流迴路讓 使用者自行設計電流控制器, — u此將驅動态切換至推力模 僅需針對速度迴路控制器(Η)#位置迴路控制 匕進行㈣’整個饲服迴路設計之簡化流程圖, 數風 將糸統鑑別所得到的馬達之 数予杈型,代入速度迴路當中, 甲 進饤速度迴路控制器(2 的設計,而在速度迴路控 审」杰(2 〇 )的設計上’是 乂比例積分(ΡΙ)控制器來達到 4 Ν所需之速度響應性能。 1313094 3. 1 將推力模式下之馬達轉移函數以—階系統來表示,當 逮度控制器設計為比例積分(PI)控制器 田 迴路轉移函數無法化為標準:階形式,…=閉 然頻率的方式來加以設計控制器參數,二=與: 點消去受控馬達轉移函數的極』令 例積分(Π)控制器的,…僅 為1 ’此比 之料ρ π 十方式’僅需要決定系統閉迴路 頻寬,即可设計出控制器之參數。 趣路=位二:控制器(2。)的設計,於完成速度 可勿 可由内向外進行位置迴路㈣計;同樣的, 位響應的影響,將速度迴路簡…,此時 趣路纖(10二:而心圖所示,因此位置 即可。告使用μ 、°又。上,可以採用比例(ρ)控制器 轉移函二以麵位置控制器時,整個系統的閉迴路 G(s) = ~S^ s + Cr c, +1 1.1 勺了間吊數為,由頻率響應來看,一階 :寬大:等於其時間㈣,因此給定系統位置迴路頻t 即寺效於給定位置控制器。的比例增益⑻值。 述二::從動馬…0)的推力命令設計,於完成上 ''、(3 〇)的位置控制迴路設計後,即可進行從 動馬;聿Γ 7 η 心叫攸 〇 ^ )的推力控制設計,儘管受控的兩組馬達(3 )(7 〇 )即使為同廠商生產之同號馬達,但 入相同之命令,复鄉藤&块人古 〗守幸刖 ,、音應必”、、' w有所差異,配合參看第五圖 10 所示 命令 體 可令兩馬達 為 0 7 0 )分 X、少2,而當 3 ^ϋ- 替換I, 輸入 、6,輸出響應為_, ^,因此於Ψ . ’2 ,J田厂广6時,由於受控u此輪出少,必不會等同 又径 2右希望獲得兩馬達 其說明如下)相同輪出,則必須適當 調整輸入命令, 不 令雙馬達之轉移函數如下表 α α2 1. 6 ’則輸入與輪出關係如下所 若希望 G2r2 =^>r =,^ 1 运 <d 0 ) Backend connection I setting - integrator (4 〇); and control signal front end setting for active « ^ Γ 7 , , ', ( 3 〇) and slave horse inverse <7 0 — η , J moving block is the controller (6 〇) connected to the speed loop controller (2 n, thrust command gain (b 〇) signal output, in the slave horse far s ^ ^ ^ ^ (7 〇) The control signal output is connected to an integrator (8 〇). In the present invention, for the positional circuit design of the active motor (the county needle "◦"), the 疋·10 sub-active motor (30) is subjected to a rigid reading. (7 η, a < position control, and the driven motor (7 〇) 疋 is activated by the thrust command of the active motor (3 〇) as an input signal, so in the control loop J 11 , <100% active motor (3 0) servo circuit setting /, performance $ & + t window to ensure the position of the month after the control, the side of the slave motor (7 n, crying [R η λ ' The position loop control block diagram of the 1 , 0) end and the co-motion error control ° (6 〇), and the active motor side #d 〇) As shown in the third figure, the schematic diagram, ^, and the simplified flow of the servo loop design are shown in the figure. Among them, because most of the motors are your field operators, there is no open current loop for the users to Design the current controller, — u This will switch the drive state to the thrust mode only for the speed loop controller (Η) # position loop control ( (4) 'Simplified flow chart of the entire feeding circuit design, the wind will identify the system The number of motors obtained is given to the 杈 type, which is substituted into the speed loop. The design of the enthalpy speed loop controller (2, and the design of the speed loop control "Jie (2 〇) is '乂 proportional integral (ΡΙ) control The speed response performance required to achieve 4 。. 1313094 3. 1 The motor transfer function in thrust mode is expressed in the order system, when the catch controller is designed as a proportional integral (PI) controller, the field loop transfer function cannot Turn into the standard: order form, ... = closed frequency way to design the controller parameters, two = and: point to eliminate the pole of the controlled motor transfer function to make the example integral (Π) controller ...only 1 'this ratio ρ π ten way' only need to determine the system closed loop bandwidth, you can design the parameters of the controller. Interest Road = Bit 2: Controller (2.) design, completed The speed can not be calculated from the inside and the outside of the position loop (four); similarly, the influence of the bit response, the speed loop is simple..., at this time, the interesting road fiber (10:: and the heart map, so the position can be. Use μ, ° Further, you can use the proportional (ρ) controller transfer function to the surface position controller, the closed loop G(s) of the whole system = ~S^ s + Cr c, +1 1.1 scoops From the perspective of frequency response, the first order: wide: equals its time (four), so given the system position loop frequency t is the temple effect on the given position controller. The proportional gain (8) value. Note 2: The thrust command design of the slave horse...0), after the completion of the position control loop design of '', (3 〇), the slave horse can be performed; 聿Γ 7 η heart 攸〇 攸〇 ^ ) Thrust control design, although the controlled two sets of motors (3) (7 〇) are the same motor produced by the same manufacturer, but the same order, Fuxiang vine & There must be a difference between "," and 'w. See the figure shown in Figure 5 for the two motors to be 0 7 0) X, 2, and 3 ^ ϋ - Replace I, Input, 6, Output Response For _, ^, therefore Yu Ψ. '2, J Tianchang Guang 6 o'clock, because the controlled u this round less, will not be equal and the diameter 2 right to get two motors, the description is as follows) the same round, must Appropriate adjustment of the input command, do not make the transfer function of the dual motor as follows: α α2 1. 6 'The input and rotation relationship is as follows if you want G2r2 =^>r =,
(1.3) Φ 此增益心可根據下式求得: 尺 r == lim = αΦ\ Kwa,)— (1.4) I Z / 由(1.4)式可知,+ Λ 在串-並聯混合同動控制架槿 動馬達)推力命令與從動馬達(7 0 )的推力命:’ 必然不會是1 : 1的關係,而是必須根據兩級馬達(? ’ (7 〇 )本身的頻寬與動態響應等特性,調整兩組馬達) 〇 )( 7 〇 )之間的推力命令比例增益心的大,媒3 相近的響應輸出。 後得 的影 所述之同動誤差控制器(6 〇 )的設計,由於不同馬 達天主具有運動特性上的差異,加上外界環境(如摩檫力 餐)等不確定性的影響,導致雙馬達C 3 Q ) ( γ 〇、(1.3) Φ This gain can be obtained according to the following formula: Ruler r == lim = αΦ\ Kwa,)—(1.4) IZ / From (1.4), + Λ In the series-parallel hybrid control frame The dynamic motor) thrust command and the driven motor (7 0) thrust life: ' must not be a 1: 1 relationship, but must be based on the two-stage motor (? ' (7 〇) itself's bandwidth and dynamic response, etc. Characteristics, adjust the two sets of motors) 〇) (7 〇) between the thrust command proportional gain center, the media 3 close response output. The design of the co-moving error controller (6 〇) described in the following picture, due to the difference in the motion characteristics of different motor owners, coupled with the uncertainty of the external environment (such as the friction meal), resulting in double Motor C 3 Q ) ( γ 〇,
U 1313094 進行同步運動控制時,無可避 匕皿m 態同而,尤其兩組馬達(3:產生速度與位置上的暫 機構耦合時’會因為兩組馬彡 (:0)間具有硬體 同步而產生互相奪制拉 7 0 )的運動不 生,可在控制迴…入二差。二了避免此-現象發 行同步運動。 。、是補核胃,協調雙馬達進 首先將所設計之同動 μ,簟弋盍η紅* 置决差增益與同動速度誤差捭 1 等效為同動速唐举其 曰 k度决差透過比例積分 償訊號回授至兩馬達(3 ^將補 (7 〇),如第六圖所示。 接著利用梅森增η /入_v' rw 1 式(Mason,s gain formula)將第 六圖以訊號流程圖表 衣不之而如第七圖所示,並求屮 L 之轉移函數如下式: 厂m __ As2 + Bs 4- c lm ~dp7e?~^Tg (1. 5) A —bY B = + 鲁 C 二 b't^K' 其中,_D = 1 E 二 a' + a】+ b'Kj + biK) F 二 a\a2 + b'K' + a2b'K2 + b2K' + a'b2K2 G ~ + (1·^)^Κ-\ 根據式(1. 5)可得/",4匕的轉移函數具有2個零點 (Zero)與3個極點(P〇le),將此條件作為系統鑑別 I測結果之曲線擬合(Curve fitting)條件,即可得到/ 4 ^ 轉移函數如式(1. 6 ) 12 1313094 4是丨日1正_| Ψ η 伞 A s' + Β s + c* D%3+EV7F^f (1.6) 等參數為已知,只要比較(】.5)與(】· 6) 由於 a'、a2、b'、 的各項係數關係,即·^” . J永侍&與κ2之值- 配合參看第八圖戶斤— 串一並f、、θ人4 η * 不,/'係主動式氣壓補償系統加上 申亚如犯合式同動拎 ^ ^ ^ 制条構(位置/推力)圖,可確實達 到咼速及咼精度Λ ^ 孕由同動伺服性能。 在許多工具機應用場 力的需求,除了 χ …了乙求尚速進給與大推 門式(G她y-type)機^台/採用箱體(Β〇χ,-㈣或是龍 雙馬達同動進給的、、“冓叹e十外,垂直軸(ζ軸)亦有採用 平行線性的主動^ =,,配合參看第九圖所示,其具有雙 馬建(3 0 )及從動馬㉝Γ 7 η λ 體而設置在工I檣 ”、達(7 0 )為受控 /女0 ( 9 5 )的二平杆、、典妯r n, 主動馬達(3 〇) 仃α軌(9 1 )上, 與從動馬達(7 〇 ) ^ 機構(Θ 0 ),以爲+ )間政置—剛性耦合 Λ及在工具機台(9 有光學尺(θ2) b)的垂直軸向上設 J對於主動馬達(3 〇)盥 〇 )進行位置檢知, ,、攸動馬達(γ '. 於工具機台(95)之千士 置一氣壓缸(Qq〗 "S直轴向上設 ’以及在剛性_合機播 n給軸(9 4 )。 私構(9 〇 )上設 配合參看第八 圖所示,其串—並聯八 術,可將從動馬達 Q式同動控制技 咬〈7 〇 )部分設計為抽 一推力命令增益( '、力控制,並加上 例增益由主動馬達(30”1得適當之/〇)透過該比 主動馬達(3 0 )的出力利用… 訊號,以分擔 J «力,利用兩組馬@卩 共同出力推動進处^〇) (7〇) 返、.Q輛,而能有效平均單—民W U ; 馬達之負擔,配 13 1313094 年. 3 合主動式氣壓補償系统, 動力源’並提出主動式氣壓 力編統之 能根據進給軸r Q 〇t使得氣壓補償系統 .. 4)的重量及加速度,呻狄 之適當力量’並經由 叶^出所應補償 為一電空比例閥(9 輸入笔壓,而作 ^ X . 」之命令訊號’透過#办卜卜你丨Π,n δ )來控制氣壓缸(9 电工比例閥(9 軸)馬達與負载旦、’力大小’提供垂直軸向(Ζ ,,7 ,, π 里,達成動態平衡需求,以求得最_ 的ζ軸同動伺服性能 ^ ^ 整個進給軸會向下掉茨,:、、免在突然斷電的情況下, 為 曰 洛,並以s型路徑曲線(s-curve)作 為馬達杈擬與實驗的運動路徑。 各S型運動曲線主要運動特徵為位置、速度、加速度、 :衝度曲線為連續’因此馬達進行加減速時,㉟動能平順 w牛低震動’ S &曲線規劃必須根據給定的四項條件來 ;'、定’使用者可依據馬達的性能規格設計下列條件,包括: 1 .運動行程(Smax) 2 ’最大速度(Vmax) 3 ·最大加速度(Amax) 4 ·平均加速度(Aavg) 當給定此四項條件後 曲線’而如第十圖所示 Τα : V max Aavg η: _2*V max A max Tc: Ta ~ Tb 2 Ts: 5 max - To v max Τα 印可規劃出所需之S型運動路 其中: 14 1313094 就z軸同動控制進 J貝,驗,甘 據前述各種控制的設計 昇中,控 式,並 整而得,其相關參數如下:儿根 主動馬達( 制器的設計亦根 據馬達實際響應情况調 〇 之轉移函數Gm=一125^ 〇 )之韩砂 川7.11 以及根據推導c,_ = 5時,合 ^+〇07 ,,^ '會有 從動馬達 G = 0.他,故速度前饋控二匁取佳響應,然於實作上取 J οσ C/ - 0.98^ 0 ) )速度控制器(2 0 ) ;。_10 + 1^ 從動馬達(7 0 )推力命令增益( s 同動位置誤差增益ϋ.5曰现 同動速度誤差增益尤2=002 配合參看第十一圖(a) (b) 從動馬達(7 ΓΜ夕掩*入 〇 ( d)所示,其係 述探m 令增益(5 0 )實驗,而由上 得相同、°,主動馬達(3 〇 )與從動馬達(7 0 )要獲 :的推力輸出,其推力命令必然不會是1:1的關係, 性上 。七、υ」1 )本身的運動響應特 增;调整兩組馬達(30) (70) t間的推力命令比例 二皿的大小,卩獲得相近的推力輸出’如圖所示為不同的 攸動馬達(7 〇 )推力命令增益值,所獲得的主動馬達(3 )與從動馬達(7 0 )之推力輸出電壓比較,由圖中可 發現[Τ'左#、,, ° , 处者增益值的增加,主動馬達的推力電壓明顯下降〔因 处動馬達(7 〇 )協助出力,使得主動馬達(3 〇 )所需 之推力負擔變輕〕,當從動馬達(7 〇 )推力命令增益(5 位置控制器 主動馬達 〇 ) Kr = 0.8 15 1313094 -|8:丨r>t曰flf替換負 0 )设计為0. 8時,士 / ^ 主-從馬達(3 0 ) ( 7 0 )的推力 電壓曲線最為一致,gp你左 gp代表雙馬噠(3 0 ) ( .7 0 )所提 供的輸出推力相當。 配合參看第+ _*同叱― 、 —Μ所示,其係本發明以所規劃之S型 運動路徑命令來測試所 、,&、0 厅提出之主動式氣壓補償系統搭配串 Ρ 。式同動控制(位置/推力)之同動伺服性能,所規 :之S垔運動路杈其運動行程為2 00麵,最大速度為 20 0/0 - 6/7彻/5,愚士 l、太— 、. 度為400/0.36 mm/s2,平均加速度 為 5 0 0 / 〇 · 6 mm/s2,運叙 n± „ * 連動妗間為1 sec。高速s型運動路徑的 運動行程不變但最大抻庳 _ 込又提咼到500 7飾A,最大加速度提 尚到2 5 0 〇 mm/V,平始a 、由也Λ 、 度為 500/0.3 mm/s2,運動時間 縮短為〇. 7 s e c。正弦運無v _ 路從振幅為3 0 mm ,運動頻率分 別以 1 Hz、2 Hz、q Η, 、 3 Ηζ、4Ηζ進行測試。 配合茶看第十:r_带- — 3所不,其為串—並聯混合式同動控 制C位置/推力)之S刮土軍叙一 路役之°-卩令與位置響應比較圖, 由圖可看出兩曲線雖為重合 楚丄 口狀態,然而將兩曲線相減可得 弟十四圖所示之追蹤誤差, π, 一 J知最大暫態伺服落後控制在 ww内’穩態誤差則0制右+1 + ^ t 工制在内(光學尺之解析度)。第 卞五圖進一步表示於s型運書 „ i運動路徑期間,兩組線性馬達之 間的同動位置誤差,由圖 ^ ,. , j看出雙平行馬達的同動誤差可 夺工制在±6鄉内。在高速s型運t 連動路fe測試方面’其命令與 位置t應比較、造蹤誤矣盘不4 1、, 、 ^ Ί線性馬達之間的同動位置 铁菱分別如第十六、第十七 ψ έ 及弟十八圖所示,由各圖可看 出取大暫態伺服落後可栌脊彳Α 工,在0 ·14 /7簡内,穩態誤差可控制 16 1313094 ▲^|正替換頁· 在±1/^77内(光學p丄 尺之解析度)’雙平行馬達的同動誤差可控 制在+6〜-12卿内.。_ 在所規劃正弦運動路徑實驗方面,第十九圖為30麵_ HZ正弦波運動路徑之兩軸同動誤差’同動誤差範圍約在 〇—4pm 之間;繁一 __j_ 軸 ,一圖為30mm-2Hz正弦波運動路徑之兩 毕由同動來差,同勤續辛& 動决差乾圍約在+卜之間;第-+ 一 圖所示為30卿卜3Hz正 弟—十 動誤差範圍約在+3〜_5運動路徑之兩軸同動誤差,同 4Hz正弦波-軍私女Μ之間’第二十二圖所示$ 30麵— ίπζ止弦波運動路徑 +5〜加之門“兩轴同動誤差,同動誤差範圍約在 在、軍. 觀察可知,兩軸同動誤差的峰值出現 在運動速度最大時,而*值出現 ^ f^ ^ 畜運動頻率越高,即運動速度盥 4動加逮度越高時, 、没·Η ^ . At 軸的同動誤差也會隨之增加,作整U 1313094 When performing synchronous motion control, the m-state of the unavoidable dish is the same, especially when the two sets of motors (3: when the temporary mechanism coupling between speed and position is generated) will be due to the hardware between the two groups of horses (:0). Synchronization and the mutual movement of the pull 7 0) of the movement is not born, can be controlled back into the second difference. Second, avoid this - the phenomenon of synchronous motion. . Is to supplement the stomach, coordinate the dual motor into the first design of the same motion μ, 簟弋盍η红* set the difference gain and the same speed error 捭1 equivalent to the same speed Tang 曰 曰 k degree decision through ratio The integral compensation signal is fed back to the two motors (3 ^ will be supplemented (7 〇), as shown in the sixth figure. Then use the Mason, s gain formula to make the sixth picture The signal flow chart is not as shown in the seventh figure, and the transfer function of 屮L is as follows: factory m __ As2 + Bs 4- c lm ~dp7e?~^Tg (1. 5) A —bY B = + Lu C two b't^K' where _D = 1 E two a' + a] + b'Kj + biK) F two a\a2 + b'K' + a2b'K2 + b2K' + a'b2K2 G ~ + (1·^)^Κ-\ According to the formula (1. 5), the transfer function of /", 4匕 has 2 zero points (Zero) and 3 poles (P〇le). As a curve fitting condition of the system identification I test result, the / 4 ^ transfer function is obtained as the formula (1. 6) 12 1313094 4 is the next day 1 _| Ψ η umbrella A s' + Β s + c* D%3+EV7F^f (1.6) and other parameters are known, as long as they are compared (].5) and (6·6) due to each of a', a2, b' The coefficient coefficient relationship, ie ^^". J Yongshou & and the value of κ2 - with reference to the eighth figure of the household jin - string together f,, θ people 4 η * no, / 'system active pressure compensation system plus Shen Asru commits the same type of action 拎 ^ ^ ^ The structure of the strip (position / thrust), can indeed achieve idle speed and 咼 precision Λ ^ Pregnancy by the same servo performance. In many machine tools application field force demand, ... B. Ask for the speed of the feed and the big push type (G her y-type) machine / use the box (Β〇χ, - (four) or the dragon double motor with the same feed, "冓 e e ten In addition, the vertical axis (ζ axis) also has a parallel linear active ^ =, with the reference shown in the ninth figure, which has a double horse built (3 0 ) and a driven horse 33Γ 7 η λ body and is set in the work I樯”, 达(7 0 ) is controlled/female 0 ( 9 5 ) two flat rods, 妯 rn, active motor (3 〇) 仃α rail (9 1 ), with driven motor (7 〇 ^ ^ Institution (Θ 0 ), think that +) between the government - rigid coupling and J in the vertical axis of the tool machine (9 with optical scale (θ2) b) for the active motor (3 〇) 盥〇) Position detection, ,, swaying horse (Gamma] '. In the machine tool (95) a set of one thousand persons pneumatic cylinder (Qq〗 " S disposed axially straight' and a rigid _ n sowing machine to the shaft (94). The configuration of the private (9 〇) is shown in the eighth figure. The series-parallel eight-segment, the part of the driven motor Q-type synchronous control technology bite <7 〇) is designed to draw a thrust command gain (', Force control, plus the gain of the example by the active motor (30"1 is appropriate / 〇) through the output of the ratio of the active motor (30) using ... signal to share the J « force, using two groups of horses @ 卩 co-power Promote the entrance ^〇) (7〇) return, .Q vehicles, and can effectively average the single-min WU; the burden of the motor, with 13 1313094. 3 combined active air pressure compensation system, power source 'and proposed active air pressure The force can be based on the feed axis r Q 〇t to make the air pressure compensation system.. 4) the weight and acceleration, the appropriate force of the 呻 并 and the compensation should be compensated as an electric air proportional valve (9 input pen pressure) , and the command signal of ^ X . " is used to control the pneumatic cylinder (9 electrician proportional valve (9-axis) motor and load, the 'force size' provides vertical axis (" Ζ , , 7 , , π , to achieve the dynamic balance demand, in order to obtain the most _ ζ axis synchronous servo performance ^ ^ The entire feed axis will drop downwards, :,, in the case of sudden power failure, it is 曰 ,, and the s-curve curve (s-curve) is used as the motor simulation and experimental motion path. The main motion characteristics of the motion curve are position, velocity, acceleration, and the impulse curve is continuous 'so that when the motor is performing acceleration and deceleration, 35 kinetic energy is smooth and the cow is low vibration' S & curve planning must be based on the given four conditions; The ', fixed' user can design the following conditions according to the motor's performance specifications, including: 1. Motion stroke (Smax) 2 'Maximum speed (Vmax) 3 · Maximum acceleration (Amax) 4 · Average acceleration (Aavg) When given Four conditions after the curve ' and as shown in the tenth figure Τα : V max Aavg η: _2*V max A max Tc: Ta ~ Tb 2 Ts: 5 max - To v max Τα Print can plan the required S-type motion Among them: 14 1313094 In the z-axis synchronous control into the J shell, the test, according to the above various control design, the control, and the whole, the relevant parameters are as follows: the child root active motor (the design of the controller According to the actual response of the motor The function Gm=a 125^ 〇) of Han Shachuan 7.11 and according to the derivation c, _ = 5, ^^〇07,, ^ 'There will be a driven motor G = 0. He, so the speed feedforward control two Good response, but on the implementation of J οσ C / - 0.98 ^ 0)) speed controller (2 0); _10 + 1^ Drive motor (7 0 ) thrust command gain ( s simultaneous position error gain ϋ .5 曰 simultaneous velocity error gain 2 = 002 See also Figure 11 (a) (b) Drive motor (7 ΓΜ 掩 * 〇 〇 〇 〇 〇 〇 〇 , , , , , , , , , d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d Obtained: the thrust output, its thrust command will not be a 1:1 relationship, sexually. Seven, υ" 1) its own motion response is increased; adjust the thrust command between the two groups of motors (30) (70) t Proportion of the size of the second dish, 卩 obtain similar thrust output 'as shown in the figure is the different thrust motor (7 〇) thrust command gain value, the obtained thrust of the active motor (3) and the driven motor (7 0) Comparing the output voltage, it can be found from the figure that [Τ' left#,,, °, the increase of the gain value of the operator, the thrust voltage of the active motor is significantly reduced [because the motor (7 〇) assists the output, so the active motor (3 〇) The required thrust load becomes lighter], when the driven motor (7 〇) thrust command gain (5 position controller active motor 〇 ) Kr = 0.8 15 1313094 -|8: 丨r>t曰flf replaces negative 0) Designed to be 0.8., ±/^ The main-slave motor (3 0 ) ( 7 0 ) has the most uniform thrust voltage curve, gp Your left gp represents the output thrust provided by the double horse (3 0 ) ( .70 ). Referring to the + _* 叱 、, Μ , , , 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本 本Synchronous servo performance of the same-motion control (position/thrust), according to the regulation: the S垔 motion path has a movement stroke of 200 faces, and the maximum speed is 20 0/0 - 6/7 /5, the fools l , too - , . degree is 400/0.36 mm / s2, the average acceleration is 500 / 〇 · 6 mm / s2, the movement n ± „ * 1 sec between the transitions. The movement of the high-speed s-type motion path is not Changed but the maximum 抻庳 _ 込 咼 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 〇. 7 sec. Sine transmission without v _ The path amplitude is 30 mm, and the motion frequency is tested at 1 Hz, 2 Hz, q Η, 3 Ηζ, 4 分别. See the tenth with the tea: r_带- 3, No, it is the series-parallel hybrid synchronous control C position/thrust) S-scraping military-synchronous road----------------------------------------- Port state, however, the two curves are subtracted to obtain the tracking error shown in the fourteenth figure, π, a J knows the maximum transient servo backward control in ww 'steady state error is 0 system right +1 + ^ t system Within The resolution of the optical ruler.) The fifth chart further shows the co-location position error between the two sets of linear motors during the s-type movement path. The two parallel motors are seen by the figures ^, . The dynamic error can be captured in ±6 townships. In the high-speed s-type transport t-connected road test, the command and position t should be compared, and the misplaced discs should not be compared. 4, , , ^ 同 The linear motion between the linear motors is as follows: According to the figure of the seventeen ψ έ and the younger brother, it can be seen from the figures that the large transient servo is backward and the ridge can be completed. In the 0 · 14 / 7 simple, the steady-state error can be controlled 16 1313094 ▲ ^| Positive replacement page · Within ±1/^77 (resolution of optical p丄)) The co-movement error of the double parallel motor can be controlled within +6~-12. _ In the experimental sinusoidal motion path experiment, the nineteenth figure is the two-axis co-movement error of the 30-sided _HZ sine wave motion path. The co-movement error range is between 〇 and 4 pm; the __j_ axis, a picture For the 30mm-2Hz sinusoidal motion path, the two are separated by the same motion, and the same diligent symplectic & dynamism is about between the + Bu; the first - + picture shows the 30 Qing Bu 3Hz brother - The ten-motion error range is about the two-axis co-movement error of the +3~_5 motion path, and the 4Hz sine wave-military niece's $30 surface shown in the twenty-second figure—the ίπζ-string motion path +5 ~Additional door "two-axis simultaneous motion error, the same dynamic error range is about in the army, observation. It can be seen that the peak of the two-axis simultaneous motion error occurs when the motion speed is maximum, and the * value appears ^ f^ ^ the higher the animal motion frequency , that is, the speed of movement 盥 4 movements and the higher the catch, the 同·Η ^. The same motion error of the At axis will also increase,
…,仍能控制在可接受之範圍内。 Q 以上實驗皆於加入如 情況下進行。由本發斤不之同動决差控制器之 ,θ ^ , π , 之其他相關實驗結果發現,串_ # ,二Γ (位置7推力),在未加入同動-差4 益之兩軸同動誤差 々吳差乜制 的位置響應相差甚大,:;達(_7〇)、與主動馬達(30) 誤差即明顯改善,此架:二=誤,補償後,兩轴同動 (C⑽Pllance)的推力控制,,,馬運(7 ◦)從事順從性 適合應用在具有剛性機' 有疋位功此’因此此架構 因此,經由上述i=o)的控制場合。 驗之詳細說明,可清:成結構、技術内容及模擬、實 提供-種「雙平=本發明設計特點在於: 、馬達同動控制系統」,而在未 17 1313094 年>1 B絛正替換I:' s 進行同動 力控制, 此無法保 同步運動 〇 )之硬 差可獲得 性的推力 互相拉扯 順。此外 計,可使 平均,以 擾情況。 剛性機構 誤差補償時’從動馬達(70)係進行開路的推 由而於控制的物理量為推力而非位置或速度,因 證兩組馬達(3 〇) ( 7 〇)的位置與速:達:丨 ’而當加入同動誤差補償且具有剛性輕合機構(9 體柄合後,兩組馬達(3 0 ) ( 7 0 )的同動誤 明顯的改善’且由於從動^(7〇)進行順從 控制,因此可以改善兩組馬達(3 〇 ) ( 7 干擾的情升3 ’使得進給車由(9 4 )白勺運動較為^ ’藉由從動馬it(70)推力命令增益之適當設 得兩組線性馬達(3 〇 )( 7 0 )推力輸出較為 避免單-馬達過載現象,亦可改善其互相拉扯干 所以本發明的控制架構適合使用在短跨距且具高 耦的應用場合中’而能提供高速精密定位功效。 【圖式簡單說明】 第一圖:本發明中具剛性耦合機構耦合之雙平行線性 馬達同動系統示意圖。 '' 第二圖:本發明中有關串—並聯混合式同動控制架構 (位置/推力)圖。 第三圖 第四圖 弟五圖 第六圖 第七圖 本發明中有關馬達位置迴路控制方塊圖。 本發明中有關伺服迴路設計簡化流程圖。 本發明中有關雙馬達輸入/輪出關係示意圖。 本發明中有關等效雙馬達機構耦合方塊圖。 本發明中有關等效雙馬機構轉合訊號流程 18 1313094 弟八圖 第九圖 第十圖 第十一..., can still be controlled within acceptable limits. Q All of the above experiments were carried out under the conditions of addition. According to other related experimental results of θ ^ , π , the symmetry of the θ ^ , π , the string _ # , 二Γ (position 7 thrust), in the same axis without the same dynamic-difference The positional response of the dynamic error 々 乜 相 甚 甚 甚 , , , , , , , , , , , , _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Thrust control,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Detailed description of the test can be clarified: into the structure, technical content and simulation, and the actual supply - "Shuangping = design features of the invention are:, motor-driven control system", and in the absence of 17 1313094 > Replace I: ' s for the same power control, this can not guarantee the synchronous movement 〇) The hard-to-acquisition thrust pulls each other. In addition, it can be averaged to disturb the situation. When the rigid mechanism is compensated, the 'driven motor (70) is driven by the open circuit and the physical quantity of the control is the thrust instead of the position or speed. The position and speed of the two sets of motors (3 〇) (7 〇) are obtained. :丨' and when adding the same motion error compensation and having a rigid light-synchronization mechanism (after the body shank is closed, the two groups of motors (30) (70) have a significant improvement in the same motion error' and because of the slave^(7〇 ) Compliance control, so it is possible to improve the two sets of motors (3 〇) (7 disturbances rise 3' so that the feed car is moved by (9 4) ^ 'by the driven horse it (70) thrust command gain Appropriately set two sets of linear motor (3 〇) (70) thrust output to avoid single-motor overload phenomenon, can also improve their mutual pull, so the control architecture of the present invention is suitable for short span and highly coupled In the application, it can provide high-speed precision positioning function. [Simplified description of the drawing] First figure: Schematic diagram of the double parallel linear motor synchronous system with rigid coupling mechanism coupling in the present invention. ''Second picture: related to the present invention Series-parallel hybrid synchronous control architecture (position/push Figure 3 is a block diagram of the motor position loop control in the present invention. A simplified flow chart of the servo circuit design in the present invention. The present invention relates to a dual motor input/wheel. The present invention relates to an equivalent double motor mechanism coupling block diagram. The invention relates to an equivalent double horse mechanism conversion signal flow 18 1313094, the eighth figure, the ninth figure, the tenth figure, the eleventh
第 第十 第Tenth
第十 第 第 第 圖。 〜 :本發明中有關主動式氣壓補償系統加上 並聯混合式同動控制架構(位置/推力) .本發明中有關氣壓重力補償示意圖。" .本發明中有關s型運動路徑曲線圖。 圖 Γ g、 •丄 .本务明中有關S型運動路徑—主柃 達推力電壓’推力命令增益=0.5 :: 與時間關係示意圖。 包壓 圖(h、 *丄 .本發明中有關s型運動路徑」 推力電壓,推力命令增益=〇 與時間關係示意圖。 推力電壓 圖 Γ Γ、., 本發明中有關運動路徑—主 達推力電壓’推力命令增益="之:‘、、' -與時間關係示意圖。 力电壓 g :d):本發明中有關s型運動路徑m 達推力電壓,推力命令增益 ,、'、 與時間關係示意圖。 …力電屡 圖·本發明中有關z軸 命令示意圖。動“η型運動路徑 進行s型運動路徑之命令與塑 應比較圖。 s 本ι月進行s型運動路 示意圖。 之軌跡追蹤誤差 本發明進行s型運動 疋兩軸同動誤差 圖 四圖 五圖 1313094 示意圖。Tenth, first, first picture. ~: In the present invention, the active air pressure compensation system plus the parallel hybrid synchronous control architecture (position/thrust) is a schematic diagram of the pneumatic gravity compensation in the present invention. " . In the present invention, the s-type motion path graph is shown. Figure Γ g, • 丄. This is a schematic diagram of the S-type motion path—the main thrust voltage ‘ thrust command gain=0.5 :: versus time. Packing map (h, *丄. s-type motion path in the present invention) Thrust voltage, thrust command gain = 〇 vs. time. Thrust voltage diagram Γ .,., related to the motion path - the main thrust voltage 'Thrust command gain="It: ',, '--time relationship diagram. Force voltage g:d): In the present invention, the s-type motion path m reaches the thrust voltage, the thrust command gain, ', and the relationship with time . ... force diagrams. Figure 3. Schematic diagram of the z-axis command in this invention. The "n-type motion path is used to perform the s-type motion path command and the plasticity comparison diagram. s This ι-month s-type motion path diagram. The trajectory tracking error of the present invention s-type motion 疋 two-axis motion error diagram four figure five Figure 1313094 is a schematic diagram.
第十六圖 第十七圖 第十八圖 弟十九圖 本發明進行高速 示意圖。 型運動路經之位置響應 本發明進行高速s型運動路徑 誤差示意圖。 本發明進行高速s型運動路徑 誤差示意圖。 之執跡追蹤 之兩轴同動 本發明進行正弦運動 1 Η z正弦波運動路徑 圖。 路杈實驗,於30靡ί 之兩輛同動誤差示意 第 圖 τ . 仏只驗,於30mm 3Hz正弦波運動路後 圖。 之兩軸同動誤差示意Figure 16 Figure 17 Figure 18 Figure 19 The high speed schematic of the present invention. Positional Response of Type Motion Path The present invention performs a high speed s type motion path error diagram. The present invention performs a schematic diagram of a high speed s-type motion path error. The two-axis simultaneous motion of the trace tracking of the present invention performs a sinusoidal motion 1 Η z sine wave motion path diagram. In the Lucer experiment, the two motion errors at 30靡ί are shown in Fig. τ. 仏 Only in the rear view of the 30mm 3Hz sine wave motion path. The two axes of the same motion error
5 ^ 3 0 mm.-誤差示意 4Hz正弦波運動路徑之兩軸 圖。 主要元件符號說明] 1 0)位置迴路控制器 ( 3 〇 )主動馬達 (4 , 5 〇 )推力命令增益 7 〇 )從動馬達 〇 )速度迴路控制 積分器 〇 )同動誤差控制器 0 )積分器 哭 οσ 20 1313094 f —- 陶,換頁 (9 0 )剛性耦合機構(9 1 )平行滑轨 (92)光學尺 (93)氣壓缸 (94)進給軸 (95)工具機台 (9 6 )電空比例閥5 ^ 3 0 mm.- Error indicates a two-axis diagram of the 4 Hz sine wave motion path. Main component symbol description] 1 0) Position loop controller (3 〇) Active motor (4, 5 〇) Thrust command gain 7 〇) Slave motor 〇) Speed loop control integrator 〇) Co-motion error controller 0) Integration Cry οσ 20 1313094 f —- pottery, form feed (9 0 ) rigid coupling mechanism (9 1 ) parallel slide rail (92) optical ruler (93) pneumatic cylinder (94) feed axis (95) tool machine (9 6 Electric air proportional valve
21twenty one
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW095103260A TW200729673A (en) | 2006-01-27 | 2006-01-27 | Synchronized motion control system for dual parallel linear motors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW095103260A TW200729673A (en) | 2006-01-27 | 2006-01-27 | Synchronized motion control system for dual parallel linear motors |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200729673A TW200729673A (en) | 2007-08-01 |
TWI313094B true TWI313094B (en) | 2009-08-01 |
Family
ID=45072710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW095103260A TW200729673A (en) | 2006-01-27 | 2006-01-27 | Synchronized motion control system for dual parallel linear motors |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW200729673A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103869749A (en) * | 2012-12-18 | 2014-06-18 | 财团法人工业技术研究院 | Control device, control method, and position command compensation method |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011101897A1 (en) * | 2010-02-17 | 2011-08-25 | 三菱電機株式会社 | Parallel drive system |
DE112010005364T5 (en) * | 2010-03-10 | 2013-03-28 | Kuroda Precision Industries Ltd. | Parallel shifter with a linear air guide, control method therefor and measuring device using the same |
CN105988304B (en) | 2015-02-28 | 2018-10-16 | 上海微电子装备(集团)股份有限公司 | A kind of adjustable magnetic buoyancy gravity compensator |
CN110039329B (en) * | 2015-06-22 | 2022-02-15 | 伊雷克托科学工业股份有限公司 | Multi-spindle machine tool |
TWI558089B (en) | 2015-08-06 | 2016-11-11 | 財團法人工業技術研究院 | Synchronous control system for multi-axis motors and method thereof |
DE102018209725A1 (en) * | 2018-06-15 | 2019-12-19 | Krones Ag | Method and device for load identification of a transport element of a long stator linear motor system |
-
2006
- 2006-01-27 TW TW095103260A patent/TW200729673A/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103869749A (en) * | 2012-12-18 | 2014-06-18 | 财团法人工业技术研究院 | Control device, control method, and position command compensation method |
CN103869749B (en) * | 2012-12-18 | 2016-08-03 | 财团法人工业技术研究院 | Control device, control method, and position command compensation method |
Also Published As
Publication number | Publication date |
---|---|
TW200729673A (en) | 2007-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI313094B (en) | ||
CN104057442B (en) | Series parallel robot in five degrees of freedom | |
CN103737577A (en) | Six-freedom-degree industrial robot with ball screw pair transmission | |
CN105151278B (en) | A kind of rudder face differential driving mechanism suitable for unmanned plane | |
CN2788915Y (en) | Rotary feed mechanism for cold-reducing mill | |
CN103523207A (en) | Electric steering engine | |
CN106738910A (en) | A kind of pair of shower nozzle three-dimensional printer | |
CN110125243A (en) | Progressive molding processing platform and control method with bit shift compensation function | |
CN106112040B (en) | Electrical chuck | |
CN101474756A (en) | Dual-drive skid revolving joint portion dual-shaft parallel high-speed accurate mainshaft head | |
CN101579828B (en) | Parallel 3-DOF drive mechanism of spindle head | |
CN107553467A (en) | A kind of centre of gravity Multifunctional main arm device | |
CN203665186U (en) | Double-lead-screw moment synchronous driving structure | |
CN104259991B (en) | Power control module based on stiffness variable compliant mechanism | |
CN207309934U (en) | A kind of multi-functional main arm device of centre of gravity | |
CN100439050C (en) | Fine vernier parallel 3D travel mechanism including screw pair | |
CN202088310U (en) | Ultrasonic-assisted micro-milling equipment | |
CN102990674B (en) | A/B shaft parallel mechanism | |
CN203622048U (en) | Lathe bed type miller feed mechanism | |
CN104354719B (en) | A kind of two-stage planetary reduction gear formula switch machine of external AC servo synchronous machine drives | |
CN105563205B (en) | A kind of four branch's swallow shape five-axis machining apparatus | |
CN203557211U (en) | B-axis milling head structure for five-axis machine tool | |
CN208068279U (en) | A kind of head device for children's paradise's guest-meeting robot | |
CN111251601A (en) | Movement device of 3D printer | |
CN105108734A (en) | Three-rotation one-movement fully-isotropic parallel robot mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |