TWI311605B - Method and apparatus and program storage device adapted for automatic drill string design based on wellbore geometry and trajectory requirements - Google Patents

Method and apparatus and program storage device adapted for automatic drill string design based on wellbore geometry and trajectory requirements Download PDF

Info

Publication number
TWI311605B
TWI311605B TW094108198A TW94108198A TWI311605B TW I311605 B TWI311605 B TW I311605B TW 094108198 A TW094108198 A TW 094108198A TW 94108198 A TW94108198 A TW 94108198A TW I311605 B TWI311605 B TW I311605B
Authority
TW
Taiwan
Prior art keywords
drill
drill string
drilling
weight
generating
Prior art date
Application number
TW094108198A
Other languages
English (en)
Other versions
TW200600669A (en
Inventor
Daan Veeningen
Kris Givens
Original Assignee
Prad Res And Dev Limite
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prad Res And Dev Limite filed Critical Prad Res And Dev Limite
Publication of TW200600669A publication Critical patent/TW200600669A/zh
Application granted granted Critical
Publication of TWI311605B publication Critical patent/TWI311605B/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)
  • Drilling And Boring (AREA)
  • Stored Programmes (AREA)

Description

1311605 九、發明說明: 【發明所屬之技術領域】 本發明之標的係關於一 如個人電腦)中的軟體系統, 來自動設計鑽柱。 種適合被儲存於—電腦系統(例 用以根據鑽井幾何和執道需求
[先別技術】 取小化鑽井成本及相關的風險必須讓鑽井建造規劃技 ”量到該鑽井設計中所牽涉到的相互依賴性。固有的困 難是’現有大部份的設計程序與系統都是獨纟的工具,其 係供個別任務利㈣規劃程料所牽㈣的各種原理來使 用的。在利用較少的資源來鑽鑿難度越來越高之更高價值 的井之環境中’此時更甚於從前地必須要有—種快速的鑽 井規劃'成本以及風險評估工具。 本份說明書揭示-種代表自動程序的軟體系統,該自 動程序係適合用以整合鑽井建造規劃工作流程並且考量程 序相依性。該自動程序係以鑽鑿模擬器為基礎,該程序代 表允許達成下面㈣之某個軟體系統中所涵蓋的冑度互動 ^序:(1)允許鑽井建造的實務密切地關連至地質模型與地 貝力學杈型;(2)讓資產小組能夠藉由自動產生含有風險評 估的成本預估值來規劃實際可行的鑽井轨道,從而允許對 探勘地進行快速篩選及經濟效益估算;(3)讓資產小組能夠 藉由深入瞭解計劃不確定性的商業影響來量化額外資訊的 價值·’(4)縮短鑽鑿工程師針對已經策劃的鑽井設計來如實 評估風險以及產生可能性的時間與成本預估值所需要的= 1311605 m 3 ^ ^ ^ ,〖仪坷、辨程序、壶 疋不同的鑽井設計方式 一 吟。对〜的商業衫響以及相關的風 +敫八M m朴 作机私的套用情形並且證明 此整合的鑽井規劃與決策支呈 性。 ,、的秘值、速度以及精確 §又§r鑕柱並不是非常複 其中-個組件堆疊至另 * 、吁场隹保將 需要用到的" ,、,件之頂ώ而上的機械穩定性而
另=Γ 法以及計算等全部數量則相當麻須。 :一=!加上下面的事實:必須針對每個鑾洞區段來產 s 、鑽柱,以及於鑽鑿某個井時經常會 運轉’而且所涉及的工作量可能非常魔大且: 易叉到人為誤差的影響。 【發明内容】 '本發明的其中一項觀點係關於一種響應含有鑽井幾何 以及鑽井軌逼需求在内的輸入資料來產生鑽柱設計資訊的 方法,該方法的步驟包括:響應該輸人資料來產生_;份 们鑽井的每個鑿洞區段中某個鑽柱的摘要。 八 本=明的另—項觀點係關於-種可被-機器讀取的程 1儲存衣置,其可明確地實施一種可由該部機器來執行之 复數们#日?所構成的程式,以便實行用於響應含有鑽井幾 白、 、而未在内的輸入資料來產生鑽板設計資訊 ^:法步驟,t亥等方法步驟包括:響應該輸入資料來產生 ^某個鑽井的每個鑿洞區段中某個鑽枉的摘要。 本發明的另一項觀點係關於一種響應含有鑽井幾何以 1311605 = : = Ϊ求在内的輸入資料來產生以及記錄或顯示和 ^ '、個鑽柱相關聯的鑽柱設計輸出資料,其步驟 包括··響應該蚣λ次.„.丨^ ^ ,η. . ^ '貝料來產生一份某個鑽井的每個鑿洞區 丰又中該鑽柱的摘要,嗜 的摘要係選自由^面^ 個^洞區段中該鑽枉 斤、·且成的群組申:該鑽柱之第一鑽铤 的外徑、該鑽杈夕筮__ ^ 第一鑽铤的外徑、該鑽柱之重物的外徑、 曹曰柱之鑽馨官的外徑、該鑽柱之每個馨洞區段中鑽頭上 大重量、該鑽柱之第一鑽艇的重量、該鑽柱之第 =㈣重量、該鑽柱之重物的重量、該鑽柱之第一鑽艇 兮、度。亥鑽柱之第二鑽艇的長度 '該鑽柱之重物的長度、 §玄鑽柱之鑽擊:誓Mi # 、 又、該鑽柱之張力風險、和該鑽柱相 的成本數予以及和該鐵柱相關聯的井诱容限;以及吃 錄或顯示該鑽井中該每個整洞區段中該鑽柱的該份摘要/ 本毛月的另g觀點係關於一種可被一機器讀取的程 式儲存裝置,其可明被祕者土 、 $也貝鈿一種可由該部機器來執行之 複數個指令所構成的程式,以實行用於響應含有鑽井幾何 以及鑽井軌道需求在内的輸入資料來產生以及記錄或顯示 和某個鑽井中某個鑽柱相關聯的鑽柱設計輸出資料的方法 步驟’該等方法步驟包括:響應該輸入資料來產生 個鑽井的每個鏨洞區段中該鐵柱的摘[該份該鑽井中每 個馨洞區段中該鑽柱的摘要係選自由下面所組成的群电 令:該鑽柱之第-鑽铤的外徑、該鑽柱之第二鎮艇的朴、 該鑽柱之重物的外徑、該鑽柱之鑽#管 每個馨洞區段中鑽頭上重量的最大重量、該鑽柱I:: 7 1311605 •铤的重量、該鑽柱之第二鑽铤的重量、該鑽柱之重物的重 量、該鑽柱之第一鑽铤的長度、該鑽柱之第二鑽铤的長度、 該鑽柱之重物的長度、該鑽柱之鑽鑿管的長度、該鑽柱之 張力風險、和該鑽柱相關聯的成本數字以及和該鑽柱相關 聯的井渴容限;以及記錄或顯示該鑽井中該每個鑿洞區段 中該鑽柱的該份摘要。 本發明的另一項觀點係關於一種適合用於響應含有鑽 井幾何以及鑽井軌道需求在内的輸入資料來產生二及記錄 或顯示和某個鑽井中某個鑽柱相關聯的鑽柱設計輸出資料 的系統,其包括:適合用於響應該輸入資料來產生一份某 -個鑽井的每個鑿洞區段中該鑽柱的摘要的設備,該份該鑽 井中每個馨洞區段中該鑽柱的摘要係選自由下面所組成的 -群組中:該鑽柱之第一鑽铤的外徑、該鑽柱之第二鑽铤的 外徑、該鑽柱之重物的外徑、該鑽柱之鑽鑿管的外徑、該 鑽柱之每個鑿洞區段十鑽頭上重量的最大重量、該鑽柱之 第—鑽铤的重量、該鑽柱之第二鑽铤的重量、該鑽柱會 物的重[該鑽柱之第一鑽铤的長度、該鑽柱之第二鑽铤 的長度、该鑽柱之重物的長度、該鑽柱之鑽鑿管的長度、 该鑽柱之張力風險、和該鑽柱相關聯的成本數字以及和該 鑽柱_聯的井漠容限;以及適合用於記錄或顯示該鑽井 中忒母個鑿洞區段中該鑽柱的該份摘要的記錄器或顯示設 備。 ‘ °又 —從下文呈現的詳細說明中將可明白本發明的進一步應 用範脅。不過’應該瞭解的是’雖然代表的是本發明二較 8 1311605 佳實施例,但是該詳細說明與該等特定範例均僅供作解釋 用途,因為熟習本技藝的人士於閱讀下文的詳細說明之後 將會明白本發明的精神與料内所涵蓋的各種變化與修 改。 從下文呈現的較佳實施例的詳細說明以及隨附的圖式 將可完全瞭解本發明,其僅供作解釋用途而並不希望限制 本發明。 【實施方式】 本份說明書中所揭示的传一「 自動鑽井規劃軟體系 統」。本發明的「自動鑽井規劃軟體系統」係一種可快速 產生詳細鑽鑿作業計劃的「智彗却 心生」工具,用以提供經濟 與風險分析。使用者可輸入軌道與地面特性參數;該李统 ==此!料:及各種的型錄來計算且傳送-種最佳的 鎖井汉什,攸而產生複數個輸出,例如鑽柱設計、套管底 座饮泥聚重量、鑽頭選擇與使用、水力特性以及鑽馨任務 的,、它重要因素。多項系統任務會被安排在單一工作流程 之中,其中某項任務的輸出會被併為 使用者能狗修改大部份的輪出,允 黃任務的輸入。 干對下一項任務的★歹室 輛入數值進行細微調整。該「自動 ^、 兩個主要的使用者群:(1)地質 」有 w ,十 予豕.配合軌道與地面特 性-貝料來工作;該「自動鑽井規 、也面特 ^ Μ ΤΙ Λ/Γ · '、A」會提供必要 的鎖鑿工㈣异,如此可讓使用者針對 要 險來快速地界定出候選鑽鑿的範 以及風 χ . ’从及(2)鑽擊:工采5 έ*. 配合鑽井幾何與鑽鑿參數輸出來工 '、 尹. ’以達到最佳的活動 1311605 計劃與風險評估的欵果;地質 面特性資料。可將由整個過裎及、力會提供軌道與地 以分旱给其它的使用者進行同儕&出所級成的方案匯出 具,用以幫助於辦公室與工地現或是作為溝通工 對方案進行修改’以便使用於商業決二:行計劃管理。可 規劃軟體系統」亦可作風、 。該「自動鑽井 訓練工具。 作為“科學家與鑽鐾工程師的一套 该「自動鑽井規劃軟體系統 流程被更快速地執行。此外,, 11得整個鑽井建造 此外’取後還可於 的時間範圍中更新該「自動 、 乍業性決策 執行。敫個重… 鑽井規劃軟體系統」並且重新 轨仃王個重新規劃過程必須夠快 地反覆執行以便經由—連串& h便讓使用者可快速 更漆完美。 連串的一方案來讓鑽井計劃 本份說明書中所揭示的「白 自動鑽井規劃軟體系统所 提供的該等決策支援演算法可蔣砧併* 61」 ^忐了將地質與地質力學資料關連 至該鑽鑿程序(套管點、套營#
苌S °又汁、水泥 '泥漿、鑽頭、水 力知·性…寻)用以預估鑽井睥間、士、士 買才吋間、成本以及風險,並且產生 一份分析明細表(breakdown)。如η·眩叮γ丄> ;如此將可經由該鑽井規劃程 序來快速傳送地面模型的越踩w $田 保i~釋性差異、變化以及更新結 果。 〇亥套和4述的自動鑽井規劃軟體系統」相關聯的軟 體可加速探勘地選擇、篩選、分等級以及鑽井建造的工作 流程。其目標使用者有兩類:一類為產生鑽鑿探勘地者, 而另一類則為規劃與鑽鑿該些探勘地者。更明確地說,該 10 1311605 等目標使用者包含:資產管理者、資 , 貝座吕理者貝產小組(地質學家、地 質物理學家、油藏工程師以及生產 汉生屋工釭師)、鑽鑿管理者以 及鑽鑿工程師。 貧產小組將會使用和該「自動鑽井規劃軟體系統」相 關聯的軟體作為範圍界定工具來進行成本預估,以及吁估 機械可能性’以便可以更富智識性以及更有效的方式來進 行目標選擇以及鑽井佈置決策。此程序有助於改良地下的 估算並且可更瞭解風險以及目標可及性。因為該系統可被 =成用以附著至公司或區域性設計標準、指導方針以及 所以使用者將可相信鑽料劃在技術上係非 常健全的。 鑽鑿工程師將會传用、 Μ便用和本知,兄明書中所揭示的「 鐵井規劃軟體系統.相關 ^ 」相關如的軟體來進行快速的方案規 ^、風險確認以及鑽井 取佺化。其逛將會被用於訓練 中心、大學院校中作盔丨 為5丨、,東之用,以及用於察看特定井的 :“:、以電子式來鑽盤該井、方案的模型化與「— 轉。事件預測以及診斷、鑽馨後的審視以及智識移 該套和該「自重 、釗軟體系統」相關聯的軟體將 J遏專豕以及廠商展
各頁新技術或競爭技術之間的差 別。其將會讓操作者可眚各太M .,,π 里化套用該些新技術或程序時所產 生的風險以及事業影響。 汁座 所以’本份說明蚩一 統 3中所揭示的「自動鑽井規劃軟體系 、可達到下面目的:(η 4丄 (1)蜡由將所有可用的資料以及鑽 1311605 井工程程序納入單一 地& I # ^ ‘的鑽井建造模型之中以大幅 鑽1程序的效率;⑺針對下面條件 、二:以及分析性解決方案:鑽井穩定性、 座選擇,與馨洞尺寸選擇、管子設 汁固井、鑽鑿流體、鑽頭選擇、 ^ Λ ^擇穿透速率、ΒΗΑ設計、 鑽柱設計 '水力特性、風 R* p„ .. .. ^ 險確―、作業規劃以及可能性的 日^間與成本預估,全部均、、5茧 免· μ、 9叫盒方;一機械性地面模型的架構 内’(3)容易且可以互動方々也γ a, 勁方式來%縱個別方案内的變數與中 間結果’用以產生靈齡声八此 皿破度刀析。因此,當運用該「自動鑽 井規劃軟體糸統」時,將可这杰τ二& j違成下面的結果:(1)更精確的 結果;⑺更有效地使用1„源;(3)增進理解;(4)降低 _的風險;(5)降低鑽井成本;以及⑹經由反覆的規劃 與執行來最佳化的標準方法或程序。因此,於設計本發明 的「自動鑽井規劃軟體系統」期間,重點係放在架構與可 利用性上。 配合該「自動鑽井規劃軟體系統」的設計.方式,軟體 開發的努力方向便係要求一種有彈性的架構,其必須允許 讓現有的演算法與技術和可現成購得(c〇TS)的資料視覺化 工具整合在一起。此外,該工作流程還要求該產品必須具 可攜性、重量輕、而且非常快速,並且需要有非常小的使 用者學習曲線。另外一項關鍵條件則係必須能夠依據所提 出的用法、使用者簡檔以及設備可利用性來客製化該工作 流程及組態。 該套和該「自動鑽井規劃軟體系統」相關聯的軟體已 12 1311605 經利用位於德州休士頓的Schlumberger技術公司所擁有的 「Ocean」架構而被開發出來。此架構使用Micr〇s〇ft的net 技術以提供一種軟體開發平台,其允許依據現有的鑽鑿演 异法以及技術便很容易地將複數種Cots軟體工具與一種 被特別s又计來支援客戶工作流程之有彈性的架構整合在一 起。 現在參考圖1,圖中所示的軟體架構概略圖表示的是 用於支援客戶工作流程的「模組特性」。圖丨概略地顯示 被間發用於支援客戶的工作流程之模組架構。此方式能夠 依據所要的用途來組織該應用軟體。為快速地預估和該井 相關聯的·時間、成本以及風險,可以選擇一由查找表和簡 易演算法所組成的工作流程。為進行更細部的分析,則可 於該工作流程之中併入複雜的演算法。 除了各製化該工作流程以外,和該「自動鑽井規劃軟 體系統」相關聯的軟體已經被設計成利用使用者指定的設 備型錄來進行其分析。如此便可確保該軟體所產生的任何 結果必定係依據區域性的最佳實務以及計畫位置處的可用 設備而定。從可利用性的觀點來看,應用軟體使用者介面 已經被設計成允許使用者經由方便的工作流程來進行瀏 覽。 / 現在參考圖2 ,圖中所示的係一由工作流程、求助以 及資料晝布所組成的典型任務審視。圖2顯示的係一具有 其相關聯的使用者晝布的典型任務審視。一典型的任務審 視係由一工作流程任務棒、一動態更新求助畫布以及以 13 1311605 COTS工具(例如工作記錄圖(i〇g 、資料網格(心以 grid)、鑽井概略圖(weUb〇re以及圖表工具 (chamng tool))為主的資料晝布組合所組成。於任何的任 務中’使用者可選擇經由任何該等晝布來修改資料,然後 。亥應用軚體便可依據該些使用者的修改結果來自動同步其 它晝布中的資料。 和該「自動鑽井規劃軟體系統」相關聯的軟體架構的 模組特性亦允許設定非圖形的工作流程,其係為實施高階 功能(例如對全部攔位進行批次處理,以及依據關鍵參數來 進行靈敏度分析)的關鍵。 -於第一項任務中會捕捉一個方案的基本資訊,典型是 該.井以及井基地的井標頭資訊。軌道(經測得的深度、傾斜 度—以及方位角)會被載入,並且會自動計算出其它的方向性 麥數(例如真實的垂直深度以及彎曲嚴重度 severity))並且以圖形的方式呈現給使用者。 本份說明書中所揭示的「自動鑽井規劃軟體系統」需 要載入從-地面模型t被抽出的地f力學地面特性,或者 至少要載入 ㈣、您刀⑺⑽㈣)、斷裂梯度(fracture gradient) 以及無圍摩縮強度。從此輸入資料中,該「自動規割 軟體系統」便可自動選擇最適當的 一 * J謂开機(ng)以及相關聯 的特性、成本以及機械功能。該等鑽井機特性包含下面東 數:鑽井架額定值㈣lekratlng)i以於運轉重型套管 組(ca則g String)時來估算風險;供水力特性的泉特徵;猜 14 1311605 的尺寸(其會影響該等套管的尺寸);以及非常重要的是每 的鑽井機費用以及鑽井總費用。使用者亦能夠選擇和該 「自動鑽井規書彳赴^ , Πχ 剷軟體糸統」所提議者不同的鑽井機,並 能夠修正該軟體所建議的任何技術規格。 由位於;^州休士頓的Schiumberger技術公司所提供的 其它鑽井穩定性演算法可計算出預測的以深度為函數的剪 力皮狄以及斷裂壓力,並且和孔隙壓力一起來顯示該些數 值。接著,該「自動鑽井規劃軟體系統」便會利用可客製 ,的邏輯以及規則來自動提出該等套管底座以及每個馨洞 區段的最大泥漿重量。料規則包含孔隙壓力以及斷裂梯 度的:全邊限'馨洞區段的最小與最大長度以及在設定額 外套官點以前的鑽鑿流體相對於該孔隙壓力的最大超平衡 (Overbade)限制。1亥「自動鑽井規劃軟體系統」可以由 上而下以及由下而上來估算套管底座選擇結果,並且決定 最經濟的變化方式。使用者能夠於任何時間改變、插入、 或者刪除套管點,其將會反映於該井的風險、肖間以及成 本之中。 現在參考圖3,圖中所示的係鑽井穩定性、泥漿重量 以及套管點。 該等鑽井尺寸主要係受限於生產管線的尺寸。前面的 套管與1洞尺寸係利用間隙係數(c〗earance faci〇r)來決定。 該等鑽井尺寸可能還會受限於額外的限制條件,例如工作 記錄規定或是平台狭縫尺寸。利用傳統的雙軸設計演算法 以及簡單的爆裂、倒塌以及張力的負载情況便可自動算出 15 1311605 套管重量、等級以及連接種類。當於龐大的管子型錄中找 到多種合宜的管子時,則會選擇最合乎成本效益的解決方 式。與最低要求的設計係數不符者則會被反白讓使用者知 道,從而指出可對該已提出的設計進行適當的手動改變。 该「自動鑽井規劃軟體系統」允許利用尾管⑴ner)來取代 全部的鑽柱,力此情況中,會自動建議該尾管重疊與懸掛 器成本,同時會於必要時重新設計所有的鑽柱以考量負載 情況中的變化。該「自動鑽井規劃軟體系統」會自動建議 水泥泥漿以及佈置。最前面與最後面的水泥頂端、體積以 及密度都會被建議。該等固井液壓可依據斷裂壓力來驗 證,同時允許使用者修正該等泥毅間隔頂點、長度以及穷 度。從水泥的體積以及佈置該水泥所需要的時間長度則; 推導出成本。 ,及自動鑽井規劃軟體系統」會建議適當的鑽餐流體 種類’其包含進行水力特性計算所需要的流變㈣—〇gy)特 :在内。有-種複雜的排名系統會依據下面條件來為該等 2 =流體系統進行分等:運作環境、排放法規、溫度、 流體岔度、鑽井穩定性、鑽 統僅建議三種不同的…以及成本。雖然該系 门的*體糸統供某個井來使用,不過,使 用者仍=夠輕易地推翻該等已經被提出的流體系統。 ’二法::井規劃軟體系統」所使用的-種新型及新 :強::鑿二璉擇適當鑽頭種類,以便最適於所預期的岩 -T M d, ^ ^ - 鑿間隔。對每種候選鑽頭來說, 可猎由曝岩石間隔所需要的工作和該鑽頭可能的統計 16 1311605 性工作作比較來、太$甘# — '、疋其央尺長度(footage)以及鑽頭壽命。 可氣由估^每央尺的成本(其考量到鑽井機費用、鑽頭成 t起鑽”下鑽作業時間以及鑽馨效能(R0P))從所有的候 選者出最、.二濟的鑽頭。像是鑽柱表面迴轉數以及鑽頭 上重量的鑽鑿參數均會依據統計或歷史資料而被提出。 : 自動鑽井規劃軟體系統」中’會依據必要的最 大鐵頭上重里、傾斜度、方向性軌道以及馨洞區段中的地 層估算條件來設計鑽具組合⑽A)以及鑽柱。鑽井執道會 影響鑽铤(dnll c〇Uar)以及重型的鑽$管之間相對的重量分 ::情形。可依據鑿洞尺寸、前面套管的内徑來自動選擇該 等BHA ..且件,並且异出每次組件尺寸轉換的弯曲應力比 ,。每個s洞區段的最終井读容_ick t〇lerance)亦會被 异出’作為風險分析的一部份。 可利用Luo2以及Moore3的準則來算出用於進行鑿洞 清洗的最小流速’言亥等準則考量到鑽井幾何、BHA組態、 _圳· 在度與仙_紇性、岩石密度以及R0P。鑽頭喷嘴總流動 面積(TFA)會經過設計以最大化用於㈣壓力波封(pressure nvelope)之尾官内的豎官壓力。。果 尾管尺寸(pump liner size)係依據用於進行鑿洞清洗的流動 條件以及對應的循環壓力來選擇。幂律流變模型(p〇werLaw rhe0l0gy modHM〗係用來計算經由該循環系統(其包含等效 的循環密度(ECD)在内)的壓力降。 現在參考圖4 ’圖中所示的係「風險評估」的顯示晝 面。 17 1311605 中於该自動鑽井規劃軟體系統」中,鑽榮 件「風險i魄址祜吾仆士 c1 規要爭 — 一、里化成54個風險類別,使用者可於其 令各製化風險臨界值。兮·笪、 + °亥專風險類別會以深度為函數的方 式來續'製,並且以顏色來 1以有助於快速地看見可能的 達到二"―。將該些類別分組成下面的類別便可 相進-步風險評估的目的:「增益」、「損失」、 官」以及「機械問題」。可沿^ ^ ^ ^ ^ ^ ^ j X轨迢木頦不整體風險記 錄曲線’以便將鑽馨風險與地質標記產生關聯。額外的風 險分析圖會顯示出「真實風險」作為每㈣ 能風險」的一部份。 樣板鑽井規劃軟體系統」,,可從可客製化的 ,板中自動、,且成細部的作業行動計劃。可 工程設計結果來計算每項行動 任私的 生產時間(NPT)。該份行動 "盍非 二.丄—㈤n J s規疋母項行動的時間盥 成本耗圍(朿小值、平均值以 /、 F ? ^ ^ 取大值)亚且以深度及鑿洞 1 又為函數依序列出該等作業。此項資訊可於時間相對深 度以及成本相對深度的關係圖形中以圖形來表示。 現在參考圖5,圖中所示的係—柱 豕地卡羅(Monte Carlo、 時間與成本分佈圖。圖5中,兮「& Carl〇) 自動鑽井規劃軟體系站 會使用蒙地卡羅模擬來調和所有 一 '…」 所有的時間與成本資料範圍, 以便產生可能性的時間與成本分佈。 現在參考圖6,圖中所示的 蚪π庐的私闻 不可邊性的時間與成本相 對/木度的關in圖。圖6中,本發日日 月的「自動鑽井規劃敕體 糸統j所使用的此種可能性分析 — 斤允终置化時間與成本的 18 1311605 P10、P50以及p90機率。 現在參考圖7’圖中所示 本發明的「自的係摘要拚凑圖。圖7中, 9動鑽井規劃軟體系统,所i軍闲& 一人 報告與拼奏顯示佥面光」戶斤運用的綜合性摘要 作為標準的結果^ 巾㈣列印切圖,並且還可 動鑽本份說明書中所揭示的「自
並且經由該鑽井規:二二=議完善的技術性解決方案 sj作/;IL轾來提供一條平順的路徑。利 Z形的Η與每項任㈣結果進行互㈣讓使用 地微調該等結果。只要數分鐘,資產小組、地質科 :鑽馨工程師便能夠利用以實體工程基本原則為基礎的可 Ρ性成本預估 >值取代傳統較不精確的預估方法來估算鑽鑿 I W以及經濟效益。該份測試程式結合該軟體套件開發期 間所接收自該程式其它使用者的回授,所以使其能夠達到 下面結果:⑴經驗不足的使用者以最小的訓練量並且參考 所提供的使用說明文件便能夠安裝且使㈣「自動鑽二規 劃軟體系統」;(2)因為需要有良好的地面特性資料,所以 可增強與地質模型及地質力學模型的連結,並且有助於改 良地下的判讀,其還可用來量化獲取額外資訊的數值以降 低不確定性;(3)該「自動鑽井規劃軟體系統」利用最小的 輪入資料量便可產生遵守所策劃的鑽井設計之合理的可能 性時間與成本預估值;依據該等現場測試結果,假設套管 點數量以及鑽井機費用均正確的話,該等結果將會落在完 整策劃的鑽井設計與AFE的20%以内;(4)利用額外的客 19 1311605 ’、區域化結果’所預測的結果可相當於完整策劃的鑽 =計…靴⑺-旦已經區域化該「自動鑽井規 體乐統」’便可非常容易地快速執行新的方案並 =套用新技術、程序或方式至鑽井設計中所造成的事業声 =及相關聯的風險;⑹該「自動鑽井規劃軟體系統^ =又允許快速反覆執行且改進鑽井計劃並且產生不同的 what lf」方案用於進行靈敏度分析;⑺該 劃軟體系統」可對於一過去資料為凌亂、不-致、 $明的程序提供-致且透明的錢井成本預估值;使該工作 %有效率且消弭人為偏見則可讓鑽鑿人員有信心委託且 抆杈給非’鑽鑿人員來進行他們自己的範圍界定
該「自動鑽井規劃軟體㈣」可制該險及不確定 獨特的睁解,你& -Γ s A a攸而可更實際且經濟地進行模型化I改良決 f;(9)風險評估可精確識別該鑽井中的風險種類與位置, 讓鑽鑿工程人員可I古 貝j取有效地集中進行他們的細部工程;(1〇) 可依據地面模切决敕人n A 乂, 、, 、笊1 5且自動化該鑽井建造規劃工作流程 :且產生技術上完善且可用的結果;⑴)該計劃能夠廣泛 i ^ e(m技術來加速該軟體的開發,·以及⑽利用該 ㈣u㈣1#理該等鑽井工程卫作流程的相互依賴 性。 本份說明書中使用到下面的術語表: RT 即時’通常係使用在(進行鑽馨時)即時資料的内容 中。 G&G= 地質與地質物理 20 1311605 SEM= MEM= NPT= NOT= WOB= # ROP= RPM= BHA= SMR= BOD= AFE= 共享的地面模型 機械性地面模型 非生產時間,#未規劃作業或是因為作業性困難而 延遲到鑽井進程,通常亦稱為障礙 澈
Time)。 非理想時間,當作„各項理由Μ”於應該花 費的時間。 鑽頭上重量 穿透速率 每分鐘的迴轉數 鑽具組合 軟體修改要求 设計基礎,規定欲被鑽鑿的井的需求的文件。 支出授權 參考文獻 B〇〇th,J.、Bradford, I.D.R·、Cook,J.M·、Dowell,J.D.、
Ritchie,G.、Tuddenham,I.等人於 2 月 27 日至 3 月 1 日在 何蘭阿姆斯特丹舉行的2001 iaDC/SPE Drilling Conference 中所 &出的「Meeting Future Drilling Planning and Decision Support Requirements: A New Drilling Simulator」, IADC/SPE 67816。
Luo, Y.、Bern,P.A.以及 Chambers,B.D.等人於 2 月 18 至21日在美國路易斯安那州New Orleans舉行的1992 IADC/SPE Drilling Conference 中所提出的「Flow-Rate 21 1311605 备 - Predictions for Cleaning Deviated Wells」,論文編號 IADC/SPE 23884。
Bourgoyne,Α·Τ.、Jr 等人於 SPE Textbook Series 第 2 冊中的厂Applied Drilling Engineering」t 所發表的 Moore 與Chien理論。 於下面的段落中將會提出和整個「自動鑽井規劃軟體 系統」(稱為「使用個案(use case)」)相關聯的功能性說明 書。此份功能性說明書係關於整個「自動鑽井規劃軟體系 統」 下文中所疋義的資§孔與此特定的「使用個案」有關。 每則資訊對瞭解該「使用個案」背面的、目的均非常重要。 内容目標: 範圍: 階層: 前置條件: 籲成功結束狀況: 失敗結束狀況: 主要參與者: 觸發事件: 為低階使用者描述完整的工作流程
N/A 低階 預定的地質目標 機率為基礎的含有成本與風險的時間 預估值 因假設而導致計算失敗或是結果分佈 過大 鑽井工程師
N/A 主要成功方案—此方案描述的是於每件事均可行而沒 有任何失敗時從觸發事件至目標完成所採取的步驟。其= 22 目標之後所進行的 下: 描述於已經達成該 業。該等步驟提列如 任何必要的清除作 】·使用者會開勒· # 私式’而系統則會提示使用者 開啟-舊檔或是產生曰抚丁便用者究竟要 ’ & 使用者會產生新模型,而糸 、,先則會向使用者提示鑽井資訊(鑽井名稱 而系 標)。系統會提示使用者 苟,豕、座 、 丁便用者必須插入地面模型。具有不回.登请 的視窗會出現且使用者舍一 5、頁 讓使用者以… 階層。附屬視窗會出現
且==載入權案或插入資料。系統會顯示 /、有下面貝Μ 3D地面模型晝面:關鍵地平線 反目標、標記、震波...等。 、 2·系統會向使用者提示鑽井軌ι制 案中載入或是一一一產生—條= …統會於地面模型與複數個2D晝面中產生3〇的執道 畫面’平面與垂直部份皆有。使用者會被提示以驗證執道 亚且於必要時透過和3D視窗直接互動來進行修改。
3.該系統將會沿著該條執道來抽出每個點的機械性地 面特性(PP、FG、WBS、岩石特性、密度、強度、最小/最 大水平應力…等)並且予以儲存。該些特性將可能來自一已 群聚(populated)的機械性地面模型、來自被套用於此條執 道的經詮釋的日誌、或是亦可以手動方式輸入。 4·該系統將會向使用者提示該等鑽井機條件限制。該 系統將會提供鑽井機規格選項,而使用者將可選擇該鑽井 機的種類與基本組態或是針對特定的鑽鑿單元以手動方式 插入資料。 23 1311605 料,=合的話,,該系統將會提示使用者輪入賺力資 用pj㉒自^所插人的機械性地面模型,而且將會利 窗將1、FG以及刪等曲線產生-卿視窗。該卿視 ®將㈢破顯示並且允許進行互動式修改。 二系統會將該井自動分割成依據井湧容限的複數個
旦翁套官區段以及複數個執道區段,然後建議一份泥毀重 里報表。該些部份均將會被顯示於該M
讓使用者以互動方式來修改它們的數值。亦=等亚2; 與30軌道顯示晝面上以互動方式來修改該等套管點: 、7·該系統將會向使用者提示套管尺寸條件限制(管子尺 寸、表面狹縫尺寸、估算規定),並且依據該等區段數量產 生合宜的鑿洞尺寸-套管尺寸組合。該系統將會使用到該鑿 洞/套管圓圈圖’其再—次允許與使用者進行互動用以修改 S亥塞洞/套管尺寸級數。 8 ·及系統將會依據該等選定的尺寸及該等深度來連續 _叶异複數個套管等級、複數個重量/壁厚度以及連接。使用 者將能夠進行互動並且界定套管種類的可利用性。 9. 該系統將會產生一基本的固井程式,其具有簡單的 尤浆設計及相應的體積。 10. 該系統將會依據該等先前實施的計算來顯示該鑽井 概略圖式,而且此介面將是完全互動的,允許使用者進行 點違且拖矣鑿洞與套管尺寸、頂端與底部設定深度,以及 依據邊些選擇來進行重新計算。假設該選擇不適合的話, 系統將會發出旗號通知使用者。 24 1311605 11 該糸統將會產生適當的泥漿種類、相應的流變特性 以及依據;6·石特性、先前的計算結果以及該等使用者選擇 結果的組成。 12. 該系統將會連續地將該等鑽井區段分割成複數個鑽 頭運轉作業,而且將會依據該等岩石特性利用R〇p與鑽鑿 參數來選擇每個區段的鑽頭。 13. 該系統將會依據該等鑽頭區段運轉作業、執道以及 石石特性來產生一基本的BHA組態。 第14、15以及1 6項代表一項任務:水力特性。 14_該糸統將會依據軌道、鑽井幾何、BHA組成以及 MW特徵來執行鑿洞清洗計算。 15. 該系統將會使用統計性R〇p資料來進行初始水力 特性/ECD計算。此資料將可依據智慧表查找,由該系統來 選擇或是由使用者定義。 16. 使用於該第一次水力特性計算中所產生的資料,該 系統將會依據鑽頭特徵及岩石特性來實施R〇p模擬。 17. 該系統將會利用該R〇P模擬資料來執行一連串的 水輕性/ECD計算。假設參數不適合的H統將會發出 旗號通知使用者。 夕18 ·該系統將會計算該等鑽鑿參數並且將它們顯示於一 多重顯示面板之上。此顯示晝面將可匯出、攜帶以及列印。 19.該系統將會針對雷同的鑿洞區段及結束狀況,使用 内定的動作序列來產生一動作規劃序列。此序列將可由使 用者進行完整修改’其允許依序且於該事件的持續時間内 25 1311605 來進行修改。此序列將會和該等鑽井作業或鑽鑿報告軟體 具有相同的標準,而且將可與該等鑽井作業或鑽鑿報告軟 體進行互換。該等動作的持續時間將會來自含有内定「最 佳實務」資料的表格或是來自歷史資料(DIMS、Snapper…)。 20. 該系統將會依據該等動作規劃細節來產生時間相對 深度曲線。該系統將會使用内定資料與歷史資料的組合來 產生一組最佳、平均以及最差的時間曲線。該些曲線將可 被匯出給其它文件並且進行列印。 21. 該系統將會提示使用者選擇機率點(例如ρι〇、ρ5〇、 P9〇),然後執行蒙地卡羅模擬來為用於反白該等使用者選 定之麥考點及相應時間值的方案產生一機率分佈曲線。該 系統將會以此作為頻率資料或累積機率曲線。該些曲線同 樣可匯出以及列印。
2 2 ·該系統將會利用由使用者事先進行組態且可於此時 點進行修改的内定成本樣板來產生—份成本計劃。該等成 本中大部份會參照整個鑽井的持續時間、s洞區段、或是 特定動作來計算所套用的成本。該系統將會產生ρι〇、㈣ 以及Ρ90成本相對深度的曲線。 3.該系統將會α w_格式以及該等主要顯示圖形 面來劃的摘要。使用者將會透過-核取框介 匯出者。該系統將會產生整個程序的 板。 ^文件將會遵照—標準的鑽井作業程式樣 現在參考圖 ’如同從圖2至圖6中所示晝 面的左側 26 1311605 中所看到者’該「自動鑽井規劃軟體系入 務。每項該些任務均被描緣於圖8之令」^複數項任 數項任務會被分割成四群:⑴輸 圖8中,該些複 供輸入資料;⑺鑽井幾何任務12以及鑽2於該處會提 於該處會實施計算;以及⑺結果任務16,數任務14, 出-結果集並且呈現給使用者。輸’於該處會計算 子任務:⑴方案資訊,⑺執道,(3)地面V: &含下面的 選擇,⑺再取樣資料。鑽井幾何任務12^生人,⑷鑽井機 務:(υ鑽井穩定性,(⑽重量及套管點二==任 ⑷套管設計,(5)固井設計,⑹鑽井幾何。)=尺寸, 包含下面的子任務:⑴鑽馨流體,(2)鑽頭選'任務14 柱設計⑽,⑷水力特性。結果任矛务16 =143,⑶鑽 務··⑴風險評估16a,⑺風險 匕3下面的子任 + 風險矩陣,(3)時間與成大次教 )吟間與成本圖,(5)蒙地卡羅,⑹蒙地、:貝’ 摘要報告,以及⑻拼凑。 、羅關係圖,⑺ :想圖8的結果任務16包含一「風險評 面的段落中將參考圖9A、9B以及1〇來詳細地 、’ μ風險坪估」子任務1 6a。 識別和鑽馨某個井相關聯的風險可能係今曰鑽井規割 :主覜的程序。此部份係依據個人對技術性鐵井設計的 @與地面特性或是鑽馨該井所使用的機械設備無 :。進行任何風險的識別必須整合下面所有部份:人所 的井、地面及設備資訊並且思慮所有該等資訊、映對相 27 1311605 互依賴性以及僅依據個人的經驗來抽出該計劃中有哪些
份會對該計劃的整體成功情形造成何種可能風險。此部份 /采受下面的影響.人為偏見、個人於他們的記憶_纪憶及 整合所有資料的能力以及使他們瞭解會觸發每種鑽馨風險 之情況的個人經驗。大部份的人並不具備完成此工作的能 力,而可完成此工作的人卻又非常不一致,除非遵循嚴謹 的程序與核對清單。現今存在著部份的鑽鑿風險軟體系 統,不過,該些系統全部需要相同的人為過程來識別與評 估每項個別風險的可能性以及結果。它們僅係一電腦系 統,用來手動記錄該風險識別程序的結果。 和本發日月的「自動鑽井規劃軟體系統」相關聯的風險 評祜子任務16a係—會針對地面地質特性與地質力學特性 乂及針對4⑨備的規定或建議用法的機械限制來自動評估 和該等技術性鑽井設計決策相關聯的風險的系統。 β、下面四種方式來a十异風險:⑴利用「個別的風險 參數^⑺利用「風險_」,(3㈣「總風險」,以及 (4)計异每一者的「定性風險指數 個別的風險來數传、;;1_ |句_丑 歎^ °者忒井所測得的深度來計算,並 ^可以顏色進行編碼來標示高、巾、或低度風險,顯示給 = 每項風險均將會讓使用者明心風險達反行 為的真貫意義,以及# .. 二制風險的工作流程中的價值以及 任務。該些風險均會 B & 致且透明的方式被算出,以便讓 便用者硯看且瞭解所有 厨略_ t 4已知的風險以及如何識別該等 風險。该些風險還會告知 ^ 4使用者該井的哪些特點值得 28 1311605 進—步的工程努力,以進行更細部的調查。 么汁异群組/類別風險時會將所有該等個別風險併入特定 的組合之中。每項個別的風險都是-或多項風險類別中: 甘ψ C3 丁曰勺 ’、α—貝。四種主要的風險類別定義如下:(1)增益型風險、 (2)知失型風險、(3)卡f型風險以及⑷機械型風險; =類別係世界各地續中最常見且最昂責的
某個方案的總風險可依據該等風險轴與深度轴 該等群組/類別風險的累積性結果來算出。 有 風險指數—每項個別的風險參數 風險指數,豆兔恭生甘κ 個別的 χ某項特殊風險的可能性的相對指干_ 號。雖然此純粹俜定性的古斗· 訂心不付 風險和另—項風險的 項 , 的相對可能性一當從百分比變化來觀突 :可^特別具有指示意義。每種風險類別均可用於產生二 期中最3tl能性的類別風險指數,並且可用於識別預 月“、陬礙事件種類。最後,可針對該方案產生單 一風險指數,i# 木座王早 數纟特別適用於比較其中—種 的相對風險。 々力万茶 餐明的「自動鑽井規書】 6, ^^ 才現sj軟體糸統」能夠傳送一全面 的技術性風險評估,而且其能 身文人的对1 元成此评估。在沒有 玉口的技衡性鑽井設計模型來 味關聯之IT r f又寸决朿和相闕的風險產 生關和之下,該「自動鑽井 吟錡®於姓A J欺粗系統J可以將該等風 險命因於特定的設計決策,而 處盡力修改竿項支遮 、了以扣不使用者於適當 人呆項设计選擇以便修改兮 1文U改該井的風險輪廓。 29 1311605 扩“現在麥考® 9A,圖中所示的係-電腦系統1 8。該電 T、^ 1 8包含一連接至系統匯流排的處理器1 8a ; —連接 至該系統匯流排的記錄器或顯示裝置⑽;以及一連接至 的記憶體或輕式儲存…8c。該記錄器或 二、衣 &適合用以顯示「風險評估輸出資料」i8bj。 或程式錯存裝置18c則適合用以儲存一「自動鐵井 卿相險評估軟體」18c!。該「自動鑽井規割風險評 ^之^原本錢存^_個「„料以」(例如硬 而 不^ ^硬碟已經被插入該電腦系統18之中, ^自動鑽井規誠險評估軟體」加财從 =…腦系統18的記憶體或程式儲存裝置18二 則二連數筆「輪入f料」2。,存媒體2。 媒趙二接==Γ系統匯流排,當, 丈牧主及畦細系統18的系 统]S ώΑ由 糸,,先匯〜排捋,該電腦系 、、充18的處理器18a便可存取該「 錢系 中,該電腦系統18的處理器18a二貝料」20a。於運作 系統1 8之記_ t f j : a執仃被儲存於該電腦 心 思體或程式儲存 風險评估軟體心,同時_執^之中的自動鑽井規劃 存媒體20之令的「輸入資:、仃糊吏用被儲存於該儲 、π」2〇a。當虚趣努 1f> 行被錯存於該記憶體或程式館存褒置ls 8a完成執 ==評估軟體咖(同時使用「輸二:::自_井 讀杰或顯示裝置18b便將會 」加)%,該 出資料」咖,即如圖9 心該「風險評估輪 腦系統1 8的領示鳌慕卜& _ 舉例來說,可於該電 “”、 4示該「風險评估輪出資料Jl8bi, 30 1311605 或者可將該「風險評估 % 18 ^ ^ /t fl,J貝料」18b 1記錄於由該電腦系 '.死18所產生的印出資料 尚亍 以异一 , 中圖9 A的該電腦系統18可 疋一 4個人電腦(PC)。 -電腦可讀取的媒體或」。體或程式儲存裝4…係 ^ ^ ^ ’、i s疋可由某個機器(例如處理器丨8 ) 來咳取的程式儲存裝置。舉 ^ ft卢柙抑他 + 1J來呪,處理器18a可能是一 U處理态控制器、、或 舉例來嗜,用於妙七 大生电月自或工作站的處理器。 λ, ^ ^ 動錯井規劃風險評估軟體」1 8cl 的圮憶體或程式儲存裝置 a R〇M、DRAMU1^Raa ^"^«、R〇M、CD- 體、光學儲存:二?、記憶體、磁崎 性記憶體。 …戈疋其匕的依電性及/或非依電 裝置圖9B:圖中所示的係圖9a的記錄器或顯示 18bl勺人、又大圖式。圖9b中,該「風險評估輸出資料」 n⑴複數個風險⑺複數個子類別風險(每 二=已經被評等為高度風險或中度風險或低度風險);以 中庚w 已經被評等為高度風險或 或低度風險)。圖犯的記錄器或顯示袭置⑽將 曰緘不或圮錄含有該等風險類 ^ J °亥寻子類別風險以及該 寻個別風險在内的「風險評估輸出資料」“Μ。 卿n二在芬考目1〇 ’圖中所示的係圖9A #「自動鑽井規 -丨風險#估軟體」18cl的細部構造。目1〇中…亥「自動 =劃風險評估軟體」18cl包含:一第—區塊 '於儲 存该輸入資料20a ; —第二區塊2?,田认u 禅H…, 矛匕鬼22,用於儲存複數個風險 =砝耳又不式22 ’· 一第三區塊24 ’用於儲存複數個風 31 1311605 險評估演算法24 ; 一第 評估常婁"6’·以及:[:26,用於儲存複數個風險 评话型錄I該等風=儲存複數個風險 值:、二:與該等風險評估邏輯表示式22之輸 法243^7型錄28 t含作為由該等風險評估演算 「輪入資Γ 估軸表^22來輸人❹找數值。 風rn/'、」Ga包合作為該等風險評估演算法24愈兮等 紙險評估邏輯Φ /、違寺 資料」18bl包含^之輸入的數值。「風險許估輸出 風險評估邏輯表干二風險評估演算法24算出且由該等 圖9鱼10 式2所產生的數值。於運作中,參考 該風險評估的處理心會藉由執行 等風險評估演d该寺風險評估邏輯表示式22與該 體如,並且該自動鑽井規劃風險評估軟 該等風險評估C行期間使用該「輸入資料」-、 之中作為料風卜被儲料料缝料型錄μ 算法24的「輪入邏軏表示式22與該等風險評估演 該等風險評枓」的數值。當該處理器⑻完成執行 時使用該式22與該等風險評估演算法24⑺ 將會產生該「貝' 常婁欠26以及型錄28)時,便 該「風險評估輪出31Γ 」18bl作為「執行結果」。 該電腦系统18 ,貝;」18Μ會被記錄或顯示於圖9八的 作業員透過圖1(^錄器或顯示裝置咖上。此外,可由 式將該「風險評估:二的「手動輸入」區塊3〇以手動方 輸出貢料」18bl輸入至該風險評估邏輯 32 1311605 表示式區塊22與該風險評估演算法區塊24。 輪入資料20a 下面的段落將會提出由該等「風險評估邏輯表示式」22 與該等「風險評估演算法」24所使用的「輸入資料」20a。 作為該等風險評估演算法24與該等風險評估邏輯表示式22 的輸入的輸入資料2 0 a的數值如下: (1) 套管點深度 (2) 經測得的深度 (3) 真實垂直深度 (4) 泥漿重量 (5) 經測得的深度
(6) ROP (7) 孔隙壓力 (8) 靜態溫度 (9) 泵速率
(10) 彎曲嚴重度 (1 1)ECD (12) 傾斜度 (13) 鑿洞尺寸 (14) 套管尺寸 (15) 東西向 (1 6)南北向 (17) 水深 (18) 最大水深 33 1311605 (19) 最大井深 (20) 井湧容限 (21) 鑽铤1的重量 (22) 鑽铤2的重量 (23) 鑽鑿管重量 (24) 重型重量 (25) 鑽鑿管張力額定值 (26) 鑽井穩定性上限 (27) 鑽井穩定性下限 (28) 無圍壓縮強度(UCS) (29) 鑽頭尺寸 — (3 0)機械性鑽鑿能量(於該鑽頭所鑽鑿出的距離上進行 UCS積分) (3 1)相較於統計性英尺長度之已鑽鑿的英尺長度比值
(32) 累積性UCS
(33) 累積性超額UCS (34) 累積性UCS比值
(35) 分段的岩石的平均UCS
(36) 分段的岩石的鑽頭平均UCS (37) 統計性鑽頭時數 (38) 該鑽頭的統計性已鑽鑿英尺長度
(39) RPM (40) 最低時數(On Bottom Hours) (4 1)已算出的總鑽頭迴轉數 34 1311605 (42) 起鑽與下鑽作業時間 (43) 關鍵流速 (44) 馨洞區段中的最大流速 (45) 鑿洞區段中的最小流速 (46) 流速 (47) 鑽頭的總喷嘴流動面積 (48) 水泥頂端 (49) 最後面泥漿的頂端 (50) 最前面泥漿的長度 (51) 最後面泥漿的長度 (52) 最前面的水泥密度 (53) 最後面泥漿的水泥密度 (54) 每英尺的套管重量 (55) 套管爆裂壓力 (56) 套管倒塌壓力 (57) 套管種類名稱 (58) 水泥柱的靜態液壓 (59) 起始深度 (60) 結束深度 (61) 導管 (62) 鐾洞區段開始深度 (63) 開放鑿洞或已套接鑿洞完成 (64) 套管内徑 (65) 套管外徑 35 1311605 (66) 泥漿種類 (67) 無安全邊限的孔隙壓力 (68) 管子爆裂設計係數 (69) 套管倒塌壓力設計係數 (70) 管子張力設計係數 (71) 鑽井架負載額定值 (72) 絞車(drawworks)額定值 (73) 運動補償器額定值 (74) 管子張力額定值
(75) 統計性鑽頭ROP
(76) 統計性鑽頭RPM (77) 井種類 (78) 最大壓力 (79) 最大尾管壓力額定值 (80) 循環壓力
(81) 鑽頭的最大UCS (82) 氣隙 (83) 套管點深度 (84) H2S的存在 (85) C02的存在 (86) 離岸井 (87) 流速最大限制 風險評估常數26 下面的段落將會提出由該等「風險評估邏輯表示式」22 36 1311605 與該等「風險評估演算法」24所使用的「 26 °作為風險評估演算法24與風 風險評估常數」 輸入資料的常數26的數值如下: 碎輯表示式22之 (1) 至孔隙壓力的最大泥漿重量超平衡 (2) 最小的必要倒塌設計係數 (3) 最小的必要張力設計係數 (4) 最小的必要爆裂設計係數 (5) 岩石密度
(6) 海水密度 風_險評估刮^ 28 下面的段落將會提出由該等「風險評估 與該等「風險評估演算法」24所使用的「轉表不式」22 28。作為風險評估演算法24與風險評估邏輯=估型錄」 輸入資料的該等型錄28的數值如下: 丁式22之 (1) 風險矩陣型錄 (2) 風險計算型錄 (3) 鑽柱組件型錄 (4) 鑽頭型錄 (5) 間隙係數型錄 (6) 鑽铤型錄(Drill Collar Catalog) (7) 鑽鑿管型錄 (8) 最小與最大流速型錄 (9) 泵型錄 (10)鑽井機型錄 37 1311605 (11) 常數與變數設定型錄 (12) 管子型錄 下面的段落將會提出由該 產生的「風險評估輸出資料」風險評估演算法」24所 算法」24所產生的「 “專「風險評估演 的給屮眘社絲a °f估輪出資料」1 8b 1包含下而 的輸出貝枓種类貞:⑴風 匕3下面 個別風險。「風險評估輸出資,(2)子類別風險;以及⑺ 吟類別 貝抖」18bl中所含的該等「風 份: 」乂及「個別風險」包括下面部 風險類別 其會計算出下面的 (1)個別風險 (2) 平均個別風險 (3) 子類別風險 (4) 平均子類別風險
(5) 總風險 (6)平均總風險 ⑺每項設計任務的可能風險 ⑻每項設計任務的真實風險 其會計算出下面的「子類別風險 (1) 增益型風險 (2) 損失型風險 (3) 卡管型風險 38 1311605 (4)機械型風險 其會計算出下面的「個別風險」: (1) H2S 與 C02 (2) 氫氧化物 (3) 井水深 (4) 彎曲度 (5) 彎曲嚴重度 (6) 方向性鑽鑿指數 (7) 傾斜度 (8) 水平位移 (9) 套管磨耗 (10) 高孔隙壓力 (11) 低孔隙壓力 (12) 堅硬岩石 (13) 鬆軟岩石 (14) 面溫 (15) 至鑽井機額定值的水深 (16) 至鑽井機額定值的井深 (17) 會井湧的泥漿重量 (18) 會損失的泥漿重量 (19) 會破裂的泥漿重量 (20) 泥漿重量範圍 (21) 鑽井穩定性範圍 (22) 鑽井穩定性 39 1311605 (23) 鑿洞區段長度 (24) 套管設計係數 (25) 鑿洞至套管間隙 (26) 套管至套管間隙 (27) 套管至鑽頭間隙 (28) 套管尾管重量 (29) 套管最大的過度拉曳量(overpull) (30) 水泥的下方頂端 • (31)會井湧的水泥 (32) 會損失的水泥 (33) 會破裂的水泥 (34) 鑽頭超額工作量 (35) 鑽頭工作量 (36) 鑽頭英尺長度 (37) 鑽頭時數 (38) 鑽頭迴轉數
• (39)鑽頭 ROP (40) 鑽柱最大overputt (41) 鑽頭擠壓強度 (42) 井湧容限 (43) 關鍵流速 (4 4)最大流速 (45) 最小喷嘴面積 (46) 豎管壓力 40 1311605
(47) 會破裂的ECD
(48) 會損失的ECD
(49) 海底 BOP (50) 大型鑿洞 (5 1)小型馨洞 (52) 套管組的數量 (53) 鑽柱分離 (54) 鑽屑 遂JU估邏輯表示式9 9 ^下面的段落將會提出「風險評估邏輯表示式」22。該 寺「風險評估邏輯表示式」22將會進行下面步驟:⑴接 =「輸入資料鳥」,其含有已由該「輸入資料2〇a」所產 的「複數個輸入資料計算結果」;⑺判斷該等「複數個 ,料計算結果」令每-項究竟係代表高度風險、令度 二:、或是低度風險;以及⑶產生「複數個風險數值」(亦 /$複數個個別風險」)’據此,該等複數個風險數值 讀個個別風时每_者均會代表一種已經被「分 及」成@度風險」、「中度風險」'或是「低度風 險」的「輸入資料計算結果 该等風險評估邏輯表 任務:方案 示式22包含下面部份 說明 簡稱 使用者所指不之方案有腿與C〇2存在(以井為依據) H2S—C〇2 41
1311605 _ 資料名稱:H2S 計算:H2S與C02核取框檢查結果為是 計算名稱:CalculateHS2_C02 高:兩者均被選擇 中:任一者被選擇 低:兩者均未被選擇 單位:無單位 # 任務:方案 說明:氫氧化物產物(以井為依據) 簡稱:Hydrates 資料名稱:水深 計算:=水深 計算名稱:CalculateHydrates 南· >=3000 中:>=2000 ® 低:<2000 單位:英尺 任務:方案 說明:氫氧化物產物(以井為依據)
簡稱:Well_WD 資料名稱:水深 計算.=水珠 42 1311605 .計算名稱:CalculateHydrates 面· 〉=5000 中:>=1000 低:<1000 單位:英尺 任務:執道
說明:彎曲嚴重度(以深度為依據) # 簡稱:DLS
資料名稱:彎曲嚴重度 計算:NA 計算名稱:CalculateRisk 尚· >=6 中:>=4 低:<4 單位:度/100英尺 任務:軌道 說明:彎曲度(以深度為依據) 簡稱:TORT 資料名稱:彎曲嚴重度 計算:DLS總和 計算名稱:CalculateTort 南.>=90 43 1311605 中:>=60 低:<60 單位:度 任務:軌道 說明:傾斜度(以深度為依據) 簡稱:INC 資料名稱:傾斜度
# 計算:NA 計算名稱:CalculateRisk 南· 〉=65 中:>=40 低:<40 單位:度 任務:軌道 • 說明:具有困難鑽屑運送條件的井傾斜度(以深度為依據) 簡稱:Cutting
資料名稱:傾斜度 計算:NA 計算名稱:CalculateCutting rij ·〉=45 中:>=65 低:<45 44 1311605 .單位:度 任務:軌道 說明:水平垂直比值(以深度為依據) 簡稱:Hor_Disp 資料名稱:傾斜度 計算:=水平位移/真實垂直深度 計算名稱:CalculateHorDisp 鲁高:>=1.0 中:>=0.5 低:<0.5 單位:比值 任務:執道 說明:方向性可鑽鑿能力指數(以深度為依據)假臨界值(Fake Threshold)
籲簡稱:DDI 資料名稱:傾斜度
計算:=利用再取樣資料來計算DDI 計算名稱:CalculateDDI 南· >=6·8 中:>=6.0 低:<6.0 單位:無單位 45 1311605 任務:地面模型 說明:高或超常(supernormal)的孔隙壓力(以深度為依據) 簡稱:PP_High
資料名稱:無安全邊限的孔隙壓力 計算:=PP 計算名稱:CalculateRisk if: · 16 # t : >=12 低:<12 單位:ppg 任務:地面模型 說明:竭盡或低於正常的孔隙壓力(以深度為依據) 簡稱:PP_Low 資料名稱:無安全邊限的孔隙壓力 #計算:=無安全邊限的孔隙壓力 計算名稱:CalculateRisk 高:<=8·33 中:<=8.65 低:>8.65 單位:ppg 任務:地面模型 46 1311605 .說明:超硬的岩石(以深度為依據) 簡稱:RockHard 資料名稱:無圍壓縮強度 計算:=無圍壓縮強度 計算名稱:CalculateRisk 高:>=25 中:>=16 低:<16 _ 單位:kpsi 任務:地面模型 說明:黏土(以深度為依據) 簡稱:RockSoft 資料名稱:無圍壓縮強度 計算:=無圍壓縮強度 計算名稱:CalculateRisk 馨高:<=2 中:<=4 低:>4 單位:kpsi 任務:地面模型 說明:高地熱溫度(以深度為依據) 簡稱:TempHigh 47 1311605 . 資料名稱:靜態溫度
計算:=Temp 計算名稱:CalculateRisk 高:>=280 中:>=220 低:<220 單位:degF • 任務:鑽井機限制
說明:水深與該鑽井機之最大水深額定值的比值(以深度為依據) 簡稱:Rig_WD 資料名稱: .. 計算:=水深/鑽井機水深額定值 計算名稱:CalculateRig_WD 高:>=0.75 中·· >=0.5 籲低:<0.5 單位:比值 任務:鑽井機限制 說明:總測量深度與該鑽井機之最大深度額定值的比值(以深度 為依據) 簡稱:Rig_MD 資料名稱: 48 1311605 .計算:=測得的深度/鑽井機最大深度額定值 計算名稱:CalculateRig_MD 高:>=0.75 中:〉=0.5 低:<0.5 單位:比值 任務:鑽井機限制 # “說明:海底BOP或井頭(wellhead)(以深度為依據),並不確定如 何計算” 簡稱:SS_BOP 資料名稱:水深 計算:= . 計算名稱:CalculateHydrates 高:>=3000 中:>=1000 Φ 低:<1000 單位:英尺 任務:泥漿範圍 說明:相對於孔隙壓力過低的泥漿重量的井湧可能性(以深度為 依據) 簡稱:MW—Kick 資料名稱· 49 1311605 ,計算:=泥漿重量-孔隙壓力 計算名稱:CalculateMW_Kick 尚 _ <=0·3 中:<=0·5 低:>0.5 單位:ppg 任務:泥漿範圍 • 說明:相對於孔隙壓力過高的靜態液壓的損失可能性(以深度為 依據) 簡稱:MW_Loss 貢料名稱· , 計算:=靜態液壓-孔隙壓力 計算名稱:CalculateMW—Loss “前置條件:=Mud Type(HP-WBM、ND-WBM ' D-WBM)” 高:>=2500 # 中:>=2000 低:<2000 單位:psi 任務:泥漿範圍 說明:相對於孔隙壓力過高的靜態液壓的損失可能性(以深度為 依據) 簡稱:MWJLoss 50 1311605 _ 資料名稱· 計算:=靜態液壓-孔隙壓力 計算方法:CalculateMW_Loss “前置條件:=MudType(OBM、MOBM、SOBM)” r§j · ^-2000 中:>=1500 低:<1500 單位:psi 任務:泥漿範圍 說明:相對於斷裂梯度過高的泥漿重量的損失可能性(以深度為 依據) 簡稱:MW_Frac 貢料名稱. 計算:=上限-泥漿重量 計算方法:CalculateMW_Frac 籲高:<=0.2 中:<=0.5 低:〉0_5 單位:ppg 任務:泥漿;範圍
說明:狹窄的泥漿重量範圍(以深度為依據) 簡稱:MWW 51 1311605 .資料名稱·
計算:=鑽井穩定性上限-無安全邊限的孔隙壓力 計算方法:CalculateMWW 兩.<=0.5 中:<=1.0 低:>1.0 單位:ppg # 任務:泥漿範圍 說明:狹窄的鑽井穩定性範圍(以深度為依據) 簡稱:WBSW 資料名稱· 計算:=上限-下限 計算方法:CalculateWBSW “前置條件=Mud Type(OBM、MOBM、SOBM)” 南.<=0_3 鲁中:<=0.6 低:>0.6 單位:ppg 任務:泥漿範圍
說明:狹窄的鑽井穩定性範圍(以深度為依據) 簡稱:WBSW 貧料名稱· 52 1311605 .計算:=上限-下限
計算方法:CalculateWBSW “前置條件=Mud Type(HP-WBM、ND-WBM、D-WBM)” 高:<=0·4 中:<=0_8 低:>0.8 單位:ppg • 任務:泥漿範圍 說明:鑽井穩定性(以深度為依據)
簡稱:WBS 資料名稱:無安全邊限的孔隙壓力 計算:=無安全邊限的孔隙壓力 計算方法:CalculateWBS 高:LB>=MW>=PP 中:MW>=LB>=PP ® 低:MW>=PP>=LB 單位·‘無單位 任務:泥漿範圍 說明:鑽洞區段長度(以鑿洞區段為依據) 簡稱:HSLength 資料名稱. 計算:=HoleEnd-HoleStart 53 1311605 .計算方法:CalculateHSLength 高:>=8000 中:>=7001 低:<7001 單位:英尺 任務:泥漿範圍 說明:套管磨耗之套管點處的彎曲嚴重度(以鑿洞區段為依據) Φ 簡稱:Csg_Wear 資料名稱:彎曲嚴重度 計算:=鑿洞直徑 計算方法:Calculate.Csg_Wear r?j · >—4 中:>=3 低:<3 單位:度/100英尺 任務:泥漿範圍 說明:套管組的數量(以鑿洞區段為依據) 簡稱:Csg_Count 資料名稱:套管點深度 計算:=套管組數量 計算方法:Calcu丨ateCsg—Count 南.>=6 54 1311605 .中:>=4 低:<4 單位:無單位 任務:鑽井尺寸 說明:大型鑿洞尺寸(以鑿洞區段為依據) 簡稱:Hole_Big 資料名稱:鑿洞尺寸 Φ 計算:=鑿洞直徑 計算方法:CalculateHoleSectionRisk rij ·〉=24 中:>=18.625 低:<18.625 單位:英叶 任務:鑽井尺寸 _ 說明:小型鑿洞尺寸(以鑿洞區段為依據) 簡稱:Hole_Sm 資料名稱:鑿洞尺寸 計算:=鑿洞直徑 計算方法:CalculateHole_Sm 前置條件:在岸上 高:<=4.75 中:<=6.5 55 1311605 .低:>6.5 單位:英吋 任務:鑽井尺寸 說明:小型鑿洞尺寸(以鑿洞區段為依據) 間稱:Hole_Sm 資料名稱:鑿洞尺寸 計算:=鑿洞直徑 籲計算方法:CalculateHole_Sm 前置條件:離岸 向· <=6.5 中:<=7·875 低:>7.875 單位:英叶 任務:管子設計 ® “說明:爆裂、倒塌以及張力的套管設計係數(以鑿洞區段為依 據),高度風險DFb,c,t<=1.0、中度風險DFb,c,t<=l.l、低度風險 DFb,c,t>l.l” 簡稱:Csg_DF 資料名稱: 計算:=DF/設計係數 計算方法:CalculateCsg_DF 高·_ <=1_0 56 1311605 中:<=ι.ι 低:>1.1 單位:無單位 任務:管子設計 說明:相對於鑽井機起重能力的套管組重量(以套管組為依據) 簡稱:Csg_wt 資料名稱· _ 計算:=CasingWeight/RigMinRating 計算方法:CalculateCsg_Wt 高:>=0_95 中:<0.95 低:<0.8 單位:比值 任務:管子設計 ® 說明:套管組允許的過度拉矣量邊限(以套管組為依據) 簡稱:Csg—MOP 貧料名稱. 計算:=管子張力額定值-套管重量 計算方法:CalculateCsg—MOP 尚· <=50 中:<=100 低:>100 57 1311605 .單位:klbs 任務:鑽井尺寸 說明:鑿洞尺寸與套管最大OD之間的間隙(以鑿洞為依據) 簡稱:Hole_Csg 資料名稱· 計算:=馨洞尺寸面積/套管尺寸面積(最大OD) 計算方法:CalculateHole_Csg 尚:<=1.1 中:<=1.25 低:>1.25 單位:比值 任務:鑽井尺寸 說明: 簡稱:Csg_Csg 資料名稱. 計算:=CasingID/NextMaxCasingSize 計算方法:CalculateCsg_Csg 高:<=1·05 中:<=1·1 低:>1.1 單位:比值 58 1311605 .任務:鑽井尺寸 說明:套管内徑與後續鑽頭尺寸之間的間隙(以鑽頭運轉為依據) 簡稱:Csg_Bit 資料名稱· 計算:=CasingID/NextBitSize 計算方法:CalculateCsg_Bit 高:<=1.05 中:<=1.1 •低:>1.1 單位:比值 任務.固井設計 說明:依照每個套管組種類之設計方針的水泥高度(以鑿洞為依 據) 簡稱:TOC_Low 貧料名稱· ®計算:=套管底部深度-水泥頂端深度 計算方法:CalculateTOC_Low 高:<=0.75 中:<=1·0 低:>1.0 單位:比值 任務:固井設計 59 1311605 .說明:相對於孔隙壓力過低的靜態液壓的井湧可能性(以深度為 依據) 簡稱:Cmt_Kick 資料名稱. 計算:=(固井靜態液壓-孔隙壓力)/TVD 計算方法:CalculateCmt_Kick rsj · 0.3 中:<=0_5 籲低:>0.5 單位:ppg 任務:固井設計 說明:相對於孔隙壓力過高的靜態液壓的損失可能性(以深度為 依據) 簡稱:Cmt_Loss 資料名稱: ®計算·· 井靜態液壓·孔隙壓力 計算方法:CalculateCmt_Loss 南.〉=2500 中:>=2000 低:<2000 單位:psi 任務:固井設計 60 1311605 ,說明:相對於斷裂梯度過高的靜態液壓的損失可能性(以深度為 依據) 簡稱:Cmt_Frac 資料名稱· 計算:=(上限-固井靜態液壓)/TVD 計算方法:CalculateCmt_Frac 南.<=0.2 中:<=0_5 # 低:>0.5 單位:ppg 任務:鑽頭選擇 _
說明:超親鑽頭工作量與累積性機械性鑽鑿能量(於該鑽頭所鑽 鑿出的距離上進行UCS積分)的比值 簡稱:Bit_WkXS
資料名稱·· CumExcessCumulativeUCSRatio 籲計算:=CumExcess/累積性UCS 計算方法:CalculateBitSectionRisk 南.〉=0_2 中:>=0.1 低:<0_1 單位:比值 任務:鑽頭選擇 61 1311605 說明:累積性鑽頭工作量與鑽頭型錄平均機械性鑽鑿能量(於該 鑽頭所鑽鑿出的距離上進行UCS積分)的比值 簡稱:Bit_Wk 資料名稱: 計算:=累積性UCS/機械性鑽鑿能量(於該鑽頭所鑽鑿出的距離 上進行UCS積分) 計算方法:CalculateBit_Wk 面· >= 1 ·5 ® 中:>=1.25 低:<1.25 單位:比值 任務:鑽頭選擇 - 說明:累積性鑽頭英尺長度與鑽頭型錄平均英尺長度(被鑽鑿出 的長度)的比值(以深度為依據) 簡稱:Bit_Ftg ® 資料名稱:被鑽鑿的英尺長度與統計性英尺長度的比值 計算:=被鑽鑿的英尺長度與統計性英尺長度的比值 計算方法:CalculateBitSectionRisk rt) · >—2 中:>=1.5 低:<1_5 單位:比值 62 1311605 任務:鑽頭選擇 說明:累積性鑽頭時數與鑽頭型錄平均時數(最低的旋轉時間)的 比值(以深度為依據) 簡稱:Bit_Hrs 資料名稱:Bit_Ftg 計算:=最低的時數/統計性鑽頭時數 計算方法:CalculateBit_Hrs r§j · 中:>=1.5 低:<1.5 單位:比值 任務:鑽頭選擇 說明:累積性鑽頭Krevs與鑽頭型錄平均Krevs(RJPM*時數)的比 值(以深度為依據) 簡稱:BitJECrev 籲資料名稱: 計算:=累積性Krevs/鑽頭平均Krevs 計算方法:CalculateBit_Krev 高:>=2 中:>=1.5 低:<1.5 單位:比值 63 1311605 任務:鑽頭選擇 說明:鑽頭ROP與鑽頭型錄平均ROP的比值(以鑽頭運轉為依 據)
簡稱:Bit_ROP 資料名稱: 計算:=ROP/統計性鑽頭ROP 計算方法:CalculateBit_ROP 尚.〉=1.5 _ 中:>=1.25 低:<1.25 單位:比值 任務:鑽頭選擇 說明:相對於鑽頭UCS與最大鑽頭UCS的TJCS(以深度為依據) 簡稱:Bit_UCS 資料名稱· • 計算:=ucs 計算方法:CalculateBit_UCS 高:UCS>=最大鑽頭UCS>=鑽頭UCS 中:最大鑽頭ucs>=ucs>=鑽頭UCS 低:最大鑽頭ucs>=鑽頭ucs>=ucs 單位:比值 任務:鑽柱設計 64 1311605 說明:鑽柱允許的過度拉良量邊限(以鑽頭運轉為依據) 簡稱:DS_MOP 資料名稱·
計算:=MOP
計算方法:CalculateDS_MOP 尚· <—5 0 中:<=100 低:>100 _ 單位:ldbs 任務:鑽柱設計 “說明:必要的張力接近鑽鑿管、重物、鑽鑿管、鑽铤、或是連 接器的機械張力限制時該等鑽柱的可能分離(以鑽頭運轉為依 據)” 簡稱:DS_Part 貢料名稱· • 計算:=必要張力(包含MOP)/鑽鑿組件(DP)的張力限制 計算方法:CalculateDS_Part 南· >=0.9 中:>=0.8 低:〉0.8 單位:比值 任務:鑽柱設計 65 1311605 說明:井湧容限(以鑿洞區段為依據)
簡稱:Kick_Tol 資料名稱:Bit_UCS “計算:ΝΑ(已經算出),探測結果/開發結果 計算方法:CalculateKick_Tol 前置條件:探測 尚,<=50 中:<=100 _ 低:>100 單位:bbl 任務:鑽柱設計 說明:井湧容限(以鑿洞區段為依據)
簡稱:Kick_Tol 資料名稱:Bit_UCS “計算:ΝΑ(已經算出),探測結果/開發結果 _ 計算方法:CalculateKick_Tol 前置條件:開發 高:<=25 中:<=50 低:>50 單位:bbl 任務:水力特性 66 1311605 說明:鑿洞清洗的流速(以深度為依據) 簡稱:Q—Crit “資料名稱:流速/關鍵流速” 計算:=流速/關鍵流速 計算方法:CalculateQ_Crit 而.<=1.0 中:<=1.1 低:>1.1 ® 單位:比值 任務:水力特性 說明:相對於泵能力的流速(以深度為依據) 簡稱:Q_Max 資料名稱:Bit_TJCS 計算:=Q/Qmax 計算方法:CalculateQ_Max 鲁高:>=1.0 中:>=0_9 低:<0.9 單位:比值 任務:水力特性 “說明:相對於最小TFA的TFA尺寸(以鑽頭運轉為依據), 0.2301=3 of 10/32 英吋,0.3313=3 of 12/32 英吋” 67 1311605 .簡稱:TFA_Low
資料名稱:Bit_UCS 計算:TFA 計算方法:CalculateTFA_Low 高:<=0.2301 中:<=0.3313 低:>0.3313 單位:英对 參 任務:水力特性 說明:相對於鑽井機與泵最大壓力的循環壓力(以深度為依據) 簡稱:p_Max . 資料名稱:Bit_UCS 計算:P_Max 計算方法:CalculateP—Max rfj · >= 1 _0 鲁中:>=0.9 低:<0.9 單位:比值 任務:水力特性
說明:相對於斷裂梯度過高的ECD的損失可能性(以深度為依據) 簡稱:ECD_Frac 資料名稱:Bit_UCS 68 1311605
_ 計算:上限-ECD 計算方法:CalculateECD_Frac 南 <=0.0 中:<=0.2 低:>0_2 單位:ppg 任務:水力特性 • 說明:相對於孔隙壓力過高的ECD的損失可能性(以深度為依據) 簡稱:ECD_Loss 資料名稱:Bit_UCS 計算:ECD-孔隙壓力 計算方法:CalculateECD_Loss “前置條件:Mud Type(HP-WBM、ND-WBM、D-WBM)” 高:>=2500 中:>=2000 籲低:<2000 單位:psi 任務:水力特性 說明:相對於孔隙壓力過高的ECD的損失可能性(以深度為依據) 簡稱:ECD_Loss 資料名稱:Bit_UCS 計算:ECD-孔隙壓力 69 1311605 计异方法:CalculateECDJLoss ‘‘ 、, __ 月1J 置條件:Mud Type(OBM、MOBM、SOBM),, 高:>=2000 中:>=1500 低:<1500 單位:psi 風險評估演算法24 • 回想該等「風險評估邏輯表示式」22將會進行下面步 & · (1)接收「輸入資料2〇a」,其含有已由該「輸入資料 20a」所產生的「複數個輸入資料計算結果」;判斷該 等「複數個輸入資料計算結果」中每一項究竟係代表高度 風險 '中度風險、或是低度風險;以及據此產生複數個 風險數值/複數個個別風險,該等複數個風險數值/複數個 個別風險中每一者均會代表一種已經被「分級」成「高度 風險」、「中度風險」、或是「低度風險」的「輸入資料 % 计异結果」。舉例來說,回想下面的任務: 任務:水力特性 況明:相對於孔隙壓力過高的ECD的損失可能性(以深度 為依據) 簡稱· ECD_Loss 資料名稱:Bit_UCS 計算:ECD-孔隙壓力 計算方法:CalculateECD_Loss 70 1311605 月,J 置條件:Mud Type(OBM、ΜΟΒΜ、SOBM),, 尚:>=20〇〇 中:>=1500 低:<1500 單位:psi
當和上面所參考的水力特性任務相關聯的計算「ECD-孔隙壓力」結果為> =2〇〇〇時,便會指派「高」等級給該計 异;不過’假設該計算「ECD_孔隙壓力」結果為>=15〇〇 ^便會指派「中」等級給該計算;不過,假設「ECD-孔 隙壓力」結果為 < 丨5〇〇時,便會指派「低」等級給該計算。 相關聯的特殊等級(也就是,「高度風險等級 險等級」、或是「低度風險等級」)而定。該等「風險評估 邏輯演算法」24會以下面的方式將該「數值」與該「顏色」 指派給接收自該等邏輯表示式22的每個該等複數個已分 級的個別風險: 所以,該等「風險評估邏輯表示式」22會將該等「輸 入貧料計算結果」中每一者分級成「高度風險」、「中度 風險」、或是「低度風險」,從而會產生「複數個已分級 的風險數值」,其亦稱為「複數個已分級的個別風險」。 響應接收自言亥等邏輯表22白勺料「複數個已分級的 们別風險」之後,該等「風險評估邏輯演算法」24便會指 派個「數值」與一種「顏色」給接收自該等邏輯表示式 22的每個該等複數個已分級的個別風險,其中該「數值」 與該「顏色」#依據和每個該等複數個已分級的個別風險
J 中度風 71
等 厂 1311605 風險叶异# 1 —·個別風險計算: 現在參考上面提出的「風 一 J紙險s平估輸出資料」 前指定五十四種(54)「個別風險」。就某一項「 來說: 咼度風險=90, 中度風險= 70,以及 低度風險=1 〇 南度風險顏色代碼=紅色 中度風險顏色代碼=黃色 低度風險顏色代碼=綠色 假設該等「風險評估邏輯表示式」22指派「 等級給某項特定的「輸人資料計算結果」的話, 風險°平估域輯演算法」24便將會指派數值「90 入貧料計舁結果」並且指派顏色「紅色」給該 計算結果」。 假設該等「風卜4 m 氧險坪估邏輯表示式」22指派 等級給某項特定的「 ~ ^ 輸入資料計算結果」的話 「風險5平估邏輯清曾、上q '、法」24便將會指派數值「, 入資料計算結果甘 」亚且指派顏色「黃色」給該 計异結果」。 假設該等「風險評估邏輯表示式」22指派「 、及、某員特疋的「輸入資料計算結果」的話, 風險评估邏輯潘曾 斤法」24便將會指派數值「1 0 I 8 b 1,目 個別風險 南度風險」 那麼Ί亥等 」給該「輪 _輸入資料 中度風險_ 那麼姨等 」給該「輸 輸入資料 低度風險 那麼該等 」給該「輸 72 1311605 入資料計算結果」並且指派顏色「綠色」給該「輸入資料 計算結果」。 所以,響應接收自該等邏輯表示式22的該等「已分級
的個別風險」之後,該等風險評估邏輯演算法24便會針 對下面情形指派某個數值與某個顏色給每個該等r已分級 的個別風險」:指派數值9〇與顏色「紅色」給高度風險、 指派數值70與顏色「黃色」給中度風險、指派數值10與 顏色「綠色」給低度風險。不過,此外,響應接收自該等 这輯表示式2 2的該等「已分級的個別風險」之後,該等 風險評估邏輯演算法24還將會產生複數個已分級的「風 險類別」以及複數個已分級的「子類別風險」。 現在參考上面提出的「風險評估輸出資料」l8M,「風 險評估輸出資料」18bl包含:⑴八種「風險類別」,⑺ 四種子類別風險」,以及(3)五十四種(54)「個別風險」(也 ?尤是54種個別風險加上2種「增益型風險」加上2種「損 ^型風險」加上2冑「卡管型風險」加上2種「機械型風 險」加上1種「總風險」=63種風險)。 4等八種「風險類別」包含下面類別:⑴個別風險, ⑺平均個別風險,(3)風險子類別(或是子類別風險) 句=類別風險,(5)風險總數(或是總風險),⑹平均總風 Π項設計任務的可能風險,以及⑻每項設計任務的真實 回想該等「風險評估演算 與顏色「紅色」給高度風險「 法」24已經藉由指派數值 輸入資料計算結果 90 派 73 1311605 數值70與顏色「黃色」給中度風險「輸入資料計算、纟士果 以及指派數值10與顏色「綠色」給低度風險「輪入資料 計算結果」來建立且產生上面所參考的「風險類別〇)」(也 就是,該等複數個已分級的個別風險),該等「風險評估、,寅 算法」24現在將會以下面的方式響應接收自該等「風險評 估邏輯表示式」22的該等複數個風險數值/複數個個別風 險來計算且建立且產生上面所參考的「風險類別(勾至(8)」: ^ 風險計算#2—平均個別風險: 所有該等「風險數值」的平均值的計算方式如下: 平均個別風險=11風險_ η 為決定「平均個別風險」,可加總上面所參考的「風 險數值」然後再將其除以此等「風險數值」的數量,其中 ι =取樣點的數量。該「平均個別風險」的數值會被顯示於 該具有顏色的個別風險軌跡(risk track)的底部處。 • 恩計算#3—風險子類別 現在參考上面提出的「風險評估輸出資料」i8bi,其 中叱義下面的「子類別風險」:(a)增益型風險,(b)損失型 風險,(c)卡管型風險’以及(d)機械型風險,其中會以下面 、式來疋義一類別風險」(或是「風險子類別」): 風險早相s,丨=Σ1;(風險数値,+猶度,;> 犬、 Σ/锻里度〆ό 個別風險的數量, 〇各嚴重度$5,以及 nj 1或〇,取決於該風險數值j是否對該子類別有貢獻 74 1311605 嚴重度广來自該風險矩陣型錄 風險子類別^ 40為紅色風險顯示 20 S風險子類別<40為黃色風險顯示 風險子類別<20為綠色風險顯示 凰險汁异#4—平均子類別涵!險_ 平均子類別風險=X"(風險子類肌礙險雜 η ' · Σ風險乘敝 1 η=取樣點數量 顏色的子 該平均子類別風險的數值會被顯示 類別風險執跡的底部處。 對風險子類別240而言,風險乘數 對20$風險子類別<4〇 + 對風險子類別<20而言,風。險:險乘數=2, 風險乘數<1。 #5—.a Μ. (b) 總風險計算係以下面的類別 損失型風險,⑷卡管型風險,q .⑷增ϋ型風險 風險總數=Σ:風險子頌別t (d)機械型風險。 4 其令’ k=子類別數量 風險總數240為紅色風險顯示 W風險總數<4〇為黃色 _ 風險總數<20為綠色風險顯示不 平泊 75 1311605 平均總風險 =χ'(風險子類別π風險乘数ί) t風險乘®
I n==取樣點數量 對風險子類別^ 40而言,風險乘數=3, 對2〇$風險子類別<40而言,風險乘數=2, 對風險子類別<20而言,風險乘數=1。 •亥平均總風險的數值會被顯示於該具有顏色的總風險 軌跡的底部處。 每項設計任務的ja險 本文令定義下面14種設計任務:方案、軌道、機械性 地面模型、鑽井機、鑽井穩定性、泥漿重量與套管點、鑽 :尺:寸、套管、水泥、泥聚、鑽頭、餘、水力液壓以及 時間設計。目前指定54種個別風險。 每項設計_隹^可能最大風險 可能風險,=Σ7ι,(^_Άν) k Σ:麵度^) 設計任務的指數,共有14種設計任務, 工ΝΓ〇或1 ’取決於該風險數值;是否對該設計任務有 貢獻, 嚴重度$ 5。
IJR Σ.=(平均個別風險户·嚴道度戚/} ~~~ ~~ 真實風險 k=設計任務的指數,共有14種設計任務
Nk,je[0,".,M], 76 1311605 0 S嚴重度S 5。 上面公式中的「嚴重度」的定義如下:
風險 嚴重度 H2S—C02 2.67 氫氧化物 3.33 Well_WD 3.67 DLS 3 TORT 3 Well_MD 4.33 INC 3 Hor_Disp 4.67 DDI 4.33 PP_High 4.33 PPLow 2.67 RockHard 2 RockS oft 1.33 TempHigh 3 Rig—WD 5 Rig—MD 5 SS—BOP 3.67 MW_Kick 4 MW—Loss 3 MW Frac 3.33 77 1311605
MWW 3.33 WBS 3 WBSW 3.33 HSLength 3 Hole_Big 2 Hole_Sm 2.67 Hole_Csg 2.67 Csg_Csg 2.33 Csg_Bit 1.67 Csg_DF 4 Csg_Wt 3 Csg_MOP 2.67 Csg_Wear 1.33 Csg_Count 4.33 TOC_Low 1.67 Cmt_Kick 3.33 Cmt_Loss 2.33 Cmt—Frac 3.33 Bit_Wk 2.33 Bit_WkXS 2.33 Bit_Ftg 2.33 Bit—Hrs 2 Bit_Krev 2 Bit ROP 2 78 1311605
Bit_UCS 3 DS_MOP 3.67 DS_Part 3 Kick一Tol 4.33 Q_Crit 2.67 Q_Max 3.33 Cutting 3.33 P_Max 4 TFALow 1.33 ECD_Frac 4 ECD Loss 3.33 現在參考圖丨丨,於下文中對本發明的運作 說明期間將會使用到圖1 1。
於下面的段落中將會參考該等圖式 該「自動鐵井規劃風險評估軟體」1 8c 1 説明。 進行功能性 中的圖1 至Π來對 的運作進行功能性 ,叫、w糊八貝行zua將會當成「輪入次 被導入圖9A的該電腦系統18。處理器18 貝:」 動鑽井規劃風險評估軟體18cl,同時::仃该自 踝此,该處理器18a將會產生 叶 1 8 b 1,而該風p 。子估輪出資料 埤險坪估輸出資料18bl則备 T+ 方式被記錄或顯示於 。 中所示的 估輸出資料18bl包 罝18b上。風險評 風險」以及該望「γ °亥4 子類兄丨丨 嗞寻「個別風險j 。去圖0 Α ^ 丁螭別 」4 9Α的處理器18a執 79 1311605 行忒自動鑽井規劃風險評估軟體18〗士 與1 1,耠入眘祖9rw a 曰丁 ’請參考圖10 輸入貝枓20a(以及該等風險 險評估刑梓八 1古*數26與該等風 f估型錄28)便會被當成「輸入 一 風險坪仕1赭主_ a 、—」 起提供給該等 ^丨双。子估邈輯表不式22。回想該 個輸入資料呼管紝里 貝枓2〇a包含「複數 - —果」,因此如圖U令的元件符號32所 不,和該輸入資料20a相關聯的該 ^ ^ s 哥禝數個輸入資料計 =果:將會直接被提供至圖U中的邏輯表示式區塊Μ。 处理A l8a執行該等邏輯表示式22期間,來自輸入資料 ^的每個該等「複數個輸人f料計算結果」將會於圖n 和该風險評估邏輯表示式區塊22巾的每個該等「邏輯 表不j」作比較。當於來自輸入資料2〇a的某個「輸入資 料計算結果」和該邏輯表示式區塊22中的某個「表示式」 ,間找到匹配的話,便將會於圖u巾從該邏輯表示式區 次22中(由處理器18a)產生一「風險數值」或是「個別風 險」34。於是,因為來自輸入資料2〇a的「複數個輸入資 料計算結果」32均已經於圖u中和該邏輯表示式區塊22 中的複數個邏輯表示式」作比較,所以’該邏輯表示式 區塊22將會於圖11中產生複數個風險數值/複數個個別風 險34 ’其中’圖1 1的線34上由該邏輯表示式區塊22所 產生的每個該等複數個風險數值/複數個個別風險均將會代 表已經被該邏輯表示式區塊22分級成「高度風險」、或 是「中度風險」、或是「低度風險」之來自該輸入資料20a 的某個「輸入資料計算結果」。所以,一「風險數值」或 是「個別風險」的定義為匹配該等邏輯表示式22中之其 1311605 中一個該等「表示式」且已經被該邏輯表示式區塊22分 級成「高度風險」、或是「令度風險」、或是「低度風險 之來自該輸入資料20a的某個「輸入資料計算結果」。舉 例來說,探討該等邏輯表示式22中的下面「表示式」: 任務··泥漿範圍 說明:鑽洞區段長度(以鑿洞區段為依據) 簡稱:HSLength
計算:=HoleEnd-HoleStart 計算方法:CalculateHSLength 1¾ · ^^8000 中:>=7001 低:<7001
HoleEnd-HoleStart」計算係來自該輸入資料2〇Ε的
某個「輸入資料計算結果」。處理器18a將會於來自該輪 入資料20a的「HoleEnd_H〇leStart輸入資料計算結果」與 上面所確認的該等邏輯表示式22中的「表示式」之間找 到匹配H該㈣表示式區塊22會根據該「H〇leEnd_ Η〇1·η ^資料計算結果」的數值將該「Η —
HoleStart輸入資料計算結果」「分級」成 μ 、或是「低度風险」。 高度風險」、 將該「輪入資料計 中度風險」、或是 當該等「風險評估邏輯表示式」22 算結果」分級成「高度風險」、或是「 81 1311605 . 低度風險」’從而產生複數個已分級的風險數值/複數個 已刀級的個別風險時,接著,該等「風險評估邏輯演算法」 24便將會指派某個「數值」與某個「顏色」給該已分級的 風險數值」或是已分級的「個別風險」,其中該「數值」 或疋°亥顏色」會根據和該「風險數值」或是「個別風險」 相關恥的特殊級別(也就是,「高度風險」等級、或是「中 度風險」等級、或是「低度風險」等級)而定。該等「風險 • 砰估邏輯演算法」24會以下面的方式來指派該「數值」與 邊「顏色」給該等已分級的「風險數值」或是已分級的「個 別風險i : 高度風險=90, 中度風險=70,以及 低度風險=10 高度風險顏色代碼=紅色 中度風險顏色代碼:=黃色 低度風險顏色代碼=綠色 假設該等「風險評估邏輯表示式」22 H「高度風 險」等級給該「輸入資料計算結果」,從而產生一已分級 的「個別風險」㈣,那麼該f「風險評估邏輯演算法」 24便會指派數值「90」給該已分級的「風險數值」或是已 ,級的「個別風險」並且指繼「紅色」給該已分級的 風險數值」或是已分級的「個別風險 》…「η w」。假設該等「風 險評估邏輯表示式」22指派一「中度風化 ^ a 「1 又呵險」等級給該「輸 82 1311605 • 入資料計具結果」’從而產生一已分級的「個別風險的 話,那麼該等「風險評估邏輯演算法」24便會指派數值「7〇 給該已分級的「風險數值」或是已分級的「個別風險」並 且指派顏色「黃色」給該已分級的「風險數值」或是已分 級的「個別風險」。假設該等「風險評估邏輯表示式」22 指派一「低度風險」等級給該「輸入資料計算結果」,從 而產生一已分級的「個別風險」的話,那麼該等「風險許 估邏輯演算法」24便會指派數值「10」給該已分級的「風 • 險數值」或是已分級的「個別風險」並且指派顏色「綠色」 給該已分級的「風險數值」或是已分級的r個別風險」。 所以,圖11中,該邏輯表示式區塊22會於線34中產 生複數個已分級的個別風險(或是已分級的風險數值),該 等複數個已分級的個別風險(其會構成該「風險評估輸出資 料」18bl的一部份)則會直接被提供給該「風險評估演算 法」區塊24。該「風險評估演算法」區塊24將會從線34 籲中接收該等複數個已分級的個別風險,而且該等「風險評 估演算法」24會據此完成下面工作:(1)依照上述方式產 生该等「已分級的個別風險」,其含有與其相關聯的「數 值」與「顏色」;以及此外還會(2)計算且產生和該「風險 評估輸出資料」l8bl相關聯的該等「已分級的風險類別」 4〇以及5亥等「已分級的子類別風險」40。現在便可將該等 已分級的風險類別」40以及該等「已分級的子類別風險」 40 以;$古女翌 \ ^ 已分級的個別風險」40記錄或顯示於該記 錄裔或顯不裝置i 8b之中。回想該等「已分級的風險類別」 83 1311605 40包含:平均個別風 a. ^ - p. X工 、平均子類別風險、風險總數(或 疋總風險)、平均總風險、 各頂π呼杠激 母項设計任務的可能風險,以及 母項汉汁任務的真實 ρ. 4〇 ^ . 、几險。回想該等「已分級的子類別風 險:含.風險子類別(或是子類別風險卜 Μ該「風險評估輸出資料」_包含「一或 多個的風險類別」以及厂― 次 .n 或夕個的子類別風險」以及「一 或多個的個別風險」, 汉 出資料」⑽(其含㈣等n,現在便可將該「風險評估輸 L3有^亥寻風險類別4〇以及該 ,險40以及該等個別風 子類別風 綠或顯不於圖9A Φ杯-& 該電腦系統18的記錄器或顯示裝置18b上。 不' 如前面所述,該等「風險評估演算法…會 的線34從該等邏輯表示式22中接收該等「已了 個別風險」,並且據此該等「風險評估演算法」24將刀Γ的 依照上述方式指派該等「數值」與「顏色」給該箸’「曰⑴ 级的個別風險」1及此外還會⑺利用下面㈣已分 上面提及)計算且產生該等「―或多個的風險類別。已於 I及泫等「一或多個的子類別風險」4〇。 以 可利用下面等式從㈣「風險數值」中計 個別風險: 出^平均 平均個別風險=㉙隨値, 可利用下面等式從上面所定義的「風險數值 「 重度」中計算出該子類別風險或是風險子類別: 敬 84 1311605 風險^ +類別=1(風險讎产顧度 平均子類 可利用下面的方式從風險子類別中計算出該 別風險: 平均子類別風險=Σ:(風險子類乳.撕乘数,') 艺風險乘數 1 該風險總 可利用下面的方式從風險子類別中計算出 風險總數=—ΣΙ風險子删t 險: 可利用下面的方式從風險子類別中計算出言 平均總風 平均總風險_ =Σ,·(風險子類別風險乘数,) " X風險裝数;
I 禾 J 用***τγ 面等式從上面所定義的嚴重度中t 能風險: 算出該可 可能風險k==g |(90.1:嚴重度1/·/^.) (嚴職:气) 可利用下& / 寺式從(上面所定義的)平 重度中計算+ & τ Τπ出該真實風
均個I 險: 風險與嚴 真貝風險 e 丨均個別風險产做重度声t ,> i^(®a 度户乂.7+) 回想該遵, 的綠 34中產生 峰%表示式區塊22將會於圖 85 1311605 • 「複數個風險數值/複數個已分級的個別風險」,其中於線 34中所產生的每個該等「複數個風險數值/複數個已分級 的個別風險」均代表一接收自該輸入資料2〇a的「輸入資 料汁t結果」’其已經被該等邏輯表示式2 2「分級」成「高 度風險」、或是「中度風險」、或是「低度風險」。「高 度風險」將會被指派「紅色」顏色、「中度風險」將會被 指派「黃色」顏色、而「低度風險」將會被指派「綠色」 • 色所以,明'主意下文中的「等級」一詞,該邏輯表示 弋區塊22將會(於圖1 1的線34中)產生「複數個已分級的 風險數值/複數個已分級的個別風險」。 此外,於圖11中,回想該「風險評估演算法」區塊24 將會從該邏輯表示式區塊22中從線34中接收該等「複數 個已分級的風險數值/複數個已分級的個別風險」。據此, 睛庄意下文中的「等級」一詞,該「風險評估演算法」區 塊24將會產生:(1)該等一或多個的個別風險,其具有被 φ指派的「數值」與「顏色」;(2)該等「一或多個已分級的 風險類別」40 ;以及(3)該等「一或多個已分級的子類別風 險」40。因為該等「風險類別」以及該等「子類別風險」 均會被「分級」,所以,(和某個風險類別4〇或是子類別 風險40相關聯的)「高度風險」將會被指派「紅色」顏色, 而中度風險」將會被指派「黃色」顏色,而「低度風險」 則將會被指派r綠色」顏色。鑒於上面的「分級」以及與 其相關聯的顏色’便可依照圖9B中所描繪的方式將該「風 險5平估輸出資料」1 8b 1 (其包含該等「已分級」的風險類別 86 1311605 40以及該等「已分纺 AA _2L ψΕ 0 , 刀級」的子類別風險40以及該等「 級」的個別風險38)記錄或顯示刀 口 肀所不的5亥電腦系 ,·先1 8的記錄器或顯示裝置i 8b 自.動.鑽先屋JL蓋ϋ統二選擇子任潞^ 圖8中所示的係鑽頭選擇子任務14a。 鑽頭的選擇係—種大量倚賴人g d- ζ. 里饤賴人貝、先刖經驗的手動主 觀過程。該等個別建議或選擇該等鐵頭的經驗可能會嚴重 籲影響到鑽馨效能的優與劣。鑽頭選擇主要依據人員經驗且 僅使用極少量欲被鑽鑿的實際岩石資訊的事實使其非常容 易為該應用選到不正確的鑽頭。 鑽頭選擇子任務14a會運用「自動鑽井規劃鑽頭選擇 軟體j來自動產生該等必要的鑽頭,用於以未經指定的地 面間隔來鑿穿所指定的鑿洞區段以便鑿出該等指定的鑿洞 尺寸。5亥「自動鑽井規劃鑽頭選擇軟體」包含適合用來自 動選擇必要的鑽頭序列以便於該井中鑽鑿每個鑿洞區段(其 鲁係由一頂端/底部深度間隔與直徑來定義)的一小段軟體(稱 為「演算法」)。其會對歷史鑽頭效能資料及數種特定的關 鍵政成指示符號(KPI)進行統計性處理,以便讓該等地面特 改與岩石強度資料匹配適當的鑽頭,同時又可最佳化鑽鑿 每個1·洞區段的時間與成本總成。其會依據私有的演算 法、統計資料、邏輯以及風險係數來決定鑽頭壽命與對應 的深度,以便拉出且置換某個鑽頭。 現在參考圖12,圖中所示的係一電腦系統42。該電腦 系统42包含一連接至系統匯流排的處理器42a ; —連接至 87 1311605 該系統匯流排的記錄器或顯示裝置42b;以及一連接至今 系統匯流排的記憶體或程式儲存裝置42c。該記錄器或顯 不1置42b適合用以顯示「鑽頭選擇輪出資料」“Μ。* 憶體或程式健存裝置42c則適合用以健存一「自動鑽賴己 劃鑽頭選擇軟體」42cl。該「自動鑽井規劃鑽頭選擇軟體 42cl原本_存於另—個「程式儲存裝置」(例如硬碟)之」 中,不過,該硬碟已經被插入該電腦系統42之中,而1 「自動鑽井規劃鑽頭選擇軟體」42cl則會從該硬碟被載二 圖12的電腦系統42的記憶體或程式儲存裝置42c之中。 此外3有複數筆「輸入資料」44a的儲存媒n 44則备 適合連接至該電腦系統42的系統匯流排,當該儲存媒體^ 連接至該電腦系統42的系統匯流排時,該電腦系統42的 處理器42a便可存取言亥「輸入資料」…。於運作中,該電 腦系統42的處理器42a將會執行被儲存於該電腦系梦二 之記憶體或程式儲存裝4 42e之中的自動鑽井規劃鑽頭選 擇軟體42U,同時會於執行㈣使用被儲存於該儲存媒體 44之中的「輸入資料」44a。當處理器42a完成執行被儲 存於該記憶體或程式儲存裝i 42e之+的自動鑽井規劃鑽 頭選擇軟體42el(同時使用「輸人資料」仏)時,該記錄器 或顯示裝置44b便將會記錄或顯示該「鑽頭選擇輪出資料」 42bl,如圖12所示。舉例來說,可於該電腦系統u的顯 T螢幕上顯示該「鑽頭選擇輸出資料」42bi,或者可將該 「鑽頭選擇輸出資料」42bl記錄於由該電腦系統42所產 生的印出資料之中。於本份說明書的下面段落中將會討論 88 1311605 且特別指出該「輸入資料」44a與該「鑽頭選擇輸出資料」 杨卜於本份說明書的下面段落中還將會討論該「自動鑽 井規劃鑽頭選擇軟體」42cl。目12的該電腦系統ο可以 是一部個人電腦(pc)。該記憶體或程式儲 :::::的媒體或是-可由某個機器⑼如處理器42:—來 *貝取的程式儲存裝置。舉例來說,處理哭 處理芎、矜押击,丨哭.B °〇 42&可能是一微 兴…、 疋—大型電腦或工作站的處理器。 二 '兄’用於儲存該「自動鑽井規劃鑽頭選擇軟體42 的記憶體或程式健存裝置42c可能 擇軟體」仏1 _、_或是其它的RAM、快閃⑶- 體、光學儲存體、暫存器、或是其它m吐储存 性記憶體。 電性及/或非依電 現在麥考圖13 ,圖中所示的係圖 割鑽顯選擇軟體J42C1的細部構 的自動鑽井規 鑽井規劃鑽頭選擇軟體」42cl包含,—中’該「自動 存該輪入資料44a; 一第二區塊46::二-區塊’用於儲 選擇邏輯表示式46;—第二4於儲存複數個鑽頭 頭選擇演算法48; 一第四二s〇,8,用於館存複數個鑽 選擇常數50 ;以及一第五F ^ ,用於儲存複數個鑽頭 選擇型錄52。該等鑽頭選::數5 =儲存她 擇演算法48盥兮n 匕3作為該等鑽頭選 信 鐵頭選擇邏輯表示式46夕认 值。該等鑽頭選擇型錄52包 之輸入的數 “與該等鑽頭選擇邏輯表示式二:等鐵頭選擇演算 輪入資料」44a包含作為該等鑽頭選擇=1查4找數值。 倖肩异法48與該等 89 1311605 鑽頭選擇邏輯表示式46之耠入沾也& 「 ^ 翰入的數值。「鑽頭選擇輸出 資料j 4 2 b 1包含由該等鑽頭撰樓 子緝貞礎擇凋异法4δ算出且由該等 鑽頭選擇邏輯表示式46所痛斗沾如杜 座生的數值。於運作中,參考 圖12與13 ,圖12的該雷聪多从j 电㊈系統42的處理器42a會藉由 執行該鑽頭選擇軟體42cl的爷簟旛趙,西挪 97 β寻鑽碩選擇邏輯表示式46 與該等鑽頭選擇演算法48朿勃& 木執仃3亥自動鑽井規劃鑽頭選 擇軟體42c I,並且同時會於勃广 、 丁 3於執订期間使用該「輸入資料」 44a、該等鑽頭選擇常數5〇以月址妙七 υ以及被儲存於該等鑽頭選擇型 錄52之中作為該等鐵頭選擇邏輯表示式如與該等鑽 擇演算法48的「輸入資料」的數值。當該處理器42a完成 執行談等鑽頭選擇邏輯表示式# 、 、興忒等鑽頭選擇演瞀法 48(同時使用該「輸入資料 ” 貝π」料a *數50以及型錄52)時, 便將會產生該「鑽頭選擇輸出資料」42Μ作為「執行会士果。 該「鑽頭選擇輸出資料」42bl會 」 I被5己錄或顯不於圖12的 該電腦系、统42的記錄器或顯示裝£i。此外,可由 作業員透過圖13中所示的「手動輸入」區塊54以手動方 式將該「鑽頭選擇輪出資料」伽輸入至該鑽頭選擇邏輯 表不式區塊46與該鑽頭選擇演算法區塊48。 I入資料44a — 二面的段“會提出由該等「鑽頭選擇邏輯表示式」私 與違等「鑽頭選擇渖算 ―居」48所使用的「輸入資料」44a。 =亥寻鑽頭選擇演算法48與該等鑽頭選擇邏輯表示式Μ 的輸入的輸入資料44a的數值如下: (1)經測得的深度 U11605 (2) 無圍壓縮強度 (3) 套管點深度 (4) 鑿洞尺寸 (5) 導管 (6) 套管種類名稱 (7) 套管點 (8) 每天的鑽井機費用 (9) 鑽井機的鑽井總費用 Π0)鑿洞區段名稱 鑽 常數50 1鑽頭_輯表示式」46 -法」48會使用該等「鑽頭選 專鑽頭、擇 演算法Μ與鑽頭選擇邏輯表示歎」50。作為鑽頭選 擇常數5〇的數值如下:起鑽:;:之輸入資料的鑽頭 謂興下鑽作業逮度。
m I擇型錄52 ^該等「鑽頭選擇邏輯表示式」46 :::48會使用該等r鑽頭選擇型錄 演异法48肖鑽頭選擇邏輯表示式46 錄52的數值如下:鑽頭型錄。 與該等「鑽頭選擇演 」52。作為鑽頭選擇 之輸入資料的該等型 該等「鑽頭選擇演算法」48會 資料」42bl Γ 曰座生4鑽頭選擇輸 頭選摆於 _擇演算法」48所產生的「< 、、擇輪出資料」42bl包含下面的輸出資料種類: 91 1311605 (1) 經測得的深度 (2) 累積性無圍壓縮強度(UCS)
(3) 累積性超額UCS (4) 鑽頭尺寸 (5) 鑽頭種類 (6) 起始深度 (7) 結束深度 (8) 鑿洞區段開始深度
(9) 分段的岩石的平均UCS
(10) 鑽頭的最大UCS
(Π)分段的岩石的鑽頭平均UCS (12) 英尺長度 (13) 該鑽頭的統計性已鑽鑿的英尺長度 (14) 相較於統計性英尺長度之被鑽鑿的英尺長度的比 值 (15) 統計性的鑽頭時數 (16) 最低時數 (17) 穿透速率(ROP) (18) 統計性鑽頭穿透速率(ROP) (19) 機械性鑽鑿能量(於該鑽頭所鑽鑿出的距離上進行 UCS積分) (20) 鑽頭上重量 (21) 每分鐘的迴轉數(RPM)
(22) 統計性鑽頭RPM 92 1311605 (2 3)已异出的總鑽頭迴轉數 (2 4)起鑽與下鑽作業時間 (25) 累積性超額和該累積性UCS的比值 (26) 鑽頭成本 稱 (27)鑿洞區段名 ^面的&洛將會提出該等「鑽頭選擇邏輯表示式」Μ。 =鑽頭選擇邏輯表示式」46將會進行下面步驟 2輸入資料叫」,其含有已由該「輸入資料…」所 產生的「複數個輸入資 — ,結果」,(2)於處理該「輸入 貝枓」/月間估算該等「輸入資料計算結果」。 邏輯該二輪入資料」44a之處理的該等鑽頭選擇 耳衣不式46包含下面部份·· 寸。⑴驗證鑿洞尺寸以及濾除不符該鑿洞尺寸的鑽頭尺 (2) 檢查該鑽頭是否未鑽馨至該套管點以外。 (3) 檢查該次鑽頭運轉之累積性機械性鑽馨能 將其和該鑽頭的統計性機 i • Λ- ^ ^ f生鑕鏨忐罝作比較,並且指令
適當的風險給該次鑽頭運轉。 且U Μ)檢查該等累積性鑽頭迴轉數,f H脾K # 類的t 3 k将数亚且將其和該鑽藤铦 规先叶性鑽頭迴轉數作 讚員種 次鑽頭運#卜 I且^適當的風險給該 Ο驗證所遭遇到的岩 頭種類的最佳岩石… 洛在所選定之鑽 取1土石·石強度的範圍之外。 再 93 13 H 605 ⑹假設最後選定的鑽頭可達該套管點的話,將 度延伸25%。 鑽頭選擇演篡 下面的段落將會提出兮隹「 〜 出3亥專鑽頭選擇演算法」48。該 寺「鑽頭選擇演算法 48眩备 〜 _ 將會接收該等「鑽頭選擇邏輯表 不式」4ό的輸出,並且以Τ &七j七上 _ 下面方式來處理該等「鑽頭選擇 避輯表示式」46的輸出: (1) 讀取變數與常數 (2) 讀取型錄 (3) 建立套管點至套普
CumTir^- nr g點的累積性岩石強度曲線
CumUCS- ς(⑽)暎尺 (4) 決疋所需要的蘩洞尺寸 (5) 找出匹配於該矣冗从ια 石的攻接近的無圍壓縮強度的候選 鑽頭來進行鑽鑿 ⑹將該能量與所有候選鑽頭的累積性岩石強 線作比較來決定該鑽頭的結束深度。 (7)考量鑽井機費用、如 $、± 、 起鑽與下鑽作業速度以及鑽鑿穿 遗速率來為每個候選鑽 项項叶异出每英尺的成本 總 鑽頭成本 成本=(鑽井機f用+鑽井總費用)(T—TnPI„+T—TdP)+ ⑻估算哪個# $鑽頭最經濟 (9)計算出至套管& & 2的剩餘累積性岩石強度 94 1311605 (10) 重複執行步驟5至9’直到該鑿洞區段的終點為止 (11) 建立累積性ucs (12) 選擇鐵頭—顯示鑽頭效能與運作參數 (1 3)私除次佳的鑽頭 (14)依據每英尺的成本來找出最經濟的鑽頭 見在參考圖14A與14B,於下文的功能性說明期間將 會使用到圖14A與14B。 • ;下面的&落中將會麥考該等圖式中的圖1至14B來 對該「自動鑽井規劃鑽頭選擇軟體」42ci的運作進行功能 性說明。 回想鑽頭的選擇係一種大量倚賴人員、先前經驗的手 動主觀過程。該等個別建議或選擇該等鑽頭的經驗可能會 嚴^影響到鑽鑿效能的優與劣。鑽頭選擇作業主要係依據 =員經驗且僅使用極少量欲被鑽鑿的實際岩石資訊的事 實,使其非常容易為該應用選到不正確的鑽頭。回想鑽頭 •選擇子任務會運用到該「自動鑽井規劃鑽頭選擇軟體」 42c 1來自動產生該等必要的旋轉錘鑽頭(r〇iier c〇ne心⑴b⑴ 或疋固定式削切鑽頭(fixed cutter driu bit)(例如PDc鐵 頭)’用於以未經指定的地面間隔來鑿穿所指定的鑿洞區段 以便鑿出該等指定的鑿洞尺寸。該「自動鑽井規劃鑽頭選 擇軟體」42cl包含「鑽頭選擇邏輯表示式」46以及「鑽頭 選擇演算法」48,兩者適合用來自動選擇必要的鑽頭序列 以便於該井中鑽鑿每個鑿洞區段(其係由—頂端/底部深度 間隔與直徑來定義)。該「自動鑽井規劃鑽頭選擇軟體」42cl 95 1311605 會對歷史鑽tg μ ,,. 鑕碩政此-貝料及數種特定的關 (KPI)進行統計性處理, 匕心不付唬 料匹配適當的鑽頭 金又貝 日”…“ 化鑽鑿每個鑿洞區段的 洗、成本總成。其會依據私有的演算法、統計資料、邏 輯以及風險係數來決定鑽 ” ^ 且置換某個鑽頭。 于應的-度,以便拉出 中,輸入資料44&代表的是-組地層特徵,其 中㈣層特徵係由代表某項「欲被鑽馨」之特定 徵的資料所組成。哕 曰特 A以朴表以及>寅算法46/48係由歷 史貝枓60所組成’其中該歷史資料6〇可被視為 下 矛格.弟一仃6〇a,其包含「歷史地層特徵」; 二:二1亍其包含「對應於該歷史地層特徵而被使 用_頭序列」。該記㈣或顯示裝i 42b將會記錄或顯 不鑽頭選擇輸出資料」42b ’其中「鑽頭選擇輸出資料」 仙係自「所選定的鑽頭序列以及其它相關聯資料」所組 成。運作中,參考圖14A,輸入資料…代表的是一組地 層特徵’其和某項「欲被鑽塞」之地層相關聯。「對應於 該輪入資料44a的地層特徵(其和「欲被鑽S」❾某部㈣ 層相關聯)」會與該等邏輯表示式與演算法46/48中的每項 和歷史貧料60相關聯的行60a中的特徵」進行比較。當 於對應於該輸入資料44a的地層特徵(其和「欲被鑽鑿」 的某部份地層相關聯)」與「和歷史資料6〇相關聯的行6〇a 中的特徵」之間找到匹配(或是實質匹配)時,便會從圖i4A 中的該等邏輯表示式及演算法區塊46/48中產生一對應於 96 1311605 和歷史資料6 0相關聯的行 (亦被..... 可俄」的1鑽頭序列」 ,戶斤選定的鑽頭序列」)作為輪出。圖12中的該 X糸統42的記錄器或顯示裝£仙會產生前述「所選 ::碩序列以及和所選定的鑽頭序列相關聯的其它資 出」乍:「輸出」。該「輸出」的範例可參見圖15。該「輸 」…被顯示於一電腦顯示螢幕上的「 I1 :所示),或者其亦可能是-由該記錄器或顯示;置 42b列印的「輸出記錄」。 p將參考圖14B來更❹地討論上面參考圖ΜΑ所 響:=:關於該等「邏輯表示式與演算法」— 二:。輸入貝料」㈣產生該「鑽頭選擇輸出資料」_ 1圖j4B中,回想輸入資料44a代表的是-..組「地層特 二:中該「地層特徵」係由代表某項「欲被鑽馨」之 / ^之特徵的資料所組成。因此,該輸入資料他係 :::的特定資料所組成:經測得的深度、無圍麗縮強度、 /黑:度、塞洞尺寸、導管、套管種類名稱、套管點、 母天的鑽井機費用、鑽井機的鑽井總費用以及馨;同區段名 稱。 =14B中’回想該等邏輯表示式46與演算法48將會 I: 44生:'「鑽頭選擇輸出資料」德來回應該輸入資 「:’/、中該「鑽頭選擇輪出資料」42bl代表的是前述 料k疋的鑽頭以及和所選定的鑽頭相關聯的其它資 "」°因此,「鑽頭選擇輪出資料」他係由下面特定資 97 1311605
料所組成:經測得的深度、累積性無圍㈣強度(ucs)、 累積性_ UCS、鑽頭尺寸、鑽頭種類、起始深度、结束 深5、鏨洞區段開始深度、分段的岩石的平均ucs、鑽頭 的瑕大UCS、分段的岩石的鑽頭平均ucs、英尺長度、該 鑽頭的統計性已鑽鑿的英尺長度、相較於統計性英':長: 之被鑽馨的英尺長度的比值、統計性的鑽頭時數、最低: 數、穿透速率(ROP)、、統計性鑽頭穿透速率(R〇p)、機械性 鑽馨能量(於該鑽頭所鑽馨出的距離上進行ucs積分)、鑽 j上重量、每分鐘的迴轉數(RpM)、統計性鑽頭、已 具出的總鑽頭迴轉數、起鑽與下鑽作業時間、累積性超額 和該累積性UCS的比值、鑽頭成本以及鑿洞區段名稱。 次為響應該「輸入資料」44a來產生該「鑽頭選擇輸出 ·:料」42bl ’該等邏輯表示式46與該等演算法48必須實 方e下面的功能,該等功能將會於下面的段落中提出。 該等鑽頭選擇邏輯表示式46將會實施下面的功能。爷 等鑽頭選擇邏輯表示式46將會:⑴驗證s洞尺寸以及遽 '不符該馨洞尺寸的鑽頭尺寸,⑺檢查該鑽頭是否未鑽鏨 至该套管點以外,(3)檢查該次鑽頭運轉之累積性機械性鑽 鑿忐量,並且將其和該鑽頭的統計性機械性鑽鑿能量作比 車乂,亚且指定適當的風險给該次鑽頭運轉,(4)檢查該等累 積性鑽頭迴轉數,並且將其和該鑽頭種類的統計性鑽頭迴 轉數作比較,並且指定適當的風險給該次鑽頭運轉,(5)驗 祖所遭遇到的岩石強度是否並未落在所選定之鑽頭種類的 取佳岩石強度的範圍之外,以及(6)假設最後選定的鑽頭可 98 1311605 達。亥套管點的話,將央尺長度延伸2 $ %。 該等鑽頭選擇演算法48將會實施下面功能。該等鑽頭 選擇演算法48將會:⑴讀取變數與常數,⑺讀取型錄,⑺ 利用下面的等式來建立套管點至套管點的累積性岩石強度 曲線:
CumUCS=0i7a·)碟尺 ⑷決定所需要的鏨洞尺寸,(5)找出匹配於該岩石的最 接近的無圍壓縮強度的候選鑽頭來進行鑽鑿,(6)將該歷史 鑽,能量與所有候選鑽頭的累積性岩石強度曲線作比較來 决疋该鑽頭的結束深度,⑺利用下面的等式,考量鑽井機 費用、起鑽與下鑽作業速度以及鑽鑿穿透速率來為每個候 選鑽頭計算出每英尺的成本:
總成本=(鑽井機費用+鑽井總費用)(T_TripIn+g+T ROP — ι^) 鑽頭成本 (8)估算哪個候選鑽頭最經濟’⑺計算出至套管點的剩 餘累積性岩石強度,(10)重複執行步驟5至9,直到节鑿 洞區段的終點為止,(11)建立累積性則,(12)選擇鑽:― 顯不鑽頭效能與運作參數,(13)移除次佳的鑽帛,以及 依據每英尺的成本來找出最經濟的鑽頭。 下面段落中的討論將會說明本發明的「自動鑽 鑽頭選擇軟體」如何響應、「輪人資料」來產生_ : 的鑽頭序列」。 丄1-疋 该「輸入資料」會被載入,而且該「輸入資料」含有 99 1311605
二2諸以及地料”料1被以料輸 : 層特性資料的主要特徵為岩石強度。本發明的「自 =規:鑽頭選擇軟體」已經計算出該等套管點,而且亦 π = 4収寸」的數量。料套管尺悄為已知,所以, 樣知悉該㈣井尺寸。「I㈣段」的數量為已知,所 =同樣知悉該等「馨洞區段」的尺寸1等繼體同 :已知。該「輸入資料」的最重要部份係、「馨洞區段長 度」、「馨洞區段尺寸」以及和存在於該等s洞區段中的 :石相關聯的「岩石硬度」(亦稱為「無圍壓縮強度」或是 :⑽」)。此外’該「輸入資料」還包含「歷史鑽頭效能 貪料」。該等「鑽頭評估型錄」包含:鑽頭尺寸、鑽頭種 類以及該等鎮頭種類的相對效能。該「歷史鑽頭效能資料」 包含和每種鑽頭種類相關聯之該鑽頭所鑽鑿的英尺長度。 根據本發明’言亥「自動鑽井規劃鑽頭選擇軟體」會從決定 該鑽頭種類能夠鑽鑿的平均岩石硬度開始。該等鑽頭種類 已於「國際鑽鑿承包商協會(Internati〇nal Ass〇ciati〇n 〇f DnllingContractor(IADC))」鑽頭分類中進行分類。所以, 每種「鑽頭種類」均存在—種「分類」。根據本發明的其 中一項觀點,吾等會指派一「平均ucs」(也就是,「平均 岩石強度」)給該鑽頭種類。此外,吾等還會指派一最小與 最大岩石強度給每種該等鑽頭種類。所以,每種「鑽頭種 類」均會被指派到下面資訊:(丨)「每種鑽頭種類能夠鑽鑿 的最軟岩石」’(2)「每種鑽頭種類能夠鑽鑿的最硬岩石」, 以及(3)「每種鑽頭種類能夠鑽鑿的平均或最佳硬度」。當 100 1311605 執行本發明的「自動鑽井規劃鑽頭選擇軟體」時,便會針 對將被鑽鑿(電子式)的鑽井「鑿洞區段」來檢查和該等「鑽 頭種類」相關聯的所有「鑽頭尺寸」。某些「特殊的鑽頭 種頬」將會從5玄鑽頭選擇型錄中被渡除,因為該些「特殊 的鑽頭種類」並不具有可配合吾等即將鑽鑿(電子式)之鑿 洞區段來使用的合宜尺寸。因此,便會產生一份「候選鑽 頭清單」。當於該軟體中開始鑽鑿該岩石時(電子式),便 會針對該岩石的每英尺來定義一「岩石強度」,其中該「岩 •石強度」的單位為以「psi」來計量的「壓力」。對吾等所 鑽鑿(電子式)的岩石的每英尺來說,本發明的「自動鑽井 規劃鑽頭選擇軟體」將會實施數學積分運算以便利用下面 的等式來決定「累積性岩石強度」:
CumUCS=0c/cs 殿尺 其中: 籲 「CumUCS」為「累積性岩石強度」,以及 「UCS」(無圍壓縮強度)為每個「候選鑽頭」的「平 均岩石強度」,以及 「d」為使用該「候選鑽頭」的鑽鑿距離。 因此,假設該「平均岩石強度/英尺」為1〇〇〇psi/英尺 且口專鑽馨10吳尺的石石的話,那麼,「累積性岩石強 度」便為(lOOOpsi/英尺)(10英尺)=1〇〇〇〇psi「累積性岩石 強度」。假設下個10英尺岩石的「平均岩石強度/英尺」 為2000PS1/英尺的話,那麼下個1〇英尺將會具有(2〇〇〇psi/ 101 1311605 英尺)(1〇英尺)=2_psi「累積性岩石強度」;然後再加 上吾等已鑽馨的H)000psi「累積性岩石強度」,該2〇英 尺的「累積性岩石強度」便會等於3〇〇〇〇psi。於該軟體中 繼續鑽馨(電子式)。此時會將該2〇英尺錢馨的3〇刪叫「累 積性岩石強度」和「該鑽頭的統計性效能」作比較。舉例 來。兄’對某ϋ特殊鑽頭」來說,假設「該鑽頭的統計性 效能」表示以統計資料言之該「特殊鑽頭」能夠於某個「特 殊岩石」t鑽鑿五十(50)英尺的話,其"「特殊岩石」 具有lOOOpsi/英尺的「岩石強度」,那麼於此情況中,該 「特殊鑽頭能夠鑽鑿的統計性能量」便會等於(5〇英 尺)(l〇〇〇psi/英尺)=50〇〇0psi。比較先前所算出的3〇〇〇〇psi 「累積性岩石強度」以及前面所述之5〇〇〇〇psi之該「特殊 鑽頭能夠鑽鑿的統計性能量」。即使利用「真實能量」 (30000psi)來鑽鑿該岩石的第一個2〇英尺,於該「特殊鑽 頭」中仍然會存在「殘餘能量」(該「殘餘能量」為5〇〇〇〇psi 與30000psi間的差值)。因此,從20英尺至30英尺,吾 _ 等可使用該「特殊鑽頭」於該軟體中來再次鑽鑿(電子式) 另一個ίο英尺。假設該「岩石強度」為2〇〇〇psi,藉由相 乘(2000Psi/英尺)(另一個10英尺)=20000Psi來決定該「累 積性岩石強度」。所以,該另一個1〇英尺的「累積性岩 石強度」便為20000pSi。將(該另一個丨〇英尺的)2〇〇〇〇psi 「累積性岩石強度」加到先前所算出的之吾等已經鑽鏊的 30000psi「累積性岩石強度」(第一個2〇英尺)之中,其結 果便會產生和30英尺鑽馨相關聯的50〇〇〇pSi的「總合累 102 1311605 積性岩石強度」。將前面所述的50000psi的「總合累積性 石石強度」和50000psi之該「特殊鑽頭能夠鑽鑿的統計性 月匕里」作比較,其結論便僅有一個,該「特殊鑽頭」的鑽 頭壽命已經結束並且終止於50000psi處;還有,該「特殊 鑽頭」能夠鑽鑿高達30英尺。假設前述的「特殊鑽頭」 係「候選鑽頭A」,那麼便僅有一個結論:「候選鑽頭A」 旎夠鑽鑿30英尺的岩石。現在吾等進入相同尺寸型錄中 的下一個「候選鑽頭」並且重複相同的過程。吾等可繼續 於該軟體中從該岩石中的點A鑽鑿至點B(電子式),並且 將先前所述的能量(以「psi」》單位的英&長度)積分至該 鑽頭可〒終止處。上述的過程會針對上述的「候選鑽頭清 單」中的每'個「候選鑽頭」纟重複執行。吾等現在已經針 對該份「候選鑽頭清單」_的每個「候選鑽頭」算出該英 尺π度(以pSi為單位)。下一個步驟則涉及於該份「候選鑽 頭清导」中選出哪個鑽頭為「最佳候選鑽頭」。吾人可能 έ i為最佳候選鑽頭」為具有最大英尺長度的候選鑽頭。 不過,該鑽頭能夠鑽盤的速度(也就是,穿透速率或是R0P) 同樣為一項考量因t。所以’必須實施成本計算或是經濟 刀析方、經濟分析令,當進行鑽鑿時,會使用到鑽井機, 因此便會耗費鑽井機時間,其具有相關的成本;而且還會 消耗個鑽頭’其同樣具有相關的_定程度之成本。假設 吾等以電子式從點A鑽馨至點B的話,那麼便必須先進入 忒鑿:中Ιέ A的起始處’而此作業便會耗費「起鑽與下鑽 作業日’間」。接著便會耗費鑽鑿時間。當完成(電子式)鑽 103 1311605 繫時,從點B至表面將該 費額夕' ,同樣會耗 錾總時1日此便可异出從點A至點8的「鐵 而違「鑽鑿總時間 可將該鑽頭成本加入該,「全錢皮轉 '成「金錢」。 生:「鑽— # 一 奴」之中。此道計算將會產 特疋英尺長度(從點Α至 將該「鑽鑿嗲胜…朴Ρ 王砧Β)的總成本」。 換成代表「鑽點、Α至點Β)的總成本」轉 該「鑽鑿哕特一的成本」的數字便可正規化 道運:!:夬尺長度(從點Α至點Β)的總成本」。此 I?异會針對每個候選鑽頭來實施。此時便會實施下面的 會;個候選鑽頭每英尺的㈣成本最便宜」。吾等 =:候選鑽頭清單」的所有「候選鑽頭」中選出「最 的:讚頭」。雖然吾等已經算出從點Α鑽馨至點Β :+過:現在則必須考量鑽鑿至該鑿洞中的點c或 二此月况中,該自動鑽井規劃鑽頭選擇軟體將會實 U前面所述相同的步驟’估算哪個候選鑽頭在能量上最 二用來鑽鑿該鑿洞區段;而且此外,該軟體將會實施經 估异,用來判斷哪個候選鑽頭最便宜。因此,當(以電子 方式)從點A鑽鑿至點而至點〇時,本發田明的「自 動㈣規劃鑽頭選擇軟體」將會實施下面功能:⑴判斷是 否::-個或兩個以上鑽頭」必須符合鑽鑿每個鑿洞區段 的需求;以及據此(2)針對每個鑿洞區段選出和該等「一個 或兩個以上鑽頭」相關聯的「最佳候選鑽頭」。 配合該等鑽頭選擇型錄52,該等型錄52包含一份「候 選鑽頭清單」。本發明的「自動鑽井規劃鑽頭選擇軟 W、 104 1311605 :會依據下面條件忽略特定的候選鑽頭:每個候選鑽頭的 分頬以及該候選鑽頭能夠處理的最小與最大岩石強度。此 外,該軟體還將會忽略無法達成吾等之(以電子方式)從點 A「鑽鑿至點B之目的之候選鑽頭。假設遭遇到ucs超過該 「特殊候選鑽頭」之UCS額定值的岩石的話,那麼該「= 殊候選鑽頭」⑮不會合格。此外,假設該岩石強度遠低於
=「特殊候選鑽頭」之最小岩石強度的話,那麼將會忽略 為「特殊候選鑽頭」。 配合輸入資料44a,該輸入資料44a包含下面資料. 要鑽馨哪《洞區段;該|洞的起迄處;整㈣洞的長度; I鑿/同的尺寸’以便用於決定該鑽頭之正確尺寸丨以及嗲 馨洞區段每英尺的岩石強度(ucs)。此外,針對欲被鑽馨 的石石的每英尺而言’會知悉下面的資料:岩石強度 (UCS)、起鑽與下鑽作業速度' 某個鑽頭鑽馨的英尺長度、 =鐵頭所設計的最小與最大⑽、穿透速率(R〇p)以及鑽 I效能。當選擇該等候選鑽頭時,便已經知道該「候選鑽 f」在穿透速率_)方面的「歷史效能」。「鑽頭上重 夏」或是輸之類的鑽盤參數係已知的,而轉動該鑽頭 的母分鐘迴轉數(RPM)亦同樣係已知的。 配合該鑽頭選擇輪屮咨 、弹叛出貝科42b卜因為每個鑽頭均會鑽 馨一個塞洞區段,所以該輪屮$ A > 褒输出貝科包含每個鑽頭於該鑿洞 區段中的起始點與結走 采點5亥起始點與該結束點之間的差 錢係「該鑽頭將會鑽馨的距離」。所以,該輸出資料會 進一步包含「該鑽頭將會鐵盤的距離」。此外,該輸出資 105 A^ll6〇5 :::包含「穿透速率(R〇p)」與「鑽頭成本」等方面的鑽 貝攻能。 °來忒,该自動鑽井規劃鑽頭選擇軟體42cl將會: 針f正確的資訊來建議正確的鑽頭種類,(2)決定每個鑽 鑽舞命’⑺判斷該鑽頭能夠鑽鑿多冑,以及⑷依據每個 '的歷:資料來決定與產生「鑽頭效能」資料。 鸱1見在 > 考81 15,該「自動鑽井規劃鑽頭選擇軟體」42cl 绛二產生圖15中所示的顯示晝面’圖15的顯示晝面所描 2係「鑽頭選擇輸出資料」42Μ,其代表的是由該「自 =鑽井規劃鑽頭選擇軟體」42el所選出的該等經選 碩序列。 圖8中所示的係該鑽柱設計子任務14b。 S又汁—讚柱並不㈣複雜,但卻非常ί貞碎。為確保將 、令個組件堆疊至另—個組件之頂端上的機械穩定性而 f要用到的組件、方法以及計算等全部數量則相當麻煩。 ^卜還& _L T面的事實:必須針對每個馨洞區段來產 不同的鑽柱’以及於鑽鑿某個井時經常會需要每一種 不同的鑽頭運轉,而Β 且所涉及的工作量可能非常魔大且容 易受到人為誤差的影響。 本电明的「自動鑽井規劃鑽柱設計軟體」包含一用於 :動產生該等必要鑽柱的演算法,以便支援每個鑽頭的重
里需求、該執道的方A 的方向性需求、該鑽井機與鑽鑿管的機械 /·生而求以及《亥井的其它_般需求(也就是地層估算)。該等 106 1311605 所生成的鑽柱必須非赍接έ 貝非㊉精確,以幫助計算摩擦壓力損失(水 力特性)、機械性摩擦(力矩與拖氧量)以及成本(方向性鑽馨 的ΒΗΑ組件以及地層估算)。 /見在,考圖16,圖中所不的係一電腦系統。該電腦 τ ·先62 l 3 $接至系統匯流排的處理器、62a 連接至 該系統匯流排的記錄器或顯示裝置62b;以及一連接至該 系統匯流排的記憶體或程式儲存裝置心。該記錄器或顯 不裝置咖適合用以顯示「鐵柱設計輸出資料」62bl。記 ^或程式儲存裝置.則適合用以儲存—「自動鑽井規 韻柱設計軟體」62eI。該「自動鑽井規劃鑽柱設計軟體」 伽原本係料於另—個「程式料裝置」(例如硬旬之 中’不過亥硬碟已經被插入該電腦系統Μ之中,而該 「自動鑽井規劃鑽柱設計軟體」伽則會從該硬碟被載: 圖16的電腦系統62的記憶體或程式儲存裝置62c之中。 卜S有複數筆「輸入貧料」64a的儲存媒體64則合 適合連接至該電腦系統62的系統匯流排,當該健存媒體^ ^接f該電腦系統62㈣統匯流排時,該電腦系統62的 免理為62a便可存取該「輸入資料」“a。於運作中,該電 腦系統62的處理器62a將會執行被儲存於該電腦系统: 或程式健存……的自動鑽井規劃鑽柱設 6侧广:同:!會於執行期間使用被健存於該錯存媒體 r二广二入貝科」64a。當處理器’ 62a完成執行被儲 咖或程式館存裝f之中的自動鑽井規割鑽 柱設計軟體伽(同時使用厂輪入資料」⑷)時,該記錄器 107 1311605
或顯不裝置62b便將會記錄或顯示該「鑽柱設計輸出資料」 62bl ’即如® 16所示者。舉例來說,可於該電腦系統Q 的顯示螢幕上顯示該「鑽柱設計輸出資料」62Μ,或者可 將該「鎮柱設計輸出資料」62bl *己錄於由該電腦系統Μ 所產生的印出資料之中。於本份說明書的下面段落中將會 j :且特別指出該「輸入資料」64a與該「鑽柱設計輸出 貢料」62M。於本份說明f的下面段落中還將會討論該「自 動鑽井規劃鑽柱設計軟體」62cl。圖16的該電腦系統Μ 可以是-部個A電腦(PC)。帛記憶冑或程式儲存裝置62c 係-電腦可讀取的媒體或是一可由某個機器(例如處理号 62a)來讀取的程式儲存裝置。舉例來說,處理胃…可能 是一微處理器、微控制器、或是一大型電腦或1站的處 _來說1於儲存該「自動鑽井規劃鑽柱設計軟 體」伽的記憶體或程式儲存裝置仏可能是一硬碟、 顧、CD-R0M、DRAM或是其它的_、快閃記憶體、 磁性儲存體、光學儲㈣、暫存器、或是其它的依電性及/ 或非依電性記憶體。 現在參考圖17,圖中所示的係圖16$「自動鑽井規 劃鑽柱設計軟體」62cl的細部構造。圖17中,1「自動 鑽井刪柱設計軟體」62cl包含:―第—區塊了用於儲 存讀人貝枓64a’ _第二區塊66’用於儲存複數個鑽柱 設計邏輯表示式66; —笛地as m 弟二£塊68,用於儲存複數個鑽 枉設計演算法68 ;—第四π祕加,田从 ^ . 弟四£塊7〇用於儲存複數個鑽柱 設計ΐ數7 〇,以及一第石萨换7 ?,田+人 弟五£塊72 ,用於儲存複數個鑽柱 108 1311605 …去6 ”主設計常數70包含作為該等鑽挺設 二:、:”8與該等鑽柱設計邏輯表示式“之輸入的數 寺鑽柱& 型錄72包含料由料難設計渾笞 4該等鑽柱設計邏輯表示式66來輸^查㈣值^ 輪入貧料」64a包含作為該等鎮柱設計演算法68盘 邏輯表Μ 66之輸人的數值。「鑽柱設計輸出 貝料」62Μ包含由該等鑽柱設計演算法 鑽柱設計邏輯表Μ 66所產生的數值。於運作中,參 1 圖16與17 16的該電腦系統62的處理器62a會藉由 執行該鑽柱設計軟體62〗w 々 版Wcl的该寺鑽柱設計邏輯表示式66 與該等鑽柱設計演算法68來執行該自動鑽井規割鑽柱設 計軟體心1,並且同時會於執行期間使用該「輸入資料」 64a、該㈣柱設料數7()以及被儲存於該等餘設計型 錄:1之中作為該等鑽柱設計邏輯表示式66與該等鑽柱設 十“ #法68的輪入貧料」的數值。當該處理器62a完成 執订该寻鑽柱設計邏輯表示< 66與該等鑽㈣計演算法 68(同時使用該「輪入資料」W、常數7〇以及㈣72)時, 便將會產生該「鑽柱設計輸出資料」咖作為「執行結果」。 該「鑽柱設計輸出資料」62bl會被記錄或顯示於圖Μ的 該電腦系、统62的記錄器或顯示裝4 62b上。此外,可由 作業員透過圖17中所示的「手動輸入」區塊”以手動方 式將該「鑽柱設計輸出資料」62M輸入至該鑽柱設計邏輯 表示式區塊66與該鑽枉設計演算法區塊68。 輸入資料64a 109 1311605 . 下面的段落將會提出由該等「鑽柱設計邏輯表示式」66 與該等「鑽柱設計演算法」68所使用的「輸入資料」64a。 作為該等鑽枉設計演算法68與該等鑽柱設計邏輯表示式66 的輸入的輸入資料6 4 a的數值如下: (1) 經測得的深度 (2) 真實垂直深度 (3) 鑽頭上重量 (4) 泥漿重量 • (5)泥漿重量經測得的深度 (6) 傾斜度 (7) 套管點深度 (8) 鑿洞尺寸 (9) 英尺長度
(10) ROP (11) 起鑽與下鑽作業時間 (12) 彎曲嚴重度 ® (13)真實垂直深度 (14) 無安全邊限的孔隙壓力 (15) 鑽頭尺寸 (16) 鑽井穩定性上限 (17) 鑽井穩定性下限 (1 8)開放鑿洞或已套接鑿洞完成 (19) BOP 位置 (20) 套管種類名稱 110 1311605 (21) 鑿洞區段名稱 (22) 導管 (23) 起始深度 (24) 結束深度 (25) 最低時數 (26) 該鑽頭的統計性已鑽鑿英尺長度
(27) 累積性UCS (28) 套管點 (29) 套管尺寸 (30) 套管爆裂壓力 (31) 套管倒塌壓力 (32) 套管連接器 (33) 套管成本 (34) 套管等級 (35) 每英尺的套管重量 (36) 套管外徑 (37) 套管内徑 (3 8)氣隙 (39) 套管頂端測量深度 (40) 水深 (41) 最後面泥漿的頂端 (42) 水泥的頂端 (43) 泥漿體積 (44) 離岸井 111 1311605 鑽柱設計常數70 該等「鑽柱設計邏輯表示式」66與該等「鑽柱設計演 算法」68會使用該等「鑽柱設計常數」70。作為鑽柱設計 演算法6 8與鑽柱設計邏輯表示式6 6之輸入資料的鑽柱設 計常數70的數值如下: (1) 設計係數 (2) 標準長度 (3) 安全邊限井湧容限 ® (4)最小井傾斜度旗標 (5) 最小井彎曲嚴重度旗標 (6) 重力常數 (7) 泥漿表面體積 鑽柱設計型錄72 該等「鑽柱設計邏輯表示式」66與該等「鑽柱設計演 算法」68會使用該等「鑽柱設計型錄」72。作為鑽柱設計 φ 演算法68與鑽柱設計邏輯表示式66之輸入資料的該等型 錄72的數值如下: (1) 鑽鑿管型錄 (2) 鑽铤型錄檔 (3) 重物鑽鑿管型錄檔 (4) 鑽鑿管型錄檔 (5) BHA型錄擋 (6) 必要的過度拉曳量 112 1311605 鑽柱設計輸出資料62b 1 該等「鑽柱設計演算法」68會產生該「鑽柱設計輸出 資料」62b 1。由該等「鑽柱設計演算法」68所產生的「鑽 柱設計輸出資料」62b 1包含下面的輸出資料種類: (1) 鑿洞區段開始深度 (2) 鑽铤1長度 (3) 鑽铤1重量 (4) 鑽铤1
(5) 鑽铤1 OD
(6) 鑽铤1 ID (7) 鑽铤2長度 (8) 鑽铤2重量 (9) 鑽铤2
(10) 鑽鈒 2 OD
(11) 鑽鈒 2 ID (12) 重物長度 (13) 重物重量 (14) 重物
(15) 重物OD
(16) 重物ID (17) 鑽鑿管長度 (18) 鑽鑿管重量 (19) 鑽鑿管
(20) 鑽鑿管 OD 113 1311605
(21) 鑽鑿管ID (22) 鑽鑿管張力額定值 (23) BHA 工具 (24) 持續時間 (25) 井湧容限 (26) 鑽铤1線性重量 (27) 鑽铤2線性重量 (28) 重物線性重量 (29) 鑽鑿管線性重量
(30) DC OD
(31) DC ID (3 2)DC線性重量
(33) HW OD
(34) HW ID (35) HW線性重量
(36) DP OD
(37) DP ID (3 8)DP線性重量 鑽柱設計邏輯表示式6 6 下面的段落將會提出該等「鑽柱設計邏輯表示式」66。 該等「鑽柱設計邏輯表示式」66將會進行下面步驟:(1) 接收「輸入資料64a」,其含有已由該「輸入資料64a」所 產生的「複數個輸入資料計算結果」;(2)於處理該「輸入 資料」64a期間估算該等「輸入資料計算結果」。於下文 114 1311605 對本發明之運作進行功能性說明」的段落_將可對該等 錶柱°又叶邏輯表示式66」有更佳的瞭解。 用於估异該輸入資料64a之處理的該等鑽柱設計邏輯 表示式66包含下面部份: h查所有的鑽柱組件是否均可適配於該鑽井幾何,其 包含手動變更組件尺寸以後。 第種情況係由下面組合而成:一正位移馬達(positive D1SplaCement M〇t〇r,pDM)、一於鑽鑿時進行測量 _ (Measurement While Drilling ’ MWD)的裝置、一於鑽鑿時 進行工作記錄(Logging while Drilling,LWD)的工具、及/ 或鑽铤(亦稱為DC 1)。真實的組態係依據該鑿洞區段中的 最大傾斜度與彎曲嚴重度,其會使用下面的規則: (1) ¥ 3亥傾斜度與幫曲超過臨界值時即需要p d μ。 (2) 當選定該PDM之後即需要MWD。 (3) 於最後的鑿洞區段令會建議使用lwd。
• 鑽柱設計演算法6 R 下面的段落將會提出該等「鑽柱設計演算法」68。該 等「鑽柱設計演异法」6 8將會接收該等「鑽柱設計邏輯表 示式」66的輸出,並且以下面方式來處理該等「鑽柱設計 邏輯表示式」66的輸出。DC係「鑽铤」的縮寫,HW係 「重物」的縮寫,而DP則係「鑽鑿管」的縮寫。DC 1為 「鑽铤1」,而DC2則為「鑽艇2」。於下文「對本發明 之運作進行功能性說明」的段落中將可對該等「鑽柱設計 演算法68」有更佳的瞭解。下文中,df為「設計係數」, 115 1311605 而WFT」則為「重量/英尺」。 (1) 讀取變數與常數; (2) 讀取型錄; (3) 決定DC1、DC2、HW以及DP的外徑: (a) 可利用該鑿洞尺寸從表格中獲得DC1 (b) DP » 利用剛性比值來決定外徑。 • dp0D=利用該鑿洞尺寸(鑽頭直徑)從表格中所庐 者 〇 DPod<=DC1od, (c) DC2, 利用剛性比值來決定外徑。 sr-zbig/zsmall Z = (iI/32)((OD4-ID4)/OD) SR<3.5 ^^2od<=DC1od&DC2od>=DPod (d) HW, 利用剛性比值來決定外徑。 SR=Zbig/Zsmall Z = (n/32)((OD4-ID4)/OD) SR<3.5 HWod< = DC1od&HWod> = DPod (e) DPOD<=HWOD ; (4) 決定該鑿洞區段中所使用的最大的鑽s員上重f . 116 1311605 (5)決定DCl、DC2以及HW的重量,其中「θ」係用 於該鎮井傾斜度,而「df」則係設計係數: HW, WOB(DF)
Kb*COS(e) DCU + DC2, DC1. +DC2, 5 + θ 100 , WOB(DF) ’95-θ WOB(DF) HW Kb*COS(9) w 或者 DC1W= DC1l*DC1wft · DC2W=(DC1+DC2)-DC1 ;
(6) 決定 DC1、DC2、HW、DP 的長度: (a) DCl-DClL = 90英尺=1個標準長度=3個J〇int, (b) DC2-DC2L=DC2w/DC2WFT, (c) HW-HWl=HWw/HWwft . (d) DP-DPL=(鑕·頭區段長度)_(dci L-DC2L-H WJ ; (7) 決定張力風險: (a) 取得最頂端的鑽鑿管的額定值(優質為8〇%) (b) 張力風險=((2:(Wc()iTip()nents)*Kb)+最小過度拉曳 量)/(管張力額定值*0.8); (8) 依據鑽鑿該區段的持續時間來計算成本;以及 (9) 依據該井種類來計算井湧容限大小並且指派風險。 參考圖1 8,於下文的功能性說明中將會使用到該圖。 圖18中,s亥輸入資料76包含「輸入資料」64a、該等 常婁之 7 q 、 一 以及該等型錄72。該輸入資料76將會被當成「輸 二、’、」而提供給該等鑽柱設計邏輯表示式66。該等 。又汁邏輯^ * — I. ' 衣不式όό將會執行下面步驟:檢查所有的鑽柱 117 1311605 牛二否均可適配於该鑽井幾何,並且判斷該欲被鑽鑿的 鑿::否需要LWD或MWD測量工具。接著,該等鑽柱設 f 〇、开法68便會執行下面步驟:決定鑽铤^ (dc 1 )、鑽铤 2(DC2)i等重物(HW)以及鑽馨管(Dp)的外徑;*定該馨 洞區段中最大的「鑽頭上重量」;決定DC1、DC2以及謂 的重量;決定DC1、DC2、HW、Dp的長度;決定張力風 險,依據該區段中的鑽馨期間來計算成本;以及計算井消 容限。接著’便會於圖16中的「記錄器或顯示裝置」㈣ 之令產生且記錄或顯示該鑽柱設計輸出資料6如,該鑽柱 設計輸出資料62M包含—份每個t洞區段中該鑽柱的摘 要,其中該摘要包含:⑴該鑽柱十每個組件的尺寸與重量 與長度’以及(2)該鑽柱中有哪種工具存在(例如lwd以及 M,.。配合下面段落巾「本發明之運作的功能性說明」 將可對該等上述的「鑽柱設計演算法68」有更佳的瞭解。 現在參考圖19,圖中所示的係一典型的「鑽柱設計輸 出,貝:意面」其可被§己錄或顯示於® 16中的記錄器或 嘁不叙置62b之上,而且該顯示晝面顯示出圖μ中的鑽 柱設计輪出資料6 2 b 1。 於下面的段落中將參考該等圖式中的圖1至Μ來對本 發明的「自動鑽井規劃鑽柱設計軟體」心丨的運作進行功 能性說明。 依照圖8中的工作流程的順序,吾等可知道該鑽井的 「馨洞尺寸」而且吾等也知道該馨洞的起迄處。該等鑽頭 已經被選出’而且從該鑽頭中,吾等可知道下面的鑽錾參 118 1311605 數例如鑽鑿該鑽頭需要多大的「鑽頭上重量」;以及旋 轉炫鑽頭母分鐘需要多少迴轉數(RpM)。最後的工程任務 貝J係水力特性任務。此項任務必須依據該特殊鑽頭的穿透 速率(ROP)來決定吾等需要抽出多少的流體以便清洗該寥 同而毫恶鑽屑。該水力特性任務會反映出「壓力損失」, 而且為計算該等「壓力損失」,吾等必須知道該鑽柱的結 構。因& ’鑽柱設計必須在鑽頭選擇之後且在水力特性任 務以前來進行。從鑽頭選擇中,吾等會知道該等欲被使用 的鑽頭的尺寸;吾等會知道該特殊鑽頭需要有多大的「鑽 頭上重里」,而且吾等還會從該鑽井幾何中知道該套管尺 才。所有該等鑽柱組件皆必須小於該鑽頭尺寸,因為所有 :亥等鑽柱組件均必須被降至一新鑽馨的鑽井之中,而且必 頁要有足夠的空間可供鑽肩被向上傳輸至該 之該等鑽具組合(BHA)組件之間的表面處。 續柱 回想該鑽柱並且比較該鑽柱和一注入針。回相使用一 個五英忖的鑽馨管㈣所鑽錾出的深度(例 並且以雷同的古斗·十Λ ,L & 央 田Π的方式來比較該些尺寸與該注人針,其會顯示 ^注入針的長度應該約為2"尺。該鑽柱係—可撓性 二::中空管,因為其遠長於該鑽柱管的其它尺寸。該鑽 柱έ從一表面管延伸至下太数^丄 I伸至下方鏨洞中的鑽頭管處。該表面管 八、S,例如五(5)英吋管。假設吾等鑽馨—個十七 刀之〇7_1/2)英吋的鑽井時,該鑽柱中不同的纽 必須將該鑽柱從一们 、’]便 中的17 了置k表面s處延伸至下方鑿洞 央吋鑽頭處。雖然該鑽柱大部分 119 1311605
恶中’吾等仍然需要有_ Γ鑽頭上重量」。所以,吾等必 /員將複數個組件」併人該鑽柱之中,該等組件係、位於該 鑽頭附近且具有「高密度」《「大重量」,因為該些「組 件」如處⑤C縮中」。位於該鑽頭附近的該些鑽柱「組 件」必須具有「較大的剛性」,所以,該#「組件」的外 2必須具有大於該表面管UD外徑(〇D)(也就是,該表面 官之OD小於位於該鑽頭附近之該等「組件」之〇d)。因 此,位於該鑽頭附近的該等「組件」會具有「大重量」, 所以便會具有「大外徑」(必定會大於該表面管)。 不過,在位於該鑽頭附近的大〇D管(下文中稱為「鑽 铤」或是「DC」)以及一位於該表面附近小很多的〇D鑽 鑿管(D P)之間的介面處則將會累積大量的張力(亦稱為「應 力彎曲比值」)。所以,在位於該鑽頭附近的大〇D鑽铤以 及位於邊表面附近「較小〇D」鑽鑿管之間必須要有「轉 換部件」。為提供前述的「轉換部件」,必須使用兩個不 同尺寸的「大OD」鑽铤;也就是,鑽铤1(DC1)以及鑽铤 2(DC2)。在鑽铤2(DC2)以及位於該表面附近「較小〇D」 鑽鑿管之間需要有一或多個的「額外轉換部件」,而且該 「額外轉換部件」可被稱為「重物」鑽鑿管或是「Hw」 鑽鑿管。該HW鑽鑿管的尺寸和該「較小〇d」鑽餐管相 同’不過,該HW鑽鑿管的内徑(ID)比較小。因此,該Hw 鑽鑿管會比該「較小OD」鑽鑿管還要沉重。如此有助於 在該鑽井底部處的大OD管與該鑽井表面處的較小〇D管 之間產生平滑的「應力轉換」。可以計算出「應力青曲比 120 1311605 值」(其必須係一特定數值),而且假設該「應力彎曲比值」 數值落在特定限制内的話,那麼前述的「應力轉換」(位於 該鑽井底部處的大OD管與該鑽井表面處的較小〇D管之 間)便會非常平滑。 該等鑽頭均必須要有一「鑽頭上重量」,而且可藉由 該等鑽鎚的重量來實現。該等鑽鎚必須適配於該開放鑿洞 尺寸之内,所以,便可計算出該等鑽铤的最大尺寸。當知 道該等鑽铤的最大尺寸之後,吾等便會知道該等(鑽铤)管 「每英尺的磅數」或是「重量」。當有人知道需要鑽鑿的 重量時,吾等便能夠回頭算出該等鑽铤的長度。此外,吾 等還能夠計算必須被置入該鑽井之中的重物「Hw」鑽鑿 管的長度,以便提供前述的「鑽頭上重量」。位於該表面 附近的鑽鑿f (DP)並不會為該鑽頭實現任何的「鑽頭上重 量」,不㊣’該鑽t管(DP)必須為下方_所產生的流體 提供一條流動路徑。
所有該些鑽铤組件(其會將該等鑽鑿管懸掛在該鑽井之 中)均非常沉重。因此,存在著一「張力係數」拉矣著該鑽 井表面處的最後鑽管。因為該鑽井表面處的該條鑽盤管 僅能夠承受特定的張力,所以,吾人可計算該「外加或是 真實的張力」’並且將該「外加或是真實的張力」與該「可 用張力」《「指定張力」乍比較。該比較結果可以—「比 值」來表示。只要該「可用張力」高於 的張力j ’該「比值」便會大於「!」 力」並未南於該「外加或是真實的張力 §亥「外加或是真實 。假設該「可用張 」的話’也就是, 121 1311605 ::外加的張力」實際上大於「該鑽馨管所擁有… ㈣特徵」的話,那麼該、值」便將會切^張力 且6亥條管將會因而破裂。 」 而 此外,假設吾等於—祕思士 •、丨a工士 的話,那麼便需要㈣ s +直的方式進行鑽鑿 n 具。於進行㈣時,假設吾等 而 '水平面中將該錢柱轉動特s「角度」的$ m 該鑽柱從廿古絨a * 」的5舌(例如將 #Λ 向東方)’那麼前述該下方鑿洞中鑽柱的「趙 角度」便會被稱為「傾斜度」。吾 達(稱為正位移3 人雨要一部馬 位移馬達或疋PDM)來進行該「轉 以,當需要改變「傾斜产0i ^ ^ 」乍業。所 斜度」。者使用又”’更需要—部馬達來改變「傾 間點處,五箄m ^ 复料度」日守’於任何時 /5 〇 貝知道該馬達正在鑽鑿的「方向而日 須將該「方向」與一「箱细士二 万内」而且必 的「方向」,從…Γ 作比較。為測量該馬達 量裝置」,而該部「測詈梦w日^ 而要有一「測 鑿^彳^4 ^、」則可稱為「MWD」或是「鑽 于進仃測里」的測量裝置。和本發 鑽柱設計軟目2鑽井規劃 該鑽頭以「方向性…“法」68會知道,假設 PDm 式」進行鑽1的話,那麼便需要一 贿馬達^且還需要—MWD測量裝置。 而要 此處還會使用到另一 「LWD i P「 乍°己錄工具,其係稱為 彻」W鑽馨時進行工作記錄」 洞區段」中,於兮太把 竹疋幻鑕升I鑿 -是相、利: 併入一「咖」工作記錄工 -疋相田有利的。配合本發明的該等「 被鑽鑿的鑽井的浐徭锻、n厂 法」6δ ,於正 升的取後馨洞區段中(吾人所熟知的「生產餐洞 122 1311605 匚奴」)〇人會需要進行最大數量的測 ^ 的鑽井的悬祛数、 、里。虽於正被鑽鑿 會運用到該「LWm戶斤/ 置的測量時,便 」具所以’配合本發明的該等「嘴 异法」6 8的邏輯,便可測詈兮不、士城盤 /' 料便了心該正被㈣的鑽井的「軌道」, 並且可,主5己该正被鑽鑿的鑽井的該等「 m Jt φ ^ am 签门&奴j 。視該 鑽井L貝正在鑽鑿該鑽井 而且視該「執道」m「似/ “區段」而定 而定斜度」以及「方位角」變化 疋,可建錢用特定的「鑽柱組件」,而且該此 =」包含鑽鑿時進行測量(MWD)„裝置、㈣時進行 工作§己錄(LWD)工具以及該正位移馬達(ρ〇Μ)。 所以’吾等會知道:⑴該鑽頭所需要的「鑽頭^ , 的尺寸’(5)該「塞洞區段」的「軌道」,⑹吾等是否需要 量工具(例如MWD以及LWD),⑺該些測量工具 :尺寸,以及⑻該鑽馨管的尺寸(因為其具有_額定值特 徵)。本發明的某個鑽柱設計演算法68會計算該等較小鑽 柱組件(位於該表面附近)的尺寸,以便可提供從該等鑽頭 組件(位於下方盤洞處)至該等較小組件(位於該表面附近)的 平滑應力轉換。 …配合由該鑽柱設計演算法68所產生之圖17中的鑽柱 设2輸出資料62bl ’因為吾等會使用鑽馨管,所以,該鑽 柱:叶輪出資料62bl包含:(1)該鑽鑿管的尺寸,(2)該鑽 鑿管的長度(包含該重物鑽鑿管在内),(3)該等鑽鈒的尺寸 與長度,以及(4)所運用的任何PDM或是MWD或是 123 1311605 工具的身分以及尺寸與長度。配合所有前述的PDM以及 MWD以及LWD「組件」,吾等還會知道該些「組件」的 重量。所以,吾等便能夠計算該鑽柱上的「總張力」,而 且吾等可以將所算出的「總張力」和代表該鑽枉能夠承受 的已知張力額定值的「另一張力」作比較。 圖17的「輸入資料」64包含:(1)軌道,(2)包含該套 官尺寸與該鑿洞尺寸在内的鑽井幾何,(3)和該執道相關聯 的傾斜度,以及(4)和先前所選擇的鑽頭相關聯的鑽鑿參 •數。 乂 圖17的鑽柱設計型錄72包含:所有該等鑽柱組件的 尺寸,以及OD與ID,以及每英尺的線性重量,以及和該 些鑽柱組件相關聯的張力特徵(金屬特徵)。 圖17的常數70包含:重力常數以及一個鑽鑿標準長 度的長度。 圖17的該等邏輯表示式66將會表示吾等是否需要該 _寻測量工具(LWD、MWD)來配合欲被鑽鑿的某個特殊鑽 井。此外,於鑽鑿一已偏離的鑽井時,該等邏輯表示式Μ 中的該等規則會與某個鑿洞區段中該鑽頭的真實「執道」 作比較。此外,欲被鑽鑿的鑽井中的該等鑿洞區段會與該 =鑿’同區段的該等需求作比較。舉例來說,可於某個生產 鑿洞區段中建議要使用的LWD工具。於和一方向性井相 關聯的馨洞區段中,則會建議要使用的pDM馬達以及匕勒 工具。此外,假設要使用該些PDM或是LWD或是Μ. 組件的話,該等邏輯表示式66則會表示必須支付此等組 124 1311605 件的費用。也就是,必須租用該等PDM以及lwd以及 _D。所以,於該等邏輯表…",將會指定每曰的 成本或者每英尺的成本。 配合該等鑽柱設計演算法68,可在尺寸方面從位於該 鑽頭附近之底部處的較大尺寸管「平滑地轉換至」該表面 處的較小尺寸管;而且’吾等可從該鑽頭中知道每個鑽頭 需要多大的「鑽頭上重量」。該重量可由,亥dci、dc2以 及該HW(重物)來實現。所以,針對每個組件來說,吾等 必須決定吾等需要多大的長度方能提供該「鑽頭上重量。 假設吾等鑽鑿-垂直井的話’所有的組件均會被懸掛。和 -垂直鑽井相關聯的其中-項係數係該騎的整個重量均 會自所有該些組件中懸垂下來。不過,假設該井偏斜的話(例 如45度)’那麼便會損失約3〇%的重量。當於特定的傾斜 度内進行鑽鑿時,便會需要較長的鑽柱組件,以便提供相 同的重量。所以,該等演算法68便針對該傾斜度來進行 校正。 配合該「張力風險」’假設吾等知道懸掛在該鑽馨管 中的總重量的話,那麼,吾等便還必須知道該鑽鑿管於該 表面處的「張力容量」。因此,吾等可將該「總張力」與 該「最大允許(或是可能)張力」作比較《假設將該「總張 力」與該「最大允許(或是可能)張力」表示成—「比值」 的話,當該「比值」接近「1」時,該管故障的可能性便 越大。所以,配合「張力風險」,吾等便可計算「外加的 張力量」,並且將其和「欲外加的最大允許張力」作比較。 125 1311605 配合成本,鑽鑿管與鑽麵 已經以畚^ w 〇躓开機搭配,而且吾等 母天為基礎來支付該鑽井 該等專門的工壤开機的費用°假設吾等需要 等便J (例如刪或是贿D或是UVD),吾 需要租用該些工具,而且 租金。五笙v m 甘大馮基礎來支付該 工且的^ 針對每個㈣區段來計算吾等欲使用該此 ,^間長度。假設吾等知道天數: 寻布要支付多少金額。假設吾等使用一咖 活,那麼便需要有一個備份工具待命備用。借的 工具則可以較低的f率來支付。 X…卩用的 :合該井潘容限1「井消容限」係能夠流入該鑽井 ^不會有任何破壞效應的氣體體積。只要該氣體的體 積很小,吾等便能夠處理流入該 呌五欲扪轧體。吾等能夠 1二4仍月b夠安全處理的氣體「體積」,而該體積便稱 為井、4容限」。當計算該「體積」冑,於進行體積計曾 期間’該「體積」會和下面因素相關:⑷鑿洞尺寸,以: ⑻該鑽柱中的組件’例如該等鑽鏈的0D、該鑽鑿管的⑽ 以及該HW與該馨洞尺寸。該「井渴容限」會考量到該孔 隙壓力以及該斷裂壓力以及該傾斜度以及該鑽桎的幾何組 態。該鑽柱設計演算法68會接收該孔隙壓力以及該斷裂 壓力以及該傾斜度以及該鑽柱的幾何組態,並且計算玉等 能夠安全處理的「氣體體積」。該「氣體體積」會與= 種類」作比較。就此等井能夠處理的「最大體積」而+ 探勘井以及開發井會具有不同的容限。 所以,該「自動鑽井規劃鑽柱設計軟體」62cl會接收 126 1311605 下面的資料作為「輸人資料」:該軌道以㈣ 及該等鑽鑿參數,該等鑽鑿參數所指的係「鑽碩上成曰何以 當圖16中的電腦系統的處理器62a執行該軟體置^ 該「自動鑽井規劃鑽柱設計軟體」62cl將合 2Ci時, 曰座生下面的「輪 出資料」:和所需要的該等鑽柱「组件」相關@ h巧 些「組件」的說明’例如該些「組件」的外徑(〇d)、内徑^ 線性重量 '總重量以及長度;該井湧容限;以及該:力風 險。明確地說,該鑽柱設計輸出資料62μ包含—份「每 個鑿洞區段中該鑽柱的摘要」;也就是,由上至下:該: 「每個馨洞區段中該鑽柱的摘要」包纟:該㈣管的尺寸 與長度,該重物(而)鑽馨管的尺寸與重量,該㈣2(dc2) 的尺寸與重量,該鑽铤1(DC1)的尺寸與重量,以及該鑽柱 中所需要的其它工具的身分(例如吾等於該鑽柱中是否需 要.、PDM、LWD、或是MWD)。對該鑽柱中的每個「組件」 來說必須回報下面的資訊:内徑、長度/重量、每個「組 」的、、息重罝、井湧谷限(吾等能夠安全處理的氣體體積)。 於下面的段落中將會提出和本發明之自動鑽井規劃鑽 杈設計敕體62cl相關聯的功能性詳細說明。 選擇鑽具組合(BHA)組態 特徵資訊 内容目襟: 範圍: 階層:
此使用個案係說明選擇BHA的方法 選擇BHA 任務 127 1311605 前置條件: 使用者已經選擇鑽頭 成功結束狀 該系統會向使用者確認是否已經成功地選擇 況: BHA 失敗結束狀 該系統會通知使用者由於計算失敗的關係而未 況: 選擇該BHA 主要參與者: 使用者 觸發事件: 使用者完成鑽頭選擇 主要成功方案 1 使用者接受 該鑽頭選擇 系統孿應 該系統會依據該等鑽頭區段運轉、套 管點、套管與鑿洞尺寸、井軌道以及 岩石種類來為每個鑿洞區段產生一種 BHA組態。 該BHA組態包含該等下方鑿洞工具 (PDM、MWD、LWD)以及 DC 的數 、 HWDP以及DP的尺寸。 5亥項設計將會使用來自該等鑽井機特 性的鑽鑿管尺寸’而且該管的效能可 於該型錄中獲得。必要的WOB係獲 取自§玄鑽頭選擇任務。該系統還將會 計算可用的WOB、中立點(neutral曰 point)的位置、過度拉曳量限制、褶 皺限制(buckling limit)與彎曲應力比
值(bending stress ratio),並且會於 GUI 中來顯示該等結果。 Ξ寸柱 G尺鑽 於及該 會以示 統態顯 系組來 該柱中 中列出該BHA與鑽 ,並且於鑽井概略圖 128 1311605 該系統還會計算每個鑿洞的井湧容 限,並且顯示其結果於網格與平面圖 中〇 使用者修改該系統會重新計算該鑽柱重量、 BHA組件、MOP、張力風險以及井湧容限 〇D、ID、長 度、或是線 性重量 使用者接受 該BHA設 方案延伸部份 條件 動作說明 la 該系統無法該系統會通知使用者該失敗結果以及 產生一基本其失敗原因。 的BHA組 態。 使用者進行使用者重新返回步驟2。 適當的校 正。 lb 使用者選定該系統會通知使用者該違反結果。 的組態違反 該等條件限 制。 使用者進行使用者重新返回步驟2。 適當的校 正。 方案變化部份 變數 可能的變化 1 使用者修改i系新該ΒΗΑ組態。 並且接受所 建議的ΒΗΑ 下方鑿洞工 129 1311605
具,例如 PDM ' MWD 以及 2 LWD(依據商 業規則)。 f用者修改該系統會依據使用者的修改來更新該
並且费受DC BHA組態’並且向使用者確認該BHA ' 組態已經被成功保存。該使用個案成 HWDP以及功地結束。 它們的尺 寸。 相關資訊 進度: 優先序: 效能目標: 頻率: 超使用個案: 子使用個案: 至主要參與者的頻道 次要參與者: 至次要參與者的頰道
版本1.1 P1 N/A N/A
Swordfish Use Case IPM III- 設計該候選井
N/A
N/A
N/A
N/A 籲1.商業規則 1 _ 1 ·輸入 鑽鑿管尺寸 鑽頭上重量 (WOB) 設計係數(DF) 浮力係數 (Buoyancy Factotr)(Kb)傾斜度(6» ) ο出 寸輸 尺的 T計 签設 用 使 上 機 井 該 於 可 ,…,丄.文 1 ·4) :ίΪ償泥毁所添增之浮力的重量 tvl料)((65.44-最Α區段泥 該鑽頭區段的最大傾斜角产。 130 1311605 鑽頭區段L 1.2.輸出 DC1l DC1W DC1 DC2l DC2W DC2 hwl 該鑽頭區段的最大深度。 鑽铤1的長度 鑽铤1的重量 鑽铤1(管狀) 鑽铤2的長度 鑽铤2的重量 鑽铤2(管狀)
HWw HW 重物鑽鑿管的長度 重物鑽鑿管的重量 重物鑽鑿管(管狀) 1.3.演算法 1.決定DC1、DC2、HW以及DP的外徑: a. DCl -DC 10D=利用該鑿洞尺寸(鑽頭直徑)從表格中 所獲得者 附註:(與Daan進行討論) 假設同一個OD有一或多個ID的話,那麼該 系統便會使用其中最重的一個,其通常會係具有 最小ID者
b. DP -利用剛性比值來決定外徑。 -DPof利用該鑿洞尺寸(鑽頭直徑)從表格中所 獲得者 131 1311605
OD -DP〇d< = DC1 c.DC2 利用剛性比值來決定外徑。 -sR=ZBIG/ZSMALL -Z = (n/32)((OD4-ID4)/OD) -SR<3.5 -DC2od<=DC1od&DC2od>=DPod
d. HW -利用剛性比值來決定外徑。 -SR=Zbig/Zsmall -Z = (n/32)((OD4-ID4)/OD) -SR<3.5 -HWod<=DC1od&HWod> = DPod OD ,
e.DPOD<=HW 2.決定DCl、DC2以及HW的重量 當最大鑿洞角度小於65度時 DC1w=DC1l*DC1wfx DC2W = (DC1+DC2)-DC1 當最大鑿洞角度大於65度時 HW' WOB(DF) 90英尺 :WTDCl*cos(tetha) DCl„=DClT-0 3.決定DCl、DC2、HW、DP的長度 a. DCl 個 Joint -DCU=90英尺=1個標準長度 b. DC2
-DC2L = DC2w/DC2WFT 132 1311605
c.HW
d.DP
HWL=HWw/HWWFT -Dpl=鑽頭區段 ^(DCU-DCSl-HWJ 4·張力風險 a. 取得最頂端的鑽鑿管的額定值(為達成吾等之目 的’通常會使用優質為80〇/〇) b. 張力風險=:((2:(wc<mP〇nents)*Kb)+最小過度拉曳 量)/(管張力額定值*0.8) 凊注意的是,於其型錄中會提供最小鑿洞尺寸與最大鑿洞 尺寸供PDM使用。 DS1 :最小過度拉曳量 規則 簡短說明 說明
ί5:2ϊίίί必拉良量超過該鑽柱中任何管會 一般來說,必要的5中。 :〇〇,〇〇01bs(内定為5,次^拉良量為 請注意的是,該鑽杈中)二 必係該管位於該旋轉:中結未 公式評分 過度拉曳量 6 ,又 5/8” 125klbs 5 lOOklbs 4 又 1/2” 75klbs 3 又 1/2” 50klbs 2 又 7/8” 35klbs 133 1311605 DS2:最小 規則 簡短說明 說明 公式 評分 矩等自 力吾來 該。和。 過柱其較 度超鑽將比 強而一須作 矩係離必度 力關分且強 小的會並矩 最量能量力 的曳可曳的 柱拖便拖中 鑽高,出表 一為時算找 度 義因度計查 強 定當強可一 矩 力 •方向性區段的BHA組件 規則 簡短說明 說明 方向性區段的内定BHA組件 •必須使用一 PDM來鑽鑿一方向性區 段(Incl>10 度,DLS>2 度/1〇〇 英尺), 具
方向性區段必須使用到一 MWD J 公式 評分 •一方向性區段可選用一 LWD工具 方向性區段=IncI>10度 ^ 方向性區段=DLS>2度/1 〇〇英尺
洞區段(成果鑿洞)中建議使用MWD DS4 :於最後的鑿 規則 簡短說明 θ 1 奶、- t 1洞區段(成果m洞)中建議使
言兒日月 MWD
^二非方向性井的最後鑿洞區段期間建 x , 4使用MWD 公式 評分 脱.於表面動巾沒有任何的職鐵具(pDM、LWD、mwd) 規則 / 簡短說明 认主:丄 說明 任何的BHA鑽具 、非方向性井中,(内定上)該導管與 134 1311605
公式 評分 表面套管將會被旋轉鑽鑿 PDM ' MWD ' LWD) (沒有任何的 規:S6.於方向性井中最後的鑿洞區段中必定執行⑽ 簡短說明井的最後馨洞區段中必定會中必定會 說明 公式 評分 DS8 : 規則 簡短說明 說明 公式 PDM、MWD、LWD 成本 當使用特殊的BHA設備時(pdM、 =WD、LWD},還應該要計算出成本, 而且使用者應該要能夠進行編輯。 ϊίΐ最常見的成本係每件設備的每曰 變動成本,不過’當組合運轉時, 個別的成本則會改變。 '^夺 ΐί ΐ針對使用該設備的每次鑽頭運轉爽 f异出該些成本❶每件設備均有兩項 本一待機費率以及使用費率。於該‘ 區段的持續時間中’所有的設備均必 ,取待機費率。當該設備處於該馨洞 Bj·(鑽頭運轉持續時間),此費率則合 尚至使用費率。 θ 必須於時間預估之後計算出此結果, 且僅會於此項任務中提出該等費率仏 用者以達修改目的。 、牛、…使 Cost($)=Rate($/day)* Duration (days) 設備 使用費率($/day) 待機費率($/day)
PDM 135 1311605 3500 500
MWD 2500 500
LWD 5000 500
PDM/MWD 5000 1000
• MWD/LWD 7000 1000
PDM/MWD/LWD 10000 1500 評分 顯示PDM種類 一旦決定DC 1的OD之後,便必須顯示出PDM的種 類。内定上,針對特定尺寸會選擇第一個PDM。選擇最接 近於該DC1 OD的PDM尺寸;而且假設有兩個PDM同樣 接近於該必要尺寸的話,則會選擇最大的PDM。 於一下拉式清單中顯示出該尺寸的所有可用PDM,提 列出葉片(lobe)數以及含有該OD在内的級數(必要時可合 併複數個單元)。 136 1311605 尺寸 OD 葉片 級數 dPtest Qtest MW dPw/H20 最小 流動 最大 流動 Rev/gal A287 2.875 5/6 3.3 140 80 8.34 190 20 130 6 2.875 5/6 7.0 194 80 8.34 244 20 130 5.8 2.875 7/8 3.2 191 90 8.34 241 30 130 4.2 A350 3.5 4/5 5.0 138 100 8.34 188 30 160 3.3 3.5 7/8 3.0 168 110 8.34 218 30 160 1.6 A475 4.75 4/5 3.5 115 250 8.34 165 100 350 1.1 4.75 4/5 6.0 151 250 8.34 201 100 350 1.1 4.75 7/8 2.2 170 250 8.34 220 100 350 0.6 A675 6.75 4/5 4.8 152 600 8.34 202 300 700 0.5 6.75 4/5 7.0 184 600 8.34 234 300 700 0.5 6.75 7/8 3.0 181 600 8.34 231 300 700 0.3 6.75 7/8 5.0 210 600 8.34 260 300 700 0.3 A800 8 4/5 3.6 151 900 8.34 201 300 1100 0.3 8 4/5 5.3 175 900 8.34 225 300 1100 0.3 8 7/8 3.0 218 900 8.34 268 300 1100 0.2 8 7/8 4.0 233 900 8.34 283 300 1100 0.2 A962 9.625 3/4 4.5 300 900 8.34 350 600 1500 0.2 9.625 3/4 6.0 570 900 8.34 620 600 1500 0.2 9.625 5/6 3.0 280 900 8.34 330 600 1500 0.1 9.625 5/6 4.0 305 900 8.34 355 600 1500 0.1 A1125 11.25 3/4 3.6 395 1250 8.34 445 1000 1700 0.1 井湧容限計算 一旦決定該BHA組態之後,便將會計算出井湧容限並 且依據鑿洞區段將其顯示於該網格之中,於每個BHA組 態的旁邊。 此處將會提出下面的假設條件: 鲁使用理想的氣體公式 參使用標準的溫度分佈曲線 參於區段TD處進行計算 •使用〇· 1 psi/ft的氣體密度(使用輸入數值) 137 1311605 假設條件 除非有大量且客戶所提出之區域經驗證明文件存在 否則便應該將注入氣體(influx)視為係乾燥氣體(相對於* 氣或〇.lpsi/ft之0.7比重的氣體)。 工 所有的计异均應該依據用以循環流出該注入盘触 V瑕i體的
Driller方法(因為在Wait與Weight方法中忽略氣體遷徙效 應時’此方法將會造成最高的環空壓力)。 對每個相關的鑿洞區段來說,吾等假設: *最大預期孔隙壓力 參最小預期地層強度 *最大泥漿重量 1. 該注入氣體係在底部處。 2. s亥注入氣體將會利用該Drnier方法循環流出。 3 .該管子係位於底部處。 風險 井湧容限體積-開發井 'CAUUUO___^ ~ 井湧容限體積一探妇井 風險 -- ^jUDDiS/olllj >25bbls 且<50bbls >100bbis " >35-l〇〇bbls " 風險 — <25bbls <35bbls T度風險 咼度風險 ' 至此已經說明過本發明,不㉟,顯而易見的是,仍然 可用各種方式對本發明作許多改變。&等變化例均不應視 為脫離本發明的精神與範疇,而I,吾等希望下文的申請 專利範圍的範可中可涵盍熟習本技藝的人士很容易明白的 所有此等修正例。 138 1311605 【圖式簡單說明】 圖1所示的係一軟體架構的概略示意圖,圖中表示的 係用於支援客戶工作流程的模組特性; 圖2包含圖2A、2B ' 2C以及2D,圖中所示的係一由 工作流程、求助以及資料畫布所組成的典型任務審視· 圖中所示的係鑽井 圖3包含圖3A、3B、3C以及3D, 穩定性、泥漿重量以及套管點;
圖4包含圖4A、4B、4C以及4D, 評估圖; 圖中所示的係風險 圖中所示的係一蒙 圖中所示的係—可 圖中所示的係一摘 圖5包含圖5A、5B、5C以及5D, 地卡羅(Monte Carlo)時間與成本分佈圖 圖ό包含圖6A、6B、6C以及6D, 能性的時間與成本相對深度的關係圖; 圖7包含圖7Α、7Β、7C以及7D, 要拼凑圖;
圖8所示的係_「
/;IL 程; 自動鑽井規劃軟體系統」中的工作 圖9A所示的係一儲存著一套自 軟體的電腦系統; 圖9B所示的係圖9A之電腦系 上所出現的顯示晝面· 圖10所不的係圖9A之電腦系 規劃風險評估軟體沾Λ ^促存 狄體的細部構造示意圖; 動鑽井規劃風險評估 統的記錄器或顯示裝置 的自動鑽丼 139 1311605 闽 i i n\ 自動鑽井規劃風險評估軟體的構造的方塊圖; 圖12所不的係—儲存著一套自動鑽井規劃鑽 體的電腦系統; < 弹軟 圖13所示的係圖12之電腦系統中所儲存 規劃鑽頭選擇軟體的細部構造示意圖; 錯井 *圖14“ 14B所示的係本發明的® 13的自動鑽井規 ^鑽頭選擇款體的功能性運作的方塊圖; ,圖15包含圖15A、15B、15C以及15D,圖中所示的 係根據本發明和儲在篓 ' 者e亥套自動鑽井規劃鑽頭選擇軟體之 圖12的電腦系統相關聯的記錄器或顯示裝置所 頭選擇顯示晝面; 1讚 圖16所示的係根據本發明之—儲存著—套自動鑽井規 剡鑽柱設計軟體的電腦系統; 圖17所示的係根據本發明之圖16之電腦系統中所儲 子的自動鑽井規劃鑽柱設計軟體的細部構造示意圖; ^ 斤不的係圖16與17之自動鑽井規劃鑽柱設計軟 體糸統的更細部構造示意圖,圖中含有鑽柱設計演算法以 及邏輯表示式;以及 面 匕3圖19A、19B、BC以及19D,圖中所示的 係一典型的「鑽柱設計輸出顯示畫面」,其可被記錄或顯 不方'圖16中的記錄器或顯示裝置62b之上,而且該顯示 晝面顯示出圖16中的鑽柱設計輸出資料62bl。 140 1311605 【元件符號說明】 18 電腦糸統 18a 處理器 18b 記錄器或顯示裝置 18c 記憶體或程式儲存裝置 1 8cl 自動鑽井規劃風險評估軟體 20 儲存媒體 20a 輸入資料
22 風險評估邏輯表示式區塊 24 風險評估演算法區塊 26 風險評估常數區塊 28 風險評估型錄區塊 30 手動輸入區塊 42 電腦系統 42a 處理器 42b 記錄器或顯示裝置 42c 記憶體或程式儲存裝置 42c 1 自動鑽井規劃鑽頭選擇軟體 44 儲存媒體 44a 輸入資料 46 鑽頭選擇邏輯表示式區塊 48 鑽頭選擇演算法區塊 50 鑽頭選擇常數區塊 52 鑽頭選擇型錄區塊 141 1311605 54 手動輸入區塊 62 電腦糸統 62a 處理器 62b 記錄器或顯示裝置 62b 1 鑽柱設計輸出資料 62c 記憶體或程式儲存裝置 62cl 自動鑽井規劃鑽柱設計軟體 64 儲存媒體
64a 輸入資料 66 鑽柱設計邏輯表不式區塊 68 鑽柱設計演鼻法區塊 70 鑽柱設計常數區塊 72 鑽柱設計型錄區塊 74 手動輸入區塊
142

Claims (1)

  1. U11605 十、申請專利範圍: 1 一種於鑽井規劃系統中響應含有鑽井幾何以及鑽井 轨道需求在内之輸入資料來進行鑽井規劃之方法, 下面的步驟: 響應該輸入資料來產生一份某個鑽井的每個鑿洞區段 中之某個鑽柱的摘要;以及 °
    於一記錄器或顯示裝置中記錄或顯示該鑽井中的每個 m洞區段中之該鑽柱的該份摘要中的至少一部份, 該鑽井中的每個鑿洞區段中之該鑽柱的該份摘要中的 該至少一部份出現在該記錄器或顯示裝置上的記錄或顯示 畫面係包含複數個鑿洞區段以及分別對應於該複數個鑿洞 區段的鑽柱之複數份摘要,該鑽柱的摘要係出現在該記錄 器或顯示裝置的記錄或顯示畫面上相鄰於該鑽井中的每個 鑿洞區段之處。 2·如申請專利範圍第1項之方法,其中該產生一份某 個鑽井的每個鑿洞區段中之某個鑽柱的摘要的步驟包括下 面的步驟: 產生該鑽柱之第一鑽铤的外徑。 3.如申請專利範圍帛1項之方法,其中該產生一份某 個鑽井的每個塞洞區段中之某個鑽柱的摘要的步驟進一步 包括下面的步驟: 產生該鑽柱之第二鑽铤的外徑。 (如申請專利範圍帛!項之方法,其中該產生一份某 個鑽井的每㈣洞區段中之某個鑽柱的摘要的步驟進一步 143 1311605 包括下面的步驟: 產生該鑽柱之重物的外徑。 5. 如申請專利範圍第1項之方法,其中該產生一份某 個鑽井的每個鑿洞區段中之某個鑽柱的摘要的步驟進一步 包括下面的步驟: 產生該鑽柱之鑽鑿管的外徑。 6. 如申請專利範圍第1項之方法,其中該產生一份某 _ 個鑽井的每個鑿洞區段中之某個鑽柱的摘要的步驟進一步 包括下面的步驟: 產生該鑽柱之每個鑿洞區段中的鑽頭上重量的最大重 量。 7. 如申請專利範圍第1項之方法,其中該產生一份某 個鑽井的每個鑿洞區段中之某個鑽柱的摘要的步驟進一步 包括下面的步驟: 產生該鑽柱之第一鑽鍈的重量。 • 8.如申請專利範圍帛1項之方法,其中該產生-份某 個鑽井的每個馨洞區段中之某個鑽柱的摘要的步驟進一步 包括下面的步驟: 產生該鑽柱之第二鑽铤的重量。 9.如申凊專利範圍第!項之方法,其中該產生一份某 2鑽井的每個_區段巾之某_柱的摘要的步驟進-i 包括下面的步驟: 產生該鑽柱之重物的重量。 1〇.如申請專利範圍第1項之方法,其中該產生-份某 144 13.11605 個鑽井的每個鑿洞區段中之某個鑽柱的摘要的步驟進一步 包括下面的步驟: 產生該鑽柱之第一鑽铤的長度。 η.如申請專利範圍第丨項之方法,其中該產生一份某 個鑽井的每個鑿洞區段中之某個鑽柱的摘要的步驟進一: 包括下面的步驟: 產生該鑽柱之第二鑽铤的長度。 A如申請專利範圍f !項之方法,其中該產生一份某 個鑽井的每個鑿洞區段中之某個鑽柱的摘要的步驟進一步 包括下面的步驟: 產生該鑽柱之重物的長度。 13.如中請專利範圍第μ之方法,其中該產生一份某 固鑽井的每個馨洞區段中之某個鑽柱的摘要的步驟進一步 包括下面的步驟: 產生該鑽柱之鑽鑿管的長度。 個:二申請專利範圍η項之方法,其中該產生-份某 井勺母個馨洞區段中之某個鑽柱的摘要的步驟進一步 匕括下面的步驟: 產生该鑽柱的張力風險。 ,15·如申請專利範圍第1項之方法,其中該產生一份 個鑽井的每個鑿洞區段中 產生 句k 权〒之某個鑽柱的摘要的步驟進一 包括下面的步驟: 其中該產生一份某 產生和該鑽柱相關聯的成本數字。 16.如申請專利範圍第J項之方法 145 1311605 個鑽井的每個鑿洞區段中之某個鑽柱的摘 包括下面的步驟: 要的步驟進一步 產生和該鑽柱相關聯的井湧容限。 17.如申請專利範圍第2項之方法, 個鑽井的每個鑿洞區段中之某個鑽柱的 包括下面的步驟: 其中該產生一份某 摘要的步驟進一步
    產生s亥鐵柱之第二鑽铤的外徑。 I8.如申請專利範圍第17項之方法, 某個鑽井的每個鑿洞區段中之某個鑽柱的 步包括下面的步驟: 其中該產生一份 摘要的步驟進一 產生該鑽柱之重物的外徑。 1 9 ·如申請專利範圍 個鑽井的每個馨洞區段 包括下面的步驟: 第2項之方法,其中該產生-份某 中之某個鑽柱的摘要的步驟進一步 產生該鑽柱之鑽馨管的外徑。
    20.如申請專利範圍第19項之方法, 某個鑽井的每個鑿洞區段中之某個鑽柱的 步包括下面的步驟: 其中該產生一份 摘要的步驟進一 產生該鑽柱之每個鑿洞區 量0 段中的鑽頭上重量的最大重 21.如申請專利範圍第2〇項之方、本甘Λ — * 甘, 貝疋万法,其中該產生一份 某個鑽井的每個鑿洞區段中茸 又甲之某個鑽柱的摘要的步驟進一 步包括下面的步驟: 產生該鑽柱之第一鑽铤的重量。 (S ) 146 !311605 如申請專利範圍第 ..... 1,六丫 ?茨座玍一你 >、個鑽井的每個鑿洞區段中之某個鑽柱的摘要的步驟進一 步包括下面的步驟: 產生該鑽柱之第二鑽铤的重量。 认如申請專利_ 22項之方法,其中該產生一份 某個鑽井的每個馨洞區段中之某個鑽柱的摘要的步驟進一 步包括下面的步驟·· φ 產生該鑽柱之重物的重量。 24·如申請專利範圍第μ項之方法,i 士外立Α 八 只<々沄,其中該產生一份 系個鑽井的每個鑿洞區段中之竿個 丁 ι呆1固鑽柱的摘要的步驟進一 包括下面的步驟: 產生S亥鑽柱之第一鑽艇的長度。 25. 如申請專利範圍第24項之方法,其中該產生一份 ^鑽井的每個馨洞區段中之某個鑽柱的 步包括下面的步驟·· ^ 產生該鑽柱之第二鑽铤的長度。 26. 如申請專利範圍第25項之方法, 甘, 乃次其中該產生一份 某個鑽井的每個鑿洞區段中之苹個鑽 ^, 呆個鑽柱的摘要的步驟進一 步包括下面的步驟: 產生該鑽柱之重物的長度。 27·如申請專利範圍第26項之方法, =井的每個_段中之某個鑽柱的摘要=二 >包括下面的步驟: 疋 產生該鑽柱之鑽鑿管的長度。 147 (S ) 1311605 28·如申請專利範圍第27項之方法,其中該產生一份 某個鑽井的每個鑿洞區段中之某個鑽柱的摘要的步驟進一 步包括下面的步驟: 產生s亥鑽柱的張力風險。 29.如申請專利範圍第28項之方法,其中該產生一份 某個鑽井的每個鑿洞區段中之某個鑽柱的摘要的步驟進一 步包括下面的步驟: 屋生和該鑽柱相關聯的成本數字。 3〇·如申請專利範圍第29項之方法’其中該產生一 某個鑽井的每彳轉㈣段巾之某㈣㈣摘要的步驟進 步包括下面的步驟: 產生和該鑽柱相關聯的井湧容限。 —/1—種可被—機器讀取的程式儲存裝置,其可明確, I施—種可由該部機器來執行之複數個指令所構成的 = = 於鑽井規劃系統中響應含有鑽井幾何, 驟该等方法步驟包括: . 響應該輸入資料來產生一份鞏 中厓玍 <刀某個鑽井的每個馨洞區^ T <某個鑽柱的摘要以及 於一記錄器或顯示裝置令記 鑿洞區段中之兮猶了次顯不该鑽井中的每^ U又中之該鑽柱的該份摘要中的至少 該鑽井中的每個鑿洞區段中 刀 該至小如八 T之s亥鑽杜的該份摘要中# &至)-部份出現在該記錄器或顯 ^要中^ 畫面係包含複數個鑾洞區段以 I己錄或顯开 對應於該複數個鑿洞 148 1311605 區段的鑽柱之複數份摘要,該鑽柱的 器或顯示裝置的記錄或顯示畫面 :&在該s己錄 鑿洞區段之處。 該鑽井中的每個 32·如申請專利範圍第31項之程式儲存裝置,盆 產生一份某個鑽井的每個鑿洞區段中 中該 步驟包括下面的步驟: ’、固鑽柱的摘要的 產生§亥鑽柱之第一鑽铤的外徑。 33. 如申請專利範圍第31項之程 產生一份某個鑽井的每個馨洞區段中 义置、中該 步驟進-步包括下面的步驟: ’、個鑽柱的摘要的 產生該鑽柱之第二鑽鍈的外徑。 34. 如申請專利範圍第31項之 產生-份某個鑽井的每個鑿洞區段中:草:裝置’其十該 步驟進-步包括下面的步驟: /、固鑽柱的摘要的 產生該鑽柱之重物的外徑。 35. Μ請專利範圍第31項之程式儲存裝置, 產生一伤某個鑽井的每個鑿洞區段 八6亥 步驟進一步包括下面的步驟: ’、個鑽柱的摘要的 產生該鑽柱之鑽鑿管的外徑。 ^申料㈣㈣31項之^切存裝置 產生伤某個鑽井的每個鑿洞區段中 乂 、中忒 步驟進一步包括下面的步驟: ^個鑽柱的摘要的 產生該鑽柱之每㈣洞區段 量 瓚碩上重量的最大重 149 1311605 37·ϋ請專利範圍帛31項之程式儲存裝置,其中該 產生一伤某個鑽井的每個鑿洞區 " 步驟進-步包括下面的步驟: 某個鑽柱的摘要的 產生該鑽柱之第—鑽铤的重量。 认如申請專利範圍第31項之程式儲存震置其中該 產生一份某個鑽井的每個鑿洞區段中之草^ 步驟進-步包括下面的步驟··中之某個鑽柱的摘要的
    產生3亥鑽柱之第二鑽铤的重量。 3一9.如中請專利㈣第31項之程式儲存|置,盆中該 步驟鐵井的每個馨洞區段中之某個鑽柱的摘要的 步驟進一步包括下面的步驟: 產生該鑽柱之重物的重量。 後如申專利範圍第Μ項之程式儲存裝置,其中該 ίϊΓΙ的每個馨洞區段中之某個鑽柱的摘要的 步驟進一步包括下面的步驟: 產生该鑽柱之第一鑽铤的長度。 41·如申睛專利範圍第31項之程式儲存裝置,盆中該 二份:個鑽井的每個馨洞區段中之某個鑽柱的摘要的 步驟進一步包括下面的步驟: 產生該鑽柱之第二鑽鍈的長度。 42·如申晴專利範圍第3 1項之程式儲存裂置,盆中唁 ίί:份!個鑽井的每個m洞區段中之某個鑽柱的摘要: 步驟進—步包括下面的步驟: 產生該鑽柱之重物的長度。
    150 1311605 ’其中該 的摘要的 43_如申請專利範圍帛31項之程式儲存裝置 產生一份某個鑽井的每個鑿洞區段中之某個鑽柱 步驟進-步包括下面的步驟: 柱 產生該鑽柱之鑽鑿管的長度。 ’其中該 的摘要的 ’其中該 的摘要的 4(如申請專利範圍帛31 $之程式儲存震置 產生一份某個鑽井的每個鑿洞區段中之某個鑽柱 步驟進一步包括下面的步驟:
    產生該鑽柱的張力風險。 45·如申請專利範圍第31項之程式儲存裝置 產生-份某個鑽井的每個馨洞區段中之某個鑽柱 步驟進一步包括下面的步驟: 產生和該鑽柱相關聯的成本數字。 其中該 摘要的 46_如申請專利範圍第31項之程式儲存裝置, 產生一份某個鑽井的每個鑿洞區段中之某個鑽柱的 步驟進一步包括下面的步驟: 屋生和該鑽柱相關聯的井湧容限。 7.士申π專利範圍帛32項之程式儲存裝置,其中該 產生一份某個鑽井的每個鑿洞區段中之某個鑽柱的摘要: 步驟進-步包括下面的步驟: 罔要的 產生該鑽柱之第二鑽铤的外徑。 後如申請專利範圍第47項之程式儲存裝置,其中該 產生「份某個鑽井的每個鑿洞區段中之某個鑽柱的摘要的 步驟進一步包括下面的步驟: 、 產生該鑽柱之重物的外徑。 151 1311605 4一9·如中請專利範μ 48項之程式儲存裝置,盆中該 牛驟鑽井的每個鏨洞區段中之某個鑽柱的摘要的 步驟進-步包括下面的步驟: 產生該鑽桎之鑽鑿管的外徑。 5〇·如申請專利範圍第49項之程式儲存裝置,其中該 半=一份某個鑽井的每個馨洞區段中之某個鑽柱的摘要的 步驟進-步包括下面的步驟: 獨要的 產生該鑽柱之每個馨洞區段中的鑽頭上重量的最大重 量 0 51·如中請專利範圍帛5()項之程式儲存裝置,其中該 產生「份某個鑽井的每個馨洞區段中之某個鑽柱的摘要的 步驟進一步包括下面的步驟: 產生3亥鑽柱之第一鑽铤的重量。 52·如申請專利範圍帛51項之程式儲存裝置,其中該 產生-份某個鑽井的每個鑿洞區段中之某個鑽柱的摘要的 步驟進一步包括下面的步驟·· 產生该鑽柱之第二鑽铤的重量。 53’如申4專利範圍帛52項之程式儲存裝置,其中該 產生-份某個鑽井的每個鑿洞區段中之某個鑽柱的摘要的 步驟進一步包括下面的步驟: 產生該鑽柱之重物的重量。 54.如申明專利範圍第53項之程式儲存裝置,其中該 產生-份某個鑽井的每個鑿洞區段中之某個鑽柱的摘要的 步驟進一步包括下面的步驟: < S ) 152 1311605 產生該镄柱之第一鑽艇的長度。 55·如申請專利範圍第54項之程式儲存裝置,其中該 產生一份某個鑽井的每個鑿洞區 牛藤、隹一 权甲之某個鑽柱的摘要的 步驟進一步包括下面的步驟: 產生該鑽柱之第二鑽铤的長度。 56. 如申請專利範圍第55 狂%儲存裝置,其中該 產生一份某個鑽井的每個鑿洞區段中 仪丁心系個鑽柱的摘要的 步驟進一步包括下面的步驟:
    產生該鑽柱之重物的長度。 57. 如申請專利_ 56項之程式儲存農置,其中該 產生-份某個鑽井的每個鑿洞區段中之某個鑽柱的摘要的 步驟進一步包括下面的步驟: 產生該鑽柱之鑽鑿管的長度。 58. 如申請專利範圍第57項之程式儲存裝置,其中該 產生一份某個鑽井的每個鑿洞區段中之某個鑽柱的摘要的 步驟進一步包括下面的步驟: 產生該鑽柱的張力風險。 59. 如申請專利範圍第58項之程式儲存裝置,其中該 產生—份某個鑽井的每個鑿洞區段中之某個鑽柱的摘要的 步驟進一步包括下面的步驟: 產生和該鑽柱相關聯的成本數字。 60. 如申請專利範圍第59項之程式儲存裝置,其中該 產生一份某個鑽井的每個鑿洞區段中之某個鑽柱的摘要的 步驟進一步包括下面的步驟: 153 1311605 產生和該鑽柱相關聯的井湧容限。 61 _如申晴專利範圍第1項之方法,其中該於一記錄 器或顯不裝置中記錄或顯示該鑽井中該每個鑿洞區段中之 。亥鑽柱的S亥份摘要中的至少一部份的步驟係選自由下面所 多且成的群組中: 記錄或顯示該鑽柱的第一鑽铤的外徑; 記錄或顯示該鑽柱的第二鑽铤的外徑; s己錄或顯示該鑽柱的重物的外徑; §己錄或顯示該鑽柱的鑽鑿管的外徑; 。己錄或顯示該鑽柱的每個鑿洞區段中的鑽頭上重量的 最大重量; 圮錄或顯示該鑽柱的第一鑽铤的重量; °己錄或顯示該鑽柱的第二鑽艇的重量; °己錄或顯示該鑽柱的重物的重量;
    5己錄或顯示該鑽柱的第一鑽艇的長度; °己錄或顯示該鑽柱的第二鑽铤的長度; 。己錄或顯示該鑽柱的重物的長度; §己錄或顯示該鑽柱的鑽鑿管的長度; °己錄或1員示該鑽柱的張力風險; :己錄或顯示和該鑽柱相關聯的成本數字;以及 °己錄或顯示和該鑽柱相關聯的井湧容限。 於一 讀專利範圍第31項之程式儲存裝置,其中 或顯不裝置中記錄或顯示該鑽井中該每個鑿 154 1311605 區段中之該鑽柱的該份摘要中 由下面所組成的群組中: 的至j —部份的步驟係選 身 重量的
    記錄或顯示該鑽柱的第一鑽铤的外徑; 記錄或顯示該鑽柱的第二鑽鐽的外徑; 記錄或顯示該鑽柱的重物的外徑,· 記錄或顯示該鑽柱的鑽鑿管的外徑; 記錄或顯示該鑽柱的每個t洞區段中的鑽頭上 記錄或顯示該鑽柱的第一鑽鈒的重量; §己錄或顯示該鑽柱的第二鑽铤的重量; 5己錄或顯示該鑽柱的重物的重量; 記錄或顯示該鑽柱的第一鑽铤的長度; 記錄或顯示該鑽柱的第二鑽艇的長度; S己錄或顯示該鐵柱的重物的長度; 5己錄或顯示該鑽柱的鑽鑿管的長度; 記錄或顯示該鑽柱的張力風險; 記錄或顯示和該鑽柱相關聯的成本數字;以及 記錄或顯示和該鑽柱相關聯的井湧容限。 Μ’種用於響應含有鑽井幾何以及鑽井軌道需求在内 的輸入資料來產生以及記錄或顯示和某個鑽井中某個鐵柱 相關:的鑽柱設計輸出資料的m包括下面的步驟: 曰應該輸入資料來產生一份某個鑽井的每個鑿洞區段 中之該鑽柱的摘要,該份該鑽井中每個鑿洞區段中之該鑽 柱的摘要係選自由下面所組成的群組中:該鑽柱之第-鑽 (S ) 155 13.11605 艇的外彳坐、該鑽柱之第二鑽铤的外徑、該鑽柱之重物的外 &、5亥鑽柱之鑽鑿管的外徑、該鑽柱之每個鑿洞區段中鑽 頭上重量的最大重量、該鑽柱之第一鑽艇的重量、該鑽柱 之第二鑽鍈的重量、該鑽柱之重物的重量、該鑽柱之第一 鑽铤的長度、該鑽柱之第二鑽鍈的長度、該鑽柱之重物的 長度、該鑽柱之鑽鑿管的長度、該鑽柱之張力風險、和該 鑽柱相關聯的成本數字以及和該鑽柱相關聯的井渴容限; 以及 在一 s己錄器或顯示裝置上記錄或顯示該鑽井中的該每 個馨洞區段中之該鑽柱的該份摘I,該鑽井中的每個馨洞 區段中之該鑽柱的該份摘I中的豸至少一部份出現在該記 錄器或顯示裝置上的記錄或顯示畫面係包含複數個鑿洞區 段以及分別對應於該複數個鑿洞區段的鑽柱之複數份摘 要,該鑽柱的摘要係出現在該記錄器或顯示裝置的記錄或 顯示晝面上相鄰於該鑽井中的每個鑿洞區段之處。 64.-種可被-機器讀取的程式健存裝置,其可明確地 實施-種可由該部機器來執行之複數個指令所構成的程 式’以貫行用於響應含有鑽井幾何以及鑽井執道需求在内 的輸入資料來產生以及記錄或顯示和某個鑽井中之某個鑽 柱相關聯的鑽柱設計輸出資料的方法步驟,該等方 包括: ‘ 響應邊輸入資料來產生一份某個鑽井的每個馨洞區p 中之該鑽柱的摘要’該份該鑽井中每個馨洞區段中 柱的摘要係選自由下面所組成的群組中:該鑽柱之第= 156 1311605 艇的外徑、該鑽柱之第二鑽铤的外徑、該鑽柱之重物的外 徑、該鑽柱之鑽鑿管的外徑、該鑽柱之每個鑿洞區段中鑽 頭上重量的最大重量、該鑽柱之第一鑽铤的重量、該鑽柱 之第二鑽铤的重量、該鑽柱之重物的重量、該鑽柱之第一 鑽铤的長度、該鑽柱之第二鑽铤的長度、該鑽柱之重物的 長度、該鑽柱之鑽鑿管的長度、該鑽柱之張力風險、和該 鑽柱相關聯的成本數字以及和該鑽柱相關聯的井湧容限; 以及
    在一記錄器或顯示裝置上記錄或顯示該鑽井中的該每 個鑿洞區段中之該鑽柱的該份摘要,該鑽井中的每個鑿洞 區段中之該鑽柱的該份摘要中出現在該記錄器或顯示裝置 上的記錄或顯示晝面係包含複數個鑿洞區段以及分別對應 於該複數個鑿洞區段的鑽柱之複數份摘要,該鑽柱的摘: 係出現在該記錄器或顯示裝置的記錄或顯示畫面上相鄰於 該鑽井中的每個鑿洞區段之處。 65. —種適合用於響應含有鑽井幾何以及鑽井軌道需求 在内的輸入資料來產生以及記錄或顯示和某個鑽井中之某 個鑽柱相關聯的鑽柱設計輸出資料的系統,其係包括: 適口用於#應s亥輸入資料來產生一份某個鑽井的每個 鐾洞區段中之該鑽柱的摘要的設備,胃份該鑽井中每個鑿 洞區段中之該鑽柱的摘要係選自由下面所組成的群組中: 該鑽柱之第—翁❸卜彳H镄柱之第二鑽㈣外徑、該 鑽柱之重物的外徑、該鑽柱之鑽盤管的外徑、該鑽柱之每 個馨洞區段中鑽頭上重量的最大重量、該鑽柱之第一鑽铤 157 1311605 H里錢柱之第二軸的重量、該鑽柱之重物的重量、 Γ —鑽㈣長度、該鑽柱之k鑽铤的長度、該 主之重物的長度、該鑽柱之鑽^管的長度、該鑽柱之張 =二和該鑽柱相關聯的成本數字以及和該鑽 的井湧容限;以及 適σ用於記錄或顯示該鑽井中該每個鑿洞 m ^ x r ' 、“伤摘要的記錄器或顯示設備,該鑽井中的每個s 洞區段^ Φ >
    <§亥鑽柱的該份摘要中出現在該記錄器或顯示裝 上的§己錄或顯示晝面係包含複數個鑿洞區段以 應於該褶盤彻齡 吸数個鑿洞區段的鑽柱之複數份摘要,該鑽柱的摘 要係^[王目 、兄在該記錄器或顯示裝置的記錄或顯示晝面上相鄰 方、4鱗井中的每個鑿洞區段之處。 十一、圖式: 如次頁。
    158 1311605 ζ s
    m6idu---! a6rdu——
    .i.c Id玟卩丨回谷此^丨兮國% i ο ® ® ® ® ® ® ® 1 i d ® ® ® ®-~ ® ® ® ® ® ® ® ® 1 ® « 1- rjmm __—_ 。爭xj < < • i r i _ 3a°l Lg JiL 8a 8 ξ?α fM ΙΟΟΜΊ PH 00 w^g, 二8 ss赛 豳豳驛麵 DJQDD j s.e§ 1κβ_1_69.— 零 _L65S fer -§0 Ez&i oy§ s 5.¾ 5ft S0 13 S3 8·ε -si jg7z J553*- □ ODD loys ;lg.i 18.9 j>n§ !g> jess 1"""IT 00□□ gis is s is§- SPOSJ .e^ji^ueii ’liissssfu-l
    i \n r ^^^ΐνΧ'νΧΧΛ'* i I ! i Γ^Ί
    O) t—I M
    &l® «οαβκ^ϋω^ «foasfos^ SIS® solortip® •® J® gss—y* X |6样
    1311605 s
    Γ
    V6 TB
TW094108198A 2004-03-17 2005-03-17 Method and apparatus and program storage device adapted for automatic drill string design based on wellbore geometry and trajectory requirements TWI311605B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/802,545 US7546884B2 (en) 2004-03-17 2004-03-17 Method and apparatus and program storage device adapted for automatic drill string design based on wellbore geometry and trajectory requirements

Publications (2)

Publication Number Publication Date
TW200600669A TW200600669A (en) 2006-01-01
TWI311605B true TWI311605B (en) 2009-07-01

Family

ID=34963307

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094108198A TWI311605B (en) 2004-03-17 2005-03-17 Method and apparatus and program storage device adapted for automatic drill string design based on wellbore geometry and trajectory requirements

Country Status (9)

Country Link
US (1) US7546884B2 (zh)
EP (1) EP1743086A1 (zh)
AR (1) AR049787A1 (zh)
CA (1) CA2557189C (zh)
EA (1) EA200601710A1 (zh)
MX (1) MXPA06010148A (zh)
NO (1) NO20064447L (zh)
TW (1) TWI311605B (zh)
WO (1) WO2005090750A1 (zh)

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7251590B2 (en) 2000-03-13 2007-07-31 Smith International, Inc. Dynamic vibrational control
US9482055B2 (en) 2000-10-11 2016-11-01 Smith International, Inc. Methods for modeling, designing, and optimizing the performance of drilling tool assemblies
US20060076163A1 (en) * 2004-10-12 2006-04-13 Smith International, Inc. Flow allocation in drill bits
US7954559B2 (en) 2005-04-06 2011-06-07 Smith International, Inc. Method for optimizing the location of a secondary cutting structure component in a drill string
US7784544B2 (en) * 2006-01-24 2010-08-31 Schlumberger Technology Corporation Method of treating a subterranean formation using a rheology model for fluid optimization
US8812334B2 (en) * 2006-02-27 2014-08-19 Schlumberger Technology Corporation Well planning system and method
US7857046B2 (en) * 2006-05-31 2010-12-28 Schlumberger Technology Corporation Methods for obtaining a wellbore schematic and using same for wellbore servicing
US9103195B2 (en) 2006-09-27 2015-08-11 Halliburton Energy Services, Inc. Monitor and control of directional drilling operations and simulations
US9359882B2 (en) 2006-09-27 2016-06-07 Halliburton Energy Services, Inc. Monitor and control of directional drilling operations and simulations
US7857047B2 (en) * 2006-11-02 2010-12-28 Exxonmobil Upstream Research Company Method of drilling and producing hydrocarbons from subsurface formations
US7606666B2 (en) * 2007-01-29 2009-10-20 Schlumberger Technology Corporation System and method for performing oilfield drilling operations using visualization techniques
US7627430B2 (en) * 2007-03-13 2009-12-01 Schlumberger Technology Corporation Method and system for managing information
US8014987B2 (en) * 2007-04-13 2011-09-06 Schlumberger Technology Corp. Modeling the transient behavior of BHA/drill string while drilling
US8688487B2 (en) * 2007-04-18 2014-04-01 Schlumberger Technology Corporation Method and system for measuring technology maturity
US7814989B2 (en) * 2007-05-21 2010-10-19 Schlumberger Technology Corporation System and method for performing a drilling operation in an oilfield
US8464808B2 (en) * 2007-06-26 2013-06-18 Atlas Copco Rock Drills Ab Method and device for controlling a rock drill rig
US8332194B2 (en) * 2007-07-30 2012-12-11 Schlumberger Technology Corporation Method and system to obtain a compositional model of produced fluids using separator discharge data analysis
US8073800B2 (en) * 2007-07-31 2011-12-06 Schlumberger Technology Corporation Valuing future information under uncertainty
US8327928B2 (en) 2007-08-28 2012-12-11 Frank's Casing Crew And Rental Tools, Inc. External grip tubular running tool
US7992634B2 (en) * 2007-08-28 2011-08-09 Frank's Casing Crew And Rental Tools, Inc. Adjustable pipe guide for use with an elevator and/or a spider
US8316929B2 (en) * 2007-08-28 2012-11-27 Frank's Casing Crew And Rental Tools, Inc. Tubular guiding and gripping apparatus and method
US7997333B2 (en) * 2007-08-28 2011-08-16 Frank's Casting Crew And Rental Tools, Inc. Segmented bottom guide for string elevator assembly
US20090076873A1 (en) * 2007-09-19 2009-03-19 General Electric Company Method and system to improve engineered system decisions and transfer risk
US7878268B2 (en) * 2007-12-17 2011-02-01 Schlumberger Technology Corporation Oilfield well planning and operation
US7845429B2 (en) * 2007-12-21 2010-12-07 Schlumberger Technology Corporation Determining drillstring neutral point based on hydraulic factor
US8135862B2 (en) * 2008-01-14 2012-03-13 Schlumberger Technology Corporation Real-time, bi-directional data management
US8285532B2 (en) * 2008-03-14 2012-10-09 Schlumberger Technology Corporation Providing a simplified subterranean model
US9488044B2 (en) 2008-06-23 2016-11-08 Schlumberger Technology Corporation Valuing future well test under uncertainty
CA2737415C (en) * 2008-11-06 2017-03-28 Exxonmobil Upstream Research Company System and method for planning a drilling operation
US10060245B2 (en) * 2009-01-09 2018-08-28 Halliburton Energy Services, Inc. Systems and methods for planning well locations with dynamic production criteria
US20100200743A1 (en) * 2009-02-09 2010-08-12 Larry Dale Forster Well collision avoidance using distributed acoustic sensing
US8498853B2 (en) * 2009-07-20 2013-07-30 Exxonmobil Upstream Research Company Petrophysical method for predicting plastic mechanical properties in rock formations
US8386221B2 (en) * 2009-12-07 2013-02-26 Nuovo Pignone S.P.A. Method for subsea equipment subject to hydrogen induced stress cracking
US8567526B2 (en) * 2009-12-08 2013-10-29 Schlumberger Technology Corporation Wellbore steering based on rock stress direction
US8931580B2 (en) 2010-02-03 2015-01-13 Exxonmobil Upstream Research Company Method for using dynamic target region for well path/drill center optimization
US8265874B2 (en) 2010-04-21 2012-09-11 Saudi Arabian Oil Company Expert system for selecting fit-for-purpose technologies and wells for reservoir saturation monitoring
US20130311147A1 (en) * 2011-02-01 2013-11-21 Halliburton Energy Services, Inc. Drilling optimization
US20130191081A1 (en) * 2011-07-14 2013-07-25 Vivek Jain Creating a well path
CA2850482C (en) 2011-10-03 2018-10-30 Landmark Graphics Corporation Enhanced 1-d method for prediction of mud weight window for subsalt well sections
US9953114B2 (en) 2012-03-27 2018-04-24 Exxonmobil Upstream Research Company Designing a drillstring
WO2013169429A1 (en) 2012-05-08 2013-11-14 Exxonmobile Upstream Research Company Canvas control for 3d data volume processing
EP2880260A4 (en) * 2012-08-01 2015-08-12 Services Petroliers Schlumberger ASSESSMENT, MONITORING AND MANAGEMENT OF BOHAKES AND / OR EVALUATION OF GEOLOGICAL PROPERTIES
US9411071B2 (en) 2012-08-31 2016-08-09 Exxonmobil Upstream Research Company Method of estimating rock mechanical properties
MX2015003998A (es) * 2012-09-28 2015-09-29 Landmark Graphics Corp Ensamble de geonavegacion autoguiado y metodo para optimizar la colocacion y calidad de pozos.
WO2014070503A1 (en) * 2012-10-31 2014-05-08 Halliburton Energy Services, Inc. Methods for producing fluid invasion resistant cement slurries
US9624419B2 (en) 2013-01-30 2017-04-18 Halliburton Energy Services, Inc. Methods for producing fluid migration resistant cement slurries
SG11201504699UA (en) * 2013-02-27 2015-07-30 Landmark Graphics Corp Method and system for predicting drilling events
CN105209714A (zh) * 2013-05-29 2015-12-30 界标制图有限公司 编译来自异类数据源的钻井场景数据
US10048403B2 (en) 2013-06-20 2018-08-14 Exxonmobil Upstream Research Company Method and system for generation of upscaled mechanical stratigraphy from petrophysical measurements
US8996396B2 (en) * 2013-06-26 2015-03-31 Hunt Advanced Drilling Technologies, LLC System and method for defining a drilling path based on cost
WO2015023266A1 (en) * 2013-08-13 2015-02-19 Landmark Graphics Corporation Probabilistic methodology for real time drilling
RU2016106696A (ru) 2013-08-30 2017-08-31 Лэндмарк Графикс Корпорейшн Оценка и прогнозирование извилистости ствола скважины
MX2016004353A (es) 2013-10-25 2016-11-14 Landmark Graphics Corp Constructor de itinerarios para el analisis de la ingenieria de perforacion.
EP3084696A1 (en) * 2013-12-19 2016-10-26 Energy Dynamics AS Modelling tool
CA2956139C (en) * 2014-08-29 2021-10-19 Landmark Graphics Corporation Directional driller quality reporting system and method
CA2966043C (en) * 2015-03-27 2020-02-18 Pason Systems Corp. Method and apparatus for drilling a new well using historic drilling data
CN106050215A (zh) * 2015-04-03 2016-10-26 普拉德研究及开发股份有限公司 目标属性的直接控制
WO2016161295A1 (en) 2015-04-03 2016-10-06 Schlumberger Technology Corporation Wellsite system services
WO2016168957A1 (en) 2015-04-19 2016-10-27 Prad Research And Development Limited Automated trajectory and anti-collision for well planning
EP3362639A4 (en) * 2015-10-18 2019-06-19 Services Petroliers Schlumberger BOHRTURMBETRIEBINFORMATIONSSYSTEM
US20180293438A1 (en) * 2015-12-02 2018-10-11 Halliburton Energy Services, Inc. Creation of Digital Representations of Well Schematics
WO2017206182A1 (en) * 2016-06-03 2017-12-07 Schlumberger Technology Corporation Detecting events in well reports
US10872183B2 (en) * 2016-10-21 2020-12-22 Baker Hughes, A Ge Company, Llc Geomechanical risk and hazard assessment and mitigation
WO2018231248A1 (en) * 2017-06-16 2018-12-20 Landmark Graphics Corporation Method and apparatus to predict casing wear for well systems
US10968730B2 (en) * 2017-07-25 2021-04-06 Exxonmobil Upstream Research Company Method of optimizing drilling ramp-up
WO2019132929A1 (en) * 2017-12-28 2019-07-04 Halliburton Energy Services, Inc. Systems and methods to improve directional drilling
DE112019001243T5 (de) 2018-03-09 2020-11-26 Schlumberger Technology B.V. Integrierte Bohrlochkonstruktionssystem-Betriebsvorgänge
CA3095021A1 (en) * 2018-08-17 2018-10-18 Pason Systems Corp. Methods and systems for performing automated drilling of a wellbore
CN111206920B (zh) * 2018-11-01 2023-04-07 中国石油化工股份有限公司 基于多井统计和地层表征的自然造斜规律评价方法
CA3129711A1 (en) * 2019-02-12 2020-08-20 Helmerich & Payne Technologies, Llc Systems and methods of iterative well planning for optimized results
US10655405B1 (en) * 2019-08-15 2020-05-19 Sun Energy Services, Llc Method and apparatus for optimizing a well drilling operation
WO2021081706A1 (en) 2019-10-28 2021-05-06 Schlumberger Technology Corporation Drilling activity recommendation system and method
US11268380B2 (en) * 2020-04-22 2022-03-08 Saudi Arabian Oil Company Kick detection using logging while drilling
CN112377172B (zh) * 2020-12-07 2022-10-04 中国石油天然气集团有限公司 钻井信号下传系统及方法
US11708755B2 (en) 2021-10-28 2023-07-25 Halliburton Energy Services, Inc. Force measurements about secondary contacting structures

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2671346A (en) * 1946-05-28 1954-03-09 Jr Thomas A Banning Measuring and recording various well drilling operations
JPH07119551B2 (ja) 1990-07-13 1995-12-20 株式会社小松製作所 掘削式地中掘進機の運転支援装置
US5305836A (en) 1992-04-08 1994-04-26 Baroid Technology, Inc. System and method for controlling drill bit usage and well plan
GB2290330B (en) 1992-04-08 1996-06-05 Baroid Technology Inc Methods for controlling the execution of a well drilling plan
US7032689B2 (en) 1996-03-25 2006-04-25 Halliburton Energy Services, Inc. Method and system for predicting performance of a drilling system of a given formation
US5794720A (en) 1996-03-25 1998-08-18 Dresser Industries, Inc. Method of assaying downhole occurrences and conditions
US6109368A (en) * 1996-03-25 2000-08-29 Dresser Industries, Inc. Method and system for predicting performance of a drilling system for a given formation
US6408953B1 (en) * 1996-03-25 2002-06-25 Halliburton Energy Services, Inc. Method and system for predicting performance of a drilling system for a given formation
US6612382B2 (en) 1996-03-25 2003-09-02 Halliburton Energy Services, Inc. Iterative drilling simulation process for enhanced economic decision making
US6233498B1 (en) * 1998-03-05 2001-05-15 Noble Drilling Services, Inc. Method of and system for increasing drilling efficiency
US6269892B1 (en) * 1998-12-21 2001-08-07 Dresser Industries, Inc. Steerable drilling system and method
AU756936B2 (en) * 1999-01-13 2003-01-30 Kevin L. Alft Automated bore planning method and apparatus for horizontal directional drilling
US6386297B1 (en) 1999-02-24 2002-05-14 Baker Hughes Incorporated Method and apparatus for determining potential abrasivity in a wellbore
US6353799B1 (en) 1999-02-24 2002-03-05 Baker Hughes Incorporated Method and apparatus for determining potential interfacial severity for a formation
US9482055B2 (en) * 2000-10-11 2016-11-01 Smith International, Inc. Methods for modeling, designing, and optimizing the performance of drilling tool assemblies
US6785641B1 (en) 2000-10-11 2004-08-31 Smith International, Inc. Simulating the dynamic response of a drilling tool assembly and its application to drilling tool assembly design optimization and drilling performance optimization
GB0009266D0 (en) 2000-04-15 2000-05-31 Camco Int Uk Ltd Method and apparatus for predicting an operating characteristic of a rotary earth boring bit
US6801197B2 (en) * 2000-09-08 2004-10-05 Landmark Graphics Corporation System and method for attaching drilling information to three-dimensional visualizations of earth models
US20020177955A1 (en) 2000-09-28 2002-11-28 Younes Jalali Completions architecture
US7066284B2 (en) * 2001-11-14 2006-06-27 Halliburton Energy Services, Inc. Method and apparatus for a monodiameter wellbore, monodiameter casing, monobore, and/or monowell
EP1608843A1 (en) 2003-03-31 2005-12-28 Baker Hughes Incorporated Real-time drilling optimization based on mwd dynamic measurements

Also Published As

Publication number Publication date
CA2557189A1 (en) 2005-09-29
MXPA06010148A (es) 2007-05-11
TW200600669A (en) 2006-01-01
EP1743086A1 (en) 2007-01-17
WO2005090750A1 (en) 2005-09-29
CA2557189C (en) 2011-09-20
NO20064447L (no) 2006-12-15
EA200601710A1 (ru) 2009-06-30
AR049787A1 (es) 2006-09-06
US20050211468A1 (en) 2005-09-29
US7546884B2 (en) 2009-06-16

Similar Documents

Publication Publication Date Title
TWI311605B (en) Method and apparatus and program storage device adapted for automatic drill string design based on wellbore geometry and trajectory requirements
TWI262420B (en) Method and apparatus and program storage device adapted for automatic drill bit selection based on earth properties
TWI278760B (en) Method and apparatus and program storage device adapted for visualization of qualitative and quantitative risk assessment based on technical wellbore design and earth properties
TWI305316B (en) Method and system and program storage device including an integrated well planning workflow control system with process dependencies
US7653563B2 (en) Method and apparatus and program storage device adapted for automatic qualitative and quantitative risk assessment based on technical wellbore design and earth properties
US7548873B2 (en) Method system and program storage device for automatically calculating and displaying time and cost data in a well planning system using a Monte Carlo simulation software
Polsky et al. Enhanced geothermal systems (EGS) well construction technology evaluation report
EA013694B1 (ru) Способ, система и запоминающее устройство для автоматизированного проектирования скважин
GB2439489A (en) A method for economic evaluation of completion methods for drilling a well
Aranjo Experience Transfer in Drilling Operations
WO2005091196A1 (en) Method and apparatus and program storage device adapted for visualization of qualitative and quantitative risk assessment based on technical wellbore design and earth properties
Nascimento Modelamento matemático para otimização de perfuração em seções de pré-pal: um foco em operações no oceano Atlântico sul
Jiang On the Prediction of Downhole Drilling Tool Failures Using Game Theory
Solvi The value of drilling optimization

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees