TWI311412B - Method and apparatus for indexing physical channels in an ofdma system - Google Patents

Method and apparatus for indexing physical channels in an ofdma system Download PDF

Info

Publication number
TWI311412B
TWI311412B TW095117078A TW95117078A TWI311412B TW I311412 B TWI311412 B TW I311412B TW 095117078 A TW095117078 A TW 095117078A TW 95117078 A TW95117078 A TW 95117078A TW I311412 B TWI311412 B TW I311412B
Authority
TW
Taiwan
Prior art keywords
physical channel
indexed
tti
groups
ofdm
Prior art date
Application number
TW095117078A
Other languages
Chinese (zh)
Other versions
TW200701679A (en
Inventor
Hwan-Joon Kwon
Dong-Hee Kim
Jin-Kyu Han
Ju-Ho Lee
Joon-Young Cho
Yu-Chul Kim
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of TW200701679A publication Critical patent/TW200701679A/en
Application granted granted Critical
Publication of TWI311412B publication Critical patent/TWI311412B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes

Description

1311412 20887pif.doc 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種正交分頻多工(Orthogonal Frequency Division Multiplexing, OFDM)無線通信系統。更特殊的 是,本發明涉及一種正交分頻多工(OFDM)無線通信系統 中索引實體通道的方法和裝置。 【先前技術】 φ 主動研究範圍已導引至使正交分頻多工(OFDM)使用 在無線通信系統中。OFDM是一種特殊型式的多載體調變 (Multi-Carrier Modulation, MCM),其中一輸入串列符號序 列轉換成平行序列且在傳輸之前調變成互相垂直的多重副 載波(multiple subcarriers)。 OFDM更經常地用在數位傳輸技術中。使用在數位傳 輸技術中的OFDM之例子包括數位聲頻廣播(DAB)、數位 電視、以及热線區域網路(WLAN)。由於ofdm對多路衰 減具備有效的抵抗性,則OFDM可對高速資料傳輸提供一 #種有效的平台。 以OFDM為主的主要多重存取系統是正交分頻多工 存取(OFDMA)。在0FDMA巾,頻域劃分成副通道,每__ 個副通道都具有多個副載波’時域劃分成多個時槽⑻叫, 且各個副通道分配給不同的使用者。將資源分配至時間· 頻率領域中所用的OTDMA可容納許多使用者,但每_使 用者只使用有限的資源。 圖1顯示傳統之OFDM無線通信系統中時間_頻率資 1311412 20887pif.doc 源之一種例子。 參閱圖1 ’水平軸表示時間且垂直軸表示頻率。 OFDM系統典型上發出一種調變符號(四相移位鍵1 (QPSK)或16方位正交調幅(16QAM)符號)至副載波Ί 上,副載波是基本資源。特定的OTDM中表示副載波所1 的矩形是一種時間-頻率資源。 $ 一般而言,每一 OFDM符號1〇2包括多個副載波。士 • 圖1所示,全部的副載波是輪送資料用的資料副載波,保 護(guard)副載波不存在。一種基本封包傳輸單元(稱為傳鈐 時段(ΤΉ))103以一組OFDM符號來形成。 、别 圖1中,每一小的長方形稱為時間_頻率室(bin)且—個 TTI 103是由多個時間-頻率室所構成。實體通道是载有不 同型式之資訊的通道,例如,播叫(paging)通道、封包資料 通道(PDCH)、封包資料控制通道(PDCCH)、以及使用在典 型行動式通k系統中的上鏈定序(Uplink scheduling)通道。 典型上一個ΤΉ 103包括多個實體通道。例如,某些 籲時間-頻率室用於播叫通道中且其它時間_頻率室用於共^ 控制通逗(CCCH)中以便在TTI 1〇3期間提供系統資訊。 又,某些時間,率室分配給PDCH且其它時間_頻率室分 配給TOCCH,以便在TTI103期間提供PDCH解調所需的 控制資訊。此處若未特別指出,其它實體通道可依據其目 的來定義。 貫體通迢需要不同的時間_頻率資源。例如,若一個 TTI中設定5_個時間、頻率室(即,一個ττι有1〇個 1311412 20887pif.doc OFDM,每一 OFDM符號包含500個資料副载波), 對資源進行分配使上述播叫通道具有1〇〇個副载波,CCCH 使用500個副載波,4000個副載波用來輸送使用者次 400個副載波用於發送用的pDCCHs中。 > 在上述之典型OFDM無線通信系統中,資源以二維形 式組構(configured)成時間和頻率,且多個實體通道需要^ 同數量的資源。因此,時間-頻率室分配至實體通道^必須 φ有效地设定且時間-頻率室分配時亦須在傳輸器和接收器 之間進行溝通。若50⑻個副載波存在於一 TTI中,則& 輸器必須可通知此接收器“各副載波#1至#1〇〇用於播叫通 道中且各副載波#101至#600用於一種共同通道中,,。為了 此目的’每一實體通道可使用〇FDM符號索引和副載波索 引來辨認。然而,此方法是無效率的,此乃因此方法採用 太多資訊來辨認每一實體通道之副載波。 特殊情況下,當多個PDCH在一個TTI中進行多工 時,每一 PDCH以一個通道索引來辨認。在與每一通道索 #引相對應下’須在傳輸器和接收器之間對已分配至此通道 索引所在之通道之OFDM符號和副載波進行預設(preset)。 圖2 _示傳統之〇fdM無線通信系統中對多個實體通 道進行索引的一種例子。 參閱圖2,水平軸表示時間,垂直軸表示頻率。每一 OFDM符號202包括多個副載波且每一 TTI 2〇3由多個實 體通道所組成。每一實體通道是與時間-頻率分集通道 (time-frequency diversity channel, TFDCH)204、205、或 206 1311412 20887pif.doc 寺效,此日寸1 TFDCH之組態需要多 在™中的時間和頻率中。如圖2所示載畐,载波;J佈 預疋的方法在-特定的TTI 2G3中分配 此TFDCH用之盥眘调古M 且 „絲士拟此原有關的貝乳疋由傳輸器和接收哭之 間一種相對應的通道索引來定義。 印之 τ:^相同的通道長度(即,在- 之傳統技術可:每-實體通道)時,上述 而,當實體通、首八目母一通道所用的副載波。然 田貝、、道刀別具有不同的通道長度時, 道:的貧源或對此資源進行索引時會受到限制母 *不=通的方法和裝置以便在實體通道具 通道進行索弓卜又對〇FDM無線通信系統中的實體 【發明内容】 知例揭示至少上述之問題及/或缺點且提 供至少如下所述的僖 何 ^支砧。因此,本發明的特點是提供一種 ΙίϊΓΛ1,率資源的方法和裝置以用於每一實 體通這中,當具有不 ^ 貝 通信系統中進行多工_實_射otdm無線 的方%例提供—種可有效地定義資源分配單元 的方法和裝置,其涉只 頻率㈣。 '及GFDM無線通信系射二維時間_ 例提供— 應無線通信 有效地分配二維時間,率:#源的找和裝置。 1311412 20887pif.doc 是用來幫助了解本發明的實施例且只是一種範例而已。 此,所屬技術領域中具有通常知識者將明白此處所述的^ 施例可變化和修改而未脫離本發明的範圍和精神。又,只 為人所知的功能和構造上之描述為了便於說明和簡、、絮 故,此處予以省略。 子、之 ,本發明提供-種TFDCH索引方法,其巾對應於 通道的每一TFDCH是由一TTI中時間-頻率資源(g卜多個197. The invention relates to an Orthogonal Frequency Division Multiplexing (OFDM) wireless communication system. More particularly, the present invention relates to a method and apparatus for indexing physical channels in an orthogonal frequency division multiplexing (OFDM) wireless communication system. [Prior Art] The φ active research range has been directed to the use of Orthogonal Frequency Division Multiplexing (OFDM) in wireless communication systems. OFDM is a special type of Multi-Carrier Modulation (MCM) in which an input serial symbol sequence is converted into parallel sequences and modulated into mutually perpendicular multiple subcarriers prior to transmission. OFDM is more commonly used in digital transmission techniques. Examples of OFDM used in digital transmission technology include digital audio broadcasting (DAB), digital television, and hotspot area network (WLAN). Since ofdm is effective against multipath fading, OFDM provides an effective platform for high speed data transmission. The main OFDM-based multiple access system is Orthogonal Frequency Division Multiple Access (OFDMA). In the 0FDMA towel, the frequency domain is divided into sub-channels, and each __ sub-channel has multiple sub-carriers. The time domain is divided into a plurality of time slots (8), and each sub-channel is allocated to a different user. The OTDMA used to allocate resources to the time-frequency domain can accommodate many users, but only uses a limited amount of resources per user. Figure 1 shows an example of a time_frequency 1311412 20887pif.doc source in a conventional OFDM wireless communication system. Referring to Figure 1, 'the horizontal axis represents time and the vertical axis represents frequency. An OFDM system typically emits a modulation symbol (quadrature shift key 1 (QPSK) or 16 azimuth quadrature amplitude modulation (16QAM) symbol) onto subcarrier ,, which is a basic resource. The rectangle representing the subcarrier 1 in a particular OTDM is a time-frequency resource. In general, each OFDM symbol 1 〇 2 includes a plurality of subcarriers. • As shown in Figure 1, all subcarriers are data subcarriers for polling data, and guard subcarriers do not exist. A basic packet transmission unit (referred to as a transmission period (ΤΉ)) 103 is formed with a set of OFDM symbols. In Fig. 1, each small rectangle is called a time_frequency bin and the TTI 103 is composed of a plurality of time-frequency chambers. A physical channel is a channel carrying different types of information, such as a paging channel, a packet data channel (PDCH), a packet data control channel (PDCCH), and an uplink used in a typical mobile k system. Uplink scheduling channel. Typically a ΤΉ 103 includes a plurality of physical channels. For example, some of the time-frequency chambers are used in the paging channel and other time-frequency chambers are used in the control loop (CCCH) to provide system information during TTI 1〇3. Also, at some time, the rate room is assigned to the PDCH and the other time_frequency chambers are assigned to the TOCCH to provide the control information required for PDCH demodulation during the TTI 103. Unless otherwise specified, other physical channels may be defined according to their purpose. Cross-body communication requires different time_frequency resources. For example, if 5_times and frequency bins are set in one TTI (ie, one ττι has 1〇1311412 20887pif.doc OFDM, and each OFDM symbol contains 500 data subcarriers), resources are allocated to make the above-mentioned paging channel. There are 1 subcarriers, CCCH uses 500 subcarriers, and 4000 subcarriers are used to transport the user's 400 subcarriers for transmission in pDCCHs. > In the above-described typical OFDM wireless communication system, resources are configured in a two-dimensional form into time and frequency, and multiple physical channels require a similar number of resources. Therefore, the time-frequency chamber assignment to the physical channel ^ must be φ effectively set and the time-frequency chamber assignment must also be communicated between the transmitter and the receiver. If 50 (8) subcarriers exist in a TTI, the & transmitter must notify the receiver that "each subcarrier #1 to #1" is used in the paging channel and each subcarrier #101 to #600 is used for In a common channel, for this purpose 'each physical channel can be identified using the 〇FDM symbol index and the subcarrier index. However, this method is inefficient, so the method uses too much information to identify each entity. Subcarriers of the channel. In special cases, when multiple PDCHs are multiplexed in one TTI, each PDCH is identified by a channel index. Under the corresponding channel # 引#, it must be in the transmitter and receive. The OFDM symbols and subcarriers assigned to the channel in which the channel index is located are pre-set between the devices. Figure 2 shows an example of indexing multiple physical channels in a conventional 〇fdM wireless communication system. 2, the horizontal axis represents time, and the vertical axis represents frequency. Each OFDM symbol 202 includes a plurality of subcarriers and each TTI 2〇3 is composed of a plurality of physical channels. Each physical channel is a time-frequency diversity channel (time) -freque Ncy diversity channel, TFDCH) 204, 205, or 206 1311412 20887pif.doc Temple effect, the configuration of this day 1 TFDCH needs to be more in the time and frequency in the TM. As shown in Figure 2, carrier; J cloth The pre-emptive method assigns this TFDCH in a specific TTI 2G3 with a careful adjustment of the ancient M and the definition of the original cytoplasm is defined by a corresponding channel index between the transmitter and the receiving cry. Printed τ:^ The same channel length (ie, the traditional technique of - can be: per-physical channel), as described above, the subcarrier used by the physical channel and the first octet. When the Tianbei and the Daoji have different channel lengths, the poor source of the channel or the index of the resource will be restricted by the method and device of the parent * not for the channel in the physical channel. Entity in a FDM Wireless Communication System [Description of the Invention] At least the above mentioned problems and/or disadvantages are disclosed and at least the following anvils are provided. Accordingly, it is a feature of the present invention to provide a method and apparatus for rate resources for each entity to pass through, in the case of a multiplexed _ _ ot odm wireless system A method and apparatus for efficiently defining a resource allocation unit that involves only frequency (4). 'And GFDM wireless communication system two-dimensional time _ example provided - should be wireless communication effectively allocate two-dimensional time, rate: #源的找和装置. 1311412 20887pif.doc is intended to aid in understanding embodiments of the invention and is merely an example. It will be apparent to those skilled in the art that the present invention may be modified and modified without departing from the scope and spirit of the invention. Further, the functions and structural descriptions which are known only are omitted for convenience of explanation, simplicity, and simplification. The present invention provides a TFDCH indexing method in which each TFDCH corresponding to a channel is composed of a time-frequency resource in a TTI (g

副載波)所形成的“N組的第k個,,來定義且實體通道H * 種序對(N,k)來辨認。 $ §不同通道長度之實體通道存在於相同的TTI中日$ 則辨認各實體通道用的序對(N, k)組構成一種樹狀結構了以 便更有效地辨認所使用的時間_頻率資源。 以卜將詳細描述本發明之實施例中實 ==广個,,特性及以樹狀結構來對實體通 方丁丁1包括】0個OFDM符號且每一 〇FDM符贫 如具有500個副载波,則在一 ΤΉ中存在5〇〇〇個時= 率資源。各實體通道是町述_狀結構巾料 = 來表示。 \,κ) 此句子“各實體通道是以序對(N, k)來表示,,之音笔 是:ί部的時間·頻率資_分成N組且-實體通道 組之弟k個。此實體通道f引方法將歸納如下。 (1)當全部的時間_頻率資源分配至單一個實體 時,可用之實體通道的數目是“Γ,且此實體通道定義= 16 pif.doc TFDCH(1,0)。 (2) 當全部的時間-頻率資源分配至二個實體通道時, 可用之實體通道的數目是“2”且此二個實體通道定義成 TFDCH(2, 0)和 TFDCH(2, 1)。 (3) 當全部的時間-頻率資源分配至三個實體通道時, 可用之實體通道的數目是“3”且此三個實體通道定義成 TFDCH(3, 0)、TFDCH(3, 1)、以及 TFDCH(3, 2)。 ^ (4)上述實體通道索引之特定例子在代數上可藉由推 算(deductive)而一般化以將一實體通道索引成TFDCH(N, k) 〇 有各種不同的方法來定義N個具有時間-頻率資源的 實體通道,其以數學方式表示如下: TFDCH(N, k)= —組具有索引η之副載波, n%N=(k+L+B)%N...............(1) 其中%表示模數(modulo)運算,L表示TTI中的0FDM 付號索引’ B表示基地台(BS)索引,N表示即將被組態之 籲實體通道的數目,k(=0,.…,Ν·1)表示TFDCH索引,且n 表示OFDM符號内之副載波索引。因此,TFDCH(N,k)是 一組副載波,其索引n滿足方程式(1)。為了較佳地了解方 程式(1),以下將對圖3進行說明。 圖3顯示本發明第_實施例中對多個實體通道進 引的例子。 策 月ί閱圖3,水平車由表示時間且垂直車由表示頻率。 ΤΤΙ 303由8個OFDM符號3〇2所組成,每一 0FDM符鍊 pif.doc I3H412 302具有32個副載波。在N=4, B==〇且k=〇時,此 字3〇1表示TFDCH(4, 0)之副栽波。 8個OFDM符號之索引是由LK)至,且每—卻麗 符號中的3 2個副載波之索引是由n=〇至n=3〗。 式⑴之TFDCH(4, 0)之雜皮是以由右上方傾斜 之線來表示。方程式(1)是多個數學定義式之―,^ 數運算以容易地對-預定長度之TFDCH進行組構。曰= 方程式⑴之外,許多其它的數學公式亦可用來 = 目的之長度不同的TFDCHs進行組構。現在,將炎^问 來說明以樹狀結構來對上述不同之TFDCHs進疒帝可圃4 圖4顯示本發明第一實施例中以樹狀結對個每 體通道進行索引的例子。 7夕1固貝 ,參閱圖4,一 TTI 403由8個0FDM符號所組成 一0FDM符號具有32個副載波。在N=8,㈣且k=〇日士 此參考數字表示TFDCH(8, Q)之副载波,且參= 404 表不 TFDCH(8, 4)之副载波。TFDCpj(8 方傾斜至左下方之線來表示。 ’疋上 此8個OFDM符號之索引是由L=〇至L==7,且—— OFDM符號中的32個副載波之索引是由㈣至^^母 I3 圖4之間的比較已揭* TFDCH(8, 〇)和 TFDCH(8, 4)之組合是與丁FDCH(4, 〇)相同。換言之, TFDCH(8, 〇)和 TFDCH(8,句是由 TFDCH(4, 〇)導出 °。此护 點對本發明的實施例之實體通道索引方法是必要 ^ 5中的特定方式所示。 D圖 18 1311412 20887pif.doc 圖5顯示本發明第一實施例中圖4所示的樹狀結 階層式表示圖。 —請參閱圖5,一 TTI之全部之時間-頻率資源分配給— 個貝體通道時可造成一個丁FDCH,其是tfdCH(] 〇)人 部之日守間-頻率資源分配給二個實體通道時可造成二 TFDCHs,其是 TFDCH(2, 〇)和 TFDCH(2, υ,其相組: 疋與丁FDCH(1, 〇)相同。以相同方式,TFD 4 、 TFDCH(4, 2)是由 TFDCH(2, 〇)導出,且 TFD ’ 口 是由職h(4, q)導出。上述理由可擴展至圖° 5中所不的其它tfdcHs。 如上所述,不同長度之TFDCHs可以- TTI中的時間 _頻率貢源來進行組構且以相對應的節點值來對TFDCHs =r」:::’(N,k)使傳輸器和接收器之間與特定的實體 通f所用的一貝源有關的資訊之交換更方便。以下將參考圖 6來描述一種例子。 / 圖6样貝不本發明第一實施例中對應於— 多工=不同長㈣實體通_TFDCHs。 TFD 二 ^ 二,6,TFDCH(4, 〇)、™^Η(4, 2)、以及 (,)刀別作用使用者A、B、以及 由 TKDCH(4, 此'首, π〈 mis 導出的長度8之丁3)和 TFDCH(8,7)+分別酉己置成CCCH和H)CCH。 以下=榣述涉及本發明其它實施例中如何義、指 出、以及分配1資源分配單元。 〜我 在本發明的瞀· 7 f i 汽苑例中,有二種方式來定義且指出一 19 I31luu 丁TI中一種輿二維資源(即,多個時間-頻率室)有關的資源 :配單=。其中一種方式是分配資源通道(DRCH)方法,在 »亥刀配資源通道方法中,一通道是以規則地散佈之資源來 組1且,指出。另-種方式是局部資源通道(LRCH)方The "kth" of the N sets formed by the subcarriers is defined and the physical channel H* order pairs (N, k) are recognized. $ § The physical channels of different channel lengths exist in the same TTI. The sequence pair (N, k) used to identify each physical channel constitutes a tree structure to more effectively identify the time-frequency resource used. In the embodiment of the present invention, the actual == wide, The characteristics and the tree-like structure of the entity dongding 1 include 0 OFDM symbols and each 〇 FDM symbol is as low as 500 subcarriers, then there are 5 = = rate resources in one 。. The physical channel is the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ divided into N groups and - the brothers of the physical channel group k. This physical channel f-input method will be summarized as follows. (1) When all time_frequency resources are allocated to a single entity, the number of available physical channels is "Γ, and this entity channel definition = 16 pif.doc TFDCH(1,0). (2) When all When time-frequency resources are allocated to two physical channels, the number of available physical channels is "2" and the two physical channels are defined as TFDCH(2, 0) and TFDCH(2, 1). (3) When all When time-frequency resources are allocated to three physical channels, the number of available physical channels is "3" and the three physical channels are defined as TFDCH (3, 0), TFDCH (3, 1), and TFDCH (3, 2) ^ (4) The specific example of the above-mentioned entity channel index can be generalized to destructively index a physical channel into TFDCH(N, k) algebraically. There are various ways to define N with A physical channel of time-frequency resources, which is mathematically represented as follows: TFDCH(N, k)= - group of subcarriers with index η, n%N=(k+L+B)%N... .........(1) where % represents the modulo operation, L represents the 0FDM pay index in the TTI, B represents the base station (BS) index, and N represents the impending configuration. The number of channels, k(=0, . . . , Ν·1), represents the TFDCH index, and n represents the subcarrier index within the OFDM symbol. Therefore, TFDCH(N, k) is a set of subcarriers whose index n satisfies the equation. (1) In order to better understand the equation (1), the following will be explained with reference to Fig. 3. Fig. 3 shows an example of the introduction of a plurality of physical channels in the first embodiment of the present invention. The car is represented by time and the vertical car is represented by frequency. ΤΤΙ 303 is composed of 8 OFDM symbols 3〇2, and each 0FDM symbol chain pif.doc I3H412 302 has 32 subcarriers. At N=4, B==〇 When k=〇, the word 3〇1 represents the subcarrier of TFDCH(4, 0). The index of 8 OFDM symbols is from LK), and the index of 32 subcarriers in each symbol is From n=〇 to n=3〗 The TFDCH (4, 0) of the formula (1) is represented by a line inclined from the upper right. Equation (1) is a mathematical definition of a plurality of mathematical operations. It is easy to organize the TFDCH of a predetermined length. In addition to Equation (1), many other mathematical formulas can also be used to construct TFDCHs with different lengths of purpose. Now, the inflammation will be asked. To illustrate the different TFDCHs in the tree structure, FIG. 4 shows an example of indexing each body channel by a tree-like node in the first embodiment of the present invention. A TTI 403 is composed of 8 OFDM symbols and an OFDM symbol has 32 subcarriers. At N = 8, (4) and k = 〇日士 This reference number represents the subcarrier of TFDCH (8, Q), and the parameter = 404 represents the subcarrier of TFDCH (8, 4). TFDCpj (8 squares are skewed to the lower left line to represent. 'The index of the 8 OFDM symbols is from L=〇 to L==7, and the index of 32 subcarriers in the OFDM symbol is (4) Comparison to ^^I3 Figure 4 has been revealed. * The combination of TFDCH(8, 〇) and TFDCH(8, 4) is the same as FDCH(4, 〇). In other words, TFDCH(8, 〇) and TFDCH (8, the sentence is derived from TFDCH (4, 〇) °. This guard point is shown in the specific way of the physical channel indexing method of the embodiment of the present invention. D Figure 18 1311412 20887pif.doc Figure 5 shows this In the first embodiment of the invention, the tree-like hierarchical representation shown in Fig. 4 is shown. - Referring to Figure 5, a time-frequency resource of a TTI can be assigned to a single-body channel to cause a D-FDCH, which is tfdCH(] 〇) The day-to-day squad-frequency resource allocated to two physical channels can cause two TFDCHs, which are TFDCH(2, 〇) and TFDCH(2, υ, whose phase group: 疋 and D FDCH ( 1, 〇) the same. In the same way, TFD 4, TFDCH (4, 2) are derived from TFDCH (2, 〇), and TFD 'port is derived from h(4, q). The above reasons can be extended to ° in 5 Other tfdcHs. As mentioned above, TFDCHs of different lengths can be organized by the time_frequency source in the TTI and the corresponding node value is used for the TFDCHs = r":::'(N,k) transmitter It is more convenient to exchange information with a receiver for a source associated with a particular entity f. An example will be described below with reference to Figure 6. / Figure 6 is not corresponding to the first embodiment of the present invention - Multiplex = different lengths (four) entity pass _TFDCHs. TFD two ^ 2, 6, TFDCH (4, 〇), TM ^ Η (4, 2), and (,) knife users A, B, and by TKDCH (4, this 'first, π<mis derived length 8's 3') and TFDCH(8,7)+ respectively set CCCH and H)CCH. The following = description relates to other embodiments of the present invention , pointing out, and allocating 1 resource allocation unit. ~ In the example of the 瞀· 7 fi car of the present invention, there are two ways to define and indicate a 舆 2D resource in a 19 I31luu ding TI (ie, multiple times) - frequency room) related resources: with single = = one of the ways is to allocate resource channel (DRCH) method, in the » Hai knife with resource channel method, One channel is grouped with regularly distributed resources and pointed out. Another way is the local resource channel (LRCH) side.

法’其中一通道是以相鄰資源來組構且須被指出。由DRCH 和LRCH方法所定義的資源分配單元分別顯示成dRCH(n, ^RCTi(&gt;i,k) ’且資源藉由在drch⑼,幻和lrc讯N,幻 中5又定N和k而分配至每一實體通道。將配合圖7與圖8 對DRCH(N,k)進行描述。 —圖Y顯7K本發明第二實施例中對作為DRCH(N, k)之 實體通5進行索引時的圖解。DRC_,幻對應於N組的第 k個’每 '组都有多個分配在或散佈在- TTI中的時間-頻 率資源。 ' 請參閱圖7 ’ —個丁Ή 7〇4中存在著8個〇FDM符號 703,OTOM符號之索引是由L=〇至L=7。每—〇fdm 號中70^具有32個索引是由n=0至_之副載波。㈣ 時,此參考數字701和702分別表示對應於DRCH(8 〇 之資源和對應於DRCH(8, 4)之資源。各資源以下述方八) 配至DRCH(8, 0)。 八刀 每一 OFDM符號中,32個副载波劃分成n組(即 7中8組),每-組具有等距的副載波。特別是細 = 波的索引是n,,8, ^、組#!時索弓丨是㈣,9, $ 25}、組#2時索引是η二{2, 10, 18,26}、組#3時索引θ 5 η,!9, 27}、組#4 時索引是 η={4, 12, 20 28}組#5疋時n=, 20 0887pif.docOne of the channels of the law is organized by adjacent resources and must be pointed out. The resource allocation units defined by the DRCH and LRCH methods are respectively displayed as dRCH(n, ^RCTi(&gt;i,k)' and the resources are fixed by N and k in drch(9), magic and lrc. Assigned to each physical channel. The DRCH(N,k) will be described with reference to Figure 7 and Figure 8. - Figure Y shows 7K. In the second embodiment of the present invention, the entity 5 as the DRCH (N, k) is indexed. Diagram of time. DRC_, the kth 'per' group corresponding to the N group has multiple time-frequency resources allocated or scattered in the -TTI. ' See Figure 7' - DingΉ 7〇4 There are 8 〇FDM symbols 703 in the index, and the index of the OTOM symbol is from L=〇 to L=7. Each of the 〇fdm numbers has 40 indexes with sub-carriers of n=0 to _. (4) This reference numerals 701 and 702 respectively indicate resources corresponding to the DRCH (the resource of 8 和 and the resource corresponding to the DRCH (8, 4). Each resource is allocated to the DRCH (8, 0) by the following side eight.) Eight knives per OFDM symbol Among them, 32 subcarriers are divided into n groups (that is, 8 out of 7), and each group has equidistant subcarriers. Especially the index of fine = wave is n, 8, 8, and ##! Yes (four), 9, $25}, group #2 when the index is η {2, 10, 18, 26}, group #3 index θ 5 η, !9, 27}, group #4 index is η={4, 12, 20 28} group #5疋 when n=, 20 0887pif.doc

i3i HU 是 n={5, 13, 21,29}、組#6 時索引是 n={6, i4, a, 3〇}、以 及組#7時索弓!是n={7, 15, 23, 31}。在㈣的例子中,每 - OFDM符號中每—組之副載波在特徵上以相同的距離 在頻域中互相隔開。DRCH(M)之時間_頻率資源依據基地 台(BS)特定的序列S來決定。此序列s具有許多元素以作 為每一 TTI之OKDM符號之數目。I3i HU is n={5, 13, 21,29}, group #6 when the index is n={6, i4, a, 3〇}, and group #7 when the bow! Is n={7, 15, 23, 31}. In the example of (4), each of the subcarriers in each - OFDM symbol is separated from each other in the frequency domain by the same distance. The time_frequency resource of the DRCH (M) is determined according to the base station (BS) specific sequence S. This sequence s has many elements to be the number of OKDM symbols for each TTI.

在圖7所示的情況下,序列。 此序列指出用在各別之〇FDM符號之巾的組(gr〇up)索 f。就具有序列^{^,^^七”之基地台⑴…而 σ TTI中DR&lt;】(8, 〇)之時間-頻率資源是OFDM符號 #0中的組#0、OFDM符號#1中的組#3、〇fdm符號#2中 的組# 1、OFDM符號#3中的組#7、OFDM符號#4中的組 #2、OFDM符號#5中的組#6、〇FDM符號#6中的組#〇4、 以及OFDM符號#7中的組#5。 當以一般形式來表示時,且基地台(BS)使用此序列 S={〇, 3, 1,7, 2, 6, 4, 5}時,以{(〇+k)%N,(3+k)%N, (1+k), (7+k)%N,(2+k)%N, (6+k)%N, (4+k)%N, (5+k)°/〇N}來表示 的組分配至一 TTI之依序的0FDM符號中的DRCH(8,k)。 因此’對應於{4%8, 7%8, 5%8, 11%8, 6%8, 10%8, 80/〇8, 9%8} ’即,{4,7,5, 3, 6, 2, 1,0},之組在圖7中分配至一 ΓΓΙ之依序的ofdJV[符號中的DRCH(8, 4)。 圖8顯示本發明第二實施例中當s={〇, 1, 2, 3, 4, 5, 6, 7}時分配至DRCH(8, 〇)和DRCH(8, 4)之資源。 請參閱圖8,上述之資源分配方法包括DRCH方法之 21 I311412 20887pif.doc 使用以決定資源的分配且決定各序對(N, k)之分配^各序對 (N,k)以樹狀結構來形成,使一 TTI中不同通道長度之實體 通道所用的時間頻率資源可更有效地被辨認。 現在將參考圖4和圖7來說明“如何在樹狀結構中對 DRCHs進行索引”。參閱圖7,一個TTI 704中存在著8 個OFDM符號703。〇FDM符號7〇3之索引是由L=〇至 L=7。另參考圖4,每一 OFDM符號包含32個索引是由n=〇 • 至n—之副載波。如以上之圖4所述,E)RCH(8,〇) 701 和DRCH(8, 4) 702相組合時和DRCH(4, 0)相同。以同樣方 式,在 S={0,3, 1,7,2, 6, 4,5}時,DRCH(4, 〇)以下述方式 組構而成。 由於N=4,每一 〇FDM符號之副載波劃分成4祖,其 索引由0至3,每一組都具有等距的副載波。s之各元素 之模數-N(N=4)運算造成{3, !,3, 2, 2, 〇, 1}且對應於此结 果序列之各組分配至DRCH(4, 〇)。副載波Drch(4, 〇)是和 DHCH(8,0)701、以及DRCH(8,4)7〇2相組合後的副載波 相同’如® 7所示。換言之,DRCH(8, 0)和DRCH(M)是 由DRCH(4, 0)導出。樹狀結構如圖9所示。 圖9顯示本發明第二實施例中圖8所示的樹狀結耩之 P白層式表示圖。 每触翏考圖9,— ΤΏ之全部的時間-頻率資源分配奚/個 只粗通逷時造成一個DRCH,即DRCH(1,〇)。使全部的時 ^肩率貝源分配至三個實體通道時造成三個,即 H(3, 〇)、DRCH(3, 1)、以及 DRCH(3, 2),其相組合時 22 1311412 20887pif.doc 和DRCH(1, 〇)相同。以同樣方式,DRCH(6, 〇)和DRCH(6, 3)疋由DRCH(3, 0)導出。上述的情況可延伸至圖9中所示 的其它DRCHs。 如上所述,不同長度之DRCHs可以一 TTI中的時間-頻率資源來進行組構且以相對應的節點值來對此DRCHs 進行索引。即’(N,k)使傳輪器和接收器之間與特定的實體 通道所用的資源有關的資訊之交換更方便。以下將參考圖 10來描述一種例子。 圖10顯示本發明第二實施例中對應於一 TTI中多個 已多工之不同長度的實體通道的DRCHs。 凊參閱圖 10,DRCH(6, 0)、DRCH(6, 3)、DRCH(6, 1)、 以及 DRCH(6, 4)分別用作 PDCH 0 至 PDCH 4。DRCH(12, 2)分配成一種PDCCH且DRCH(12, 5)分配成一種CCCH。 在分配N和k至DRCH(n, k)中時,資源以上述之資源分配 單元來疋義和指出方法以分配至每一實體通道。現在,將 參考圖11來描述LRCH(N,k)。 圖11顯示本發明第三實施例中對作為LRCH(N, k)之 貫體通運進行索引時的圖解。LRCH(N, k)對應於N組之第 k個,母一組都是—ττΐ中已局部化的時間頻率資源。In the case shown in Figure 7, the sequence. This sequence indicates the set of tissues used for the individual FDM symbols. The time-frequency resource of the base station (1) with the sequence ^{^, ^^7" and the DR&lt;](8, 〇) in the σ TTI is the group #0 and the OFDM symbol #1 in the OFDM symbol #0. Group #3, group #1 in 〇fdm symbol #2, group #7 in OFDM symbol #3, group #2 in OFDM symbol #4, group #6 in OFDM symbol #5, 〇FDM symbol #6 Group #〇4 in , and group #5 in OFDM symbol #7. When expressed in a general form, and the base station (BS) uses this sequence S={〇, 3, 1, 7, 2, 6, 4, 5}, with {(〇+k)%N,(3+k)%N, (1+k), (7+k)%N,(2+k)%N, (6+k )%N, (4+k)%N, (5+k)°/〇N} is represented by the group assigned to the DRCH(8, k) in the sequential 0FDM symbol of a TTI. Therefore 'corresponding to { 4%8, 7%8, 5%8, 11%8, 6%8, 10%8, 80/〇8, 9%8} 'ie, {4,7,5, 3, 6, 2, 1 , 0}, the group is assigned to a sequence of ofdJV [DRCH (8, 4) in the symbol in Fig. 7. Fig. 8 shows that in the second embodiment of the present invention, when s = {〇, 1, 2, Resources allocated to DRCH (8, 〇) and DRCH (8, 4) when 3, 4, 5, 6, 7}. Referring to Figure 8, the resource allocation method described above includes the DRCH method 21 I311412 20887pif.doc used to Determining resources And determine the allocation of each sequence pair (N, k). Each sequence pair (N, k) is formed in a tree structure, so that the time-frequency resources used by the physical channels of different channel lengths in a TTI can be more effectively identified. The "how to index the DRCHs in the tree structure" will now be explained with reference to Fig. 4 and Fig. 7. Referring to Fig. 7, there are 8 OFDM symbols 703 in one TTI 704. The index of the 〇FDM symbol 7〇3 is L = 〇 to L = 7. Referring additionally to Figure 4, each OFDM symbol contains 32 subcarriers whose index is from n = 〇 • to n - as described in Figure 4 above, E) RCH (8, 〇) 701 is the same as DRCH(4, 0) when combined with DRCH(8, 4) 702. In the same way, at S={0,3, 1,7,2, 6, 4,5}, DRCH(4) , 〇) is constructed in the following manner. Since N=4, the subcarrier of each 〇FDM symbol is divided into 4 ancestors, the index is from 0 to 3, and each group has equidistant subcarriers. The modulus-N (N=4) operation of the element results in {3, !,3, 2, 2, 〇, 1} and the groups corresponding to this sequence of results are assigned to the DRCH (4, 〇). The subcarrier Drch (4, 〇) is the same as the subcarriers combined with DHCH (8, 0) 701 and DRCH (8, 4) 7 〇 2 ' as shown in ® 7 . In other words, DRCH (8, 0) and DRCH (M) are derived from DRCH (4, 0). The tree structure is shown in Figure 9. Fig. 9 is a view showing a P white layer representation of the tree-like knot shown in Fig. 8 in the second embodiment of the present invention. For each touch, see Figure 9, - all time-frequency resource allocations / 只 only one rough pass, resulting in a DRCH, that is, DRCH (1, 〇). When all the time-sources are allocated to three physical channels, three are caused, namely H(3, 〇), DRCH(3, 1), and DRCH(3, 2), and when combined, 22 1311412 20887pif .doc is the same as DRCH(1, 〇). In the same way, DRCH (6, 〇) and DRCH (6, 3) are derived from DRCH (3, 0). The above situation can be extended to other DRCHs shown in FIG. As described above, DRCHs of different lengths can be organized by time-frequency resources in a TTI and indexed by the corresponding node values. That is, '(N, k) makes it easier to exchange information about the resources used by the particular physical channel between the transmitter and the receiver. An example will be described below with reference to FIG. Figure 10 shows DRCHs corresponding to multiple multiplexed physical channels of different lengths in a TTI in a second embodiment of the present invention. Referring to FIG. 10, DRCH (6, 0), DRCH (6, 3), DRCH (6, 1), and DRCH (6, 4) are used as PDCH 0 to PDCH 4, respectively. The DRCH (12, 2) is allocated as one type of PDCCH and the DRCH (12, 5) is allocated as one type of CCCH. When allocating N and k to DRCH(n, k), the resource depreciates and indicates the method to allocate to each physical channel in the resource allocation unit described above. Now, LRCH(N, k) will be described with reference to FIG. Figure 11 is a diagram showing the indexing of the transport of the LRCH (N, k) as a third embodiment of the present invention. LRCH(N, k) corresponds to the kth of the N groups, and the parent group is the time-frequency resource that has been localized in -ττΐ.

請茶閱圖11,一個TTI 1106中存在著8個ofdm符 號1105。OFDM符號之索引是由l=〇至l=7。每一 OFDM 付號1105中具有32個索引是由n=〇至n=31之副載波。 N=4且k=0時,此參考數字1101表示對應於lRCH(4, 〇) 之資源。各資源疋ΤΤΊ之8個OFDM符號中索引n=〇至7 23 1311412 20887pif,(j〇c 之64個副载波。在此TTI之8個OFDM符號中, 至之64個副載波分配至口^玫七丨),如象叙二引心8 索至”之64個副載波分配至LRc^4, '、引n〜24至μ之64個副載波分配至lRc只(4 , =方式對LRCH(2, 〇)進行組構時,L_a 〇)之資i 疋一专RCH(4, 0)和LRCH(4, 1)之組合的資源相同。’、 顯示在圖11中之上述LRCH樹狀結構類似於圖ι〇中 戶不的DRCH樹狀結構。LRCH(N, k)可在時間上割分成多 個組,例如,哪峨⑽’其中历是時間索^:了 TTI中一種〇FDM符號索引。此參考數字η的表示第一 〇FDM f號中對應於LRCH(4, 2, 0)之資源。同樣,LRCH(4, 2, 1)在第—〇FDM符號中佔有資源11〇4。因此,LRCH(4, 2, 〇)和LRCH(4, 2, 1)之組合包含在lrch(4, 2)中。當多個 使用者用的資料在LRCH(N, k)中進行多工時,LRCH(N, k, m)是可用的。 圖12顯示本發明第三實施例中圖11所示的樹狀結構 鲁之階層式表示圖。 请芩閱圖12,一 TTL之全部的時間_頻率資源分配至 一貫體通道時可造成一 LRCH,其是〇)。全部的 時間-頻率資源分配至二個實體通道時可造成二個 LRCH ’其是LRCHA 0)和LRCH(2,1),其相組合時與 LRCH(1,0)相同。以同樣方式,lrch(4, 2)和 LRCH(4, 3) 是由LRCH(2, 1)導出。上述的原理可擴展至圖9所示的其 它 LRCHs。 24 1311412 20887pif.doc 圖13顯示本發明實施例中對實體通 OF D Μ糸統中傳輸器和接收器之方塊圖。丁宗弓丨用的 一二=:傳輸器_包括-傳輪控制器咖、 只胆、索引為1303、一交通傳輸器 OFDM傳輸器〗307。 以及― 方法=控331依據本發明實施例中實體通道索引 ft對:TTI中具有不同長度之多個實體通道之多工進 久S體通^索引器13。3在傳輸控制器丨3。1之於制 下作=霄體通道關索引資訊。交通傳輸器m5將由 1 =方塊或h層之節,_魏的交通儲存至其内部之衝 益中。〇F=]y[傳輸器13〇7在傳輸控制器13〇1之控制下 由對索引,訊的多工以作成—框和—交通通道。傳輸器曰 1300之功能元件已超越本發明之實施例的朗,例如,^ 向快速傳立葉轉換(FFT)未顯示在圖13中。 接收器1310包括一 0FDM接收器1311、—實體通首 ϋ分析器1313、—接收控制器1315、以及—交通接收ΐ OFDM接收器13η接收由傳輸器]3〇〇而來的框且在 -接收控制器1315之控制下對此框進行解多工。實體通道 索^分析器1313在-接收控制器1315之控制下對已接收 的只體通道之索引資訊進行分析。此接收控制器〗依據 本發明的實施例之實體通道索引方法來對“將—ΤΤί解多 工成不同長度之實體通道”進行控制。此交通接收器〗317 使由OFDM接收器⑶5所接收的交通資料儲存至其内部 25 1311錦 缓衝益中。就像傳輸器1300 —樣,接收器1310之功能元 件已超越本發明之實施例的範圍。 依據本發明之上述實施例,由於在OFDM無線通信系 統中以樹狀結構來對不同長度之實體通道進行組構及索 引’則分配至每一實體通道之二維資源可容易地在傳輪器 和接收器之間流通。 又’本發明之實施例可容易地指出多個分配至每—實 φ 體通道之副載波,因此可有效地進行定序及使用資源。 —雖然本發明已以較佳實施例揭露如上,然其並非用以 限,本發明,任何所屬技術領域中具有通常知識者,在不 f濉本發明之精神和範圍内,當可作些許之更動與潤飾, ^此本發明之保護範圍當視後附之申請專利範圍所界定者 為维。 【圖式簡單說明】 固1 ”、、員示傳統OFDM無線通信系統中時間_頻率資 之—種例子。 …、 圖2_不傳統〇FDM#線通信系統中對多個實體通 進行索引的例子。 弓1的=^顯示本發明第—實施例中對多個實體通道進行索 圖4 ϋ、、員示本發明第一實施例中以樹狀結構來對多個 組通道進行索引的例子。 貝 Ρ比ja圖5 t員示本發明第一實施例中圖4所示的樹狀結構之 1白層式表示圖。 26 pif.doc 1311412 夕圖6 _示本發明第一實施例中對應於一 TTI中多個已 夕工之不同長度的實體通道的TFDCHs。 —圖7顯示本發明第二實施例中對作為DRCH(N,幻之 貝肋通道進行索引時的圖解。 圖8顯示本發明第二實施例中當丨,2, 3, 4, 6, }日^刀配至DRCH(S, 〇)和DRCH(8,句之資源。 =顯示本發明第二實施例中圖8所示的樹狀結構之 階層式表示圖。 户圖10顯示本發明第二實施例中對應於—ΤΉ中多個 已夕工之不同長度的實體通道的DRCiis。 與辨,2 —本發明第三實施例中對作為LRCH(N,k)之 貝體通道進行索引時的圖解。 斤員示本發明第三實施例中圖11所示的樹狀結構 之階層式表示圖。 顯示本發明實施例中對實體通道進行索引用的 OFDM线巾傳輸料,收社方塊圖。 【主要元件符號說明】 101 、201 102 、202 103 、203 204, -206 301、 &gt; 401 302、 402 303、 403 副載波 03PDM符號 傳輸時段 時間-頻率分集通道 副載波 OFDM符號 傳輸時段 27 1311412 20887pif.doc 404 副載波 701、702 資源 703 OFDM 符號 704 傳輸時段 資源Please read Figure 11, there are 8 ofdm symbols 1105 in a TTI 1106. The index of the OFDM symbol is from l=〇 to l=7. There are 32 indices in each OFDM pay number 1105 that are subcarriers from n = 〇 to n = 31. When N=4 and k=0, this reference numeral 1101 represents a resource corresponding to lRCH(4, 〇). Among the 8 OFDM symbols of each resource, index n=〇 to 7 23 1311412 20887pif, (64 副 subcarriers of j 〇 c. Of the 8 OFDM symbols of this TTI, 64 subcarriers are allocated to the port ^玫七丨), such as the quotation of the quotation of 64 subcarriers to LRc^4, ', the n subcarriers of n~24 to μ are allocated to lRc only (4, = mode to LRCH (2, 〇) When structuring, L_a 〇) is the same as the resource of the combination of RCH (4, 0) and LRCH (4, 1). ', the above LRCH tree shown in Figure 11. The structure is similar to the DRCH tree structure in Figure ι〇. LRCH(N, k) can be divided into multiple groups in time, for example, where 峨(10)' is a timeline ^: a 〇FDM in TTI Symbol index. This reference number η represents the resource corresponding to LRCH(4, 2, 0) in the first 〇FDM f. Similarly, LRCH(4, 2, 1) occupies resources in the first 〇FDM symbol. 4. Therefore, the combination of LRCH(4, 2, 〇) and LRCH(4, 2, 1) is included in lrch(4, 2). When multiple users use data in LRCH(N, k) LRCH (N, k, m) is available for multiplex hours. Figure 12 shows Figure 11 in the third embodiment of the present invention. The hierarchical structure of the tree structure shown in Fig. 12. Please refer to Fig. 12, when all the time_frequency resources of a TTL are allocated to the consistent body channel, an LRCH can be caused, which is 〇). All time-frequency resource allocation Two LRCHs, which are LRCHA 0 and LRCH(2,1), can be combined into two physical channels, which are combined with LRCH(1,0). In the same way, lrch(4, 2) and LRCH (4, 3) is derived from LRCH (2, 1). The above principles can be extended to other LRCHs as shown in Figure 9. 24 1311412 20887pif.doc Figure 13 shows the physical access to the OF D system in the embodiment of the present invention. Block diagram of the transmitter and receiver. Ding Zonggong used one or two =: transmitter _ including - transmission controller coffee, only biliary, index is 1303, a traffic transmitter OFDM transmitter 307. And - method = The control 331 is in accordance with the embodiment of the present invention, the physical channel index ft pair: the multiplexed long-term S-body indexer 13 of the plurality of physical channels having different lengths in the TTI. 3 is in the transmission controller 丨3.1. = 霄 通道 channel closing index information. Traffic transmitter m5 will be stored by 1 = block or h layer, _ Wei traffic to it Internal impulses. 〇F=]y[Transporter 13〇7 is controlled by the transmission controller 13〇1 by the index, the multiplex of the signal to create the frame and the traffic channel. The functional elements of the transmitter 1300 have gone beyond the embodiments of the present invention, for example, the fast Fourier transform (FFT) is not shown in FIG. The receiver 1310 includes an OFDM receiver 1311, a physical header analyzer 1313, a reception controller 1315, and a traffic reception OFDM receiver 13n receives the frame from the transmitter and receives This block is demultiplexed under the control of the controller 1315. The physical channel cable analyzer 1313 analyzes the index information of the received body channel under the control of the receiving controller 1315. The receiving controller controls the "complex channel of different lengths" according to the physical channel indexing method of the embodiment of the present invention. This traffic receiver 317 stores the traffic data received by the OFDM receiver (3) 5 into its internal memory. As with the transmitter 1300, the functional elements of the receiver 1310 have gone beyond the scope of embodiments of the present invention. According to the above embodiment of the present invention, since the physical channels of different lengths are organized and indexed in a tree structure in the OFDM wireless communication system, the two-dimensional resources allocated to each physical channel can be easily used in the wheel. Circulates with the receiver. Further, the embodiment of the present invention can easily indicate a plurality of subcarriers allocated to each of the real φ body channels, so that the ordering and use of resources can be performed efficiently. The present invention has been disclosed in the above preferred embodiments, but it is not intended to limit the scope of the present invention. Modifications and refinements, ^ The scope of protection of the present invention is defined by the scope of the appended claims. [Simple diagram of the diagram] Solid 1", the member of the traditional OFDM wireless communication system time_frequency resources - an example. ..., Figure 2_ not traditional 〇 FDM # line communication system indexing multiple entities An example of the bow 1 indicates that the plurality of physical channels are mapped in the first embodiment of the present invention, and an example of indexing a plurality of group channels in a tree structure in the first embodiment of the present invention is shown. A white-layered representation of the tree structure shown in Fig. 4 in the first embodiment of the present invention is shown in Fig. 5 pf.doc 1311412, in the first embodiment of the present invention. TFDCHs corresponding to a plurality of physical channels of different lengths in a TTI. - Figure 7 shows an illustration of DRC (N, the imaginary beribal channel indexing in the second embodiment of the present invention. Figure 8 shows In the second embodiment of the present invention, when 丨, 2, 3, 4, 6, } is assigned to DRCH (S, 〇) and DRCH (8, resource of sentence. = Displaying FIG. 8 in the second embodiment of the present invention A hierarchical representation of the illustrated tree structure. Figure 10 shows a second embodiment of the present invention corresponding to a plurality of The DRCiis of the physical channel of the same length. 2, the illustration of the shell channel as the LRCH (N, k) in the third embodiment of the present invention. The staff member shows FIG. 11 in the third embodiment of the present invention. A hierarchical representation of the tree structure shown in the figure. The OFDM wire towel transmission material for indexing the physical channel in the embodiment of the present invention is shown in the block diagram of the receiver. [Main element symbol description] 101, 201 102, 202 103 203 204, -206 301, &gt; 401 302, 402 303, 403 subcarrier 03 PDM symbol transmission period time-frequency diversity channel subcarrier OFDM symbol transmission period 27 1311412 20887pif.doc 404 subcarrier 701, 702 resource 703 OFDM symbol 704 transmission Time resource

1101〜1104 1105 1106 1300 1301 1303 1305 1307 1310 1311 1313 1315 1317 OFDM符號 傳輸時段 傳輸器 傳輸控制器 實體通道索引器 交通傳輸器 OFDM傳輸器 接收器 OFDM接收器 實體通道索引分析器 接收控制器 交通接收器 281101~1104 1105 1106 1300 1301 1303 1305 1307 1310 1311 1313 1315 1317 OFDM symbol transmission period transmitter transmission controller physical channel indexer traffic transmitter OFDM transmitter receiver OFDM receiver physical channel index analyzer receiver controller traffic receiver 28

Claims (1)

I31141Z 95117078號中文專利範圍無劃線修正本 20887pif.docI31141Z 95117078 Chinese patent scope without scribe correction 20887pif.doc 十、申請專利範圍: 1.一種在OFDMA系統中索引實體通道的方法,其中 一個OFDM符號包含多個副載波且一個TTI包含多個 OFDM符號,0FDMA表示正交分頻多工存取,OFDM表 示正交分頻多工,TTI表示傳輸時段,該在OFDMA系統 中索引實體通道的方法包括以下各步驟: 每一個OFDM符號之副載波總數劃分成N組;X. Patent Application Range: 1. A method for indexing physical channels in an OFDMA system, wherein one OFDM symbol comprises a plurality of subcarriers and one TTI comprises a plurality of OFDM symbols, 0FDMA represents orthogonal frequency division multiplexing access, OFDM representation Orthogonal frequency division multiplexing, TTI represents a transmission period, and the method for indexing a physical channel in an OFDMA system includes the following steps: The total number of subcarriers per OFDM symbol is divided into N groups; 第k組是由TTI之每一 OFDM符號中的N個組中選 取;以及 包含在TTI之第k組中之一組副載波所對應的實體通 道是以一種序對(N,k)來進行索引。 2.如申請專利範圍第1項所述之在0FDMA系統中索 引實體通道的方法,其中所述選取之步驟是由具有L個元 素的基地台特定序列S所指出的每一 0FDM符號之偏移來 決定’其巾L是包含在TTI中之〇FDM符號之數目且 S={S1, ·.” SL}。The kth group is selected from N groups in each OFDM symbol of the TTI; and the physical channel corresponding to one of the subcarriers included in the kth group of the TTI is performed by a sequence pair (N, k) index. 2. The method of indexing a physical channel in an OFDM system as described in claim 1, wherein the step of selecting is an offset of each OFDM symbol indicated by a base station specific sequence S having L elements. To determine 'the towel L is the number of FDM symbols included in the TTI and S = {S1, ·." SL}. 如申請專利制第2項所述之在㈣财 引貫體通道的方法,其中所述序列S={S1, ,二 {(si+k)m+k)%Ni來算出,其中%表示模數g。 4.如申請專利_第丨項所述之在〇f耐^ : =實體通道的方法’其中當對應於已索引的實體=中一索 f波組依據各序對(N,k)之間的關而二^副 對來索引的副载波組:載一^ 29 1311412 20887pif.doc η〇 5. —種傳輸器’在OFDMA系統中對實體通道進行索 引且對已索引的實體通道進行傳輸,其中一個OFDM符號 包括多個副載波且一個TTI包括多個OFDM符號,OFDMA 表示正交分頻多工存取’ OFDM表示正交分頻多工,TTI 表示傳輸時段,所述傳輸器包括:The method of claim 4, wherein the sequence S={S1, , two {(si+k)m+k)%Ni is calculated, wherein % represents a mode. Number g. 4. As described in the patent application _ 之 之 f resistance ^ : = physical channel method 'where the corresponding to the indexed entity = the middle one f wave group according to each order pair (N, k) The subcarrier group of the two pairs of sub-indexes: one ^ 29 1311412 20887pif.doc η〇5. - a type of transmitter 'indexes the physical channel in the OFDMA system and transmits the indexed physical channel, One of the OFDM symbols includes a plurality of subcarriers and one TTI includes a plurality of OFDM symbols, OFDMA indicates orthogonal frequency division multiplexing access OFDM indicates orthogonal frequency division multiplexing, and TTI indicates a transmission period, and the transmitter includes: 傳輸控制器,其將每一 OFDM符號之副載波的總數劃 分成N組,由此TTI之每一 OFDM符號中由n組選取第 k組’以序對(N,k)來對包含在此TTI之第k組中的一組副 載波所對應的實體通道進行索引,以及對已索引的實體通 道之多工進行控制; 實體通道索引器,其在傳輸控制器的控制下作成實體 通道之索引資訊;以及 OFDM傳輸器,其在傳輸控制器之控制下藉由對實體 通道和交通通道之索引資訊進行多卫以作成—種將傳輸至 接收器的框。a transmission controller, which divides the total number of subcarriers per OFDM symbol into N groups, whereby the kth group is selected from n groups in each OFDM symbol of the TTI by the pair (N, k) The physical channel corresponding to a group of subcarriers in the kth group of the TTI is indexed, and the multiplex of the indexed physical channel is controlled; the physical channel indexer is indexed as a physical channel under the control of the transmission controller Information; and an OFDM transmitter, which is controlled by the transmission controller to make a frame to be transmitted to the receiver by multiplying the index information of the physical channel and the traffic channel. 6.如申請專利範圍第5項所述之傳輸器,其中所述選 取之步驟是由具有L個元素的基地台特定序則所指出的 每一 OFDM符號之偏移來決定,其中乙 〇疆符號之數目且&quot;S1,...,SL}广3在TTI中之 7.如申請專利範圍第6項所述之傳輪器,其中所述序 (SL+k)%N}來算 列 S={S1,…,SL}是由{(si+k)%N,.. 出’其中%表示模數運算。 30 13114½ 87pif.doc 13114½ 87pif.doc ua_.. 丨修α::' 成樹狀結構時’對應於相鄰的:序對的副載波 、且之組。疋與對應於母序對的副紐組相同。 9.種接收器,在OFDMA系絲^ 實趙通道之索引有關的資訊,其中== 包:多個㈣Μ符號, 衣y止又刀頻多工存取,〇FDM表示正交分頻 工,I表示傳輪時段,所述接收器包括: OFDM接收n ’其接收來自傳輪器的-馳且在 接收控制H之㈣下將已接__多卫成實體通道和 通通道的索引資訊; 實體通道索引分析器,其在所述接收控制器之控制下 對已接收的實體通道之索引資訊進行分析;以及 接收控制器,其控制著由TTI而來的實體通道之解多 工,每一實體通道已藉由下述方式而完成索引:將每— OFDM付號之副載波的總數劃分成n組,由所述ττι之每 一 OFDM符號中的N個組選取第]^組,且對應於一組包 含在具有序對(N,k)之第k組中的副載波以對實體通道進 行索引。 10. 如申請專利範圍第9項所述之接收器,其中所述選 取之步驟是由具有L個元素的基地台特定序列s所指出的 每一 OFDM符號之偏移來決定,其中l是包含在TTI中之 OFDM符號之數目且S={S1,...,SL}。 11. 如申請專利範圍第10項所述之接收器,其中所述 序列 S={S1,…,SL}是由{(Sl+k)%N,…,(SL+k)%N}來算 31 13114¾ 87pif.doc 出,其中%表示模數運算。 12. 如申請專利範圍第9項所述之接收器,其中當對應 於已索引的實體通道之副載波組依據各序對⑼,k)之間的 關係而排序成樹狀結構時,對應於相鄰的子序對的副載波 組之組合是與對應於母序對的副載波組相同。 13. —種OFDMA系統中傳輸及接收多個已索引之實 體通道所用的系統,其中一個0FDM符號包括多個副載波 且一個TTI包括多個ofdm符號,OFDMA表示正交分頻 多工存取’ OFDM表示正交分頻多工,TTI表示傳輸時段, 所述系統包括: 基地台’其包含一種傳輸器,所述傳輸器將每一 〇FDM 符號之副載波的總數劃分成N組,所述傳輸器然後由 之母一 OFDM符號中的N個組選取第k組,且對應於一 組包含在具有序對(N,k)之TTI的第k組中的副載波來對實 體通道進行索引,且此傳輸器對已索引的實體通道進行傳 輸;以及 終端機,其包括一種接收器,所述接收器接收來自基 地台的傳輸器的所述以(N, k)來索引的實體通道。 14. 如申請專利範圍第13項所述之OFDMA系統中傳 輸及接收多個已索引之實體通道所用的系統,其中所逑選 取之步驟是由具有L個元素的基地台特定序列s所指出的 每一 OFDM符號之偏移來決定,其中l是包含在TTI中之 OFDM符號之數目且S={S1, ...,SL}。 15·如申請專利範圍第14項所述之0FDMA系統中傳 32 1311412 2〇887pif.d〇c 年 m -j 多個已索引之實體通道所㈣系統,其中所述序 1 由。/ / ·..,L}是由i(sl+k)%N,…,(SL+k)%N)來算出, 其中/〇表示模數運算。6. The transmitter of claim 5, wherein the step of selecting is determined by an offset of each OFDM symbol indicated by a base station specific sequence having L elements, wherein The number of symbols and &quot;S1,...,SL} is widely used in the TTI. The passer as described in claim 6, wherein the order (SL+k)%N} is calculated. The column S={S1,...,SL} is represented by {(si+k)%N,.. out of which % represents a modulus operation. 30 131141⁄2 87pif.doc 131141⁄2 87pif.doc ua_.. αα::' When forming a tree structure' corresponds to the adjacent: the subcarriers of the pair, and the group.疋 is the same as the sub-group corresponding to the parent pair. 9. Receiver, information related to the index of the OFDMA system, the actual channel, where == package: multiple (four) Μ symbol, clothing y and knife frequency multiplex access, 〇 FDM means orthogonal frequency division, I denotes a transmission period, the receiver includes: OFDM receiving n 'which receives the data from the transmitter and receives the index information of the physical channel and the channel under the receiving control H (4); a physical channel index analyzer that analyzes index information of the received physical channel under the control of the receiving controller; and a receiving controller that controls the solution multiplexing of the physical channel from the TTI, each The physical channel has been indexed by dividing the total number of subcarriers per OFDM pay number into n groups, and selecting the ^^ group from N groups in each OFDM symbol of the ττι, and corresponding The physical channel is indexed by a set of subcarriers contained in the kth group of the ordered pair (N, k). 10. The receiver of claim 9, wherein the step of selecting is determined by an offset of each OFDM symbol indicated by a base station specific sequence s having L elements, wherein l is included The number of OFDM symbols in the TTI and S = {S1, ..., SL}. 11. The receiver of claim 10, wherein the sequence S={S1, . . . , SL} is represented by {(Sl+k)%N,...,(SL+k)%N} Calculated as 31 131143⁄4 87pif.doc, where % represents the modulus operation. 12. The receiver of claim 9, wherein when the subcarrier group corresponding to the indexed physical channel is sorted into a tree structure according to a relationship between each of the sequence pairs (9), k), corresponding to the phase The combination of the subcarrier groups of the adjacent subsequence pairs is the same as the subcarrier group corresponding to the mother sequence pair. 13. A system for transmitting and receiving a plurality of indexed physical channels in an OFDMA system, wherein one OFDM symbol comprises a plurality of subcarriers and one TTI comprises a plurality of ofdm symbols, and OFDMA represents orthogonal frequency division multiplex accesses. OFDM represents orthogonal frequency division multiplexing, TTI represents a transmission period, and the system includes: a base station 'which includes a transmitter that divides the total number of subcarriers per 〇 FDM symbol into N groups, The transmitter then selects the kth group from the N groups of the OFDM symbols, and indexes the physical channel corresponding to a set of subcarriers included in the kth group of the TTI with the ordered pair (N, k). And the transmitter transmits the indexed physical channel; and the terminal includes a receiver that receives the physical channel indexed by (N, k) from the transmitter of the base station. 14. The system for transmitting and receiving a plurality of indexed physical channels in an OFDMA system as claimed in claim 13 wherein the step of selecting is indicated by a base station specific sequence s having L elements. The offset of each OFDM symbol is determined, where l is the number of OFDM symbols included in the TTI and S = {S1, ..., SL}. 15. In the 0FDMA system described in claim 14 of the patent application, 32 1311412 2〇887pif.d〇c year m -j Multiple indexed physical channel (4) systems, wherein the sequence 1 is. / / ·.., L} is calculated from i(sl+k)%N,...,(SL+k)%N), where /〇 denotes a modulus operation. 如申請專利範圍第13項所述之⑽嫩系統中傳 ^收多個已索引之實體通道所用的系統,其中當對應 =索引的實體通道之副載波組依據各序對(N,k)之間的 糸而排序成樹狀結構時,以相鄰的子序對來索引的副載 波組之組合是與以母序對來索引的副載波組相同。 w17.r種0FDMA系統中對實體通道進行索引所用的 、、八中個符號包括多個副載波且一個TTI 包括多個OTDM魏,〇FDMA表示正交分頻多工存取, ^FDM表示正父分頻多工,TTI表示傳輸時段該⑽^退 系統中對實體通道進行索5j所用的方法包括町各步驟·· 將TTI之時間·頻率資源劃分成N個等距且局部性的 组’且此N個組之間對應於第k組之實體通道是以序對(N, k)來進行索引;以及A system for transmitting a plurality of indexed physical channels in a (10) tender system as described in claim 13 wherein the subcarrier group corresponding to the physical channel corresponding to the index is based on each sequence pair (N, k) When sorted into a tree structure, the combination of subcarrier groups indexed by adjacent subsequence pairs is the same as the subcarrier group indexed by the mother sequence pair. W17.r kind of 0FDMA system used to index physical channels, eight symbols include multiple subcarriers and one TTI includes multiple OTDM Wei, 〇FDMA indicates orthogonal frequency division multiplexing access, ^FDM indicates positive The parent divides and divides the multiplex, and the TTI indicates the transmission period. The method used for the physical channel in the (10)^retracting system includes the steps of the town. The time and frequency resources of the TTI are divided into N equidistant and localized groups. And the physical channels corresponding to the kth group between the N groups are indexed by a sequence pair (N, k); 將第k組以時間而劃分成m個等距的組,且對應於已 劃分的各組之實體通道是以序對(N,k,m)來進行索引。 18. 如申請專利範圍第17項所述之〇FDMa系統中對 實體通道進行索引所用的方法,其中當對應於已索引的實 體通道之副载波組依據各序對⑼,k)之間的關係而排序成 樹狀結構時,以相鄰的子序對來索引的副載波組之組合是 與以母序對來索引的副載波組相同。 19. 一種傳輸器’在〇FDMA系統中對實體通道進行索 33 1311412 20887pif.docThe kth group is divided into m equidistant groups by time, and the physical channels corresponding to the divided groups are indexed by the order pair (N, k, m). 18. A method for indexing physical channels in a 〇FDMa system as described in claim 17 wherein the subcarrier groups corresponding to the indexed physical channels are based on the relationship between the sequence pairs (9), k) When sorted into a tree structure, the combination of subcarrier groups indexed by adjacent subsequence pairs is the same as the subcarrier group indexed by the mother sequence pair. 19. A transmitter 'on a physical channel in a 〇FDMA system 33 1311412 20887pif.doc 引且對已索引的實體通道進行傳輪,其中一個OFDM符號 包括多個副載波且一個TTI包括多個OFDM符號,OFDMA 表示正交分頻多工存取,OFDM表示正交分頻多工,ΤΉ 表示傳輸時段,所述傳輸器包括: 傳輸控制器,其將TTI之時間_頻率資源劃分成n個 等距且局部性的組,此N個組之間對應於第k組之實體通 道是以序對(N, k)來進行索引,第k組以時間而劃分成mAnd routing the indexed physical channel, wherein one OFDM symbol includes multiple subcarriers and one TTI includes multiple OFDM symbols, OFDMA represents orthogonal frequency division multiplexing access, and OFDM represents orthogonal frequency division multiplexing. ΤΉ denotes a transmission period, the transmitter comprises: a transmission controller, which divides the time_frequency resource of the TTI into n equidistant and localized groups, and the physical channel corresponding to the kth group between the N groups is Indexed by order (N, k), the kth group is divided into m by time 個等距的組’對應於已劃分的各組之實體通道是以序對 k,m)來進彳f索引,且所述傳輸控制器控制已索引的實體通 道之多工; 、 貝=通道索引H ’其在傳輸控制器的控制下作成實體 通道之索引資訊;以及 器之控制下藉由對實體 工以作成一種將傳輸至 OFDM傳輸器,其在傳輸控制 通道和交通通道之索引資訊進行多 接收器的框。The equidistant group 'corresponding to the physical channels of the divided groups is indexed by k, m), and the transmission controller controls the multiplexing of the indexed physical channels; The index H' is made into the index information of the physical channel under the control of the transmission controller; and is controlled by the entity to be transmitted to the OFDM transmitter, and the index information of the transmission control channel and the traffic channel is performed. Multi-receiver box. 應於範圍第19項所述之傳輸器,其中當對 二/、❾實體通道之副载波組依據各序對(N 的關係而排序成樹狀結構時,對’ 波組之組合是與對應於母序對 通道以實體 符號包括多铜载波且—個TTHH’其中—個0FDM ο-ma ^ ' 工❿麵輪,所撕=表減交分頻多 34 13114¾ 87pif.docThe transmitter according to the scope of claim 19, wherein when the subcarrier groups of the pair of physical channels are sorted into a tree structure according to the relationship of N, the combination of the 'wave group is corresponding to The mother-sequence pair channel includes the multi-copper carrier with the physical symbol and - TTHH' where - 0FDM ο-ma ^ 'gong face wheel, tearing = table subtraction crossover more 34 131143⁄4 87pif.doc 〇腦接收11,其減來自傳輪㈣-麵且在一種 ==了將已接收的框解多工成實體通道和交The camphor receives 11, which subtracts from the pass (four)-face and in a == the multiplexed frame that has been received is multiplexed into a physical channel and intersected 接收控制器’其控制著由TTI而來的實體通道之解多 工’每-實體通道藉由下述方式來進行索引:TTI之時間_ 頻率資源劃分成N個等距且局部性的組,該N個組之間對 應於第k組之實體通道是以序對(N,k)來進行索引,第k 組以時間而畫彳分成m個等距的組,且對應於已劃分的各組 之實體通道是以有序之三元素(N,k,m)來進行索引。、The receiving controller 'which controls the demultiplexing of the physical channel from the TTI' per-physical channel is indexed by the following: TTI time_frequency resources are divided into N equidistant and localized groups, The physical channels corresponding to the kth group between the N groups are indexed by a sequence pair (N, k), and the kth group is divided into m equidistant groups by time, and corresponds to the divided groups. The physical channel of the group is indexed by the ordered three elements (N, k, m). , 對已i收引;===之控制下 22.如申請專利範圍第21項所述之接收器,其中當對 應於已索引的實體通道之副載波組依據各序對(N,幻之間 的關係而排序成樹狀結構時,對應於相鄰的子序對的副載 波組之組合是與對應於母序對的副載波組相同。 23.—種OFDMA系統中傳輸及接收多個已索引之實 體通道所用的系統,其一個OFDM符號包括多個副載波且 一個TTI包括多個ofdm符號,0FDMA表示正交分頻多 工存取,OFDM表示正交分頻多工,TTI表示傳輸時段, 本系統包括: 基地台,其包含一種傳輸器,所述傳輸器將TTI的時 間-頻率資源劃分成N個等距且局部性的組,且此n個組 之間對應於第k組之實體通道是以序對(n,k)來進行索 引’第k組以時間而劃分成瓜個等距的組,對應於已劃分 35The receiver of claim 21, wherein the subcarrier group corresponding to the indexed physical channel is based on each sequence pair (N, between illusions). When the relationship is sorted into a tree structure, the combination of subcarrier groups corresponding to adjacent subsequence pairs is the same as the subcarrier group corresponding to the mother sequence pair. 23. Transmission and reception of multiple indexed systems in an OFDMA system The system used by the physical channel, one OFDM symbol includes a plurality of subcarriers and one TTI includes a plurality of ofdm symbols, 0FDMA represents orthogonal frequency division multiplexing access, OFDM represents orthogonal frequency division multiplexing, and TTI represents a transmission period. The system comprises: a base station comprising a transmitter, the transmitter dividing the time-frequency resource of the TTI into N equidistant and localized groups, and the n groups correspond to the entity of the kth group The channel is indexed by the order pair (n, k) 'the kth group is divided into groups of equidistant time by time, corresponding to the divided 35 I3imiP,d〇c 道是以有序之三元素(K k,m)來進行索 炊f傳輪器傳輪已索5/的實體通道;以及 地哭其包括一種接收器,所述接收器接收來自基 口之傳輸_所述以(N,k)來㈣之實體通道。 鈐及=料職㈣23項所叙0麵A純中傳 奴所用的系統’其中當對應 組之組合是與對:二序對的副載波I3imiP, d〇c is a physical channel with a sequenced three element (K k,m) for the cable carrier 5 5; and the ground crying includes a receiver, the receiver Receiving the transmission from the base port _ the physical channel with (N, k) (4).钤和 =料(四) 23 items are described in the system of 0-side A pure-transfer slaves' where the combination of the corresponding groups is the pair: the sub-carrier of the second-order pair 3636
TW095117078A 2005-05-13 2006-05-15 Method and apparatus for indexing physical channels in an ofdma system TWI311412B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20050040181 2005-05-13
KR1020050051694A KR100933157B1 (en) 2005-05-13 2005-06-16 Method and device for configuring physical channel index in orthogonal frequency division multiple access system

Publications (2)

Publication Number Publication Date
TW200701679A TW200701679A (en) 2007-01-01
TWI311412B true TWI311412B (en) 2009-06-21

Family

ID=37705283

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095117078A TWI311412B (en) 2005-05-13 2006-05-15 Method and apparatus for indexing physical channels in an ofdma system

Country Status (3)

Country Link
KR (1) KR100933157B1 (en)
CN (1) CN101176277B (en)
TW (1) TWI311412B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101345952B1 (en) * 2006-12-29 2014-01-15 삼성전자주식회사 Method and apparatus for allocating resources in a wireless communication system
US9131465B2 (en) * 2007-06-08 2015-09-08 Samsung Electronics Co., Ltd. Methods and apparatus for mapping control channels to resources in OFDM systems
KR100925439B1 (en) 2008-02-19 2009-11-06 엘지전자 주식회사 Method for mapping physical hybrid ARQ indicator channel
KR101397049B1 (en) * 2008-03-13 2014-06-27 엘지전자 주식회사 Method for generating subframes which contain resource distribution information
CN105141402A (en) 2009-02-08 2015-12-09 Lg电子株式会社 Method for transmitting reference signal for terminal demodulation in radio mobile communication system, and apparatus for implementing the same
BR112018013536A2 (en) * 2015-12-31 2018-12-04 Huawei Technologies Co., Ltd. cross carrier programming method, return method, and device
CN114205063B (en) * 2016-02-02 2024-03-12 松下电器(美国)知识产权公司 eNodeB, user equipment and wireless communication method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5867478A (en) * 1997-06-20 1999-02-02 Motorola, Inc. Synchronous coherent orthogonal frequency division multiplexing system, method, software and device
EP0938208A1 (en) * 1998-02-22 1999-08-25 Sony International (Europe) GmbH Multicarrier transmission, compatible with the existing GSM system
CN1288921C (en) * 2003-04-07 2006-12-06 华为技术有限公司 Demodulation method
EP1489773A1 (en) * 2003-06-16 2004-12-22 Mitsubishi Electric Information Technology Centre Europe B.V. Time scheduling with stop-and-wait ARQ process
KR100689382B1 (en) * 2003-06-20 2007-03-02 삼성전자주식회사 Apparatus and method of transmission in a mobile communication system based on ofdm scheme
KR100547878B1 (en) * 2003-06-23 2006-01-31 삼성전자주식회사 Apparatus and Method for Effective Soft Handover in Orthogonal Frequency Division Multiplex / Wideband Code Division Multiple Access Mobile Communication System
KR100567313B1 (en) * 2003-06-30 2006-04-03 전자부품연구원 Method for searching cell in orthogonal frequency division multiple access system

Also Published As

Publication number Publication date
KR20060117864A (en) 2006-11-17
CN101176277A (en) 2008-05-07
KR100933157B1 (en) 2009-12-21
CN101176277B (en) 2012-11-14
TW200701679A (en) 2007-01-01

Similar Documents

Publication Publication Date Title
JP7446641B2 (en) Resource allocation methods, devices, and systems for wireless communication systems
TWI311412B (en) Method and apparatus for indexing physical channels in an ofdma system
US10270571B2 (en) Method for transmitting pilot for multiple carrier system
US7787356B2 (en) Method and apparatus for indexing physical channels in an OFDMA system
RU2436252C2 (en) Method of transmitting control signals in wireless communication system
RU2325773C1 (en) Method for separation of subchannel in cellular communication system of orthogonal frequency division multiple access
JP6033921B2 (en) Frequency diversity communication in wireless communication systems
KR101350623B1 (en) Method of Transmitting Scheduling Reference Signal
CN103957091B (en) The multiplexing method of control signal and reference signal in GSM
JP4897793B2 (en) Frequency hopping design for single carrier FDMA systems
US8059735B2 (en) Allocation of block spreading sequences
US10623156B2 (en) Methods for transmitting and receiving control channel, base station, and user equipment
US20140341010A1 (en) Signaling of random access preamble sequences in wireless networks
TWI258938B (en) Subcarrier and bit allocation for real time services in multiuser orthogonal frequency division multiplex (OFDM) systems
CN108029096A (en) The system and scheme of the OFDM subcarrier parameters of extending/drawing back type
CN108282870A (en) A kind of resource indicating method, user equipment and the network equipment
CN107534638A (en) MC CDMA with low peak average power than multicarrier waveform
CN113303024B (en) Client device and network access node for transmitting and receiving random access preamble
US20210126815A1 (en) Method and apparatus for estimating channel in wireless communication system
TW201138391A (en) Systems, devices, and methods for generating pilot patterns for use in communications
CN108632188B (en) Method, device and system for wireless communication
TW201105058A (en) Method and apparatus of subcarrier grouping for a wireless communication system
CN108781197A (en) Method and apparatus for reducing the cubic metric in link block reference signal design
CN107809306B (en) Method and device for UE (user equipment) and base station in wireless transmission
US20080291820A1 (en) Method for Allocating Frequency Domain Spread Code in Base Station of Mc-Cdma Communication System

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees