TWI310187B - Semiconductor memory device - Google Patents

Semiconductor memory device Download PDF

Info

Publication number
TWI310187B
TWI310187B TW095136301A TW95136301A TWI310187B TW I310187 B TWI310187 B TW I310187B TW 095136301 A TW095136301 A TW 095136301A TW 95136301 A TW95136301 A TW 95136301A TW I310187 B TWI310187 B TW I310187B
Authority
TW
Taiwan
Prior art keywords
voltage
signal
reverse bias
terminal
source
Prior art date
Application number
TW095136301A
Other languages
Chinese (zh)
Other versions
TW200721168A (en
Inventor
Ihl-Ho Lee
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Publication of TW200721168A publication Critical patent/TW200721168A/en
Application granted granted Critical
Publication of TWI310187B publication Critical patent/TWI310187B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/10Decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4074Power supply or voltage generation circuits, e.g. bias voltage generators, substrate voltage generators, back-up power, power control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/408Address circuits
    • G11C11/4087Address decoders, e.g. bit - or word line decoders; Multiple line decoders
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/143Detection of memory cassette insertion or removal; Continuity checks of supply or ground lines; Detection of supply variations, interruptions or levels ; Switching between alternative supplies
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/147Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Dram (AREA)
  • Read Only Memory (AREA)

Description

1310187 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種半導體記憶體裝置,且更特定言之, 係關於一種用於控制一用於一記憶組(bank)中之一行解碼 器之主體偏壓的技術,大量斷開漏電流(〇ff_leakage current) 出現於該行解碼器中。 【先前技術】 因為動態隨機存取記憶體(DRAm)裝置採用每一者由一 電曰B體及一電容器建構的記憶胞,所以其具有優於其他記 憶體裝置之極大整合性優點。另外,因為已遵照最近之高 速要求提議各種技術,所以DRAM裝置在操作速度方面已 有進步。 因此,已發展出一即使在低電壓下仍具有先進驅動能力 的dram裝置,且另外,該DRAM裝置已逐漸擴展至諸如消 耗較低功率之電氣設備及汽車以及電腦之主記憶體之應 用。 然而,歸因於半導體記憶體裝置之高度整合,實施低待 用電流變得愈來愈難,其中確保低待用電流意謂最小化每 一裝置之斷開漏電流。 圖1為展示藉由對存在於一半導體記憶體裝置之組件(例 如,一記憶組、一電壓產生器及周邊電路)之每一者中的電 晶體之寬度求和而計算的每組件之斷開漏電流之值的表 格。 出現於該記憶組、該電壓產生器及該等周邊電路中之斷 114725.doc 1310187 開漏電流分別為40.2 μΑ、6 2 μΑ& & _。 總之’電晶體之總寬度且因此半導體記憶體裝置中之斷 開漏電流大部分係大體上由指派至記憶組的電晶體所佔 "言…行解碼器佔用記憶組中的最大寬度及最大 里斷開漏電流,且此外’如自圖2可看出,出現於該行解碼 器之一最終驅動單元及一予首觝私留_山^ 預鈪動早70中的斷開漏電流佔據 出現於該記憶組中的斷開漏電流之42 8%。 圖2展示藉由在記憶組之每一元件中產生斷開漏電流而 獲得的每元件之斷開漏電流位準之模擬結果。#自該模擬 結果可看出,由行解碼器產生之斷開漏電流佔據篇以上。 圖3說明半導體記憶體裝置中之習知行解碼器5的詳細電 路圖。 習知行解碼器5包含一預驅動單元丨及一驅動單元2。 預驅動單元i具有串聯連接於一電源電麗端子vdd斑一 接地電壓端子VSS之間的一 PMOS電晶體pi&nm〇s電晶體 N1至N3。該PMOS電晶體卩1及該>^〇8電晶體川具有一共 同閘極,且經由該共同閘極為其提供一控制信號Βγρ,該 控制信號ΒΥΡ為含有記憶組資訊之脈衝信號。另外,其具 有一共同汲極,該共同汲極充當該預驅動單元丨之輸出節點 以輸出一狀態輸出栺號至該驅動單元2的。該等NM〇s電晶 體Ν2及Ν3分別經由其閘極接收碼信號yc〇d1及YC〇D2,其 中該等碼號YCOD1及YCOD2之每一者具有一含有半導 體記憶體裝置中之一記憶胞矩陣3中之多個記憶胞的一對 應記憶胞之行位址資訊的竭。 114725.doc 1310187 驅動單元2具有串聯連接於電源電壓端子vdd與接地電 壓端子VSS之間的一 PMOS電晶體P2及一 NMOS電晶體 N4。該PM0S電晶體P2及該NM0S電晶體N4具有一充當驅動 單元2之輸入節點的共同閘極及一充當驅動單元2之輪出節 點的共同沒極。 驅動單元2之輸入節點與預驅動單元丨之輸出節點連接以 自預驅動單元1接收狀態輸出信號。若如稍後所述滿足某一 條件,則驅動單元2產生一對應行選擇信號(例如,γί〇)至該 記憶胞矩陣3。該行選擇信號Yi〇指示記憶胞矩陣3中由兩個 碼信號YCOD1及YCOD2共同表示之對應單元之位址。 PMOS電晶體P1&P2經由其主體接收電源電壓乂〇^且 NMOS電晶體N1至N4經由其主體接收接地電壓vss。 為了形成一記憶組,需要複數個上述組裝之行解碼器且 因此輸出複數個行選擇信號(例如,™至Yin)至記憶胞矩陣 3,η為正整數。 預驅動單元1接收行選擇所需要之碼信號YC〇D 1及 YCOD2且選擇該等行解碼器之―者,輸人具有啟用狀態⑽ 如,邏輯高位準)之碼信號YCOD i及YC〇D2至該一者中,藉 此啟用一對應行選擇信號,例如,Yi〇。 曰 更’、體°之’當不執行用於行選擇之行存取操作時,控 制L號6丫1>具有禁用狀態’例如,邏輯低位準,藉此將行 選擇信號Yi設定為禁用狀態,例如,邏輯低位準。另一方 面’田執仃用於仃選擇之行存取操作時’啟用控制信號BYP 至邏輯高位準。當啟用㈣信號Βγρ時,若對應於行解碼 114725.doc 1310187 D„ 、 的碼信號具有啟用狀態,則啟用該某一行解碼 盗之預驅動單开!, 几i ’以致接通驅動單元2之PMOS電晶體P2, 啟用行選擇信號Yi0且將其輸出至記憶胞矩陣3。 :在藉由控制其中出現實質大量斷開漏電流之行解碼器 …咸,半導體§己憶體裝置中之斷開漏電流的需求。 【發明内容】 本發明之一杳 & / , μ 貫施例係一用於藉由控制一其中出現最大量 %開漏電後之打解碼器來減少、總斷開@電流的半導體記憶 •體裝置。 〜 ^外’本發明之-實施例係—用於選擇性地控制一行解 碼器之源極電壓之電壓位準,藉此改良操作速度的半導體 記憶體裝置。 根據本發明之一態樣,提供一半導體記憶體裝置,其包 含·· ' 一包含複數個記憶胞之記憶胞矩陣; φ —<丁解碼單元’纟具有用於回應含有料記憶胞之行位 址資訊的碼錢而選擇性地啟動該等記憶胞之多個行解碼 ^ ’其中4等解碼器之每—者包含—用於回應該等碼信 號而提供一在一電源電壓與一源極電壓之間轉變之狀態輸 出信號的預驅動單元,及一用於回應該狀態輪出信號而輪 出一行選擇信號以啟動該等記憶胞之一對應者的驅動單 元,其中該預驅動單元及該驅動單元之每一者包含至少一 PMOS電晶體及至少一NM0S電晶體,該等電晶體分別經由 其主體接收一泵激電壓及一反向偏壓,該泵激電壓具有一 114725.doc 1310187 高於該電源電壓之電壓位準的電壓位準,且該反向偏壓具 有一低於一接地電壓之電壓位準的電壓位準。 根據本發明之另一態樣,提供一半導體記憶體裝置,盆 包含: 〃 複數個記憶組,該複數個記憶組之每一者具有:一具有 複數個記憶胞之記憶胞矩陣、一其具有用於回應含有該等 記憶胞之行位址資訊的碼信號而選擇性地啟動該等記憶胞 • 之多個行解碼器的行解碼單元,其中該等行解碼器之每一 者含有-用於回應該等碼信號而提供一在一電源電塵與一 源極電壓之間轉變之狀態輸出信號的預驅動單元,及一用 於回應該狀態輸出信號而輸出一行選擇信號以啟動該等單 兀之:對應者的驅動單元,其中該預驅動單元及該驅動單 兀之每一者包含至少一 PM0S電晶體及至少—nm〇s電晶 體’該等電晶體分別經由其主體接收一泵激電壓及一反向 偏塵’該泵激電麗具有一高於該電源電I之電麗位準的電 Φ Μ位準’且該反向偏M具有—低於—接地電Μ之電遷位準 的電壓位準;及 :用於向該複數個記憶組提供該源極電a之源極電麼控 制單元,該源極電壓之電屢位準視該等記憶組之操作模式 而定地變化。 根據本發明之又一態樣,提供一半導體記憶體裝置,其 包含: 複數個記憶组,該複數個記憶組之每一者具有:一具有 複數個記憶胞之記憶胞矩陣、一具有用於回應含有該等記 114725.doc -9- 131.0187 ::之仃位址資訊的碼信號而選擇性地啟動該等記憶胞之 :讀碼㈣行解碼單元,其巾料行解碼器之每一者 二用於回應該等碼信號而提供一在一電源電壓與一源 ,之間轉變之狀態輸出信號的預驅動單元,及一用於 =該狀態輸出信號而輸出—行選擇信號以啟動記憶胞之 —_〜者的驅動單70 ’纟中該預驅動單s及該驅動單元之 者包3至J __PM〇S電晶體及至少一麵電晶體,該1310187 IX. Description of the Invention: [Technical Field] The present invention relates to a semiconductor memory device, and more particularly to a method for controlling a row decoder for use in a memory bank The technique of body bias, a large amount of open leakage current (〇ff_leakage current) appears in the row decoder. [Prior Art] Since the dynamic random access memory (DRAm) device employs a memory cell each constructed of an electric B body and a capacitor, it has a great integration advantage over other memory device devices. In addition, DRAM devices have advanced in terms of operating speed because various technologies have been proposed in accordance with recent high speed requirements. Therefore, a dram device having advanced driving capability even at a low voltage has been developed, and in addition, the DRAM device has been gradually extended to applications such as electric devices for consuming lower power and main memory of automobiles and computers. However, due to the high level of integration of semiconductor memory devices, it has become increasingly difficult to implement low standby currents, where ensuring low standby current means minimizing the off leakage current of each device. 1 is a diagram showing the break of each component calculated by summing the widths of transistors present in each of the components of a semiconductor memory device (eg, a memory bank, a voltage generator, and peripheral circuits). A table of open drain current values. The open leakage currents appearing in the memory group, the voltage generator, and the peripheral circuits are 40.2 μΑ, 6 2 μΑ && _, respectively. In short, the total width of the transistor and therefore the off-leakage current in the semiconductor memory device is mostly occupied by the transistor assigned to the memory group. The maximum width and maximum of the memory group are occupied by the decoder. The leakage current is disconnected, and in addition, as can be seen from Figure 2, the open drive current of one of the final drive units of the row decoder and one of the first 觝 觝 山 山 鈪42 8% of the off leakage current that appears in this memory group. Figure 2 shows a simulation result of the off-leakage current level of each element obtained by generating an off-leakage current in each element of the memory group. # From the simulation results, it can be seen that the off-leakage current generated by the row decoder occupies more than the above. Figure 3 illustrates a detailed circuit diagram of a conventional row decoder 5 in a semiconductor memory device. The conventional row decoder 5 includes a pre-drive unit 丨 and a drive unit 2. The pre-drive unit i has a PMOS transistor pi & nm 〇s transistors N1 to N3 connected in series between a power supply terminal vdd and a ground voltage terminal VSS. The PMOS transistor 卩1 and the 电8 transistor have a common gate, and a control signal Βγρ is provided via the common gate, and the control signal 脉冲 is a pulse signal containing memory group information. In addition, it has a common drain which acts as an output node of the pre-drive unit 以 to output a status output nickname to the drive unit 2. The NM〇s transistors Ν2 and Ν3 respectively receive code signals yc〇d1 and YC〇D2 via their gates, wherein each of the code numbers YCOD1 and YCOD2 has a memory cell containing a semiconductor memory device A row of corresponding memory cells of a plurality of memory cells in the matrix 3 is exhausted. 114725.doc 1310187 The driving unit 2 has a PMOS transistor P2 and an NMOS transistor N4 connected in series between the power voltage terminal vdd and the ground voltage terminal VSS. The PMOS transistor P2 and the NMOS transistor N4 have a common gate serving as an input node of the driving unit 2 and a common gate serving as a wheel node of the driving unit 2. The input node of the drive unit 2 is coupled to the output node of the pre-drive unit 以 to receive a status output signal from the pre-drive unit 1. If a certain condition is satisfied as described later, the drive unit 2 generates a corresponding row selection signal (e.g., γί〇) to the memory cell matrix 3. The row selection signal Yi 〇 indicates the address of the corresponding cell in the memory cell matrix 3 which is jointly represented by the two code signals YCOD1 and YCOD2. The PMOS transistors P1 & P2 receive the power supply voltage via their bodies and the NMOS transistors N1 to N4 receive the ground voltage vss via their bodies. In order to form a memory bank, a plurality of the above-described assembled row decoders are required and thus a plurality of row selection signals (e.g., TM to Yin) are outputted to the memory cell matrix 3, η being a positive integer. The pre-drive unit 1 receives the code signals YC〇D 1 and YCOD2 required for row selection and selects the row decoders, and the input signals of the enabled state (10), such as logic high level, YCOD i and YC〇D2 To the one, a corresponding row select signal is enabled thereby, for example, Yi. When the row access operation for row selection is not performed, the control L number 6丫1> has a disabled state 'for example, a logic low level, thereby setting the row selection signal Yi to the disabled state. For example, the logic is low. On the other hand, 'Tian Zhixuan' is used to enable the control signal BYP to the logic high level when the row access operation is selected. When the (4) signal Βγρ is enabled, if the code signal corresponding to the line decoding 114725.doc 1310187 D„ has an enabled state, then the certain line decodes the pre-drive single-open!, a few i' so that the drive unit 2 is turned on. The PMOS transistor P2, enables the row select signal Yi0 and outputs it to the memory cell matrix 3. : In the row decoder by controlling the occurrence of a substantial amount of open leakage current therein, the disconnection in the semiconductor § memory device The present invention provides a method for reducing and total disconnecting @current by controlling a decoder in which a maximum amount of % open leakage occurs. Semiconductor Memory Body Device - Embodiments of the Invention - Embodiments - A semiconductor memory device for selectively controlling the voltage level of the source voltage of a row of decoders, thereby improving the operating speed. In one aspect of the invention, a semiconductor memory device is provided, comprising: a memory cell matrix comprising a plurality of memory cells; φ - < D decoding unit 纟 having a row position for responding to a memory cell containing material Selecting a plurality of lines of the memory cells to selectively activate the plurality of lines of the memory information, wherein each of the four decoders includes - for returning the equal code signal to provide a power supply voltage and a source a pre-drive unit for outputting a signal between voltage transitions, and a drive unit for returning a state turn-off signal and rotating a row of select signals to activate one of the memory cells, wherein the pre-drive unit and the Each of the driving units includes at least one PMOS transistor and at least one NMOS transistor, respectively receiving a pumping voltage and a reverse bias via a body thereof, the pumping voltage having a height of 114725.doc 1310187 a voltage level at a voltage level of the power supply voltage, and the reverse bias voltage has a voltage level lower than a voltage level of a ground voltage. According to another aspect of the present invention, a semiconductor memory device is provided The basin comprises: 〃 a plurality of memory groups, each of the plurality of memory groups having: a memory cell matrix having a plurality of memory cells, and having a row position for responding to the memory cells a code signal of the address information to selectively activate a row decoding unit of the plurality of row decoders of the memory cells, wherein each of the row decoders includes - for returning an equal code signal to provide a a pre-drive unit for outputting a state between the power supply dust and a source voltage, and a drive unit for outputting a row of selection signals for responding to the status output signal to activate the unit: the corresponding drive unit, wherein Each of the pre-drive unit and the driver unit includes at least one PMOS transistor and at least a -nm 〇s transistor. The transistors receive a pumping voltage and a reversed dust through their bodies respectively. The electric iridium has a higher electric Φ Μ level than the electric power level of the power supply I and the reverse bias M has a voltage level lower than the electromigration level of the grounding electric rush; The source unit of the source pole a is provided to the plurality of memory groups, and the power level of the source voltage changes in accordance with an operation mode of the memory groups. According to still another aspect of the present invention, a semiconductor memory device is provided, comprising: a plurality of memory groups, each of the plurality of memory groups having: a memory cell matrix having a plurality of memory cells, one having Each of the memory cells is selectively activated in response to a code signal containing the address information of 114725.doc -9- 131.0187:: the read code (four) line decoding unit, each of the towel row decoders a pre-drive unit for returning a status signal output between a supply voltage and a source, and an output-line selection signal for starting the memory cell The driver's single drive 70', the pre-driver single s and the drive unit package 3 to J__PM〇S transistor and at least one transistor,

電曰曰體刀別接收通過其主體的一泵激電壓及一反向偏 該栗激電壓具有一高於該電源電壓之電壓位準的電壓 準且該反向偏壓具有—低於一接地電壓之電壓位準的 電壓位準;及 於向》亥複數個圮憶組提供對應源極電壓之複數個 原極電壓控制單&,該等源極電壓之電壓位準視該等記憶 組之操作模式而定地變化。 【實施方式】 根據本發明之特定實施例的半導體記憶體裝置包含-行 解碼早兀及—記憶胞矩陣,纟中該行解碼單元包含複數個 行解碼器。 圖4提供一行解碼器1〇之電路圖及一記憶胞矩陣2〇。 該行解碼器10包含一預驅動單元u及一驅動單元12。 該預驅動單元丨丨具有串聯連接於一電源電壓端子vdd與 一接收電壓源控制信號NSRC之節點之間的一 pM〇s電晶體 P3及NMOS電晶體N5至N7。該電壓源控制信號NSR(:具有— 接地電壓VSS或一反向偏壓VBB之電壓位準,其中該反向偏 114725.doc -10- 1310187 壓VBB之電壓位準低於該接地電壓VSS之電壓位準。該 PMOS電晶體P3及該NMOS電晶體N5具有一接收一控制信 號BYP之共同閘極,該控制信號BYP為含有記憶組資訊之脈 衝信號。另外,其具有一共同汲極,該共同汲極充當該預 驅動單元11之輸出節點以輸出一狀態輸出信號至該驅動單 元12。該等NMOS電晶體N6及N7分別經由其閘極與碼信號 YCOD1及YCOD2耦合,且該等碼信號YCOD1及YCOD2具有 含有該記憶胞矩陣20中之多個記憶胞的一對應記憶胞之行 位址資訊的碼。 驅動單元12具有串聯連接於該電源電壓端子VDD與一接 地電壓端子VSS之間的一 PMOS電晶體P4及一 NMOS電晶體 N8。該PMOS電晶體P4及該NMOS電晶體N8具有一充當驅動 單元12之輸入節點的共同閘極及一充當驅動單元12之輸出 節點的共同汲極。驅動單元12經由連接至預驅動單元11之 輸出節點的該輸入節點接收該狀態輸出信號且輸出一行選 擇信號Yi至記憶胞矩陣20。該行選擇信號Yi用以選擇記憶 胞矩陣20中由兩個碼信號YCOD1及YCOD2表示之對應記 憶胞。 經由PMOS電晶體P3及P4之主體為其提供泵激電壓 VPP,且NMOS電晶體N5至N8經由其主體接收反向偏壓 VBB,其中泵激電壓VPP之電壓位準高於電源電壓VDD之電 魔位準。The electric body cutter receives a pumping voltage through its body and a reverse bias voltage having a voltage level higher than a voltage level of the power supply voltage and the reverse bias has a lower than a ground The voltage level of the voltage level of the voltage; and providing a plurality of primal voltage control units & corresponding to the source voltage to the plurality of memory groups, the voltage levels of the source voltages are regarded as the memory groups The mode of operation varies from place to place. [Embodiment] A semiconductor memory device according to a specific embodiment of the present invention includes a line decoding early and a memory cell matrix, wherein the row decoding unit includes a plurality of row decoders. Figure 4 provides a circuit diagram of a row of decoders 1 and a memory cell matrix. The row decoder 10 includes a pre-drive unit u and a drive unit 12. The pre-drive unit 丨丨 has a pM 〇s transistor P3 and NMOS transistors N5 to N7 connected in series between a supply voltage terminal vdd and a node receiving the voltage source control signal NSRC. The voltage source control signal NSR(: has a voltage level of a ground voltage VSS or a reverse bias voltage VBB, wherein the reverse bias 114725.doc -10- 1310187 voltage VBB voltage level is lower than the ground voltage VSS The PMOS transistor P3 and the NMOS transistor N5 have a common gate receiving a control signal BYP, and the control signal BYP is a pulse signal containing memory group information. In addition, it has a common drain. The common drain serves as an output node of the pre-drive unit 11 to output a state output signal to the drive unit 12. The NMOS transistors N6 and N7 are coupled to the code signals YCOD1 and YCOD2 via their gates, respectively, and the code signals are YCOD1 and YCOD2 have a code containing a row address information of a corresponding memory cell of a plurality of memory cells in the memory cell matrix 20. The driving unit 12 has a series connection between the power supply voltage terminal VDD and a ground voltage terminal VSS. a PMOS transistor P4 and an NMOS transistor N8. The PMOS transistor P4 and the NMOS transistor N8 have a common gate serving as an input node of the driving unit 12 and an output node serving as the driving unit 12. The driving unit 12 receives the status output signal via the input node connected to the output node of the pre-drive unit 11 and outputs a row of selection signals Yi to the memory cell matrix 20. The row selection signal Yi is used to select the memory cell matrix. Corresponding memory cells represented by two code signals YCOD1 and YCOD2 in 20. The pumping voltage VPP is supplied to the main body of the PMOS transistors P3 and P4, and the NMOS transistors N5 to N8 receive the reverse bias voltage VBB via their bodies, The voltage level of the pumping voltage VPP is higher than the electric power level of the power supply voltage VDD.

為了形成一記憶組,需要複數個上述組裝之行解碼器, 且另外,自該複數個行解碼器提供一或多個行選擇信號YiO 114725.doc 11 - 1310187 至Yin至記憶胞矩陣20。 根據行選擇所需要之碼信號YCOD1與YCOD2之兩者之 碼是否彼此相同且具有啟用狀態,來確定預驅動單元11之 啟動。若兩個碼信號YCOD1與YCOD2之碼彼此相同,為邏 輯高位準,則啟動預驅動單元11。隨後自該複數個行解碼 器選擇一對應行解碼器(例如10),以致啟用一對應行選擇信 號(例如YiO),且將其自驅動單元12予以輸出。 特定而言,當不執行用於行選擇之行存取操作時,禁用 控制信號BYP至邏輯低位準,藉此設定行選擇信號Yi至邏 輯低位準。另一方面,當執行用於行選擇之行存取操作時, 啟用控制信號BYP至邏輯高位準。在啟用控制信號BYP的條 件下,若行解碼器10之碼信號YCOD1及YCOD2之碼具有邏 輯高位準,則啟動預驅動單元11,以致接通驅動單元12之 PMOS電晶體P4,且啟用行選擇信號YiO並將其提供至記憶 胞矩陣20。 在本發明之行解碼器10中,PMOS電晶體P3及P4接收泵激 電壓VPP作為主體偏壓,該泵激電壓VPP之電壓位準高於電 源電壓VDD之電壓位準,且NMOS電晶體N5至N8接收反向 偏壓VBB作為主體偏壓,該反向偏壓VBB之電壓位準低於 接地電壓VSS之電壓位準。另外,NMOS電晶體N7經由其源 極接收具有接地電壓VSS或反向偏壓VBB之電壓位準的源 極電壓控制信號NSRC。 圖5提供出現於發明性行解碼器10之一實例及習知行解 碼器5中的斷開漏電流之比較圖表。 114725.doc •12· 知行解碼器展示出作為電源 之下降變化,且在約1.8V之 器約-540 pA之斷開漏電流。In order to form a memory bank, a plurality of the above-described assembled row decoders are required, and in addition, one or more row selection signals YiO 114725.doc 11 - 1310187 to Yin to the memory cell matrix 20 are supplied from the plurality of row decoders. The activation of the pre-drive unit 11 is determined based on whether the codes of the code signals YCOD1 and YCOD2 required for the row selection are identical to each other and have an enabled state. If the codes of the two code signals YCOD1 and YCOD2 are identical to each other and are at a logic high level, the pre-drive unit 11 is activated. A corresponding row decoder (e.g., 10) is then selected from the plurality of row decoders such that a corresponding row select signal (e.g., YiO) is enabled and output from the drive unit 12. In particular, when the row access operation for row selection is not performed, the control signal BYP is disabled to a logic low level, thereby setting the row selection signal Yi to the logic low level. On the other hand, when the row access operation for row selection is performed, the control signal BYP is enabled to a logic high level. Under the condition that the control signal BYP is enabled, if the codes of the code signals YCOD1 and YCOD2 of the row decoder 10 have a logic high level, the pre-drive unit 11 is activated, so that the PMOS transistor P4 of the driving unit 12 is turned on, and row selection is enabled. Signal YiO is provided to the memory cell matrix 20. In the row decoder 10 of the present invention, the PMOS transistors P3 and P4 receive the pumping voltage VPP as the body bias voltage, the voltage level of the pumping voltage VPP is higher than the voltage level of the power source voltage VDD, and the NMOS transistor N5 The reverse bias voltage VBB is received as a body bias to N8, and the voltage level of the reverse bias voltage VBB is lower than the voltage level of the ground voltage VSS. Further, the NMOS transistor N7 receives the source voltage control signal NSRC having the voltage level of the ground voltage VSS or the reverse bias voltage VBB via its source. Figure 5 provides a comparison chart of the off leakage currents present in one example of the inventive row decoder 10 and the conventional row decoder 5. 114725.doc •12· The Zhixing decoder exhibits a drop in leakage as a power supply and has an off-leakage current of approximately -540 pA at approximately 1.8V.

1310187 如自該比較圖表可看出,習 電壓VDD之函數的斷開漏電流 電源電壓VDD處具有每行解碼 J而對於發明性行解碼器i Q,假定源極電壓控制信號 NSRC具有接地電Mvss之電壓位準,栗激電壓vpp表示33 V ’且狐度為85 C之高溫,纟中斷開漏電流之特徵係明顯 的應庄意與白知行解碼器相比,作為電源電壓之 函數的斷開漏電流得以充分減少且斷開漏電流之特徵之變 化極小。因此’應瞭解’本發明可藉由使用泵激電壓vpp 及反向偏壓卿來有利地控制行解碼器ig之主體偏壓,以 致可改良斷開漏電流之特徵。 圖6呈現一包含一 Av rs on - 丁解碼早兀1 〇'、該記憶胞矩陣20及一 源極電壓控制單70 30之半導體記憶體裝置之一記憶組刚 的圖’其中該行解竭單心,含有複數個行解碼器。 源極電壓控制單i 3G接收列作用中信號⑽机以向行解 碼單元1〇|提供源極電壓控制信號瓣,根據該列作用中信 號ROWb^不作用中模式(aetive mGde)還是待用模式,該源 極電壓控制信號NSRC具有接地電麼州或反向偏壓MB。 源極電壓控制單元30安置於接地電壓VSS及反向偏壓 VBB之導線上。 在輸入至該記憶組1〇〇中 邏輯低位準的狀況下, s賣取或寫入麵作的作用 之列作用中信號R〇Wb具有例如 此指示其中選擇某一列來執行正常 中模式;且在列作用中信號R〇Wb 具有例如邏輯高位準的另 一狀況下,此指示其中執行預充 114725.doc -13- 1310187 電操作之待用模式。 作用中模式或待 將源極電壓控制 ,如圖4中所述之 視列作用中信號ROWb之該狀態(意即, 用模式)而定,切換源極電壓控制單元3〇以 信號NSRC饋入至行解碼單元10,中,例如 行解碼器10之預驅動單元11之NMOS電晶體1^7的源極中1310187 As can be seen from the comparison chart, the off-leakage current supply voltage VDD as a function of the voltage VDD has a decoding J per line. For the inventive row decoder i Q, the source voltage control signal NSRC is assumed to have a grounding Mvss The voltage level, the pumping voltage vpp represents 33 V ' and the fox has a high temperature of 85 C. The characteristic of the leakage current in the 纟 is obviously compared with the Bai Zhixing decoder as a function of the power supply voltage. The off-leakage current is sufficiently reduced and the variation in the characteristics of the off-leakage current is minimal. Therefore, it should be understood that the present invention can advantageously control the body bias of the row decoder ig by using the pumping voltage vpp and the reverse bias voltage, so that the characteristics of the off leakage current can be improved. 6 shows a diagram of a memory group of a semiconductor memory device including an Av rs on - ding decoding early 兀 、 ', the memory cell matrix 20 and a source voltage control unit 70 30 'where the line is depleted Single heart, with multiple line decoders. The source voltage control single i 3G receives the column active signal (10) machine to provide the source voltage control signal lobes to the row decoding unit 1 〇 |, according to the column signal ROWb ^ inactive mode (aetive mGde) or standby mode The source voltage control signal NSRC has a ground state or a reverse bias MB. The source voltage control unit 30 is disposed on the wires of the ground voltage VSS and the reverse bias voltage VBB. In the case of inputting to the logic low level in the memory group 1 , the action signal R 〇 Wb of the action of the s sell or write face has, for example, indicating that a certain column is selected to perform the normal mode; In another condition in which the column signal R 〇 Wb has, for example, a logic high level, this indicates a standby mode in which the precharge 114725.doc -13 - 1310187 electrical operation is performed. In the active mode or the source voltage is to be controlled, as shown in FIG. 4, the state of the signal ROWb (ie, in the mode), the switching source voltage control unit 3 is fed by the signal NSRC. In the row decoding unit 10, for example, in the source of the NMOS transistor 1^7 of the pre-drive unit 11 of the row decoder 10.

基於源極電壓控制信號NSRC來控制預驅動單元u之 NMOS電晶體N7之源極,且分別施加泵激電壓vpp及偏壓 VBB至PM0S電晶體P3之主體及NM〇s電晶體ns至Μ?之每 一主體中。隨後,若選擇行解碼單元1〇,之某一行解碼器, 例如’行解碼器10,則啟用指示由兩個碼信號代⑽及 YCOD2表不之對應記憶胞之位址的行選擇信號γί〇且將其 耦合至記憶胞矩陣20。 圖7描繪圖6之包含一位準偏移器〇evei shifter)3i及一電 壓選擇單元32的源極電壓控制單元3〇之電路圖。 該位準偏移器3 1對列作用中信號R〇Wb進行位準偏移以 產生一作用中信號ACTb,該作用中信號ACTb之電壓位準 交替地在電源電壓VDD與反向偏壓VBB之間擺動。 電壓選擇單元32具有NMOS電晶體N9及N10以及—反相 器ινι及電容器(::1及(:2。;^^〇8電晶體N9連接於接地電壓端 子VSS與一輸出該源極電壓控制信號NSRC之輸出節點之 間,且經由其閘極接收作用中信號ACTb。NMOS電晶體Nl〇 連接於一提供該反向偏壓VBB之反向偏壓端子與該輸出節 點之間,且經由其閘極接收一自該反相器IV1輸出之反相作 用中信號iACTb。電容器(:丨係存在於反向偏壓端子與接地 114725.doc •14· 131.0187 電壓端子之間的寄生電容器,且電容IIC2係存在於輸出節 點與接地電壓端子之間的寄生電容器,其中通常選擇電容 器^具有一大於電容器C2之電容達數百至數千倍的電容。 將參看圖8之操作時序圖來描述源極電壓控制單元3〇之 操作。 首先,在待用模式中,列作用中信號R〇wb與作用中信號 ACTb之兩者具有電源電壓VDD之電壓位準。因此,接通 NMOS電晶體N9且斷開NM〇s電晶體N1 〇,藉此輸出具有電 源電壓VDD之電壓位準的源極電屢控制信號NSR(:。結果, 在待用模式巾’輸人具有接地電壓vss之電M位準的源極 電壓控制仏號NSRC至行解碼器】〇之預驅動單元丨丨中。 另一方面,在作用中模式中,位準偏移器3 1對列作用中 #號ROWb進行位準偏移以輸出作用中信號ACTb,其中列 作用中信號ROWb具有接地電壓vss之電壓位準,且因此作 用中信號ACTb變為反向偏壓VBB之電壓位準。此時,因為 電容器C1之電容大於電容器(^之電容達數百至數千倍,所 以可能忽視該位準偏移。此後,斷開NM〇s電晶體N9且接 通NMOS電晶體Nio,藉此輸出具有反向偏壓VBB之電壓位 準的源極電壓控制信號NSRC。結果,在作用中模式中,輸 入具有反向偏壓VBB之電壓位準的源極電壓控制信號 NSRC至行解碼器1 〇之預驅動單元11中。 亦即,當改變行解碼器10之主體偏壓以減少斷開漏電流 時,行解碼器10中之每一經連接電晶體之臨限電壓變高, 且因此降低其驅動力,導致操作速度之降低。為克服此問 114725.doc 15 1310187 題,本發明採用源極電壓控制信號NSRC,以致在啟用列作 用中信號ROWb至邏輯低位準時,意即,在作用中模式中, 輸入具有反向偏屢VBB之源極電麼控制信號NSRc至預驅 動單元11中的NMOS電晶體N7之源極中。 結果’驅動單元12之PM0S電晶體P4經由其閘極接收一選 擇性負㈣,意即,接地„vss或反向偏壓卿,且因此 可具有充足驅動力來改良由斷開漏電流惡化之操作速度。The source of the NMOS transistor N7 of the pre-drive unit u is controlled based on the source voltage control signal NSRC, and the pumping voltage vpp and the bias voltage VBB are respectively applied to the body of the PMOS transistor P3 and the NM 〇s transistor ns to Μ? In each subject. Then, if the row decoding unit 1 〇, a certain row decoder, such as the 'row decoder 10', is enabled, the row selection signal γ 〇 指示 indicating the address of the corresponding memory cell represented by the two code signal generations (10) and YCOD2 is enabled. And coupled to the memory cell matrix 20. Figure 7 depicts a circuit diagram of the source voltage control unit 3 of Figure 6 including a bit shifter 〇evei shifter 3i and a voltage select unit 32. The level shifter 3 1 performs a level shift on the column active signal R 〇 Wb to generate an active signal ACTb. The voltage level of the active signal ACTb is alternately at the power supply voltage VDD and the reverse bias voltage VBB. Swing between. The voltage selection unit 32 has NMOS transistors N9 and N10 and - an inverter ινι and a capacitor (::1 and (:2;; ^^〇8 transistor N9 connected to the ground voltage terminal VSS and an output of the source voltage control) An active signal ACTb is received between the output nodes of the signal NSRC and via its gate. The NMOS transistor N1 is coupled between a reverse bias terminal that provides the reverse bias voltage VBB and the output node, and The gate receives an inactive active signal iACTb output from the inverter IV1. The capacitor (: is a parasitic capacitor between the reverse bias terminal and the ground terminal 114725.doc • 14· 131.0187 voltage terminal, and the capacitor IIC2 is a parasitic capacitor existing between the output node and the ground voltage terminal, wherein the capacitor ^ is generally selected to have a capacitance greater than several hundred to several thousand times the capacitance of the capacitor C2. The source is described with reference to the operation timing diagram of FIG. The operation of the voltage control unit 3. First, in the standby mode, both the column active signal R〇wb and the active signal ACTb have the voltage level of the power supply voltage VDD. Therefore, the NMOS transistor is turned on. N9 and disconnecting the NM〇s transistor N1 〇, thereby outputting the source electrical control signal NSR having the voltage level of the power supply voltage VDD (:. As a result, the input mode wipes the input power with the ground voltage vss The source voltage of the M level is controlled by the NSRC to the row decoder 〇 in the pre-drive unit 。. On the other hand, in the active mode, the level shifter 3 1 performs the ## ROWb in the column action The level shifts to output the active signal ACTb, wherein the column active signal ROWb has a voltage level of the ground voltage vss, and thus the active signal ACTb becomes the voltage level of the reverse bias voltage VBB. At this time, because the capacitor C1 The capacitance is greater than the capacitance of the capacitor (^ is hundreds to thousands of times, so the level offset may be ignored. Thereafter, the NM〇s transistor N9 is turned off and the NMOS transistor Nio is turned on, whereby the output has a reverse bias The source voltage control signal NSRC of the voltage level of VBB is pressed. As a result, in the active mode, the source voltage control signal NSRC having the voltage level of the reverse bias voltage VBB is input to the pre-drive unit of the row decoder 1 11. In the case, when the row decoder 10 is changed When the body bias is applied to reduce the off-leakage current, the threshold voltage of each of the connected transistors in the row decoder 10 becomes high, and thus the driving force thereof is lowered, resulting in a decrease in the operating speed. To overcome this problem 114725.doc 15 In the problem of 1310187, the present invention uses the source voltage control signal NSRC, so that when the column SELb is enabled to the logic low level in the column action, that is, in the active mode, the input source has the reverse bias VBB source control signal NSRc Up to the source of the NMOS transistor N7 in the pre-drive unit 11. As a result, the PMOS transistor P4 of the drive unit 12 receives a selective negative (four) via its gate, that is, grounded „vss or reverse biased, And therefore there can be sufficient driving force to improve the operating speed due to the deterioration of the open leakage current.

因此’根據本發明’有可能達成待用模式中之低功率^徵 及作用中模式中之高操作速度。 圖9表示由發明性行解碼器1〇及習知行解碼器城據源極 電麼控制錢NSRC之電g準產生之行選擇信號的比較 圖表。參看圖9,其中水平軸線係指時間,且垂直軸線係指 灯選擇信號電壓’應注意,當在作用中模式中控制源極電 紅制彳5 i^NSRC:使其具有反向偏壓VBB之電壓位準時,行 選擇信號具有最快上升特徵。 圖^描緣—㈣根據本發明之—特定實施例之源極電塵 控制皁元的半導體記憶體裝置之圖。 一圖6之電路僅擁有—用於該記憶組10G之源極電壓控制單 而®I 1G之電路包含用於若干記憶組綱A之多個源極 電壓控制單元30A。多個源極㈣控制單元胤輸出源極電 壓控制信號NS歌G:3>m存取所有記憶組2〇〇A。 圖U為才木用根據本發明之另一特定實施例之源極電壓 控制單元的半導體記憶體裝置之圖。 圖U之電路除其中存在一用於若干記憶組200B之單源極 lH725.doc -16- 1310187 電壓控制單元3OB之外’類似於圖1 〇之電路。因此採用一邏 輯閘AND(及),以致當啟用列作用中信號R〇wb<0:3>2至 少一者時,源極電壓控制信號NSRC經位準偏移至反向偏壓 VBB之電壓位準且耦合至所有記憶組2〇〇b。 在圖11之示範性結構中,因為電路係僅由一在結構上與 圖7之源極電壓控制單元相同的源極電壓控制單元3〇B予以 建構,所以有可能最小化布局尺寸。特別地,圖n之電路 有利地用於其中所採用之電容器C1具有一大於電容器C2 之電容達數百至數千倍的電容之狀況下。 圖12表示一連接至根據本發明之源極電壓控制單元的反 向偏壓產生器之方塊圖。 反向偏壓產生器60包含一反向偏壓(VBB)偵測單元如及 一 VBB產生單元50。 該VBB偵測單元40接收自該VBB產生單元5〇反饋之反向 偏壓,且基於一參考電壓VRC而偵測該反饋vbb之電壓位 準,藉此輪出一啟用信號VEN,其中該參考電壓vrc具有 一大體上與一理想反向偏壓之電壓位準才目_電壓位準。 VBB產生單兀50產生反向偏壓VBB,其電壓位準係回應該 啟用信號VEN而被調節。侧產生單元5()輸出反向偏塵 VBB至源極電壓控制單元3〇。 反向偏壓產生器60用以防止反向偏壓VBB之電壓位準改 變。 如自以上描述可看出,本發明控制用於其中出現最大量 斷開漏電流之行解碼器的主體偏壓,導致出現於半導體記 114725.doc 17 1310187 u體4置中之斷開漏電流之總量減少,且另外,選擇性地 凋i施加至行解碼器之預驅動單元中的電壓源控制信號之 電壓位準以改良存取操作速度。 雖然已關於較佳實施例展示並描述本發明,但是熟習此 頁技術者應瞭解,在不脫離如以下申請專利範圍中所界定 之本發明之精神及範疇的情況下,可作出各種變更及修改。 【圖式簡單說明】Thus, according to the present invention, it is possible to achieve a low power in the standby mode and a high operating speed in the active mode. Fig. 9 is a view showing a comparison chart of the row selection signals generated by the inventive row decoder 1 and the conventional row decoder source based on the source of the NSRC. Referring to Fig. 9, wherein the horizontal axis refers to time, and the vertical axis refers to the lamp selection signal voltage 'should be noted that when the source mode is controlled in the active mode, i5 i^NSRC: has a reverse bias voltage VBB When the voltage level is normal, the row selection signal has the fastest rising characteristic. Figure 4 - Figure 4 - A diagram of a semiconductor memory device for a source electrostatic dust control soap element in accordance with a particular embodiment of the present invention. The circuit of Figure 6 has only the source voltage control unit for the memory bank 10G and the circuit of the ® I 1G includes a plurality of source voltage control units 30A for a plurality of memory banks. Multiple source (four) control unit 胤 output source voltage control signal NS song G: 3 > m access to all memory groups 2 〇〇 A. Figure U is a diagram of a semiconductor memory device with a source voltage control unit in accordance with another particular embodiment of the present invention. The circuit of Figure U is similar to the circuit of Figure 1 except that there is a single source lH725.doc -16-1310187 voltage control unit 3OB for several memory banks 200B. Therefore, a logic gate AND (and) is used, so that when at least one of the column active signals R 〇 wb < 0: 3 > 2 is enabled, the source voltage control signal NSRC is level shifted to the voltage of the reverse bias voltage VBB. Level and coupled to all memory groups 2〇〇b. In the exemplary configuration of Fig. 11, since the circuit is constructed only by a source voltage control unit 3B which is structurally identical to the source voltage control unit of Fig. 7, it is possible to minimize the layout size. In particular, the circuit of Figure n is advantageously used in the case where the capacitor C1 employed has a capacitance greater than several hundred to several thousand times the capacitance of the capacitor C2. Figure 12 shows a block diagram of a reverse bias generator connected to a source voltage control unit in accordance with the present invention. The reverse bias generator 60 includes a reverse bias (VBB) detecting unit such as a VBB generating unit 50. The VBB detecting unit 40 receives the reverse bias voltage fed back from the VBB generating unit 5, and detects the voltage level of the feedback vbb based on a reference voltage VRC, thereby rotating an enable signal VEN, wherein the reference The voltage vrc has a voltage level that is substantially opposite to an ideal reverse bias. The VBB generates a single turn 50 to generate a reverse bias voltage VBB whose voltage level is adjusted to be enabled by the enable signal VEN. The side generating unit 5() outputs the reverse dusting VBB to the source voltage control unit 3'. The reverse bias generator 60 is used to prevent the voltage level of the reverse bias voltage VBB from changing. As can be seen from the above description, the present invention controls the body bias for the row decoder in which the maximum amount of off-leak current occurs, resulting in an open leakage current occurring in the semiconductor device 114725.doc 17 1310187 u body 4 The total amount is reduced, and in addition, the voltage level of the voltage source control signal applied to the pre-driver unit of the row decoder is selectively applied to improve the access operation speed. Although the present invention has been shown and described with respect to the preferred embodiments of the present invention, it will be understood by those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention as defined in the following claims. . [Simple description of the map]

=1為一展示藉由對存在於用於一半導體記憶體裝置中 之若干組件之每一者中的電晶體之寬度求和而計算的每記 憶組件之斷開漏電流之表格; 元件中產生斷開漏電流 之模擬結果; 圖2展示藉由在一記憶組之每一 而獲得的每元件之斷開漏電流位準 圖3說明習知行解碼器之電路圖; 之行解碼器的電路 圖4提供根據本發明之一特定實施例 圖5提供出現於根據本發明之一實施例之行解碼器及習 知行解碼器中的斷開漏電流之比較圖表; 圖6呈現發明性行解碑芬扭4由々 料碼錢根據本發明之另—特定實施 例之源極電壓控制單元的方塊圖; 圖7描繪圖6中之源極電壓控制單元之電路圖;=1 is a table showing the breaking leakage current of each memory component calculated by summing the widths of the transistors present in each of several components used in a semiconductor memory device; Breaking the leakage current simulation result; Figure 2 shows the breaking leakage current level of each component obtained by each of the memory groups. Figure 3 is a circuit diagram of a conventional row decoder; Figure 5 provides a comparison chart of the off-leakage currents present in a row decoder and a conventional row decoder in accordance with an embodiment of the present invention. Figure 6 shows an inventive line of the solution. A block diagram of a source voltage control unit in accordance with another embodiment of the present invention; FIG. 7 depicts a circuit diagram of the source voltage control unit of FIG.

圖8表示根據本發明之源極電壓控制單元 圖9提供發明性行解㈣以# 一 ^J 號之比較圖表; 宅擇仏 圖10描述一採用根據本 知Λ之又特定實施例之源極電 114725.doc -18· 1310187 壓控制單元的半導體記 壓明—採用根據本發明之再-特定實施例之源極電 仏制…半導體記憶體裝置之圖;及 圖12展示根據本發明之— 塊圖。 π苑例之反向偏壓產生器的方 【主要元件符號說明】Figure 8 shows a source voltage control unit according to the present invention. Figure 9 provides a comparative diagram of the inventive solution (4) with a #一^J number; a selection of Figure 10 depicts a source using a specific embodiment according to the present invention. Electrical 114725.doc -18· 1310187 The semiconductor memristor of the pressure control unit is a diagram of a semiconductor memory device using a re-specific embodiment according to the invention; and FIG. 12 shows a method according to the invention - Block diagram. The side of the reverse bias generator of the π Court example [Main component symbol description]

1 預焉區動早元 2 驅動單元 3 記憶胞矩陣 5 習知行解碼器 10 (發明性)行解碼器 10· 行解碼單元 11 預驅動單元 12 驅動單元 20 記憶胞矩陣 30 源極電壓控制單元 30Α 源極電壓控制單元 30Β 源極電壓控制單元 31 位準偏移器 32 電壓選擇單元 40 反向偏壓(VBB)偵夠單 50 VBB產生單元 60 反向偏壓產生器 100 記憶組 114725.doc 19· 1310187 2 0 0 A 記憶組 200B 記憶組1 Pre-emphasis area early element 2 drive unit 3 memory cell matrix 5 conventional line decoder 10 (inventive) row decoder 10 · row decoding unit 11 pre-drive unit 12 drive unit 20 memory cell matrix 30 source voltage control unit 30 Source voltage control unit 30 Β source voltage control unit 31 level shifter 32 voltage selection unit 40 reverse bias (VBB) detection single 50 VBB generation unit 60 reverse bias generator 100 memory group 114725.doc 19 · 1310187 2 0 0 A Memory Group 200B Memory Group

114725.doc -20-114725.doc -20-

Claims (1)

1310187 十、申請專利範圍: 1 · 一種半導體記憶體裝置,其包括: 一包含複數個記憶胞之記憶胞矩陣; 一行解碼單元,其具有回應含有該等記憶胞之行位址 資訊的碼信號而選擇性地啟動該等記憶胞之複數個行解 碼器’其中該等行解碼器之每一者包含: 一回應該等碼信號而提供一在一電源電壓與一源極 電壓之間轉變之狀態輸出信號的預驅動單元;及 一回應該狀態輸出信號而輸出一行選擇信號以啟動 該等記憶胞之一對應者的驅動單元, 其中該預驅動單元及該驅動單元之每一者包含至少一 PMOS電晶體及至少一NM0S電晶體,該等電晶體用以分 別經由其主體接收一泵激電壓及一反向偏壓,該泵激電 壓具有一高於該電源電壓之電壓位準的電壓位準,且該 反向偏壓具有一低於一接地電壓之電壓位準的電壓位 準。 2·如叫求項1之半導體記憶體裝置,其中該預驅動單元包 含: 一連接於該電源電壓之一端子與一第一輪出節點之間 的第一PMOS電晶體,該狀態輸出信號係經由該第一輸出 節點予以輸出;及 串聯連接於該第一輸出節點與該源極電壓之一端子之 間的複數個NMOS電晶體, 其中該第一 PMOS電晶體及該等NM〇s電晶體之一者經 H4725.doc 1310187 由其共同閘極接收一控制信號以啟動該行解碼單元,且 剩餘NMOS電晶體分別經由其閘極接收該等碼信號。 3.如請求項2之半導體記憶體裝置’其中該驅動單元包含: 一連接於該電源電壓之該端子與一第二輸出節點=間 的第二PMOS電晶體,該行選擇信號係經由該第二輸出節 點予以輸出;及 即1310187 X. Patent application scope: 1 . A semiconductor memory device, comprising: a memory cell matrix comprising a plurality of memory cells; a row of decoding units having a code signal responsive to information of row address information of the memory cells; Selectively activating a plurality of row decoders of the memory cells, wherein each of the row decoders comprises: a state in which a code signal should be equalized to provide a transition between a supply voltage and a source voltage a pre-drive unit for outputting a signal; and a drive output unit that outputs a row of select signals to activate a corresponding one of the memory cells, wherein each of the pre-drive unit and the drive unit includes at least one PMOS a transistor and at least one NM0S transistor for receiving a pumping voltage and a reverse bias via a body thereof, the pumping voltage having a voltage level higher than a voltage level of the power source voltage And the reverse bias has a voltage level lower than a voltage level of a ground voltage. 2. The semiconductor memory device of claim 1, wherein the pre-drive unit comprises: a first PMOS transistor connected between a terminal of the power supply voltage and a first wheel-out node, the state output signal system And outputting through the first output node; and a plurality of NMOS transistors connected in series between the first output node and one of the source voltage terminals, wherein the first PMOS transistor and the NM〇s transistors One of them receives a control signal from its common gate via H4725.doc 1310187 to activate the row of decoding units, and the remaining NMOS transistors receive the code signals via their gates, respectively. 3. The semiconductor memory device of claim 2, wherein the driving unit comprises: a second PMOS transistor connected between the terminal of the power supply voltage and a second output node, the row selection signal is via the Two output nodes output; and 一連接於該第二輸出節點與該接地電壓之一端子之間 的NMOS電晶體, 曰 其中該第二PM0S電晶體及該應〇s電晶體經由其共同 閘極接收該狀態輸出信號。 、 4·如請求項3之半導體記憶體裝置,其中該源極電壓具有該 接地電壓之一電麼位準。 5·如請求項3之半導體記憶體裝置,其進一步包括: 一用以提供該源極電壓之源極電M控制單元,該源極 Μ之電堡位準視該半導體記憶體裝置之—操作模式、而 其中該源極電壓控制單 對其進行位準偏移以產 該列作用t信號指示該 如π求項5之半導體記憶體裝置, 元包含: —用以接收一列作用中信號且 生作用中信號之位準偏移器, 操作模式;及 以‘供該源極電塵之雷摩登 之Φ i 、 电至4冤靨選擇早兀,該源極電麈 7. 立準係回應該作用中信號而被確定。 月求項6之半導體記憶體裝置,里中兮帝广 趙衣直具中该電壓選擇單元具 1 J4725.d〇c 1310187 有: 一用於使該作用中信號反相之反相器; 一連接於該源極電壓之該端子與該接地電壓之該端子 之間且受控於該作用中信號的第一電晶體;及 連接於該源極電壓之該端子與該反向偏壓之一端子 之間且受控於一反相作用中信號的第二電晶體。 8. =請求項7之半導體記憶體裝置,其中在該列作用中信號 扣不#用模式時,該第一電晶體被接通以提供該接地 電麼至該源極電壓之該端子。 9. =請求項8之半導體記憶體裝置,其中在該列作用中信號 指不-作用中模式時,該第二電晶體被接通以提供該反 向偏壓至該源極電壓之該端子。 10·如請求項7之半導體記憶體裝置,其進一步包括: 一反向偏壓產生器,其包含: 一電壓傾測單元,其用於接收該反向偏Μ且基於一參 考反向偏壓而搞測該反向偏壓之一電壓位準,藉此輸 出一啟用信號;及 一電塵產生單^其用於產线反向偏壓且輸出該反 向偏壓至該源極電壓控制單元,該反向偏壓之電壓位 準係回應該啟用信號而被調節。 U.如請求項7之半導體記憶體裝置,其中該電壓選擇單元進 一步具有: 一第—電容器,其為-存在於該反向偏壓之該端子與 該接地電壓之該端子之間的寄生電容器;及 114725.doc 1310187 一第二電容器,复盔 八马一存在於該源極電壓之該端子盥 該接地電壓之該端子之間的” 其中該第-電容器之一電容大於該第二電容器之電 容 13 π.如請求項η之半導體記憶體震置,其中該第一電容号之 該電容大於該第二電容器之電容達數百至數千倍。° 一種半導體記憶體裝置,其包括: φ 複數個記憶組,該複數個記憶組之每一者包含: 一具有複數個記憶胞之記憶胞矩陣; -灯解碼早元,其具有用於回應含有該等記憶胞之 行位址資訊的碼信號而選擇性地啟動該等記憶胞之複 數個行解碼器,其中該等行解碼器之每一者含有: -回應該等碼信號而提供—在—電源電壓與一源 極電壓之間轉變的狀態輸出信號之預驅動單元及、 -回應該狀態輸出信號而輸出一行選擇信號以啟 • 動該等記憶胞之一對應者的驅動單元, 其中該預驅動單元及該驅動單元之每一者包含至少 一 PMOS電晶體及至少__NM〇s電晶體,該等電晶體分 別經由其主體接收一泵激電壓及一反向偏壓,該泵激 電壓具有一高於該電源電壓之電壓位準的電壓位準, 且該反向偏壓具有一低於一接地電壓之電壓位準 壓位準;及 一用於向該複數個記憶組提供該源極電壓之源極電壓 控制單元,該源極電壓之電壓位準視該等記憶組之操作 114725.doc 1310187 伏叭rf〇疋地變化。 衣置 14·如請求項13之半導體記憶體 含: 一連接於該電源電壓之一端子與一第—輪出節點之 的第一PMOS電晶體,該狀態輸出信號係經由該·一曰 節點予以輸出;及 1出 串聯連接於該第一輸出節點與該源極電壓之— ^Q 間的複數個NMOS電晶體, 其中該第一 PMOS電晶體及該等NM〇S電晶體之第— 係梵控於一耦合至其共同閘極的具有一對應記憶組之資 訊的控制信號,且剩餘N M 〇 s電晶體分別經由其閘極 該等碼信號。 15·如請求項14之半導體記憶體裝置,其中該驅動單元包含: 一連接於該電源電壓之該端子與一第二輸出節點之3間 的第二PMOS電晶體,該行選擇信號係經由該第二輸出節 點予以輸出;及 連接於s亥第二輸出節點與該接地電壓之一端子之間 的NMOS電晶體, β 其中該第二PMOS電晶體及該NM〇s電晶體經由其共同 閘極接收該狀態輪出信號。 6.如凊求項1 3之半導體記憶體裝置,其中該源極電壓控制 單元包含: 邏輯閉’其用於對分別指示該等記憶組之該等操作 模式的列作用中信號進行AND(及)運算; 114725.doc 1310187 ―”偏移器’其用於對該邏㈣之—輸出信號進行 位準偏移,以產生一作用中信號;及 —用於向一對應記憶組提供該源極電壓之電壓選擇單 :’該源極電壓之電壓位準係回應該作用中信號而被: 定。 17. 如請求項16之半導體記憶體裝置,其中該電壓選擇單元 具有: 一用於使該作用中信號反相之反相器; 一連接於該源極電壓之該端子與該接地電壓之該端子 之間且受控於該作用中信號的第一電晶體;及/ 一連接於該源極電壓之該端子與該反向偏壓之一端子 之間且受控於一反相作用中信號的第二電晶體。 18. 如請求項17之半導體記憶體裝置,其中在該列作用中信 號指示-待用模式時,該第—電晶體被接通以提供該接 地電壓至該源極電壓之該端子。 19. 如請求項18之半導體記憶體裝置,其中在該列作用中信 號指示-作用中模式時’該第二電晶體被接通以提供該 反向偏墨至該源極電壓之該端子。 20. 如請求項17之半導體記憶體裝置,其進一步包括. 一反向偏壓產生器,其包含: 一電壓偵測單元,其用於接收該反向偏壓且基於一參 考反向偏壓而偵測該反向偏壓之一電壓位準, 千’糟此輸 出一啟用信號;及 一電壓產生早元,其用以產生該反向偏壓且輪出該反 114725.doc 1310187 向偏壓至該源極電壓控制單元,該反向偏壓之電壓位 準係回應該啟用信號而被調節。 21.如凊求項17之半導體記憶體裝置,其中該電壓選擇單元 進一步具有: 一第一電容器,其為一存在於該反向偏壓之該端子與 該接地電壓之該端子之間的寄生電容器;及 一第一電容器,其為一存在於該源極電壓之該端子與 $ 該接地電壓之該端子之間的寄生電容器, 其中該第一電容器之一電容大於該第二電容器之電 容。 22·如請求項21之半導體記憶體裝置,其中該第一電容器之 該電容大於該第二電容器之電容達數百至數千倍。 23. —種半導體記憶體裝置,其包括: 複數個記憶組,該複數個記憶組之每一者包含: 具有複數個s己憶胞之記憶胞矩陣; • 一行解碼單元,其具有用於回應含有該等記憶胞之 行位址資訊的碼信號而選擇性地啟動該等記憶胞之複 數個行解碼器,其中該等行解碼器之每一者含有: 一用於回應該等碼信號而提供一在一電源電壓與 一源極電壓之間轉變之狀態輪出信號的預驅動單 元;及 一用於回應該狀態輸出信號而輸出一行選擇信號 以啟動該等記憶胞之一對應者的驅動單元, 其中該預驅動單元及該驅動單元之每一者包含至少 114725.doc 1310187 一 PMOS電晶體及至少一 NM〇s電晶體,該等電晶體用 以分別經由其主體接收一泵激電壓及一反向偏壓,該 泵激電壓具有一高於該電源電壓之電壓位準的電壓位 準,且该反向偏壓具有一低於一接地電壓之電壓位準 的電壓位準;及 用以分別向該複數個記憶組提供對應源極電壓之複數 個源極電壓控制單元,該等源極電壓之電壓位準視該等 φ s己憶組之操作模式而定地變化。 如β求項23之半導體記憶體裝置,其中該預驅動單元包 含: :連接於該電源電壓之一端子與一第一輸出節點之間 的第一 PM0S電晶體,該狀態輪出信號係經由該第一輪出 節點予以輸出;及 串聯連接於該第一輸出節點與該源極電壓之一端子之 間的複數個NM0S電晶體, # 其中該第一 PM0S電晶體及該等NM0S電晶體之—者受 控於一耦合至其共同閘極的具有一對應記憶組之資訊= 控制彳5唬,且剩餘NMOS電晶體分別經由其閘極接收誃笙 碼信號。 μ哥 25.如請求項24之|導體記憶體褒置,其中該驅動單元包含: :連接於該電源電壓之該端子與一第二輸出節點之3間 的第二PM0S電晶體,該行選擇信號係經由該第 點予以輪出;及 即 連接於該第二輸出節點與該接地電壓之—端子之門 114725.doc 1310187 的NMOS電晶體, 其中該第:PM0S電晶體及該NMOS電晶體經由其共同 閘極接收該狀態輸出信號。 26.如請求項23之半導體記憶體裝置,其中該等源極電壓控 制早元之每一者包含: -位準偏移器,其用以接收一列作用中信號且對其進 行位準偏移以產生一作用中信號,其中該列作用中信號 才曰示對應s己憶组之一操作模式;及 一用於向該對應記憶組提供該對應源極電壓之電壓選 擇單元,該源極電壓之電壓位準係回應該作用中信號而 被確定。 / 27_如請求項26之半導體記憶體裝置,其中該電壓選擇單元 具有: 一用於使該作用中信號反相之反相器; 一連接於該源極電壓之該端子與該接地電壓之該端子 之間且受控於該作用中信號的第一電晶體;及 一連接於該源極電壓之該端子與該反向偏壓之一端子 之間且受控於-反相作用中信號的第二電晶體。 28.如請求項27之半導體記憶體裝置,其中在該列作用中信 號指不-待用模式時,該第—電晶體被接通以提供該接 地電壓至該源極電壓之該端子。 ^ 29·如請求項28之半導體記憶體裝置,其中在該列作用中俨 號指示-仙中模式時,該第二電晶體被接通以提㈣ 反向偏壓至該源極電昼之咳端子。 114725.doc 1310187 3 0.如請求項27之半導體記憶體裝置,其進一步包括: 一反向偏壓產生器,其包含: 一電壓摘測單元,其用於接收該反向偏壓且基於一 參考反向偏壓而偵測該反向偏壓之一電壓位準,藉此 輸出一啟用信號;及 一電壓產生單元,其用於產生該反向偏壓且輸出該 反向偏壓至該等源極電壓控制單元,該反向偏壓之電 壓位準係回應該啟用信號而被調節。 31·如請求項27之半導體記憶體裝置,其中該電壓選擇單元 進一步包括: 第電谷器,其為一存在於該反向偏壓之該端子與 該接地電壓之該端子之間的寄生電容器;及 第一電各盗,其為一存在於該源極電 該接地電壓之該端子之間的寄生電容器,該…An NMOS transistor connected between the second output node and one of the ground voltage terminals, wherein the second PMOS transistor and the NMOS transistor receive the state output signal via their common gate. 4. The semiconductor memory device of claim 3, wherein the source voltage has a level of the ground voltage. 5. The semiconductor memory device of claim 3, further comprising: a source M control unit for providing the source voltage, wherein the source of the electric gate is aligned with the operation of the semiconductor memory device a mode in which the source voltage control unit is level-shifted to produce the column-effect t-signal indicating the semiconductor memory device as claimed in π, wherein the element comprises: - for receiving a column of active signals and generating The level shifter of the active signal, the operating mode; and the choice of the Φ i for the source of the electric dust, the electric power to 4 冤靥, the early 兀, the source 麈 7. The active signal is determined. The semiconductor memory device of the item 6 of the month, the middle of the 广 广 广 赵 衣 衣 该 该 电压 电压 电压 电压 电压 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 a first transistor connected between the terminal of the source voltage and the terminal of the ground voltage and controlled by the active signal; and the terminal connected to the source voltage and one of the reverse bias A second transistor between the terminals and controlled by a signal in the opposite phase. 8. The semiconductor memory device of claim 7, wherein the first transistor is turned on to provide the ground to the terminal of the source voltage when the signal is in the mode. 9. The semiconductor memory device of claim 8, wherein when the signal is in the active mode, the second transistor is turned on to provide the reverse bias to the terminal of the source voltage . 10. The semiconductor memory device of claim 7, further comprising: a reverse bias generator comprising: a voltage tilting unit for receiving the reverse bias and based on a reference reverse bias And detecting a voltage level of the reverse bias, thereby outputting an enable signal; and an electric dust generating unit for the reverse bias of the production line and outputting the reverse bias to the source voltage control The unit, the voltage level of the reverse bias is adjusted back to the enable signal. The semiconductor memory device of claim 7, wherein the voltage selection unit further comprises: a first capacitor, which is a parasitic capacitor existing between the terminal of the reverse bias and the terminal of the ground voltage And 114725.doc 1310187 a second capacitor, a double helmet exists between the terminal of the source voltage and the terminal of the ground voltage" wherein one of the first capacitors is larger than the second capacitor The capacitor 13 is π. The semiconductor memory of the request item η is set, wherein the capacitance of the first capacitor number is greater than the capacitance of the second capacitor by several hundred to several thousand times. A semiconductor memory device comprising: φ a plurality of memory groups, each of the plurality of memory groups comprising: a memory cell matrix having a plurality of memory cells; - a lamp decoding early element having a code for responding to row address information containing the memory cells And selectively driving a plurality of row decoders of the memory cells, wherein each of the row decoders comprises: - a back should be equal to the code signal provided - in - power supply a pre-drive unit that outputs a signal with a source voltage transition, and a signal output signal that outputs a row of select signals to activate a drive unit corresponding to one of the memory cells, wherein the pre-drive unit And each of the driving units includes at least one PMOS transistor and at least a __NM〇s transistor, and the transistors respectively receive a pumping voltage and a reverse bias via the main body thereof, and the pumping voltage has a high voltage a voltage level at a voltage level of the power supply voltage, wherein the reverse bias voltage has a voltage level level lower than a ground voltage; and a source voltage is provided to the plurality of memory groups The source voltage control unit, the voltage level of the source voltage changes according to the operation of the memory group 114725.doc 1310187 volts rf 〇疋 。 14 · · · · · · · · · · · · · · 半导体 半导体 半导体 半导体 半导体 半导体 半导体a terminal of the power supply voltage and a first PMOS transistor of a first-out node, the state output signal is output through the one-node node; and the first output is connected in series to the first output section a plurality of NMOS transistors between the source voltage and the ^Q, wherein the first PMOS transistor and the first of the NM〇S transistors have a correspondence with a common gate A control signal for the information of the memory group, and the remaining NM 〇s transistors respectively pass the code signals via their gates. 15. The semiconductor memory device of claim 14, wherein the driving unit comprises: a connection to the power supply voltage a second PMOS transistor between the terminal and a second output node, the row selection signal is outputted through the second output node; and is connected between the second output node of the shai and one of the ground voltage terminals NMOS transistor, β wherein the second PMOS transistor and the NM 〇s transistor receive the state turn-out signal via their common gate. 6. The semiconductor memory device of claim 13, wherein the source voltage control unit comprises: logic closed 'which is used to AND the signals in the column action indicating the respective modes of operation of the memory groups, respectively (and Operation; 114725.doc 1310187 - "offset" which is used to level shift the output signal of the logic (4) to produce an active signal; and - to provide the source to a corresponding memory bank Voltage selection list of voltage: 'The voltage level of the source voltage is returned to the active signal. The semiconductor memory device of claim 16, wherein the voltage selection unit has: An inverter in which the signal is inverted; a first transistor connected between the terminal of the source voltage and the terminal of the ground voltage and controlled by the active signal; and / is connected to the source a second transistor between the terminal of the pole voltage and one of the terminals of the reverse bias and controlled by an inactive signal. 18. The semiconductor memory device of claim 17, wherein in the column function Signal indication - standby In the formula, the first transistor is turned on to provide the ground voltage to the terminal of the source voltage. 19. The semiconductor memory device of claim 18, wherein when the signal indicates the active mode in the column action The second transistor is turned on to provide the reverse bias to the terminal of the source voltage. 20. The semiconductor memory device of claim 17, further comprising: a reverse bias generator The method includes: a voltage detecting unit configured to receive the reverse bias voltage and detect a voltage level of the reverse bias based on a reference reverse bias, and output an enable signal; and The voltage is generated early, which is used to generate the reverse bias and rotates the counter 114725.doc 1310187 to the source voltage control unit, and the voltage level of the reverse bias is back to the enable signal 21. The semiconductor memory device of claim 17, wherein the voltage selection unit further comprises: a first capacitor between the terminal of the reverse bias and the terminal of the ground voltage Parasitic capacitance And a first capacitor, which is a parasitic capacitor between the terminal of the source voltage and the terminal of the ground voltage, wherein a capacitance of one of the first capacitors is greater than a capacitance of the second capacitor. The semiconductor memory device of claim 21, wherein the capacitance of the first capacitor is greater than a capacitance of the second capacitor by hundreds to thousands of times. 23. A semiconductor memory device comprising: a plurality of memory banks Each of the plurality of memory groups includes: a memory cell matrix having a plurality of memory cells; and a row of decoding units having a code signal for responding to information of the row address of the memory cells and being selectively Generating a plurality of row decoders of the memory cells, wherein each of the row decoders comprises: a state for returning an equal code signal to provide a transition between a supply voltage and a source voltage a pre-drive unit that rotates a signal; and a drive unit that outputs a line of selection signals for responding to the status output signal to activate one of the memory cells, Each of the pre-drive unit and the drive unit includes at least 114725.doc 1310187 a PMOS transistor and at least one NM〇s transistor for receiving a pump voltage and a reverse via their bodies, respectively. a bias voltage, the pump voltage having a voltage level higher than a voltage level of the power voltage, and the reverse bias having a voltage level lower than a voltage level of a ground voltage; The plurality of memory groups provide a plurality of source voltage control units corresponding to the source voltages, and the voltage levels of the source voltages vary depending on the operation modes of the φ s groups. The semiconductor memory device of claim 23, wherein the pre-drive unit comprises: a first PMOS transistor connected between a terminal of the power supply voltage and a first output node, wherein the state is rotated by the signal a first round of the output node; and a plurality of NM0S transistors connected in series between the first output node and one of the source voltage terminals, wherein the first PM0S transistor and the NM0S transistor are The information is controlled by a corresponding memory group coupled to its common gate = control 彳5唬, and the remaining NMOS transistors receive the weight signals via their gates, respectively. The conductor memory device of claim 24, wherein the driving unit comprises: a second PMOS transistor connected between the terminal of the power supply voltage and 3 of a second output node, the row selection The signal is rotated through the first point; and the NMOS transistor connected to the second output node and the terminal of the ground voltage 114725.doc 1310187, wherein the first: PMOS transistor and the NMOS transistor are Its common gate receives the status output signal. 26. The semiconductor memory device of claim 23, wherein each of said source voltage control early elements comprises: - a level shifter for receiving a column of active signals and for level shifting thereof Generating an active signal, wherein the column active signal indicates an operation mode of the corresponding suffix group; and a voltage selection unit for supplying the corresponding source voltage to the corresponding memory group, the source voltage The voltage level is determined by returning to the active signal. The semiconductor memory device of claim 26, wherein the voltage selection unit has: an inverter for inverting the active signal; a terminal connected to the source voltage and the ground voltage a first transistor between the terminals and controlled by the active signal; and a signal connected between the terminal of the source voltage and one of the terminals of the reverse bias and controlled by a reverse phase active signal The second transistor. 28. The semiconductor memory device of claim 27, wherein when the signal in the column indicates a no-standby mode, the first transistor is turned on to provide the ground voltage to the terminal of the source voltage. The semiconductor memory device of claim 28, wherein, in the column function, the second transistor is turned on to raise (4) reverse bias to the source device Cough the terminal. The semiconductor memory device of claim 27, further comprising: a reverse bias generator comprising: a voltage extraction unit for receiving the reverse bias and based on a Detecting a voltage level of the reverse bias voltage with reference to a reverse bias voltage, thereby outputting an enable signal; and a voltage generating unit for generating the reverse bias voltage and outputting the reverse bias voltage to the The source voltage control unit, the voltage level of the reverse bias is adjusted to be enabled by the enable signal. The semiconductor memory device of claim 27, wherein the voltage selection unit further comprises: a second valley device, wherein the parasitic capacitor is present between the terminal of the reverse bias and the terminal of the ground voltage And the first electric thief, which is a parasitic capacitor existing between the terminal of the source and the ground voltage, the ... 其中該第一電容器之 容。 電容大於該第二電容器之電 32. 如請求項31之半導體記憶體裝置,其中該第1容器之 該電容大於該第二電容器之電容達數百至數千倍。° 114725.docWherein the capacity of the first capacitor. The capacitor is larger than the power of the second capacitor. The semiconductor memory device of claim 31, wherein the capacitance of the first container is greater than the capacitance of the second capacitor by hundreds to thousands of times. ° 114725.doc
TW095136301A 2005-09-29 2006-09-29 Semiconductor memory device TWI310187B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20050090969 2005-09-29
KR1020050124565A KR100727441B1 (en) 2005-09-29 2005-12-16 Column decoder

Publications (2)

Publication Number Publication Date
TW200721168A TW200721168A (en) 2007-06-01
TWI310187B true TWI310187B (en) 2009-05-21

Family

ID=37959248

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095136301A TWI310187B (en) 2005-09-29 2006-09-29 Semiconductor memory device

Country Status (3)

Country Link
KR (1) KR100727441B1 (en)
CN (1) CN100552816C (en)
TW (1) TWI310187B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101974371B1 (en) * 2012-12-21 2019-05-02 에스케이하이닉스 주식회사 Driver of semiconductor memory device
CN110391808B (en) * 2018-04-19 2022-11-15 瑞昱半导体股份有限公司 Buffer circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3827418B2 (en) * 1996-08-23 2006-09-27 フリースケール セミコンダクター インコーポレイテッド Control gate driver circuit for non-volatile memory and memory using the same
KR100341249B1 (en) * 1999-12-30 2002-06-22 박종섭 Word line driver

Also Published As

Publication number Publication date
KR20070036558A (en) 2007-04-03
KR100727441B1 (en) 2007-06-13
TW200721168A (en) 2007-06-01
CN100552816C (en) 2009-10-21
CN1941186A (en) 2007-04-04

Similar Documents

Publication Publication Date Title
JP3645593B2 (en) Semiconductor integrated circuit device
JP3704188B2 (en) Semiconductor memory device
JP5331460B2 (en) Memory device and method of operating the memory device
US5546346A (en) Semiconductor memory device
US8509004B2 (en) Nonvolatile logic circuit, integrated circuit including the nonvolatile logic circuit, and method of operating the integrated circuit
US7701783B2 (en) Semiconductor storage device
TW201430842A (en) SRAM voltage assist
US8072823B2 (en) Semiconductor memory device
US7567114B2 (en) Semiconductor device having two fuses in parallel
JP2008210443A (en) Semiconductor memory device
JP2596685B2 (en) Memory device
JP5021262B2 (en) Semiconductor memory device
TWI310187B (en) Semiconductor memory device
JP2004054547A (en) Bus interface circuit and receiver circuit
JP4674305B2 (en) Data bus charge sharing technology for integrated circuit devices
US7279955B2 (en) Reference voltage generating circuit
US9509297B2 (en) Switching circuit for controlling current responsive to supply voltage values
TW202008362A (en) Power supply control
WO2012153517A1 (en) Semiconductor integrated circuit
US8988921B2 (en) Boosting word lines
TW502430B (en) Fuse latch having multiplexers with reduced sizes and lower consumption
JP2011096296A (en) Semiconductor memory device
JP2013004668A (en) Semiconductor device and determination method
US8242835B2 (en) Semiconductor integrated circuit
CN108806743B (en) Semiconductor device