TWI309694B - Grid-connected wind generation system and its maximum-power-extraction control method - Google Patents

Grid-connected wind generation system and its maximum-power-extraction control method Download PDF

Info

Publication number
TWI309694B
TWI309694B TW095119547A TW95119547A TWI309694B TW I309694 B TWI309694 B TW I309694B TW 095119547 A TW095119547 A TW 095119547A TW 95119547 A TW95119547 A TW 95119547A TW I309694 B TWI309694 B TW I309694B
Authority
TW
Taiwan
Prior art keywords
grid
power
maximum power
current
control
Prior art date
Application number
TW095119547A
Other languages
Chinese (zh)
Other versions
TW200801328A (en
Inventor
Rong Jong Wai
Chung You Lin
Original Assignee
Univ Yuan Ze
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Yuan Ze filed Critical Univ Yuan Ze
Priority to TW095119547A priority Critical patent/TWI309694B/en
Publication of TW200801328A publication Critical patent/TW200801328A/en
Application granted granted Critical
Publication of TWI309694B publication Critical patent/TWI309694B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

1309694 九、發明說明: 【發明所屬之技術領域】 本發明所涉及之技術領域包含自動控制、電力電子、 直流/交流變流技術及能源科技之範疇,雖然所牽涉之技術 領域廣泛,但本發明主要是應用風力發電於市電併聯^ 統,並改善現今最大功率擷取控制之技術。 ” • 【先前技術】 雖然科技的進步為人類的生活帶來許多的便利,但f 時也衍生出許多的問題,隨著石化燃料存量減少、 格的飆m、能源危機意識山屈起、環保意識抬頭、京都議焚 書的規範’除了減少現有能源使用的浪費外,新能源的辟 發更是刻不容緩。-般新能源對環境的衝擊不大,里所道 成之空氣、水或廢棄物等污染行為較不顯著,更重要的β #此種能源開發更可重複使用,具有永續發展的特性,再: «(R_ableEnergy)為新能源中較受到重視的,包含太 陽能、風力、生質能、地埶、涘 …、海年此及非抽畜水力等可永 、’、貝利用的能源。此外,預估至西元2 ^ is. V 0年妗,全世界風力 表電將提供百分之十二的雷力兩 … w力而求Π];就台灣地區而言, 远民國92年止’發電容量合計 〇 有8,540仟瓦[2],可見現 今風力發電系統正在蓬勃地發 展田f。風力發電備受重視- 1309694 的原因,主要包括(1)技術開發已臻成熟、(2)可減少污染排 放、(3)政府提供財務誘因以及(4)建廠時間短;但風力發電 亦存在初期投資成本高以及風力供給不穩定之缺點。 使用風力發電系統,最大功率擷取控制方法 (Maximum-Power-Extraction Algorithm, MPEA)為其不可或 缺之核心技術,目前許多國内外專家學者投入風力發電最 大功率擷取之研究,其主要可區分為下列三種控制方式: • 第一種為翼端速度比(Tip-Speed Ratio)控制,利用實際風速 計算出風力發電機所需操作之最佳轉速,進而控制轉速以 達成最佳的翼端速度比與最大功率擷取,但其主要缺點是 成本回昂,需要裝設風速計以及發電機轉速計;第二種是 功率訊號迴授控制,需要預先建立最大功率曲線以提供最 大功率追隨目標,此作法屬於離線測量方式,實際操作時 存在^度不確定性;第三種是遞增搜尋最大功率控制,利 鲁 輯判斷使操作點往最大功率遞增,此作法搜尋時間 耗時,無法即時掌握最大功率點[3]。 ^ 方面,根據最新研究報告指出,使用可變轉速控 :::提供比傳統定電壓控制的方式,擷取之風力發電功 者出9、11%[4],但其最大功率曲線必須先經由適當的 因此:中獲得’然而此作法於實際應用上困難度倍增。 1^處理器紀錄風力發電系統之最大功率曲線為 8 1309694 其解決方法之一m,策集最大功率操作點並更新其儲存資 料,可製成最大功率曲線’提㈣統輸出功㈣循之目標, 然而,其應用於實際風力發電能源轉換系統當中,風速變 化甚快情況之下,在E集最大功率操作點所需時間過長, 且叮此健存到暫態時之負料而非最大功率點,無法於真實 % *兄中獲得較佳性能。 本發明之最大功率擷取控制方法基於上述之第三種控 參 制方式—遞增搜尋最大功率控制,並弓丨入最大功率轉速變化 (Maximum-Power Differential Speed,MPDS)控制,節省功 率遞增至最大功率點之搜尋時間,在風速上升或下降等迅 速變化之風力條件下’即時達成最大功率擷取之目的,且 本發明之最大功率擷取控制方式屬於可變轉速控制之方 法,可比傳統定電壓控制方式提高所擷取之功率。綜合以 上所述,本發明提出之控制方法優點主要為:第一點,減 φ 少使用風速計以及發電機轉速計’降低系統成本;第二點, 在大於最低起動風速,低於最高截止風速之間,風速變化 情況之下,均能即時達成風力發電最大功率擷取,能夠即 時對風速改變調整其最大輸出功率;综合以上兩點,解決 現今風力發電能源擷取系統之缺點’可應用於實際風力發 電電源轉換系統中’此為本發明之控制方法創新前瞻之處。 為使風力發電系統得以穩定的供電及單位功率因數 1309694 • 分控制器因結構簡單,易於設計且費用低,所以在工業界 已被廣泛使用,但對於具有不確定動態之系統,比例積分 微分控制器卻不能提供完善的性能。計算轉矩控制是利: 肩除非線性方程式中的某些或全部的非線性項以得到其線 (Unity Power Factor)併網,本發明以微處理器針對變流琴 輸出電流加以控制,一般解決控制問題時,常常遭遇參數 變化與各種不確定性的情況,在控制領域中有著各式各樣 的控制理論,例如比例、積分以及微分 (Proportional-Integral-Derivative,PID)控制[5] ’ 或是使用複 雜方程式的現代控制理論如計算轉矩控制(c〇mputed Torque Control),都是為了於系統參數變動與各種外來的干 擾下可使系統的行為合乎設計的要求。比例、積分以及微1309694 IX. Description of the Invention: [Technical Field] The present invention relates to the field of automatic control, power electronics, DC/AC converter technology, and energy technology, although the technical field involved is extensive, but the present invention It is mainly applied to wind power generation in parallel with the mains, and to improve the technology of the current maximum power capture control. • [Prior Art] Although the advancement of technology has brought many conveniences to human life, many problems have arisen from f, with the reduction of fossil fuel stocks, the ambiguity of energy, the awareness of energy crisis, and environmental protection. In addition to reducing the waste of existing energy use, the development of new energy sources is even more urgent. The new energy has little impact on the environment, and the air, water or waste pollution is in the air. The behavior is less significant, and the more important β# energy development is more reusable and has the characteristics of sustainable development. Then: «(R_ableEnergy) is more important in new energy, including solar energy, wind power, biomass energy, The mantle, the scorpion...the sea year and the non-pigmenting water power, etc. can be used forever, ', and the energy used by the shell. In addition, it is estimated that to the west 2 ^ is. V 0 years, the world's wind power will provide 100% In the case of Taiwan, the power generation capacity of the Republic of China was 92,400 watts [2]. It can be seen that wind power systems are booming today. wind power The reasons for the emphasis - 1309694 mainly include (1) mature technology development, (2) reduced pollution emissions, (3) financial incentives provided by the government, and (4) short construction time; but wind power also has initial investment costs. High and unstable wind supply. Using the wind power system, the Maximum-Power-Extraction Algorithm (MPEA) is an indispensable core technology. At present, many domestic and foreign experts and scholars invest in the maximum power of wind power. The research can be divided into the following three control modes: • The first is the Tip-Speed Ratio control, which uses the actual wind speed to calculate the optimal speed required for the wind turbine to operate. The speed is used to achieve the optimal wing speed ratio and maximum power, but the main disadvantage is that the cost is high, and the anemometer and the generator tachometer are required. The second is the power signal feedback control, which needs to be established in advance. The power curve is to provide the maximum power to follow the target. This method belongs to the offline measurement mode, and there is uncertainty in the actual operation; The three are incremental search for maximum power control, and the Lilu series judges that the operating point is incremented to the maximum power. This method takes time to search and cannot grasp the maximum power point [3]. In terms of the latest research report, the variable speed is used. Control::: Provides a way to control the voltage compared to the traditional fixed voltage, 9:11% of the wind power generation [4], but its maximum power curve must first be obtained through the appropriate:: However, this practice is applied in practice. The difficulty is doubled. 1^ The processor records the maximum power curve of the wind power system as 8 1309694. One of the solutions is m, the maximum power operation point is set and the stored data is updated, and the maximum power curve can be made. Gong (4) follows the goal, however, it is applied to the actual wind power energy conversion system. Under the condition that the wind speed changes very quickly, the time required for the maximum power operation point of the E set is too long, and the time is saved to the transient state. Negative material, not the maximum power point, can't get better performance in the real % * brother. The maximum power capture control method of the present invention is based on the third control method described above—incrementally searching for the maximum power control, and cutting into the Maximum-Power Differential Speed (MPDS) control to save power to the maximum. The search time of the power point is the purpose of instantaneously achieving the maximum power extraction under the rapidly changing wind conditions such as the rising or falling wind speed, and the maximum power extraction control method of the present invention belongs to the method of variable speed control, which is comparable to the conventional constant voltage. The control method increases the power drawn. In summary, the advantages of the control method proposed by the present invention are mainly as follows: first point, reduce φ, use anemometer and generator tachometer to reduce system cost; second point, above maximum starting wind speed, lower than maximum cutoff wind speed Between the wind speed changes, the maximum power draw of wind power can be instantly realized, and the maximum output power can be adjusted instantly to change the wind speed; combining the above two points to solve the shortcomings of the current wind power energy extraction system can be applied In the actual wind power conversion system, this is the innovation prospect of the control method of the invention. In order to make the wind power system stable power supply and unit power factor 1309694 • The sub-controller has been widely used in the industry because of its simple structure, easy design and low cost, but for systems with uncertain dynamics, proportional integral derivative control But it does not provide perfect performance. Computational torque control is beneficial: shoulders, except for some or all of the nonlinear terms in the linear equation to obtain the unity power factor, the present invention uses a microprocessor to control the output current of the variable flow, generally solving When controlling problems, they often encounter parameter changes and various uncertainties. There are various control theories in the control field, such as Proportional-Integral-Derivative (PID) control [5] ' or Modern control theory using complex equations, such as calculated torque control (c〇mputed Torque Control), is designed to make the behavior of the system conform to the design requirements of system parameters and various external disturbances. Proportion, points and micro

性化方程式 迴路控制特性。 非線! 生動態所發展之理論,其缺點是在時垃中缺mSexualized equations Loop control characteristics. Non-line! The theory developed by the development of life, the shortcoming is the lack of m in the time

1309694 適應性演算法[11]以求減少控制力顫抖現象,本發明即採用 此法應用於全橋式變流器之電流控制上,以期達成單位功 因併網之效果。 備註:參考文獻 [1] P. Fairley, ^Steady as she blows;5 IEEE Spectrum, vol. 40, no. 8, pp. 35-39, 2003.1309694 Adaptive algorithm [11] in order to reduce the control tremor phenomenon, the invention is applied to the current control of the full-bridge converter, in order to achieve the effect of grid connection of unit power. Remarks: References [1] P. Fairley, ^Steady as she blows; 5 IEEE Spectrum, vol. 40, no. 8, pp. 35-39, 2003.

[2] 陳文樹,再生能源,經濟部能源局能源報導,2004年7月號。 [3] K. Tan and S. Islam, ^Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors,^ IEEE Trans. Energy Conversion, vol. 19, pp. 392-399, 2004. ’[2] Chen Wenshu, Renewable Energy, Energy Bureau of the Ministry of Economics, Energy Report, July 2004 issue. [3] K. Tan and S. Islam, ^Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors, ^ IEEE Trans. Energy Conversion, vol. 19, pp. 392-399, 2004.

[4] Q. Wang and L. Chang, wAn intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems,IEEE Trans. Energy Conversion,, vol. 19, pp. 1242-1249, 2004.[4] Q. Wang and L. Chang, wAn intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems, IEEE Trans. Energy Conversion,, vol. 19, pp. 1242-1249, 2004.

[5] K. J. Astrom and T. Hagglund, PID Controller: Theory, Design, and Tuning. Research Triangle Park, NC: ISA, 1995.[5] K. J. Astrom and T. Hagglund, PID Controller: Theory, Design, and Tuning. Research Triangle Park, NC: ISA, 1995.

[6] J. C. Hung, “Total invariant VSC for linear and nonlinear systems/5 A seminar given at Harbin Institute of Technology, Harbin, China, Dec. 1996; Hunan University Changsha, China,[6] J. C. Hung, “Total invariant VSC for linear and nonlinear systems/5 A seminar given at Harbin Institute of Technology, Harbin, China, Dec. 1996; Hunan University Changsha, China,

Dec. 1996. 11 1309694 [7] Κ. Κ. Shyu and J. C. Hung, 'Totally invariant variable structure control systems,IEEE Conf. Ind. Electron. Contr. Instrument., vol.3,pp. 1119-1123,1997.Dec. 1996. 11 1309694 [7] Κ. Κ. Shyu and J. C. Hung, 'Totally invariant variable structure control systems, IEEE Conf. Ind. Electron. Contr. Instrument., vol. 3, pp. 1119-1123, 1997.

[8] Κ. K. Shyu, J. Y. Hung, and J. C. Hung, 'Total sliding mode trajectory control of robotic manipulators,M IEEE Conf. Ind. Electron. Contr. Instrument.,\o\. 3,pp. 1062—1066, 1999.[8] Κ. K. Shyu, JY Hung, and JC Hung, 'Total sliding mode trajectory control of robotic manipulators, M IEEE Conf. Ind. Electron. Contr. Instrument.,\o\. 3, pp. 1062-1066 , 1999.

[9] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood[9] J. J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood

Cliffs, NJ: Prentice-Hall, 1991.Cliffs, NJ: Prentice-Hall, 1991.

[10] K. J. Astrom and B. Wittenmark, Adaptive Control. New York: Addison-Wesley, 1995.[10] K. J. Astrom and B. Wittenmark, Adaptive Control. New York: Addison-Wesley, 1995.

[11] R. J. Wai and Κ. M. Lin, “Robust decoupled control of direct field-oriented induction motor drive,IEEE Trans. Ind. Electron., vol.52, no. 3, pp. 837-854, 2005.[11] R. J. Wai and Κ. M. Lin, “Robust decoupled control of direct field-driven induction motor drive, IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 837-854, 2005.

[12] S. Morimoto, H. Nakayama, M. Sanada, and Y. Takeda, uSensorless output maximization control for variable-speed wind generation system using IPMSG,55 IEEE Trans. Industry Applications, vol. 41, pp. 60-67, 2005.[12] S. Morimoto, H. Nakayama, M. Sanada, and Y. Takeda, uSensorless output maximization control for variable-speed wind generation system using IPMSG, 55 IEEE Trans. Industry Applications, vol. 41, pp. 60-67 , 2005.

[13] A. M· Knight and G. E. Peters,“Simple wind energy controller for an expanded operating range/5 IEEE Trans. Energy Conversion, vol. 20, pp. 459-466, 2005.[13] A. M. Knight and G. E. Peters, “Simple wind energy controller for an expanded operating range/5 IEEE Trans. Energy Conversion, vol. 20, pp. 459-466, 2005.

[14] B. K. Bose, Power Electronics and AC Drives. New Jersey: 12 1309694[14] B. K. Bose, Power Electronics and AC Drives. New Jersey: 12 1309694

Prentice Hall, 1986.Prentice Hall, 1986.

[15] R. J. Wai, C. M. Lin, and G. F. Hsu, ''Adaptive fuzzy sliding-mode control for electrical servo Fuzzy Sets and[15] R. J. Wai, C. M. Lin, and G. F. Hsu, ''Adaptive fuzzy sliding-mode control for electrical servo Fuzzy Sets and

Systems, vol. 143, pp. 295-310, 2004. 【發明内容】 本發明所揭示併網型風力發電系統及其最大功率擷取 ❿ 控制方法整體架構,如圖1所示,系統中包含風機葉片 101、永磁同步發電機102、整流器1〇3、濾波器1〇4、全 橋式變流器1〇5、變壓器106、市電107以及系統控制單元 108,其中系統控制單元1〇8為頻率偵測器1〇9、最大功率 擷取控制器110、相位偵測器111、變流器之電流控制器U2 以及驅動電路113所組成。本發明所提出之最大功率擷取 控制方法是利用最大功率擷取控制器11〇所計算出的併網 電流峰值命令來調節輸出功率,間接控制發電機轉 籲速,在風速變化情況之下使系統維持操作於最大功率點。 對風力發電系統而言,擷取風能之機構為風機葉片 101,首先定義風機葉片之翼端速度比γ如下: γ V ⑴ 其中r(m)、%(rad/s)以及v(m/s)分別表示風機葉片之半徑、 發電機轉軸之轉速以及風速。此外,風力發電之功率係數 -為翼端速度比之函數cy=/g(r),不同之風力機組具有不同功 13 1309694 率係數與翼端速度比之對應關係,本發明所使用風力發電 系統之功率係數如圖2所示,當翼端速度比為;/=5.09時, 此時功率係數發生最大值為(^=0.42,根據數值近似(Curve Fitting)之方法,兩者之對應關係本文以下列近似函數[12] 來表示: J(1.12/-2.8)exp(-0.38^), />2.5 C,1 0 ,γ<1.5 (2)Systems, vol. 143, pp. 295-310, 2004. [Invention] The overall architecture of the grid-connected wind power generation system and its maximum power capture control method disclosed in the present invention is as shown in FIG. The blade 101, the permanent magnet synchronous generator 102, the rectifier 1〇3, the filter 1〇4, the full bridge converter 1〇5, the transformer 106, the mains 107, and the system control unit 108, wherein the system control unit 1〇8 is The frequency detector 1〇9, the maximum power capture controller 110, the phase detector 111, the current controller U2 of the converter, and the drive circuit 113 are composed. The maximum power extraction control method proposed by the invention utilizes the grid-connected current peak command calculated by the maximum power capture controller 11〇 to adjust the output power, indirectly controls the generator speed, and makes the wind speed change The system remains operating at the maximum power point. For wind power generation systems, the wind energy extraction mechanism is the fan blade 101. First, the wing end speed ratio γ of the fan blade is defined as follows: γ V (1) where r(m), %(rad/s), and v(m/ s) respectively indicates the radius of the fan blade, the rotational speed of the generator shaft, and the wind speed. In addition, the power factor of wind power generation is a function of the wing end speed ratio cy=/g(r), and different wind turbines have different work 13 1309694 rate coefficient and wing end speed ratio correspondence, and the wind power generation system used in the present invention The power coefficient is shown in Figure 2. When the wing end speed ratio is /=5.09, the maximum power factor occurrence is (^=0.42, according to the method of numerical fitting (Curve Fitting), the correspondence between the two It is represented by the following approximate function [12]: J(1.12/-2.8)exp(-0.38^), />2.5 C,1 0 ,γ<1.5 (2)

其中exp(·)代表指數函數。發電機所產生之機械功率尸;„(w) 正比於空氣密度p(kg/m3)、葉片旋轉面積j(m2)、功率係數 以及風速的立方,機械功率可表示為:Where exp(·) represents an exponential function. The mechanical power generated by the generator; „(w) is proportional to the air density p(kg/m3), the blade rotation area j(m2), the power factor and the cube of the wind speed. The mechanical power can be expressed as:

Pm=Q.5PAC〆 (3) 本發明所提出之最大功率擷取控制方法屬於可變電壓 控制/可改變風力發電機轉速致使翼端速度比約維持在 严5.09,此時即可產生最大的功率擷取,有效率地利用風 力資源。 以下接著對永磁同步發電機動態特性加以分析,風力 機之機械轉矩rw(Nm)以及電氣轉矩re(Nm),可分別表示如 下: T — Pm Lm - (4) Te=^ (5) 其中_Pe(w)為風力發電系統輸出之電氣功率 、<ye(rad/s)為電 氣角頻率,電氣角頻.率可再表示為: 弋二(尸/2)1 (6) 14 1309694 其中p為發電機定子繞組之極數。由於發電機電氣角頻率 队與發電機轉軸之轉速呈式(6)之線性關係,利用如圖1 所示之頻率偵測器109量測永磁同步發電機第一端輸出電 壓&及永磁同步發電機第二端輸出電壓A之相對電壓訊 號,由於永磁同步發電機102之轉速與其發電電壓同步之 關係,可以不需機械式轉速計輕易反求獲得坤《,以發電機 轉速作為最大功率擷取控制器之輸入訊號,調節全橋式變 流器之輸出功率,可達成無感測器控制之優點。此外,考 # 慮定子繞組為多極數之永磁同步發電機,其機械方程式可 表不為:Pm=Q.5PAC〆(3) The maximum power extraction control method proposed by the present invention belongs to variable voltage control/changeable wind turbine speed, so that the wing end speed ratio is maintained at about 5.09, and the maximum is generated at this time. Power extraction, efficient use of wind resources. Next, the dynamic characteristics of the permanent magnet synchronous generator are analyzed. The mechanical torque rw(Nm) and the electrical torque re(Nm) of the wind turbine can be expressed as follows: T — Pm Lm - (4) Te=^ (5 Where _Pe(w) is the electrical power output by the wind power system, <ye(rad/s) is the electrical angular frequency, and the electrical angular frequency can be expressed as: 弋二(尸/2)1 (6) 14 1309694 where p is the number of poles of the stator winding of the generator. Since the electrical angle frequency of the generator and the rotational speed of the generator shaft are linear (6), the frequency detector 109 shown in FIG. 1 is used to measure the output voltage of the first end of the permanent magnet synchronous generator & The relative voltage signal of the output voltage A of the second end of the magnetic synchronous generator, due to the relationship between the rotational speed of the permanent magnet synchronous generator 102 and its power generation voltage, can be easily obtained by the mechanical tachometer without the need of a mechanical tachometer. The maximum power draws the input signal of the controller and adjusts the output power of the full-bridge converter to achieve the advantages of sensorless control. In addition, consider that the stator winding is a multi-pole permanent magnet synchronous generator, and its mechanical equation can be expressed as:

Tm~iTe —Βω„ 或Tm~iTe —Βω„ or

(7)

其中《/(Nm/Oad/s2))為發電機轉子慣量,5(Nm/(rad/s))為發 電機摩擦係數。永磁同步發電機102所產生之轉矩減去電 氣轉矩及發電機摩擦轉矩之差額,提供風力機轉速提高或 下降所需要之轉矩,利用此方程式之特性,調整全橋式變 流器輸出功率,間接控制電氣轉矩以控制轉速達成翼端速 度比維持在严5.09,達成最大功率操取目的。 永磁同步發電機102所發出之交流電能,經整流器1〇3 整流後擷取出直流電源,再經過濾波器104後,供應後級 全橋式變流器105使用,整流器103包含有一功率半導體 元件所組成具交流/直流電能轉換功能之整流裝置及一整 流器電容,其整流裝置泛指習用由功率半導體開關所組 成之主動整流器或習用由二極體橋接形成之被動整流器, 15Where /(Nm/Oad/s2) is the generator rotor inertia and 5 (Nm/(rad/s)) is the generator friction coefficient. The torque generated by the permanent magnet synchronous generator 102 minus the difference between the electric torque and the friction torque of the generator, and the torque required to increase or decrease the speed of the wind turbine, and the characteristics of the equation are used to adjust the full bridge converter. The output power of the device, indirectly controlling the electrical torque to control the speed to achieve the wing end speed ratio is maintained at 5.09, achieving maximum power operation. The AC power generated by the permanent magnet synchronous generator 102 is rectified by the rectifier 1〇3, and then the DC power source is taken out, and after passing through the filter 104, the post-stage full-bridge converter 105 is used, and the rectifier 103 includes a power semiconductor component. The rectifier device and the rectifier capacitor having the AC/DC power conversion function are generally referred to as an active rectifier composed of a power semiconductor switch or a passive rectifier formed by a diode bridge.

1309694 而整流器電容cr則用以濾除整流後低頻電壓漣波,滤波器 104為濾波器電感Zy及濾波器電容所組成,用以滤除後 級全橋式變流器105中,功率半導體開關切換所造成之高 頻電流漣波及兩倍頻於市電電壓之電壓漣波,由於電能為 串接型式’以及整流器103與濾波器104之功能,可將風 力發電系統輸出之電氣功率表示成直流電壓及直流電流之 乘積如下: 弋(8) 其中vr(V)及((A)分別表示整流器輸出電壓及整流器輸出 電流。 後級全橋式變流器105為四個功率半導體開關及全橋 式變流器電感总所組成,以正弦脈波寬度調變(Sinusoidal Pulse-Width-Modulation,SPWM)技術中的單極性'(Unipolar) 電壓切換方式控制併網電流^(Arms),藉由變流器之驅動電 路113對全橋式變流器105的四個功率半導體開關進行調 變,為方便分析及簡化狀態空間方程式的推導,本文假設 (1)全橋式變流器電感4之等效内阻很小,故於此忽略不 計;(2)假設功率開關為理想元件,開關之導通損失及切換 損失為零;(3)忽略開關導通與截止之反應延遲時間;(4) 開關切換頻率遠大於系統的自然頻率’故於一開關切換周 期内可將控制訊號及輸入/輸出電壓視為定值。因此全橋式 變流器平均模型(Average Model)可簡化表示如下:1309694, the rectifier capacitor cr is used to filter the rectified low-frequency voltage chopping, and the filter 104 is composed of a filter inductor Zy and a filter capacitor for filtering the rear-stage full-bridge converter 105, the power semiconductor switch The high-frequency current chopping caused by the switching and the voltage chopping twice the frequency of the mains voltage, since the electric energy is the serial type 'and the functions of the rectifier 103 and the filter 104, the electric power outputted by the wind power generation system can be expressed as a direct current voltage. The product of the DC current is as follows: 弋(8) where vr(V) and ((A) represent the rectifier output voltage and the rectifier output current respectively. The post-stage full-bridge converter 105 is four power semiconductor switches and full bridge The converter inductor is composed of a unipolar (unipolar) voltage switching method in the Sinusoidal Pulse-Width-Modulation (SPWM) technology to control the grid-connected current ^(Arms), by variable current The drive circuit 113 of the full-bridge converter 105 modulates the four power semiconductor switches of the full-bridge converter 105. To facilitate analysis and simplify the derivation of the state space equation, this paper assumes (1) full-bridge converter The equivalent internal resistance of sense 4 is small, so it is neglected; (2) assuming that the power switch is an ideal component, the conduction loss and switching loss of the switch are zero; (3) ignoring the reaction delay time of the switch on and off; 4) The switching frequency of the switch is much larger than the natural frequency of the system. Therefore, the control signal and the input/output voltage can be regarded as fixed values during a switching cycle. Therefore, the full-bridge converter model can be simplified as follows. :

~l<d<\ (9)~l<d<\ (9)

(12) 1309694 其中V;為濾波器輸出電壓,V。為併網電壓,vw為模擬負載 變化時之干擾,ί/為全橋式變流器之責任週期(Duty Cycle)。 於變流器之電流控制器112,本文使用適應性全域滑動 模式控制(Adaptive Total Sliding-Mode Control,ATSMC)來 達成單位功因併網及減少負載變化及外在干擾所造成影響 之目的。首先’定義輸出併網電流誤差(e)如下: e = i〇~l〇 (10) 其中i·。為併網電流命令’其可再表示為: h = \peak Sin(6i/) (u) 其中ω:2;τ/為市電107之電氣角頻率為市電1〇7之電氣頻 率。圖!之相位憤測器m用以偵測市電相㈣,並㈣⑽以 便於實現單位功因併網之目標。接著定義滑動平如 下: t ,(t) = e(t) - e(0) + a ^β{τ)άτ 其中e(〇)為併網電流誤差e⑺之初妗枯 σ值,or為一正值常數。 適應性全域滑動模式控制主要可分士 — 刀成二個部分:第一部份 是糸統性能規劃’此方式.主要在明被 獲得的系統效能’且將其歸屬為基礎j吊悲1^兄下期望 u,η . 、j 地 丞礎核型設計(Baseline(12) 1309694 where V; is the filter output voltage, V. For grid-connected voltage, vw is the interference when the analog load changes, and ί/ is the duty cycle of the full-bridge converter. For the current controller 112 of the converter, this paper uses Adaptive Total Sliding-Mode Control (ATSMC) to achieve the purpose of integrating the unit power into the network and reducing the impact of load changes and external interference. First, define the output grid-connected current error (e) as follows: e = i〇~l〇 (10) where i·. For the grid-connected current command', it can be further expressed as: h = \peak Sin(6i/) (u) where ω:2;τ/ is the electrical frequency of the commercial power 107 is the electrical frequency of the mains 1〇7. Figure! The phase anger detector m is used to detect the mains phase (4) and (4) (10) to facilitate the goal of grid integration of the unit. Then define the sliding flat as follows: t , (t) = e(t) - e(0) + a ^β{τ)άτ where e(〇) is the initial 妗σ value of the grid-connected current error e(7), or is one Positive constant. The adaptive global sliding mode control can be divided into two parts: the first part is the performance planning of the system. This method is mainly based on the system performance obtained in the Ming Dynasty and is attributed to it. Brother expects u, η . , j 丞 丞 core design (Baseline

Model Design) 4 ;第二部分是Model Design) 4; the second part is

Controller)元的建構,亦即消除產生來控制器(Curbmg 負載變化所引起之干擾電壓以及计於系統參數變化、 預測的擾亂效應,使其能完全地滿统動態之不可 效能;再者,第三部分為發展·:礎模型設計的系統 w性演算法則(Adaptive 17 1309694The construction of the Controller) element, that is, the generation of the controller (the interference voltage caused by the change of the Curbmg load and the disturbance effect of the system parameter change and prediction, so that it can completely be fully dynamic); The third part is development: the system w-performance algorithm of the basic model design (Adaptive 17 1309694)

Observation Design)^,對總集不確定量之上界進行估測, 以避免因約束控制器上界選取不當而造成的控制力顫抖現 象。假設方程式(9)所示之全橋式變流器採用適應性全域滑 動模式控制,控制器各部分設計如式(13)至式(15)所示,並 發展適應性演算法則如式(16)所示’則系統之穩定度將得 以被保證。 d ~ db+dc (13) ~ββ)ννι,η (Η) dc ~ - ~Lo nu(t)sgn(sg(t))/vi n (15) u{t) =Μ/λ (16) 其中sgn(.)為符號函數,|.|為絕對值函數,\及夕為正值常 一數,%及/^分別表示全橋式變流器電感尤。及濾波器輸出電 壓v,.之常態值。依據里亞普諾(Lyapunov)穩定理論[9,10]的 分析,變流器之電流控制器112輸出之全橋式變流器之責 任週期¢/設計如式(13),併網電流誤差e將會收斂至零,且 全橋式變流器105之穩定度將可被保證。 最大功率擷取控制器110用以產生併網電流峰值命令 控制風力發電系統輸出之電氣功率,間接控制電 氣轉矩以控制轉速達成翼端速度比維持在严5.09,達成最 大功率擷取目的。最大功率擷取控制器110之流程如圖3 所示,其中包含兩個控制法則,分別為最大功率誤差驅動 (Maximum-Power Error Driven,MPED)控制以及最大功率 轉速變化(Maximum-Power Differential Speed,MPDS)控 制,此控制流程之取樣時間為△&。 18 1309694 首先考慮最大功率誤差驅動控制,此控制器之輸出為 最大功率誤差驅動控制指標;定義併網型風力發電 系統之電氣功率變化為: ep(n) = Pe(n)-Pe(n-\) (17) 其中《為最大功率擷取控制器110之控制次數。根據式(17) 可計算電氣功率變化之正負符號户_,並利用前次最大功率 誤差驅動控制指標Fm^O-Ι)之正負符號,計算出此次 所提供的最大功率誤差驅動控制指標〇)如下: VMPED(n) = KPsignVsign (18) 其中A:為用以調整指標之長度。當輸出功率增加時,維持 上次最大功率誤差驅動控制所計算之符號;當輸出功率減 少時,將上次最大功率誤差驅動控制所計算之符號反向, 即改變併網電流峰值命令方向,往最大功率點遞增。 當風力條件為持續遞增或固定時,式(18)可確保電氣功率 提高至最大功率輸出;但當風速減小時,輸出電氣功率勢 必持續減小,需要大幅度降低併網電流峄值命令然 而此控制方法為固定步距地遞減併網電流峰值命令,反應 速度太慢的結果將導致轉速迅速降低,最後風力發電系統 失效,因此,本發明引入另一額外控制法則來輔助此控制 方式之缺失,解決風速由高往下降低時可能所產生之風力 發電系統失效的問題。 考慮最大功率轉速變化控制,根據發電機之機械方程 式,此控制器提供之最大功率轉it變化控制指標為 風力發電機轉速變化之函數,其表示如下: 19 1309694 .’MPDS、n、- f人匕①m) ^εχρ(Δ^-Δ^), >Αω. iyub K2 exp[ - (Δ^ - Aam;b)], <Αω^ (19) A〇)m,lb ^ ^ ^m,ubObservation Design)^, estimates the upper bound of the total uncertainty of the set to avoid the control tremor caused by improper selection of the upper bound of the constraint controller. Assume that the full-bridge converter shown in equation (9) adopts adaptive global sliding mode control. The various parts of the controller are designed as shown in equations (13) to (15), and the adaptive algorithm is developed as equation (16). ) shown 'the stability of the system will be guaranteed. d ~ db+dc (13) ~ββ)ννι,η (Η) dc ~ - ~Lo nu(t)sgn(sg(t))/vi n (15) u{t) =Μ/λ (16) Where sgn(.) is a symbolic function, |.| is an absolute value function, and \ and eve are positive values, and % and /^ respectively represent the inductance of a full-bridge converter. And the normal value of the filter output voltage v,. According to the analysis of Lyapunov stability theory [9,10], the duty cycle of the full-bridge converter outputted by the current controller 112 of the converter is designed as equation (13), and the grid current error e will converge to zero and the stability of the full bridge converter 105 will be guaranteed. The maximum power capture controller 110 is configured to generate a grid-connected current peak command to control the electrical power outputted by the wind power generation system, and indirectly control the electrical torque to control the rotational speed to achieve a wing end speed ratio of 5.09 to achieve maximum power capture. The flow of the maximum power capture controller 110 is shown in Figure 3, which includes two control rules, namely Maximum-Power Error Driven (MPED) control and Maximum-Power Differential Speed (Maximum-Power Differential Speed, MPDS) control, the sampling time of this control flow is △ & 18 1309694 First consider the maximum power error drive control, the output of this controller is the maximum power error drive control index; the electrical power change of the grid-connected wind power system is defined as: ep(n) = Pe(n)-Pe(n- \) (17) where "the number of controls for the maximum power capture controller 110. According to formula (17), the positive and negative sign of electric power change can be calculated, and the positive and negative signs of the previous maximum power error drive control index Fm^O-Ι) can be used to calculate the maximum power error drive control index provided. ) is as follows: VMPED(n) = KPsignVsign (18) where A: is the length used to adjust the indicator. When the output power increases, the symbol calculated by the last maximum power error drive control is maintained; when the output power is decreased, the sign calculated by the last maximum power error drive control is reversed, that is, the direction of the grid-connected current peak command is changed, The maximum power point is incremented. When the wind condition is continuously increasing or fixed, Equation (18) ensures that the electrical power is increased to the maximum power output; but when the wind speed is reduced, the output electrical power is bound to continue to decrease, and the grid-connected current threshold command needs to be greatly reduced. The control method is to reduce the grid-connected current peak command at a fixed step distance. The result of the reaction speed being too slow will cause the speed to decrease rapidly, and finally the wind power generation system fails. Therefore, the present invention introduces another additional control law to assist the lack of this control method. Solve the problem of wind power system failure that may occur when the wind speed is lowered from high to low. Considering the maximum power speed change control, according to the mechanical equation of the generator, the maximum power conversion change control index provided by the controller is a function of the wind turbine speed change, which is expressed as follows: 19 1309694 . 'MPDS, n, - f匕1m) ^εχρ(Δ^-Δ^), >Αω. iyub K2 exp[ - (Δ^ - Aam;b)], <Αω^ (19) A〇)m, lb ^ ^ ^m, Ub

其中&及&為正值常數’ 及Α%,/6分別為預設正值及 負值死區邊界(Dead Zone)。當轉速變化介於此區域時,最 大功率速度變化控制所提供之指標為零,意即風力發電系 統操作於最大功率點附近時,轉速變化幅度小之條件下, 最大功率速度變化控制不動作以避免輸出功率震盪情形發 生。當風速增加時’機械轉矩增加情況之下,發電機轉速 變化為正,因此增加來提高輸出電氣功率,間接增 加電氣轉矩’使系統達到最大功率之平衡點;當風速減小 時,機械轉矩減小情況之下’發電機轉速變化為負,(均 提供負的指標,使併網電流峰值命令大幅減小,當電 氣轉矩減小時,再往提高輸出功率方向逐步增加,最後維 持在最大功率之平衡點,經由加入最大功率轉速變化控制 器的調整’可確保系統不會因為風速突然降低導致發電系 統的失效,並在風速劇烈變化之條件下具有迅速達到最大 功率擷取操作點之能力。 於實踐本發明所提出之最大功率轉速變化控制時, 匕咖(《)需要以整數的形式表示,此外再加入之預机邊阳界 FA//W,lim,避免在實際系統中產生雜訊以及突波的景彡響、生成 系統失效的問題產生’因此將FwmO)再經式(2〇)函數運狄 及邏輯判斷。 1309694 Ο) = r〇undds W) z/ ^MPDS (n) I - ^MPDSM 5 (20) then VMPDS — sgn( FM/)£)5. («)) FMi,D5. lim 其中round(·)為整數運算子。 風力發電最大功率擷取控制器110中,先將可能輸出 功率範圍以相同功率步距分割,製成最大功率電流指標 對應併網電流峰值命令之關係,亦即一指標對應一峰 值命令# ,而最大功率電流指標之調整量 _ Δ/&,係由上述兩個最大功率擷取控制法則所產生之 厂M/>£D⑻及厂⑻加總而得’計算出此次最大功率電流指標 &後,代入併網電流峰值命令對應表/_&[·]求出電流峰值 命令。 本發明所提出之最大功率擷取控制方法不需要使用機 械式感測器,例如風速計以及轉速計,僅需回授電氣訊號 以及永磁同步發電機之端電壓,即可達成最大功率擷取目 的,且提出之控制方法簡單,有助於降低風力發電系統成 • 本及應用於實際系統當中。 【實施方式】 由於外界風速變化非人為所能掌控,本發明之併網型 風力發電系統及其最大功率擷取控制方法採用風力發電仿 效系統來驗證本發明之有效性。實施例中採用300W之三 相永磁同步發電機作為風力發電機,其額定轉速為 3000rpm,先將可能輸出之功率範圍0.1〜300W依等步距 21Where && is a positive constant ' and Α%, /6 are the default positive value and the negative dead zone, respectively. When the speed change is between this area, the maximum power speed change control provides zero index, which means that when the wind power system operates near the maximum power point, the maximum power speed change control does not operate under the condition that the speed change amplitude is small. Avoid output power fluctuations. When the wind speed increases, the generator speed changes positively, so increase to increase the output electrical power, indirectly increase the electric torque' to make the system reach the maximum power balance point; when the wind speed decreases, the mechanical turn Under the condition of moment reduction, the generator speed change is negative, (both provide negative indicators, so that the grid-connected current peak command is greatly reduced. When the electric torque is reduced, the direction of increasing output power is gradually increased, and finally maintained at The balance point of the maximum power, through the adjustment of the maximum power speed change controller, ensures that the system will not fail due to the sudden decrease of the wind speed, and will quickly reach the maximum power extraction operation point under the condition of drastic changes in wind speed. In the practice of the maximum power speed change control proposed by the present invention, the 匕 ( (") needs to be expressed in the form of an integer, in addition to the pre-machine edge FA / / W, lim, to avoid the actual system The noise and the slamming of the glitch, the problem of the system failure, and the resulting "fwmO" re-transformation (2〇) function Logical judgment. 1309694 Ο) = r〇undds W) z/ ^MPDS (n) I - ^MPDSM 5 (20) then VMPDS — sgn( FM/)£)5. («)) FMi, D5. lim where round(·) Is an integer operator. In the wind power maximum power capture controller 110, the possible output power range is first divided by the same power step, and the relationship between the maximum power current index and the grid-connected current peak command is made, that is, an index corresponds to a peak command #, and The adjustment amount of the maximum power current indicator _ Δ / & is calculated by the above two maximum power draw control rules of the plant M /> £ D (8) and the factory (8) summed to calculate the maximum power current index After &, substitute the grid-connected current peak command correspondence table /_&[·] to find the current peak command. The maximum power extraction control method proposed by the invention does not need to use a mechanical sensor, such as an anemometer and a tachometer, and only needs to return the electrical signal and the terminal voltage of the permanent magnet synchronous generator to achieve maximum power capture. The purpose and proposed control method are simple, which helps to reduce the wind power generation system and its application in practical systems. [Embodiment] Since the external wind speed change is not artificially controlled, the grid-connected wind power generation system of the present invention and its maximum power extraction control method employ a wind power simulation system to verify the effectiveness of the present invention. In the embodiment, a 300W three-phase permanent magnet synchronous generator is used as the wind power generator, and its rated speed is 3000 rpm, and the power range of possible output is first 0.1 to 300 W.

1309694 0.1W劃分為3000個指標,亦即1S/&S3000。就台灣地區 市電而言,其供電為ll〇Vrms/60Hz,適當選取變壓器匝數 比#=5.5,可得併網電壓%為20Vrms/60Hz,因此,併網電 流峰值命令對應表/#%[·]之電流範圍將可被設定,本發明 實施例之風力發電仿效系統方塊圖如圖4所示,並將本發 明實施例之系統參數詳列如下: 風力仿效系統 全橋式變流器 最大功率載取控制器 P 1.2 (kg/m3) f 60 (Hz) 0.006 (rad/s) Y 0.458 ⑽ fs 20 (kHz) -0.009 (rad/s) B 3.04χ10'3 (Nm/(rad/s)) L〇 1.5 (mH) κ 10 J 6.24x10'4 (Nm/(rad/s2)) a 0.166 尺1 150 P 4 (poles) β 4000 κ2 120 Kt 0.4851 (Nm/A) λ 3.2 ^MPDSJim 50 △’α·2 1 (ms) 10 (ms) 整流器及濾波器 cr 600 (μΡ) h 4.85 (mH) c, 600 (μΡ) 本實施例採用不同的風速資料以100秒的實驗時間來 驗證本發明之最大功率擷取控制方法之有效性,首先測試 的風速條件[13 ]為.1309694 0.1W is divided into 3000 indicators, namely 1S/&S3000. As far as the power supply in Taiwan is concerned, the power supply is ll〇Vrms/60Hz, and the transformer turns ratio #=5.5 is appropriately selected, and the grid-connected voltage % is 20Vrms/60Hz. Therefore, the grid-connected current peak command correspondence table /#%[ The current range of the wind power generation emulation system of the embodiment of the present invention is as shown in FIG. 4, and the system parameters of the embodiment of the present invention are as follows: Wind emulation system full bridge type converter maximum Power Carrying Controller P 1.2 (kg/m3) f 60 (Hz) 0.006 (rad/s) Y 0.458 (10) fs 20 (kHz) -0.009 (rad/s) B 3.04χ10'3 (Nm/(rad/s )) L〇1.5 (mH) κ 10 J 6.24x10'4 (Nm/(rad/s2)) a 0.166 尺1 150 P 4 (poles) β 4000 κ2 120 Kt 0.4851 (Nm/A) λ 3.2 ^MPDSJim 50 △'α·2 1 (ms) 10 (ms) Rectifier and filter cr 600 (μΡ) h 4.85 (mH) c, 600 (μΡ) This example uses different wind speed data to verify the test with 100 seconds of experimental time. The effectiveness of the invention's maximum power capture control method, first tested for wind speed conditions [13].

8sin(X) (21) 另一風速條件則利用架設於元智大學三館頂樓(約離地面 三十米)之小型氣象站所偵測的風速資料,其量測條件為每 22 1309694 10分鐘記錄一筆平均之風速’每天記錄144筆風速資料, 本文即利用每10分鐘所紀錄之平均風速壓縮成1秒的平均 風速,選定2004年11月22日風季時以及2005年5月25 曰非風季時之風速資料各1 〇〇筆’ I測風力發電仿效系統 在本發明所揭示之最大功率擷取控制方法下100秒之動態 響應,對本發明所提出之最大功率擷取控制方法作進一步 測試及驗證。 風力仿效系统在蒐集風速資料後,透過風力仿效控制 器及感應馬達驅動裝置,推動一與永磁同步發電機同軸連 結之800W感應馬達,仿效真實風力吹過風機葉片ι〇1帶 動永磁同步發電機102之情況,永磁同步發電機所發出之 交流電能連接整流器103及濾波器104提供直流電壓供給 後級全橋式變流器1〇5,其中四個功率半導體開關之操作 頻率乂 =20kHz ’再透過變壓器與市電併聯供電。其中風力 仿效控制器之流程如圖5所示,取樣時間為△GMms,感 應馬達需透過磁場導向控制(Field-Oriented Control)[14,15] 之方式’產生可控制之機械轉矩,並可將此機械轉矩表示 為·8sin(X) (21) Another wind speed condition is the wind speed data detected by a small weather station installed on the top floor of the third building of Yuanzhi University (about 30 meters above the ground). The measuring condition is every 12 1309694 10 minutes. Record an average wind speed 'record 144 wind speed data per day. This article uses the average wind speed recorded every 10 minutes to compress to an average wind speed of 1 second. When the wind season of November 22, 2004 and May 25, 2005 are selected, The wind speed data in the wind season is 1 〇〇 pen' I wind power simulation system under the maximum power extraction control method disclosed in the present invention 100 seconds dynamic response, the maximum power extraction control method proposed by the present invention is further Testing and verification. After collecting the wind speed data, the wind emulation system pushes the 800W induction motor coaxially connected with the permanent magnet synchronous generator through the wind emulation controller and the induction motor drive device, emulating the real wind blowing through the fan blade ι〇1 to drive the permanent magnet synchronous transmission. In the case of the motor 102, the AC power connection rectifier 103 and the filter 104 from the permanent magnet synchronous generator supply a DC voltage to the rear-stage full-bridge converter 1〇5, wherein the operating frequency of the four power semiconductor switches is 20=20 kHz. 'The power supply is connected in parallel with the mains through the transformer. The flow of the wind emulation controller is shown in Figure 5. The sampling time is ΔGMms, and the induction motor needs to generate a controllable mechanical torque through the method of Field-Oriented Control [14, 15]. Express this mechanical torque as

Tm = iqs (22) 其中尺,為感應馬達之轉矩係數,&為轉矩電流命令;風力 仿效控制器基於式(丨卜式^)及式(22)來做設計,產生仿效真 實風力帶動永磁同步發電機之機械轉矩。 本發明所揭示之併網型風力發電系統及其最大功率擷 取控制方法實施例中,整流器103包含有一功率半導體元 23 1309694 件所組成具交流/直流電能轉換功能之整流裝置及一整流 器電容’其整流裝置泛指習用由功率半導體開關所組成 之主動整流器或習用由二極體橋接形成之被動整流器,在 此實施例中使用為傳統六個整流二極體FR307所組成之三 相橋式整流器,而整流器電容C;則用以濾除整流後低頻電 壓漣波;系統控制單元108中,最大功率擷取控制流程及 全橋式變流器之電流控制方法使用數位訊號處理器 (Digital-Signal_Processor,DSP)予以實現,並以類比電路實 籲 現頻率偵測器109、相位偵測電路ill及驅動電路113 ;數 位訊號處理器採用德州儀器所生產之數位訊號處理器模級 TMS320LF2407EVM,頻率偵測器 109 使用 IC LM2907 侦 測範圍介於5〜100Hz之電氣角頻率,相位偵測電路in使 用IC LM311偵測市電之零電壓交越點,並使用數位訊號處 理器之外部中斷使電流命令//之相位重置於零,驅動電路 113則使用IC TLP250來實現。 圖6顧示本發明併網型風力發電系統實施例之一,全 • 橋式變流器與市電併聯之電壓電流波形,圖6(a)為併網電 壓vc(20Vrms)及併網電流t(2.5Arms)在輸出功率50W之實驗 波幵》’貫驗結果ϊ測功率因數(power Factor)為0.987,驗證 變流器之電流控制器110採用適應性全域滑動模式控制達 成幾近單位功因併網之有效性;圖6(a)為輸出功率15〇w 之實驗波形,其併網之功率因數為〇 981,同樣達成幾近單 位功因併網之目的’提供良好之電力品質。 圖7顯示本發明併網型風力發電系統實施例之一,風 24 1309694 力仿效系統風速及轉速測試波形,測試之風速條件為式(^) 及風季2〇(Μ/;Π/22與非風季聽㈣25之實際風速資料, 人造風速之平均風料8.2m/s,風季平均風速為7 Μ, 非風季平均風料4.4m/s,此實驗之結果顯現出風力仿效 系統中發電機之轉速跟隨風速變化,如同實際風速帶動發 電機之情況,驗證風力仿效系統之有效性,並可用來測試 本發明併網型風力發電系統及其最大功率梅取控制方法之 有效性。 圖8顯示本發明併網型風力發電系統實施例之-,風 力發電仿效系統之風速、機械功率及功率係數實驗波形, 圖8(a)為風速條件如式(21)之系統響應,風力發電之平均功 率為H)9.8W ’且功率係數於1〇秒内反應到最佳值〇 42附 近’意即達成最大功率擷取,在本發明所揭示之最大功率 操取控制方法下,風速提高之條件下轉迷將提高,轉速之 變化為正,使用最大功率轉速變化控制提高併網電流峰值 命令(’_以增加電氣轉矩,可以減少遞增至最大功率點所 需時間’更能即時的因應風速瞬間變化,調 趨近於最佳值;於風速減小之條件下轉逮降低,、減小ς出 併網電流峰值命令〇減少電氣轉矩’使系統不會因風 速劇烈降低’轉速迅速減小導致系統失致,由於本發明之 最大功率擷取控制方法屬於可變電壓控制方式,'可二更有 效率擷取出風能’且其暫態反應時間小於1〇y,^即時達 成最大功率擷取之目的於風速變化之條件下。圖8(b)及圖 8(c)分別表示為風速條件為風季及非風季時之系統變靡,其 25 1309694 風力發電之平均功率為風季80.3W及非風季14.5W,由圖 中亦顯示其良好的響應結果,於功率係數於10秒内反應 至最佳值C/=0.42附近並達成最大功率擷取。综合以上實 施例之實驗結果,可驗證本發明所揭示併網型風力發電系 統及其最大功率擷取控制之有效性,達成最大功率擷取之 目的。 圖9表示本發明併網型風力發電系統及其最大功率擷 取控制方法另一較佳實施例之方塊圖。與圖1之主要差別 _ 為加入一直流/直流轉換器901並減少濾波器104及變壓器 107,直流/直流轉換器901為一操作於連續電流模式 (Continuous Current Mode, CCM)之轉換器,可將整流器 103 輸出之電源轉換為固定電壓之電源提供全橋式變流器105 作為輸入電壓,且此固定電壓高於市電電壓,如此一來, 在不考慮電氣隔離情況下,用於升壓或降壓之低頻變壓器 106即可省略以降低系統體積,且直流/直流轉換器901為 一操作於連續電流模式之轉換器可替代濾波器103之功 • 能,電氣功率弋迴授所需之直流電壓及直流電流乘積仍能 於整流器103之輸出端取得,提供系統控制單元108作最 大功率擷取控制所需訊號之一。 【圖式簡單說明】 圖1 併網型風力發電系統及其最大功率擷取控制方法之 整體架構。 圖2 風力發電功率係數對應翼端速度比之特性。 26 1309694 圖3最大功率擷取控制器之流程。 圖4風力發電仿效系統方塊圖。 圖5風力仿效控制器之流程。 圖6併網型風力發電系統實施例之一’全橋式變流器與 市電併聯之電壓電流波形:(a)輸出功率50W;(b)輸 出功率150W。 圖7併網型風力發電系統實施例之一,風力仿效系統風 速及轉速測試波形:(a)人造風速;(b) 2004/11/22實 • 際風季風速;(c) 2005/05/25實際非風季風速。 圖8併網型風力發電系統實施例之一,風力發電仿效系 統之風速、機械功率及功率係數實驗波形:(a)人造 風速 ’(b) πο4/;^/22 實際風季風速;(c) • 實際非風季風速。 圖9 併網型風力發電系挤及装是 4·丄方h 电系既及再取大功率擷取控制方法另 一較佳實施例之方塊圖。 【主要元件符號說明】 * 101 :風機葉片 102 :永磁同步發電機 103 :整流器 104 :濾波器 105 :全橋式變流器 106 :變壓器 107 :市電 108 :系統控制單元 27 1309694 109:頻率偵測器 110 :最大功率擷取控制器 111 :相位偵測器 112 :變流器之電流控制器 113 :驅動電路 901 :直流/直流轉換器 :永磁同步發電機第一端輸出電壓 v,:永磁同步發電機第二端輸出電壓 • 叫:發電機電氣角頻率 :整流器電容 ι:整流器輸出電壓 t:整流器輸出電流 Zy :濾波器電感| ς:濾波器電容 V,.:濾波器輸出電壓 A:全橋式變流器電感 • %:併網電壓 :併網電流 #:變壓器匝數比 <9 :市電相位 C:併網電流命令 #:併網電流峰值命令 J:全橋式變流器之責任週期 :功率係數 · 28 1309694 r :翼端速度比 ^M>£D(W):最大功率誤差驅動控制指標 匕:最大功率轉速變化控制指標 /i(& :最大功率電流指標 Δ/& :最大功率電流指標之調整量 :併網電流峰值命令對應表Tm = iqs (22) where the ruler is the torque coefficient of the induction motor and the torque current command is used; the wind simulation controller is based on the formula (丨^^) and (22) to produce a simulated real wind. Drive the mechanical torque of the permanent magnet synchronous generator. In the embodiment of the grid-connected wind power generation system and the maximum power extraction control method disclosed by the present invention, the rectifier 103 includes a power semiconductor element 23 1309694 composed of a rectifying device with an AC/DC power conversion function and a rectifier capacitor ' The rectifying device generally refers to an active rectifier composed of a power semiconductor switch or a passive rectifier formed by a diode bridge. In this embodiment, a three-phase bridge rectifier composed of a conventional six rectifying diode FR307 is used. And the rectifier capacitor C is used to filter out the rectified low frequency voltage chopping; in the system control unit 108, the maximum power extraction control flow and the current control method of the full bridge converter use a digital signal processor (Digital-Signal_Processor , DSP) is implemented, and the frequency detector 109, phase detection circuit ill and drive circuit 113 are realized by analog circuit; the digital signal processor adopts the digital signal processor module TMS320LF2407EVM produced by Texas Instruments, frequency detection 109 uses the IC LM2907 to detect electrical angular frequencies ranging from 5 to 100 Hz, phase detection The circuit in uses the IC LM311 to detect the zero-voltage crossover point of the mains, and uses the external interrupt of the digital signal processor to reset the phase of the current command // to zero, and the driver circuit 113 uses the IC TLP250. 6 is a diagram showing one embodiment of a grid-connected wind power generation system according to the present invention, a voltage-current waveform of a full-bridge converter and a commercial power supply in parallel, and FIG. 6(a) shows a grid-connected voltage vc (20 Vrms) and a grid-connected current t. (2.5Arms) In the experimental wave of output power 50W, the power factor is 0.987. Verify that the current controller 110 of the converter adopts adaptive global sliding mode control to achieve near-unit power. The effectiveness of the grid connection; Figure 6 (a) is the experimental waveform of the output power of 15 〇 w, the power factor of the grid is 〇 981, also achieve the near-unit power factor for the purpose of grid connection to provide good power quality. Figure 7 shows one of the embodiments of the grid-connected wind power generation system of the present invention. The wind 24 1309694 simulates the wind speed and speed test waveform of the system, and the test wind speed condition is the formula (^) and the wind season 2〇 (Μ/;Π/22 and In the non-wind season, the actual wind speed data of (4) 25, the average wind speed of artificial wind speed is 8.2m/s, the average wind speed of wind season is 7Μ, and the average wind speed of non-wind season is 4.4m/s. The result of this experiment shows the wind emulation system. The speed of the generator follows the change of wind speed, as the actual wind speed drives the generator, verifies the effectiveness of the wind emulation system, and can be used to test the effectiveness of the grid-connected wind power generation system of the present invention and its maximum power control method. 8 shows the embodiment of the grid-connected wind power generation system of the present invention, the wind speed, mechanical power and power coefficient experimental waveform of the wind power simulation system, and FIG. 8(a) shows the system response of the wind speed condition as the equation (21), and the wind power generation. The average power is H) 9.8W 'and the power coefficient reacts to the optimum value 〇42 in 1 '2', that is, the maximum power draw is achieved. Under the maximum power operation control method disclosed by the present invention, the wind speed is obtained. Under high conditions, the fan will increase, the change of the speed is positive, and the maximum power speed change control is used to increase the grid current peak command ('_to increase the electric torque, the time required to increase to the maximum power point can be reduced') In response to the instantaneous change of wind speed, the adjustment is close to the optimal value; the rotation is reduced under the condition of decreasing wind speed, and the peak value of the grid-connected current is reduced to reduce the electric torque 'so that the system will not be drastically reduced due to the wind speed' The rapid decrease of the rotational speed causes the system to be deactivated. Since the maximum power capture control method of the present invention belongs to the variable voltage control mode, 'the second is more efficient, the wind energy is taken out' and the transient reaction time is less than 1 〇 y, ^ The maximum power draw is achieved under the condition of wind speed change. Figure 8(b) and Figure 8(c) show the system change when the wind speed condition is wind season and non-wind season respectively, and the average of 25 1309694 wind power generation The power is 80.3W in the wind season and 14.5W in the non-wind season. The good response results are also shown in the figure. The power coefficient is reacted to the optimal value C/=0.42 in 10 seconds and the maximum power is drawn. The experimental results of the embodiment can verify the effectiveness of the grid-connected wind power generation system and the maximum power extraction control disclosed in the present invention, and achieve the purpose of maximum power extraction. Figure 9 shows the grid-connected wind power generation system of the present invention and A block diagram of another preferred embodiment of the maximum power capture control method. The main difference from FIG. 1 is to add the DC/DC converter 901 and reduce the filter 104 and the transformer 107. The DC/DC converter 901 is an operation. In a continuous current mode (CCM) converter, a power supply that converts the output of the rectifier 103 to a fixed voltage provides a full bridge converter 105 as an input voltage, and the fixed voltage is higher than the mains voltage, First, the low frequency transformer 106 for boosting or stepping down can be omitted to reduce the system volume without considering electrical isolation, and the DC/DC converter 901 can be replaced by a converter operating in a continuous current mode. The power of the device 103 can be obtained by the output of the rectifier 103 at the output of the rectifier 103. The control unit 108 performs one of the signals required for maximum power capture control. [Simple diagram of the diagram] Figure 1 The overall architecture of the grid-connected wind power generation system and its maximum power capture control method. Figure 2 shows the characteristics of the wind power coefficient corresponding to the wing end speed ratio. 26 1309694 Figure 3. Flow of the maximum power capture controller. Figure 4 is a block diagram of the wind power simulation system. Figure 5 shows the flow of the wind emulation controller. Fig. 6 One of the embodiments of the grid-connected wind power generation system. The voltage and current waveforms of the full-bridge converter and the mains are connected in parallel: (a) output power 50W; (b) output power 150W. Figure 7 shows one of the embodiments of the grid-connected wind power generation system. The wind speed and speed test waveforms of the wind-effect system: (a) artificial wind speed; (b) 2004/11/22 actual wind season wind speed; (c) 2005/05/ 25 actual non-wind season wind speed. Figure 8 is one of the embodiments of the grid-connected wind power generation system. The wind speed, mechanical power and power coefficient of the wind power simulation system are: (a) artificial wind speed '(b) πο4/;^/22 actual wind season wind speed; (c • Actual non-wind season wind speed. Fig. 9 is a block diagram of another preferred embodiment of the grid-connected wind power generation system and the charging method of the electric power system. [Main component symbol description] * 101: Fan blade 102: Permanent magnet synchronous generator 103: Rectifier 104: Filter 105: Full-bridge converter 106: Transformer 107: Mains 108: System control unit 27 1309694 109: Frequency detection Detector 110: maximum power capture controller 111: phase detector 112: current controller 113 of the converter: drive circuit 901: DC/DC converter: first-end output voltage v of permanent magnet synchronous generator, Permanent magnet synchronous generator second terminal output voltage • Called: generator electrical angular frequency: rectifier capacitor ι: rectifier output voltage t: rectifier output current Zy: filter inductance | ς: filter capacitor V,.: filter output voltage A: Full-bridge converter inductance • %: grid-connected voltage: grid-connected current #: transformer turns ratio <9: mains phase C: grid-connected current command #: grid-connected current peak command J: full-bridge type Responsibility cycle of the flow device: power factor · 28 1309694 r : wing end speed ratio ^M> £D(W): maximum power error drive control index 匕: maximum power speed change control index /i (&: maximum power current indicator Δ/& : maximum power current indicator Whole amount: grid current peak value command correspondence table

2929

Claims (1)

1309694 十、申請專利範圍: 一 1. 一種併網型風力發電系統,其中包含 一風機葉片:用以擷取風力轉換為轉動形式之機械能; 一永磁同步發電機:係指一能將轉動形式之機械能轉換 為交流電能之永磁同步發電機; 一整流器:係其中包含有一由功率半導體元件所組成具 交流/直流電能轉換功能之整流裝置及一整流電容; 一濾波器:係其中包含有一電感及一電容,用以濾除交 流成分之電壓及電流漣波; 一全橋式變流器:係其中包含有一由四個功率半導體開 關所組成具直流/交流電能轉換功能之變流裝置及一電 感,由系統控制單元控制以作為直流/交流電能轉換之 用; 一變壓器:係指一固定匝數比之低頻變壓器,藉以達成 電氣隔離及電壓調節之效果; 一市電:係其泛指供電之交流匯流排; 一系統控制單元:係其中包含有一頻率偵測器、一相位 偵測器、一最大功率擷取控制器、一變流器之電流控制 器及一驅動電路,用以負責併網型風力發電系統控制; 其特徵為當外界風速變化之條件下,透過併網型風力發 電系統擷取出該風機葉片及永磁同步發電機所能產出 之最大電能以電流形式併網供電,且併網電流具高功率 因數之良好電力品質。 2. 如申請專利範圍第1項所述之併網型風力發電系統,其 30 1309694 中系統控制單元之頻率偵測器可得知發電機輸出電壓 之電氣角頻率,進而求得發電機轉速,供最大功率擷取 控制器使用。 3. 如申請專利範圍第1項所述之併網型風力發電系統,其 中系統控制單元之相位偵測器可得知市電相位,提供變 流器之電流控制器作為併網電流之相位命令。 4. 如申請專利範圍第1項所述之併網型風力發電系統,其 中系統控制單元之變流器之電流控制器,採用適應性全 域滑動模式控制策略產生適當之責任週期,控制併網電 流追隨併網電流命令,適應性全域滑動模式控制策略中 包含: 一系統性能規劃:明確規劃常態情況下期望獲得的系統 效能, 一約束控制器:消除產生來自於系統參數變化、負載變 化所引起之干擾電壓以及未模式化系統動態之不可預 測的擾亂效應; 一適應性演算法則:對總集不確定量之上界進行估測, 以避免因約束控制器上界選取不當而造成的控制力顫 抖現象, 其特徵為控制過程不存在迫近相位模式且所有狀態均 在滑動平面上,整個控制過程中不受系統不確定量影 響,並可有效減少控制力顫抖現象,同時全橋式變流器 在有不確定量及外來干擾的情況下,其併網電流仍可有 效的追隨併網電流命令且與市電同頻率及同相位以達 31 1309694 到單位功因之最佳併聯效率。 5. 如申請專利範圍第1項所述之併網型風力發電系統,其 中系統控制單元之驅動電路,其功能為將變流器之電流 控制器所產生之責任週期轉換為脈波寬度調變訊號,驅 動全橋式變流器之功率半導體開關。 6. 如申請專利範圍第1項所述之併網型風力發電系統,其 中系統控制單元之最大功率擷取控制器,包含最大功率 誤差驅動控制及最大功率轉速變化控制,兩控制機制分 別產生最大功率誤差驅動控制指標及最大功率轉速變 化控制指標,兩者相加得可最大功率電流指標之調整 量,此次最大功率電流指標為上次最大功率電流指標及 最大功率電流指標之調整量之和,將此次最大功率電流 指標代入併網電流峰值命令對應表,得一併網電流峰值 命令;其中併網電流峰值命令對應表依可能輸出功率範 圍及併網電壓,以相同功率步距分割而成,即一最大功 率電流指標對應一併網電流峰值命令。 7. 如申請專利範圍第6項所述之併網型風力發電系統,其 中系統控制單元之最大功率擷取控制器中,最大功率誤 差驅動控制於整流器輸出端迴授直流電壓及直流電 流,兩者相乘獲得發電機輸出電氣功率,當輸出電氣功 率增加時,維持上次最大功率誤差驅動控制產生之最大 功率誤差驅動控制指標正負符號,即維持併網電流峰值 命令變化之方向,使風力發電系統往最大功率點方向操 作;當輸出電氣功率減少時,改變最大功率誤差驅動控 32 1309694 制心標正負符號,即改變併網電流峰值命令變化之方 向’使風力發電系統往最大功率點方向操作。 8. 如申請專利範圍第6項所述之併網型風力發電系統,其 中系統控制單元之最大功率擷取控制器中,最大功率轉 速變化控制透過頻率偵測器迴授發電機電氣角頻率以 求得發電機轉速,當風速增加時,機械轉矩增加情況之 下’發電機轉速變化為正,因此增加最大功率轉速變化 控制4曰彳示來提高輸出併網電流峰值命令,間接增加電氣 轉矩’使系統達到最大功率之平衡點;當風速減小時, 機械轉矩減小情況之下,發電機轉速變化為負,最大功 率轉速變化控制指標提供負的指標,併網電流峰值命令 大幅減小,亦使風力發電系統往最大功率點方向操作。 9. 一種併網型風力發電系統之最大功率擷取控制方法,其 中包含最大功率誤差驅動控制及最大功率轉速變化控 制,兩控制機制分別產生最大功率誤差驅動控制指標及 最大功率轉速變化控制指標,兩者相加可得最大功率電 流指標之調整量,此次最大功率電流指標為上次最大功 率電流指標及最大功率電流指標之調整量之和,將此次 最大功率電流指標代入併網電流峰值命令對應表,得一 併網電流峰值命令;其中併網電流峰值命令對應表依玎 能輸出功率範圍及併網電麗’以相同功率步距分割而 成’即一最大功率電流指標對應一併網電流峰值命令。 10. 如申請專利範圍第9項所述之併網型風力發電系統之最 大功率擷取控制方法,其中最大功率誤差驅動控制迴授 33 1309694 發電機輸出電氣功率,當輸出電氣功率增加時,維持上 次最大功率誤差驅動控制產生之最大功率誤差驅動控 制指標正負符號,即維持併網電流峰值命令變化之方 向,使風力發電系統往最大功率點方向操作;當輸出電 氣功率減少時,改變最大功率誤差驅動控制指標正負符 號,即改變併網電流峰值命令變化之方向,使風力發電 系統往最大功率點方向操作。 11. 如申請專利範圍第9項所述之併網型風力發電系統之最 大功率擷取控制方法,其中最大功率轉速變化控制迴授 發電機轉速,當風速增加時,機械轉矩增加情況之下, 發電機轉速變化為正,因此增加最大功率轉速變化控制 指標來提高輸出併網電流峰值命令,間接增加電氣轉 矩,使系統達到最大功率之平衡點;當風速減小時,機 械轉矩減小情況之下,發電機轉速變化為負,最大功率 轉速變化控制指標提供負的指標,併網電流峰值命令大 幅減小,亦使風力發電系統往最大功率點方向操作。 12. —種併網型風力發電系統,其中包含 一風機葉片:用以擷取風力轉換為轉動形式之機械能; 一永磁同步發電機:係指一能將轉動形式之機械能轉換 為交流電能之永磁同步發電機; 一整流器:係其中包含有一由功率半導體元件所組成具 交流/直流電能轉換功能之整流裝置及一整流電容; 一直流/直流轉換器:係指一操作於連續電流模式下之輸 入電流源型直流/直流轉換裝置,可將一直流電壓轉換為 34 1309694 另一固定且高於市電電壓之直流電壓; 一全橋式變流器:係其中包含有一由四個功率半導體開 關所組成具直流/交流電能轉換功能之變流裝置及一電 感,由系統控制單元控制以作為直流/交流電能轉換之 用; 一市電:係其泛指供電之交流匯流排; 一系統控制單元:係其中包含有一頻率偵測器、一相位 偵測器、一最大功率擷取控制器、一變流器之電流控制 器及一驅動電路,用以負責併網型風力發電系統控制; 其特徵為當外界風速變化之條件下,透過併網型風力發 電系統擷取出該風機葉片及永磁同步發電機所能產出 之最大電能以電流形式併網供電,且併網電流具高功率 因數之良好電力品質。 13. 如申請專利範圍第12項所述之併網型風力發電系統, 其中系統控制單元之頻率偵測器可得知發電機輸出電 壓之電氣角頻率,進而求得發電機轉速,供最大功率擷 取控制器使用。 14. 如申請專利範圍第12項所述之併網型風力發電系統, 其中系統控制單元之相位偵測器可得知市電相位,提供 變流器之電流控制器作為併網電流之相位命令。 15. 如申請專利範圍第12項所述之併網型風力發電系統, 其中系統控制單元之變流器之電流控制器,採用適應性 全域滑動模式控制策略產生適當之責任週期,控制併網 電流追隨併網電流命令,適應性全域滑動模式控制策略 35 1309694 中包含: 一系統性能規劃:明確規劃常態情況下期望獲得的系統 效能; 一約束控制器:消除產生來自於系統參數變化、負載變 化所引起之干擾電壓以及未模式化系統動態之不可預 測的擾亂效應; 一適應性演算法則:對總集不確定量之上界進行估測, 以避免因約束控制器上界選取不當而造成的控制力顫 抖現象; 其特徵為控制過程不存在迫近相位模式且所有狀態均 在滑動平面上,整個控制過程中不受系統不確定量影 響,並可有效減少控制力顫抖現象,同時全橋式變流器 在有不確定量及外來干擾的情況下,其併網電流仍可有 效的追隨併網電流命令且與市電同頻率及同相位以達 到單位功因之最佳併聯效率。 16. 如申請專利範圍第12項所述之併網型風力發電系統, 其中系統控制單元之驅動電路,其功能為將變流器之電 流控制器所產生之責任週期轉換為脈波寬度調變訊 號,驅動全橋式變流器之功率半導體開關。 17. 如申請專利範圍第12項所述之併網型風力發電系統, 其中系統控制單元之最大功率擷取控制器,包含最大功 率誤差驅動控制及最大功率轉速變化控制,兩控制機制 分別產生最大功率誤差驅動控制指標及最大功率轉速 變化控制指標,兩者相加可得最大功率電流指標之調整 36 1309694 量,此次最大功率電流指標為上次最大功率電流指標及 最大功率電流指標之調整量之和,將此次最大功率電流 指標代入併網電流峰值命令對應表,得一併網電流峰值 命令;其中併網電流峰值命令對應表依可能輸出功率範 圍及併網電壓,以相同功率步距分割而成,即一最大功 率電流指標對應一併網電流峰值命令。 18. 如申請專利範圍第17項所述之併網型風力發電系統, 其中系統控制單元之最大功率擷取控制器中,最大功率 誤差驅動控制於整流器輸出端迴授直流電壓及直流電 流,兩者相乘獲得發電機輸出電氣功率,當電氣輸出功 率增加時,維持上次最大功率誤差驅動控制產生之最大 功率誤差驅動控制指標正負符號,即維持併網電流峰值 命令變化之方向,使風力發電系統往最大功率點方向操 作;當輸出電氣功率減少時,改變最大功率誤差驅動控 制指標正負符號,即改變併網電流峰值命令變化之方 向,使風力發電系統往最大功率點方向操作。 19. 如申請專利範圍第17項所述之併網型風力發電系統, 其中系統控制單元之最大功率擷取控制器中,最大功率 轉速變化控制透過頻率偵測器迴授發電機電氣角頻率 以求得發電機轉速,當風速增加時,機械轉矩增加情況 之下,發電機轉速變化為正,因此增加最大功率轉速變 化控制指標來提高輸出併網電流峰值命令,間接增加電 氣轉矩,使系統達到最大功率之平衡點;當風速減小 時,機械轉矩減小情況之下,發電機轉速變化為負,最 37 1309694 大功率轉速變化控制指標提供負的指標,併網電流峰值 命令大幅減小,亦使風力發電系統往最大功率點方向操 作。 20.如申請專利範圍第12項所述之併網型風力發電系統, 其中直流/直流轉換器可將整流器輸出之直流電源轉換 為固定且高於市電電壓之直流電源,提供全橋式變流器 作為輸入電壓,即可省略提供升壓或降壓之低頻變壓器 並降低系統體積,且輸入電流源型之直流/直流轉換器操 作於連續電流模式,發電機之電氣功率訊號所需之直流 電壓及直流電流乘積能於整流器之輸出端取得,提供作 最大功率擷取控制所需訊號。 381309694 X. Patent application scope: 1. A grid-connected wind power generation system, which comprises a fan blade: mechanical energy for converting wind power into a rotating form; a permanent magnet synchronous generator: means that one can rotate a permanent magnet synchronous generator in which the mechanical energy of the form is converted into alternating current energy; a rectifier comprising: a rectifying device comprising a power semiconductor component having an alternating current/direct current electrical energy conversion function and a rectifying capacitor; a filter: the system includes An inductor and a capacitor for filtering the voltage and current chopping of the AC component; a full bridge converter comprising a converter comprising a DC/AC power conversion function comprising four power semiconductor switches And an inductor controlled by the system control unit for DC/AC power conversion; a transformer: refers to a low-frequency transformer with a fixed turns ratio to achieve the effect of electrical isolation and voltage regulation; Power supply AC bus; a system control unit: which includes a frequency detector, a phase a detector, a maximum power capture controller, a current controller of a converter, and a drive circuit for controlling the grid-connected wind power generation system; characterized by being connected to the grid under conditions of changes in external wind speed The wind power generation system extracts the maximum electric energy that can be produced by the fan blade and the permanent magnet synchronous generator in the form of current and is connected to the grid, and the grid-connected current has a good power quality with high power factor. 2. For the grid-connected wind power generation system described in the first paragraph of the patent application, the frequency detector of the system control unit in 30 1309694 can know the electrical angular frequency of the generator output voltage, and then obtain the generator speed. For maximum power capture controller use. 3. For the grid-connected wind power generation system described in claim 1, wherein the phase detector of the system control unit can know the phase of the mains, and provide the current controller of the converter as the phase command of the grid-connected current. 4. For the grid-connected wind power generation system described in claim 1, wherein the current controller of the converter of the system control unit adopts an adaptive global sliding mode control strategy to generate an appropriate duty cycle to control the grid-connected current. Following the grid-connected current command, the adaptive global sliding mode control strategy includes: a system performance planning: clearly defining the expected system performance under normal conditions, a constraint controller: eliminating the occurrence of changes from system parameters and load changes Interference voltage and unpredictable disturbance effects of unpatterned system dynamics; an adaptive algorithm: estimate the upper bound of the total set uncertainty to avoid control tremor caused by improper selection of the upper bound of the constraint controller It is characterized in that there is no impending phase mode in the control process and all states are on the sliding plane. The whole control process is not affected by the system uncertainty, and the control force chattering phenomenon can be effectively reduced. At the same time, the full bridge converter is in existence. In the case of uncertainties and external interference, the grid-connected current can still be effective Follow the grid-connected current command and the same parallel frequency efficiency as the mains and the same frequency to reach 31 1309694 to unit power. 5. The grid-connected wind power generation system according to claim 1, wherein the driving circuit of the system control unit is configured to convert the duty cycle generated by the current controller of the converter into a pulse width modulation Signal, a power semiconductor switch that drives a full-bridge converter. 6. The grid-connected wind power generation system according to claim 1, wherein the maximum power draw controller of the system control unit includes maximum power error drive control and maximum power speed change control, and the two control mechanisms respectively generate maximum The power error drive control index and the maximum power speed change control index are added to obtain the maximum power current index adjustment. The maximum power current indicator is the sum of the last maximum power current indicator and the maximum power current indicator. The maximum power current indicator is substituted into the grid-connected current peak command correspondence table to obtain a grid-connected current peak command; wherein the grid-connected current peak command corresponds to the possible output power range and the grid-connected voltage, and is segmented by the same power step. Cheng, that is, a maximum power current indicator corresponds to a grid-connected current peak command. 7. In the grid-connected wind power generation system described in claim 6, wherein the maximum power error controller of the system control unit drives the DC voltage and the DC current at the output of the rectifier, The multiplier is obtained to obtain the electrical output power of the generator. When the output electrical power increases, the positive and negative signs of the maximum power error driving control index generated by the last maximum power error driving control are maintained, that is, the direction of the peak value of the grid-connected current command is maintained, so that the wind power generation is performed. The system operates in the direction of the maximum power point; when the output electrical power decreases, the maximum power error is changed to drive the control 32 1309694 to the positive and negative signs of the heartbeat, that is, to change the direction of the grid current peak command change' to operate the wind power system to the maximum power point direction. . 8. In the grid-connected wind power generation system described in claim 6, wherein the maximum power speed change control of the system control unit, the maximum power speed change control transmits the electrical angular frequency of the generator through the frequency detector. The generator speed is obtained. When the wind speed increases, the generator torque changes positively under the increase of the mechanical torque. Therefore, the maximum power speed change control is increased to increase the output grid-connected current peak command, which indirectly increases the electrical turn. The moment 'makes the system to reach the equilibrium point of maximum power; when the wind speed decreases, the machine torque changes to negative, the maximum power speed change control indicator provides a negative indicator, and the grid current peak command is greatly reduced. Small, it also allows the wind power system to operate in the direction of the maximum power point. 9. A maximum power extraction control method for a grid-connected wind power generation system, comprising maximum power error drive control and maximum power speed change control, and two control mechanisms respectively generate a maximum power error drive control index and a maximum power speed change control index, The sum of the two can obtain the adjustment of the maximum power current index. The maximum power current indicator is the sum of the last maximum power current index and the maximum power current indicator adjustment amount, and the maximum power current indicator is substituted into the grid-connected current peak. The command correspondence table obtains a grid-connected current peak command; wherein the grid-connected current peak command correspondence table depends on the output power range of the grid and the grid-connected power is divided by the same power step, that is, a maximum power current index corresponds to the same Net current peak command. 10. The maximum power extraction control method for the grid-connected wind power generation system described in claim 9 wherein the maximum power error drive control returns 33 1309694 generator output electrical power, and maintains when the output electrical power increases The maximum power error generated by the last maximum power error drive control drives the positive and negative signs of the control index, that is, maintains the direction of the grid-connected current peak command change, and causes the wind power generation system to operate toward the maximum power point; when the output electrical power decreases, the maximum power is changed. The error-driven control index has positive and negative signs, that is, changes the direction of the grid-connected current peak command change, so that the wind power generation system operates toward the maximum power point. 11. The maximum power capture control method for a grid-connected wind power generation system according to claim 9, wherein the maximum power speed change controls the feedback of the generator speed, and when the wind speed increases, the mechanical torque increases. , the generator speed change is positive, so increase the maximum power speed change control index to increase the output grid-connected current peak command, indirectly increase the electrical torque, so that the system reaches the maximum power balance point; when the wind speed decreases, the mechanical torque decreases Under the circumstance, the generator speed change is negative, the maximum power speed change control index provides a negative indicator, and the grid-connected current peak command is greatly reduced, and the wind power generation system is also operated to the maximum power point. 12. A grid-connected wind power generation system comprising a fan blade: mechanical energy for converting wind into a rotating form; and a permanent magnet synchronous generator: converting a mechanical energy of a rotating form into an alternating current A permanent magnet synchronous generator; a rectifier comprising: a rectifying device comprising a power semiconductor component having an AC/DC power conversion function and a rectifying capacitor; and a DC/DC converter: operating in a continuous current The input current source type DC/DC converter in the mode can convert the DC voltage to 34 1309694 and another fixed and higher DC voltage than the mains voltage; a full bridge converter: which contains one of four powers The semiconductor switch comprises a converter device with a DC/AC power conversion function and an inductor, which is controlled by the system control unit for DC/AC power conversion; a utility power: an AC busbar that is generally referred to as a power supply; Unit: The system includes a frequency detector, a phase detector, a maximum power capture controller, and a change The current controller and a driving circuit of the current device are responsible for the control of the grid-connected wind power generation system; and the utility model is characterized in that the wind turbine blade and the permanent magnet synchronous hair are taken out through the grid-connected wind power generation system under the condition that the external wind speed changes. The maximum electrical energy that the motor can produce is connected to the grid in the form of current, and the grid-connected current has a good power quality with high power factor. 13. The grid-connected wind power generation system according to claim 12, wherein the frequency detector of the system control unit can know the electrical angular frequency of the generator output voltage, and further obtain the generator speed for maximum power. Use the controller. 14. The grid-connected wind power generation system according to claim 12, wherein the phase detector of the system control unit can know the phase of the mains, and the current controller of the converter is provided as the phase command of the grid-connected current. 15. The grid-connected wind power generation system according to claim 12, wherein the current controller of the converter of the system control unit adopts an adaptive global sliding mode control strategy to generate an appropriate duty cycle to control the grid-connected current. Following the grid-connected current command, the adaptive global sliding mode control strategy 35 1309694 contains: a system performance planning: clear system performance expected under normal conditions; a constraint controller: eliminates the generation of changes from system parameters, load changes The induced interference voltage and the unpredictable disturbance effect of the unpatterned system dynamics; an adaptive algorithm: estimate the upper bound of the total set uncertainty to avoid the control force caused by improper selection of the upper bound of the constraint controller Trembling phenomenon; characterized in that there is no impending phase mode in the control process and all states are on the sliding plane, which is not affected by the system uncertainty during the whole control process, and can effectively reduce the control force tremor phenomenon, and the full bridge converter In the case of uncertainties and external interference, its grid-connected electricity The flow can still follow the grid-connected current command effectively and with the same frequency and phase in the same phase as the mains to achieve the best parallel efficiency of the unit. 16. The grid-connected wind power generation system according to claim 12, wherein the driving circuit of the system control unit is configured to convert the duty cycle generated by the current controller of the converter into a pulse width modulation Signal, a power semiconductor switch that drives a full-bridge converter. 17. The grid-connected wind power generation system according to claim 12, wherein the maximum power capture controller of the system control unit includes maximum power error drive control and maximum power speed change control, and the two control mechanisms respectively generate maximum The power error drive control index and the maximum power speed change control index, the two can be added to obtain the maximum power current index adjustment 36 1309694 quantity, the maximum power current indicator is the last maximum power current indicator and the maximum power current indicator adjustment And, the maximum power current indicator is substituted into the grid-connected current peak command correspondence table, and a grid-connected current peak command is obtained; wherein the grid-connected current peak command corresponds to the possible output power range and the grid-connected voltage, with the same power step Split, that is, a maximum power current indicator corresponds to a grid-connected current peak command. 18. The grid-connected wind power generation system according to claim 17, wherein the maximum power error controller of the system control unit drives the DC voltage and the DC current at the output of the rectifier, The multiplier is obtained to obtain the electrical output power of the generator. When the electrical output power increases, the positive and negative signs of the maximum power error driving control index generated by the last maximum power error driving control are maintained, that is, the direction of the peak value of the grid-connected current command is maintained, so that the wind power generation is performed. The system operates in the direction of the maximum power point; when the output electrical power decreases, the positive and negative signs of the maximum power error drive control index are changed, that is, the direction of the grid-connected current peak command change is changed, so that the wind power generation system operates toward the maximum power point. 19. The grid-connected wind power generation system according to claim 17, wherein the maximum power speed change controller of the system control unit controls the electrical angular frequency of the generator through the frequency detector. The generator speed is obtained. When the wind speed increases, the generator torque changes positively under the increase of the mechanical torque. Therefore, the maximum power speed change control index is increased to increase the output grid-connected current peak command, and the electrical torque is indirectly increased. The system reaches the equilibrium point of maximum power; when the wind speed decreases, the generator torque changes negatively under the condition of mechanical torque reduction, and the most 37 1309694 high-power speed change control index provides a negative indicator, and the grid-connected current peak command is greatly reduced. Small, it also allows the wind power system to operate in the direction of the maximum power point. 20. The grid-connected wind power generation system according to claim 12, wherein the DC/DC converter converts the DC power of the rectifier output into a DC power source that is fixed and higher than the commercial voltage, and provides a full bridge converter. As an input voltage, the low-frequency transformer that provides boost or step-down can be omitted and the system volume is reduced, and the input current source type DC/DC converter operates in continuous current mode, and the DC voltage required for the electrical signal of the generator is required. And the DC current product can be obtained at the output of the rectifier to provide the signal required for maximum power capture control. 38
TW095119547A 2006-06-02 2006-06-02 Grid-connected wind generation system and its maximum-power-extraction control method TWI309694B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW095119547A TWI309694B (en) 2006-06-02 2006-06-02 Grid-connected wind generation system and its maximum-power-extraction control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW095119547A TWI309694B (en) 2006-06-02 2006-06-02 Grid-connected wind generation system and its maximum-power-extraction control method

Publications (2)

Publication Number Publication Date
TW200801328A TW200801328A (en) 2008-01-01
TWI309694B true TWI309694B (en) 2009-05-11

Family

ID=44765032

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095119547A TWI309694B (en) 2006-06-02 2006-06-02 Grid-connected wind generation system and its maximum-power-extraction control method

Country Status (1)

Country Link
TW (1) TWI309694B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456857B (en) * 2010-10-14 2014-10-11 Atomic Energy Council Supply network having sophisticated energy management
TWI496384B (en) * 2010-12-08 2015-08-11 Univ Nat Taipei Technology Hybrid power generator

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI418119B (en) * 2010-10-01 2013-12-01 Univ Nat Sun Yat Sen Wind generation system with pmsg using intelligent maximum power tracking controller
TWI482406B (en) * 2011-09-13 2015-04-21 Univ Far East Single-stage three-phase AC-DC converters for small wind power generation systems
CN103312139B (en) * 2012-03-09 2016-05-11 台达电子工业股份有限公司 A kind of starting drive of combining inverter and control method thereof
TWI567524B (en) * 2014-12-19 2017-01-21 guo-rui Yu Maximum power tracking of wind power generation systems
TWI582563B (en) * 2015-12-17 2017-05-11 遠東科技大學 Wind turbine control device and control method thereof
TWI662783B (en) * 2018-01-05 2019-06-11 黃柏原 Solar dual-drive permanent magnet synchronous motor
CN111064203B (en) * 2020-01-03 2023-04-25 国网吉林省电力有限公司 Method for judging influence of power factor on small interference stability of grid-connected system of converter
US20230387692A1 (en) * 2020-11-06 2023-11-30 Mitsubishi Electric Corporation Power conversion device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456857B (en) * 2010-10-14 2014-10-11 Atomic Energy Council Supply network having sophisticated energy management
TWI496384B (en) * 2010-12-08 2015-08-11 Univ Nat Taipei Technology Hybrid power generator

Also Published As

Publication number Publication date
TW200801328A (en) 2008-01-01

Similar Documents

Publication Publication Date Title
TWI309694B (en) Grid-connected wind generation system and its maximum-power-extraction control method
Malinowski et al. Optimized Energy-Conversion Systems for Small Wind Turbines: Renewable energy sources in modern distributed power generation systems
Wai et al. Novel maximum-power-extraction algorithm for PMSG wind generation system
Puchalapalli et al. A microgrid based on wind-driven DFIG, DG, and solar PV array for optimal fuel consumption
Şerban et al. A sensorless control method for variable-speed small wind turbines
Cultura et al. Modeling and simulation of a wind turbine-generator system
Han et al. A novel control strategy of wind turbine MPPT implementation for direct-drive PMSG wind generation imitation platform
Vadi et al. Design and simulation of a grid connected wind turbine with permanent magnet synchronous generator
Barote et al. PMSG wind turbine system for residential applications
Maheshwari et al. A comprehensive review on wind turbine emulators
Hauck et al. Operation of grid-connected cross-flow water turbines in the stall region by direct power control
Hussein et al. Simple maximum power extraction control for permanent magnet synchronous generator based wind energy conversion system
Gencer Modelling and analysis of operation PMSG based WECS under different load conditions
Duan et al. Maximum-power-extraction algorithm for grid-connected PMSG wind generation system
Kumar et al. Experimental evaluation of matrix converter for wind energy conversion system under various abnormal conditions
TWI567524B (en) Maximum power tracking of wind power generation systems
Putri et al. Speed sensorless fuzzy MPPT control of grid-connected PMSG for wind power generation
CN103401231B (en) A kind of DFIG direct current grid-connected system based on RMC and flux linkage orientation control method thereof
Mesbahi et al. Boost Converter analysis to optimise variable speed PMSG Wind Generation System
Lu et al. Use of wind turbine emulator for the WECS development
Ronilaya et al. Design Maximum power point tracking of wind energy conversion systems using P&O and IC methods
Duarte et al. Power converters for a small islanded microgrid based on a micro wind turbine and an battery energy storage system
Xie et al. Modeling and control of a small marine current power generation system
Messaoud et al. Sensorless control system design of a small size vertical axis wind turbine
Koch-Ciobotaru et al. Control strategy for a variable-speed wind turbine using dc bus measurements

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees