TWI567524B - Maximum power tracking of wind power generation systems - Google Patents

Maximum power tracking of wind power generation systems Download PDF

Info

Publication number
TWI567524B
TWI567524B TW103144669A TW103144669A TWI567524B TW I567524 B TWI567524 B TW I567524B TW 103144669 A TW103144669 A TW 103144669A TW 103144669 A TW103144669 A TW 103144669A TW I567524 B TWI567524 B TW I567524B
Authority
TW
Taiwan
Prior art keywords
matrix
maximum power
wind
voltage
parameter
Prior art date
Application number
TW103144669A
Other languages
Chinese (zh)
Other versions
TW201624167A (en
Inventor
guo-rui Yu
yuan-zhi Zhang
jun-wei Wu
zhong-chuan Zhu
Hui-Zheng Lin
Original Assignee
guo-rui Yu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by guo-rui Yu filed Critical guo-rui Yu
Priority to TW103144669A priority Critical patent/TWI567524B/en
Publication of TW201624167A publication Critical patent/TW201624167A/en
Application granted granted Critical
Publication of TWI567524B publication Critical patent/TWI567524B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Control Of Eletrric Generators (AREA)

Description

最大功率追蹤之風力發電系統Maximum power tracking wind power system

本發明係關於一種發電系統,且特別關於一種最大功率追蹤之風力發電系統。The present invention relates to a power generation system, and more particularly to a wind power generation system for maximum power tracking.

當今環保意識抬頭,人們驚覺不能再過度仰賴取之有盡、用之將竭的石油、煤與天然氣等不可再生能源,再者近年來許多意外使得核能電廠的安全性備受質疑,因此由再生能源取代傳統火力發電與核能發電已逐漸成為世界各國努力的目標。根據"21世紀再生能源政策網"( Renewable Energy PWMolicy Network for the 21st Century,簡稱REN21)在2014年6月中旬發表期刊統計,2013年全球風力發電量已高達318G瓦(W),為第二大的再生能源發電方式。Nowadays, environmental awareness is on the rise, people are shocked that they can no longer rely too much on non-renewable energy sources such as oil, coal and natural gas that are exhausted and used. In recent years, many accidents have made the safety of nuclear power plants questionable. The replacement of traditional thermal power generation and nuclear power generation by renewable energy has gradually become the goal of all countries in the world. According to "Renewable Energy Policy Network for the 21st Century" (Renewable Energy PWMolicy Network for the 21 st Century, referred to REN21) published in the journal Statistical mid-June 2014, in 2013 the global wind power capacity has reached 318G watts (W), the second Large renewable energy generation methods.

由於地球表面對太陽輻射熱吸收不均勻使大氣壓力不平衡,造成空氣循環流動現象,就是所謂的風。如第1圖所示,空氣流動時產生風壓,推動風力機10之葉片轉動,進而帶動發電機12轉動發電。因此風力發電是由風能轉換為機械能,再轉換為電能。風能固然是強而穩定的再生能源,為了將風能達到最有效的利用,最大功率追蹤器成為不可或缺的一環。目前普遍所見之最大功率追蹤器為單一升壓或降壓架構,控制法為擾動觀察法,其應用之系統環境受到了限制,且追蹤速率過慢與穩態不斷震盪導致許多能量白白損失。此外,其他控制法需要取得風速信號與永磁同步發電機動態模型,較為複雜不易實現。另外,傳統升降壓電路(Buck-Boost)受到電壓應力的限制,往往不適用高功率系統。Due to the uneven heat absorption of the sun's surface on the earth's surface, the atmospheric pressure is unbalanced, causing air circulation and circulation, which is called wind. As shown in Fig. 1, wind pressure is generated when the air flows, and the diaphragm of the wind turbine 10 is driven to rotate, thereby driving the generator 12 to generate electricity. Therefore, wind power is converted from wind energy to mechanical energy and then converted into electrical energy. Wind power is a strong and stable renewable energy source. In order to achieve the most efficient use of wind energy, the maximum power tracker has become an indispensable part. The largest power tracker commonly seen at present is a single boost or buck architecture. The control method is disturbance observation. The system environment of the application is limited, and the tracking rate is too slow and the steady state oscillates, resulting in many energy loss. In addition, other control methods need to obtain the wind speed signal and the dynamic model of the permanent magnet synchronous generator, which is more complicated and difficult to implement. In addition, the conventional buck-boost circuit (Buck-Boost) is limited by voltage stress and is often not suitable for high-power systems.

目前最大功率追蹤器比較常用的方法為擾動觀察法。擾動觀察法為現今廣泛應用於最大功率追蹤的控制法,因其原理簡單且所需的參數少,藉由反覆觀察功率值及調整責任比率,使得永磁同步發電機之整流電壓逐漸接近其最大功率點。此方法雖能達到最大功率點,但在達到最大功率點後並不會停止擾動而會持續震盪,造成能量損失。若想要減少擾動的損失,可以經由調整擾動量來降低左右震盪的幅度,但會使追蹤速率變慢,在大氣大幅且迅速變化時,擾動觀察法無法快速追蹤到下一個最大功率點,並不適用於風力發電系統中。At present, the most common method for maximum power tracker is perturbation observation. Disturbance observation method is widely used in the control method of maximum power tracking. Because its principle is simple and the required parameters are few, the rectified voltage of permanent magnet synchronous generator is gradually approaching its maximum by repeatedly observing the power value and adjusting the responsibility ratio. Power point. Although this method can reach the maximum power point, it will not stop the disturbance after reaching the maximum power point and will continue to oscillate, resulting in energy loss. If you want to reduce the loss of disturbance, you can reduce the amplitude of the left and right oscillation by adjusting the disturbance amount, but it will slow down the tracking rate. When the atmosphere changes greatly and rapidly, the disturbance observation method cannot quickly track the next maximum power point, and Not suitable for use in wind power systems.

此外,有相關文獻探討使用T-S(Takagi-Sugeno)模糊控制法設計風力發電最大功率追蹤器,但最大功率追蹤器僅為傳統降壓電路,且設計上並未考量衰減率條件,亦未考量葉片風向角變化情況。因此控制器操作範圍受限,且在追蹤速率上不夠快速,亦無法追蹤不同葉片風向角之功率曲線,將導致實際應用時產生追不到真正最大功率點之缺陷。In addition, relevant literature discusses the use of TS (Takagi-Sugeno) fuzzy control method to design wind power maximum power tracker, but the maximum power tracker is only a traditional step-down circuit, and the design does not consider the attenuation rate conditions, and does not consider the blade. The change of wind direction angle. Therefore, the operating range of the controller is limited, and the tracking rate is not fast enough, and the power curve of different blade wind direction angles cannot be tracked, which will cause defects in the actual application that cannot catch the true maximum power point.

因此,本發明係在針對上述的困擾,提出一種最大功率追蹤之風力發電系統,以解決習知所產生的問題。Accordingly, the present invention has been made in view of the above-mentioned problems, and proposes a wind power generation system with maximum power tracking to solve the problems caused by the prior art.

本發明的主要目的,在於提供一種最大功率追蹤之風力發電系統,其係於利用最大功率追蹤器接收風向角、發電機之轉速、直流輸入電壓與直流輸入電流,以據此進行T-S(Takagi-Sugeno)模糊控制法,以承受電感與電容等元件衰老之模式不確定性與二極體偏壓和外部不穩定風場造成的干擾,同時增強系統碰上亂流或陣風等因素時的抵抗能力,提升系統收斂速率,縮減風力發電系統最大功率追蹤的反應時間。此外,可使系統在不同發電機轉速與不同葉片風向角之情況下,均能快速追蹤至風力發電最大功率,提高追蹤準確率及風能使用率。The main object of the present invention is to provide a wind power generation system with maximum power tracking, which uses a maximum power tracker to receive a wind direction angle, a generator speed, a DC input voltage, and a DC input current to perform TS (Takagi- Sugeno) fuzzy control method to withstand the mode uncertainty of component aging such as inductance and capacitance and the interference caused by diode bias and external unstable wind field, and enhance the resistance of the system when it encounters turbulence or gusts. Increase the system convergence rate and reduce the response time of the maximum power tracking of the wind power generation system. In addition, the system can quickly track the maximum power of wind power generation under different generator speeds and different blade wind direction angles, improving tracking accuracy and wind energy utilization rate.

為達上述目的,本發明提供一種最大功率追蹤之風力發電系統,其係包含一具有風車葉片之風力機,風力機利用風力產生一機械能,風車葉片因應風力而具有一風向角。風力機連接一三相發電機,其係接收機械能,以藉此以一轉速運作,且產生三相交流電能。三相發電機連接一交直流轉換器,其係轉換三相交流電能為一直流輸入電壓與一直流輸入電流。風車葉片、三相發電機與交直流轉換器連接一最大功率追蹤器,其係偵測出風向角與發電機之轉速,最大功率追蹤器接收風向角、轉速、直流輸入電壓與直流輸入電流,以據此進行T-S(Takagi-Sugeno)模糊控制法。最大功率追蹤器利用T-S模糊控制法取得直流輸入電壓與直流輸入電流之最大功率點,並據此產生一直流輸出電壓與一直流輸出電流。To achieve the above object, the present invention provides a wind power generation system with maximum power tracking, which comprises a wind turbine having a windmill blade, which uses wind power to generate a mechanical energy, and the wind turbine blade has a wind direction angle in response to the wind. The wind turbine is connected to a three-phase generator that receives mechanical energy to operate at a rotational speed and to generate three-phase alternating current electrical energy. The three-phase generator is connected to an AC-DC converter, which converts the three-phase AC power into a DC input voltage and a DC input current. The windmill blade, the three-phase generator and the AC-DC converter are connected to a maximum power tracker, which detects the wind direction angle and the speed of the generator, and the maximum power tracker receives the wind direction angle, the rotational speed, the DC input voltage and the DC input current. Based on this, the TS (Takagi-Sugeno) fuzzy control method is performed. The maximum power tracker uses the T-S fuzzy control method to obtain the maximum power point of the DC input voltage and the DC input current, and accordingly generates a DC output voltage and a DC output current.

茲為使 貴審查委員對本發明的結構特徵及所達成的功效更有進一步的瞭解與認識,謹佐以較佳的實施例圖及配合詳細的說明,說明如後:In order to give your reviewers a better understanding and understanding of the structural features and efficacies of the present invention, the following is a description of the preferred embodiment and the detailed description.

請參閱第2圖,以下介紹本發明之第一實施例。本發明之最大功率追蹤之風力發電系統包含一風力機10、一三相發電機12、一交直流轉換器14、一最大功率追蹤器16、一直流鏈結電路18與一三相換流器20,其中三相發電機12與交直流轉換器14分別以永磁同步發電機與三相全波整流電路為例。風力機10包含風車葉片22與一風車轉子24,風車葉片22因應風力而具有一風向角β(t),風車轉子24透過一軸柱26連結三相發電機12,風車葉片22設於風車轉子24上,風力透過風車葉片22依序帶動風車轉子24與軸柱26轉動,以產生一機械能。三相發電機12並接收此機械能,以藉此以一轉速ω(t)運作,且產生三相交流電能TE。交直流轉換器14連接三相發電機12,以轉換三相交流電能TE為一直流輸入電壓與一直流輸入電流。最大功率追蹤器16連接風車葉片22、三相發電機12與交直流轉換器14,以偵測出風向角β(t)與轉速ω(t),最大功率追蹤器16接收風向角β(t)、轉速ω(t)、直流輸入電壓與直流輸入電流,以據此進行T-S(Takagi-Sugeno)模糊控制法,最大功率追蹤器16利用T-S模糊控制法取得直流輸入電壓與直流輸入電流之最大功率點,並據此產生一直流輸出電壓與一直流輸出電流。直流鏈結電路18連接最大功率追蹤器16,直流輸出電壓與直流輸出電流透過直流鏈結電路18輸出。三相換流器20連接一負載28與直流鏈結電路18,以接收直流輸出電壓與直流輸出電流,並將其轉換為三相交流電壓TV供負載28使用。Referring to Figure 2, a first embodiment of the present invention will be described below. The maximum power tracking wind power generation system of the present invention comprises a wind turbine 10, a three-phase generator 12, an AC/DC converter 14, a maximum power tracker 16, a DC link circuit 18 and a three-phase inverter. 20, wherein the three-phase generator 12 and the AC-DC converter 14 are respectively exemplified by a permanent magnet synchronous generator and a three-phase full-wave rectifier circuit. The wind turbine 10 includes a wind turbine blade 22 and a wind turbine rotor 24 having a wind direction angle β(t) corresponding to the wind force. The windmill rotor 24 is coupled to the three-phase generator 12 via a shaft column 26, and the wind turbine blade 22 is disposed on the windmill rotor 24. The wind force sequentially drives the windmill rotor 24 and the shaft post 26 to rotate through the windmill blades 22 to generate a mechanical energy. The three-phase generator 12 receives this mechanical energy to operate at a rotational speed ω(t) and produces three-phase alternating current electrical energy TE. The AC/DC converter 14 is connected to the three-phase generator 12 to convert the three-phase AC power TE into a DC input voltage. And always input current . The maximum power tracker 16 is connected to the wind turbine blade 22, the three-phase generator 12 and the AC/DC converter 14 to detect the wind direction angle β(t) and the rotational speed ω(t), and the maximum power tracker 16 receives the wind direction angle β(t). ), speed ω(t), DC input voltage With DC input current In order to perform the TS (Takagi-Sugeno) fuzzy control method, the maximum power tracker 16 obtains the DC input voltage by using the TS fuzzy control method. With DC input current Maximum power point, and accordingly generate a DC output voltage And current output current . DC link circuit 18 is connected to maximum power tracker 16, DC output voltage With DC output current The output is through the DC link circuit 18. The three-phase inverter 20 is connected to a load 28 and a DC link circuit 18 for receiving a DC output voltage. With DC output current And convert it to a three-phase AC voltage TV for use by the load 28.

最大功率追蹤器16更包含一處理器30與一電壓轉換器32。處理器30連接風車葉片22、三相發電機12、交直流轉換器14與電壓轉換器32,並偵測出風向角β(t)與轉速ω(t),處理器30接收風向角β(t)、轉速ω(t)、直流輸入電壓、直流輸入電流與直流輸出電壓,以據此進行T-S模糊控制法,進而取得最大功率點,處理器30根據此最大功率點產生一脈波寬度調變訊號PWM。電壓轉換器32連接交直流轉換器14,以接收直流輸入電壓與直流輸入電流,並接收脈波寬度調變訊號PWM,且據此轉換直流輸入電壓與直流輸入電流為直流輸出電壓與直流輸出電流The maximum power tracker 16 further includes a processor 30 and a voltage converter 32. The processor 30 connects the wind turbine blade 22, the three-phase generator 12, the AC/DC converter 14 and the voltage converter 32, and detects the wind direction angle β(t) and the rotational speed ω(t), and the processor 30 receives the wind direction angle β ( t), speed ω (t), DC input voltage DC input current DC output voltage In order to perform the TS fuzzy control method to obtain the maximum power point, the processor 30 generates a pulse width modulation signal PWM according to the maximum power point. Voltage converter 32 is connected to AC/DC converter 14 to receive DC input voltage With DC input current And receiving the pulse width modulation signal PWM, and converting the DC input voltage accordingly With DC input current DC output voltage With DC output current .

電壓轉換器32更包含一第一電容器34、一第一電子開關36、一第一二極體38、一電感器40、一第二電子開關42、一第二二極體44與一第二電容器46,其中第一電子開關36與第二電子開關42皆以金氧半場效電晶體為例。第一電容器34連接交直流轉換器14,並接收且穩定直流輸入電壓。第一電子開關36連接處理器30、交直流轉換器14與第一電容器34,並接收脈波寬度調變訊號PWM以切換開關狀態。第一二極體38之陽極接地,陰極連接第一電子開關36。第一二極體38根據第一電子開關36之開關狀態,透過第一電子開關36接收直流輸入電壓與直流輸入電流,以於第一二極體38之陽極建立一節點電壓。電感器40連接第一二極體38之陽極與第一電子開關36,並接收上述之節點電壓,以產生一電感電流。第二電子開關42連接電感器40、交直流轉換器14與處理器30,並接收脈波寬度調變訊號PWM以切換開關狀態。第二二極體44之陽極連接第二電子開關42與電感器40,並根據第二電子開關42之開關狀態接收電感電流,以產生直流輸出電壓與直流輸出電流。第二電容器46連接第二二極體44之陰極與交直流轉換器14,以穩定直流輸出電壓The voltage converter 32 further includes a first capacitor 34, a first electronic switch 36, a first diode 38, an inductor 40, a second electronic switch 42, a second diode 44 and a second The capacitor 46, wherein the first electronic switch 36 and the second electronic switch 42 are both exemplified by a gold oxide half field effect transistor. The first capacitor 34 is connected to the AC to DC converter 14 and receives and stabilizes the DC input voltage . The first electronic switch 36 is connected to the processor 30, the AC/DC converter 14 and the first capacitor 34, and receives the pulse width modulation signal PWM to switch the switching state. The anode of the first diode 38 is grounded and the cathode is connected to the first electronic switch 36. The first diode 38 receives the DC input voltage through the first electronic switch 36 according to the switching state of the first electronic switch 36. With DC input current A node voltage is established at the anode of the first diode 38. The inductor 40 is connected to the anode of the first diode 38 and the first electronic switch 36, and receives the above-mentioned node voltage to generate an inductor current. . The second electronic switch 42 is connected to the inductor 40, the AC/DC converter 14 and the processor 30, and receives the pulse width modulation signal PWM to switch the switching state. The anode of the second diode 44 is connected to the second electronic switch 42 and the inductor 40, and receives the inductor current according to the switching state of the second electronic switch 42. To generate a DC output voltage With DC output current . The second capacitor 46 is connected to the cathode of the second diode 44 and the AC/DC converter 14 to stabilize the DC output voltage. .

上述T-S模糊控制法依據下列公式(1)、(2)、(3)、(4)、(5)、(6)與(7)而實現:,其中(1) (2)(3)(4)(5),其中(6),其中(7) 其中sup為最小上界之意,V (x (t ))為李亞普諾夫函數,為李亞普諾夫函數之變化率,x (t )為系統狀態變數,為系統狀態變數之變化率,為時間,為新狀態變數,為新狀態變數之變化率, y (t )為最大功率點誤差,y (t )之轉置矩陣, (t )為干擾訊號向量,(t )之轉置矩陣, 為總干擾,為二極體偏壓項,為二極體偏壓向量,為目標誤差之積分,為目標誤差,為最大功率點電壓,取決於風向角β(t)與轉速ω(t),為直流輸入電壓,為直流輸出電壓,為電感電流,i為模糊規則數指標,j為模糊規則數指標,γ為干擾的抵抗能力、α為加快收斂速率的衰減率,r 為T-S模糊規則數,為T-S(Takagi-Sugeno)模糊規則前鑑部變數,包含直流輸入電流u (t )為脈波寬度調變訊號PWM之責任週期,為第i個正規化權重,為第j個正規化權重,為T-S(Takagi-Sugeno)模糊子系統之第i個第一系統矩陣,之轉置矩陣,為T-S(Takagi-Sugeno)模糊子系統之第j個第一系統矩陣,之轉置矩陣,為T-S(Takagi-Sugeno)模糊子系統之第i個第二系統矩陣,之轉置矩陣,為T-S(Takagi-Sugeno)模糊子系統之第j個第二系統矩陣,之轉置矩陣,為第i個第一系統矩陣對應之不確定性參數變動範圍,為第j個第一系統矩陣對應之不確定性參數變動範圍,為第i個第二系統矩陣對應之不確定性參數變動範圍,為第j個第二系統矩陣對應之不確定性參數變動範圍,為第i個外界干擾矩陣,之轉置矩陣,為第i個總外界干擾矩陣,為第i個規則的輸出矩陣,之轉置矩陣,為第i個增益矩陣,之轉置矩陣,為第i個狀態變數增益項,為第i個誤差積分增益項,之轉置矩陣,為第j個增益矩陣,之轉置矩陣,為第j個狀態變數增益項,為第j個誤差積分增益項,為李亞普諾夫函數之正定矩陣,的反矩陣,為第i個第一系統矩陣之參數之不確定性,為第i個第一系統矩陣對應之第一參數矩陣,之轉置矩陣,為第j個第一系統矩陣對應之第一參數矩陣,為第i個第一系統矩陣對應之與時間有關之參數變動對角矩陣,為第i個第一系統矩陣對應之第二參數矩陣,之轉置矩陣,為第j個第一系統矩陣對應之第二參數矩陣,之轉置矩陣,之轉置矩陣,為第i個第二系統矩陣之參數之不確定性,為第i個第二系統矩陣對應之第一參數矩陣,之轉置矩陣,為第j個第二系統矩陣對應之第一參數矩陣,為第i個第二系統矩陣對應之與時間有關之參數變動對角矩陣,為第i個第二系統矩陣對應之第二參數矩陣,之轉置矩陣,為第j個第二系統矩陣對應之第二參數矩陣,之轉置矩陣,之轉置矩陣,為第一代替矩陣,為第二代替矩陣,為第三代替矩陣,之轉置矩陣,為第四代替矩陣,為第五代替矩陣,I為單位矩陣,diag()為對角矩陣。此外,當電壓轉換器32為升壓模式時, 時, ,且第二二極體44之偏壓為L 為電感器40之電感值。當電壓轉換器32為降壓模式時, 時, ,且第一二極體38與第二二極體44之偏壓皆為L 為電感器40之電感值。The above TS fuzzy control method is implemented according to the following formulas (1), (2), (3), (4), (5), (6), and (7): ,among them (1) , , (2) (3) (4) (5) ,among them , (6) , ,among them , , , , , , (7) where sup is the minimum upper bound, V ( x ( t )) is the Lyapunov function, For the rate of change of the Lyapunov function, x ( t ) is the system state variable, , For the rate of change of system state variables, For time, For new state variables, , For the rate of change of the new state variable, , y ( t ) is the maximum power point error, a transposed matrix of y ( t ), , ( t ) is the interference signal vector, for ( t ) the transposed matrix, , For total interference, , Is a diode bias term, For the diode bias vector, For the integral of the target error, For the target error, For maximum power point voltage, Depending on the wind direction angle β(t) and the rotational speed ω(t), For the DC input voltage, For DC output voltage, For the inductor current, i is the fuzzy rule number index, j is the fuzzy rule number index, γ is the interference resistance, α is the decay rate of the convergence rate, and r is the TS fuzzy rule number. For the TS (Takagi-Sugeno) fuzzy rule pre-measurement variable, Contains DC input current , u ( t ) is the duty cycle of the pulse width modulation signal PWM, For the ith normalization weight, For the jth normalized weight, Is the i-th first system matrix of the TS (Takagi-Sugeno) fuzzy subsystem, for Transposed matrix, Is the jth first system matrix of the TS (Takagi-Sugeno) fuzzy subsystem, for Transposed matrix, Is the i-th second system matrix of the TS (Takagi-Sugeno) fuzzy subsystem, for Transposed matrix, Is the jth second system matrix of the TS (Takagi-Sugeno) fuzzy subsystem, for Transposed matrix, The range of uncertainty parameter corresponding to the i-th first system matrix, The range of uncertainty parameter corresponding to the jth first system matrix, The range of uncertainty parameter corresponding to the i-th second system matrix, The range of uncertainty parameter corresponding to the jth second system matrix, For the ith external disturbance matrix, for Transposed matrix, For the ith total external interference matrix, , The output matrix for the ith rule, for Transposed matrix, For the ith gain matrix, , for Transposed matrix, For the ith state variable gain term, For the ith error integration gain term, for Transposed matrix, For the jth gain matrix, , for Transposed matrix, For the jth state variable gain term, For the jth error integral gain term, a positive definite matrix for the Lyapunov function, , for Inverse matrix, The uncertainty of the parameters of the i-th first system matrix, a first parameter matrix corresponding to the i-th first system matrix, for Transposed matrix, a first parameter matrix corresponding to the jth first system matrix, a time-dependent parameter variation diagonal matrix corresponding to the i-th first system matrix, a second parameter matrix corresponding to the i-th first system matrix, for Transposed matrix, a second parameter matrix corresponding to the jth first system matrix, for Transposed matrix, for Transposed matrix, , The uncertainty of the parameters of the i-th second system matrix, a first parameter matrix corresponding to the i-th second system matrix, for Transposed matrix, a first parameter matrix corresponding to the jth second system matrix, a time-dependent parameter variation diagonal matrix corresponding to the i-th second system matrix, a second parameter matrix corresponding to the i-th second system matrix, for Transposed matrix, a second parameter matrix corresponding to the jth second system matrix, for Transposed matrix, for Transposed matrix, , As the first replacement matrix, For the second replacement matrix, For the third replacement matrix, for Transposed matrix, For the fourth replacement matrix, For the fifth replacement matrix, I is the identity matrix and diag() is the diagonal matrix. In addition, when the voltage converter 32 is in the boost mode, Time, And the bias voltage of the second diode 44 is L is the inductance value of the inductor 40. When the voltage converter 32 is in the buck mode, Time, And the bias voltages of the first diode 38 and the second diode 44 are L is the inductance value of the inductor 40.

上述公式(1)為最大功率追蹤器16在考慮模式不確定性、抗干擾能力與衰減率下之系統穩定條件,公式(2)為最大功率追蹤器16具模式不確定性與外界干擾之狀態方程式,公式(3)為最大功率追蹤器16之目標誤差方程式,公式(4)為最大功率追蹤器16之控制律,皆為控制增益,將公式(4)代入公式(2)並與公式(3)聯立,可得公式(5)為風力發電系統的閉迴路控制方程式。公式(6)為風力發電系統的新閉迴路控制方程式。最後將公式(6)代入公式(1)經由推導可求出風力發電系統快速強健穩定條件,如公式(7)所示。接著將系統可能存在的模式不確定性與干擾γ代入公式(7)中,可得到具備容忍模式不確定性與抗干擾兩種功能的風力發電系統之最大功率追蹤器16,接著在強健穩定條件下加入衰減率α提升風力發電系統之最大功率追蹤器16之追蹤速率,進而設計出符合系統所需的處理器30,使系統承受電感與電容等元件衰老之模式不確定性與二極體偏壓和外部不穩定風場造成的干擾,同時增強系統碰上亂流或陣風等因素時的抵抗能力,提升系統收斂速率,縮減風力發電系統最大功率追蹤的反應時間。且透過此控制方法,最大功率追蹤器16應用在不同電氣規格時,只需要更改控制增益,不需要對電壓轉換器32之參數與元件做調整,也無須重新設計韌體流程規劃即可達到強健性的最大功率追蹤。此最大功率追蹤器16在不同風速與風向角下的風力發電曲線均能準確追到最大功率點,其追蹤速率遠遠優於傳統擾動觀察法。The above formula (1) is the system stability condition of the maximum power tracker 16 considering mode uncertainty, anti-interference ability and attenuation rate, and formula (2) is the state of the maximum power tracker 16 with mode uncertainty and external interference. Equation, equation (3) is the target error equation of the maximum power tracker 16, and equation (4) is the control law of the maximum power tracker 16, , , versus All are control gains, formula (4) is substituted into formula (2) and is combined with formula (3), and formula (5) is obtained as the closed loop control equation of wind power generation system. Equation (6) is the new closed loop control equation for wind power generation systems. Finally, formula (6) is substituted into formula (1). The fast and robust conditions of wind power generation system can be obtained by derivation, as shown in formula (7). Then the possible system uncertainty of the system Substituting the interference γ into the formula (7), the maximum power tracker 16 of the wind power generation system having the functions of tolerance mode uncertainty and anti-interference can be obtained, and then the attenuation rate α is added to enhance the wind power generation system under strong and stable conditions. The tracking rate of the maximum power tracker 16 is designed to meet the processor 30 required by the system, so that the system can withstand the mode uncertainty of component aging such as inductance and capacitance, and the interference caused by the diode bias and the external unstable wind field. At the same time, it enhances the resistance of the system when it encounters factors such as turbulence or gusts, improves the system convergence rate, and reduces the reaction time of the maximum power tracking of the wind power generation system. Through this control method, when the maximum power tracker 16 is applied to different electrical specifications, only the control gain needs to be changed, the parameters and components of the voltage converter 32 need not be adjusted, and the firmware process planning is not required to achieve robustness. Maximum power tracking. The maximum power tracker 16 can accurately capture the maximum power point under different wind speed and wind direction angles, and its tracking rate is much better than the traditional disturbance observation method.

以下介紹第一實施例之運作過程。首先,風力透過風車葉片22依序帶動風車轉子24與軸柱26轉動,以產生機械能,同時,風車葉片22因應風力而具有一風向角β(t)。接著,三相發電機12並接收此機械能,以藉此以轉速ω(t)運作,且產生三相交流電能TE。再來,交直流轉換器14接收三相交流電能TE,以轉換三相交流電能TE為直流輸入電壓與直流輸入電流。電壓轉換器32接收直流輸入電壓與直流輸入電流,以據此產生直流輸出電壓,同時處理器30偵測出風向角β(t)與轉速ω(t)。然後,處理器30接收風向角β(t)、轉速ω(t)、直流輸入電壓、直流輸入電流與直流輸出電壓,以據此進行T-S模糊控制法,進而取得最大功率點,處理器30根據此最大功率點產生一脈波寬度調變訊號PWM。接續進行電壓轉換器32之運作,首先,第一電容器34接收且穩定直流輸入電壓,接著,第一電子開關36與第二電子開關42接收脈波寬度調變訊號PWM以切換開關狀態,使第一二極體38根據第一電子開關36之開關狀態,透過第一電子開關36接收直流輸入電壓與直流輸入電流,以於第一二極體38之陽極建立節點電壓。電感器40接收此節點電壓,以產生電感電流。接著,第二二極體44根據第二電子開關42之開關狀態接收電感電流,以產生新的直流輸出電壓與直流輸出電流。此外,第二電容器46同時穩定此直流輸出電壓。在上述過程中,由於最大功率追蹤器16採用的T-S模糊控制法是以回授架構來實現的,故直流輸出電壓與直流輸出電流會不斷被更新,且T-S模糊控制法會以上述公式(1)、(2)、(3)、(4)、(5)、(6)與(7)來實現。當直流輸出電壓與直流輸出電流產生後,直流輸出電壓與直流輸出電流透過直流鏈結電路18輸出至三相換流器20,三相換流器20再將直流輸出電壓與直流輸出電流轉換為三相交流電壓TV供負載28使用。The operation of the first embodiment will be described below. First, the wind turbines sequentially rotate the windmill rotor 24 and the shaft column 26 through the wind turbine blades 22 to generate mechanical energy. At the same time, the wind turbine blades 22 have a wind direction angle β(t) in response to the wind. Next, the three-phase generator 12 receives this mechanical energy to thereby operate at the rotational speed ω(t) and generate three-phase alternating current electrical energy TE. Then, the AC/DC converter 14 receives the three-phase AC power TE to convert the three-phase AC power TE into a DC input voltage. With DC input current . Voltage converter 32 receives DC input voltage With DC input current To generate a DC output voltage accordingly At the same time, the processor 30 detects the wind direction angle β(t) and the rotational speed ω(t). Then, the processor 30 receives the wind direction angle β(t), the rotational speed ω(t), and the DC input voltage. DC input current DC output voltage In order to perform the TS fuzzy control method to obtain the maximum power point, the processor 30 generates a pulse width modulation signal PWM according to the maximum power point. The operation of the voltage converter 32 is continued. First, the first capacitor 34 receives and stabilizes the DC input voltage. Then, the first electronic switch 36 and the second electronic switch 42 receive the pulse width modulation signal PWM to switch the switch state, so that the first diode 38 passes through the first electronic switch 36 according to the switching state of the first electronic switch 36. Receiving DC input voltage With DC input current The node voltage is established at the anode of the first diode 38. Inductor 40 receives this node voltage to generate an inductor current . Then, the second diode 44 receives the inductor current according to the switching state of the second electronic switch 42. To generate a new DC output voltage With DC output current . In addition, the second capacitor 46 simultaneously stabilizes the DC output voltage . In the above process, since the TS fuzzy control method adopted by the maximum power tracker 16 is implemented by a feedback architecture, the DC output voltage is With DC output current It will be continuously updated, and the TS fuzzy control method will be implemented by the above formulas (1), (2), (3), (4), (5), (6) and (7). DC output voltage With DC output current DC output voltage after generation With DC output current Output to the three-phase inverter 20 through the DC link circuit 18, and the three-phase inverter 20 converts the DC output voltage With DC output current It is converted to a three-phase AC voltage TV for use by the load 28.

以下介紹第二實施例,請參閱第3圖。第二實施例與第一實施例差別在於第二實施例缺少直流鏈結電路18、三相換流器20與負載28,其餘元件之運作方式則與第一實施例相同,於此不再贅述。The second embodiment will be described below, see Fig. 3. The difference between the second embodiment and the first embodiment is that the second embodiment lacks the DC link circuit 18, the three-phase inverter 20 and the load 28. The operation of the remaining components is the same as that of the first embodiment, and details are not described herein. .

綜上所述,本發明利用最大功率追蹤器接收風向角、發電機之轉速、直流輸入電壓與直流輸入電流,以據此進行T-S模糊控制法,進而在不同發電機轉速與不同葉片風向角之情況下,快速追蹤至風力發電最大功率,提高追蹤準確率及風能使用率。In summary, the present invention utilizes a maximum power tracker to receive the wind direction angle, the speed of the generator, the DC input voltage, and the DC input current to perform the TS fuzzy control method based on the different generator speeds and different blade wind direction angles. In this case, quickly track the maximum power to wind power, improve tracking accuracy and wind energy usage.

10‧‧‧風力機
12‧‧‧三相發電機
14‧‧‧交直流轉換器
16‧‧‧最大功率追蹤器
18‧‧‧直流鏈結電路
20‧‧‧三相換流器
22‧‧‧風車葉片
24‧‧‧風車轉子
26‧‧‧軸柱
28‧‧‧負載
30‧‧‧處理器
32‧‧‧電壓轉換器
34‧‧‧第一電容器
36‧‧‧第一電子開關
38‧‧‧第一二極體
40‧‧‧電感器
42‧‧‧第二電子開關
44‧‧‧第二二極體
46‧‧‧第二電容器
10‧‧‧Wind machine
12‧‧‧Three-phase generator
14‧‧‧AC-DC converter
16‧‧‧Max Power Tracker
18‧‧‧DC link circuit
20‧‧‧Three-phase inverter
22‧‧‧Wind blades
24‧‧‧Wind rotor
26‧‧‧ shaft column
28‧‧‧ load
30‧‧‧ Processor
32‧‧‧Voltage Converter
34‧‧‧First capacitor
36‧‧‧First electronic switch
38‧‧‧First Diode
40‧‧‧Inductors
42‧‧‧Second electronic switch
44‧‧‧second diode
46‧‧‧second capacitor

第1圖為先前技術之風力發電系統之示意圖。 第2圖為本發明之第一實施例之系統方塊圖。 第3圖為本發明之第二實施例之系統方塊圖。Figure 1 is a schematic diagram of a prior art wind power generation system. Figure 2 is a block diagram of the system of the first embodiment of the present invention. Figure 3 is a block diagram of the system of the second embodiment of the present invention.

10‧‧‧風力機 10‧‧‧Wind machine

12‧‧‧三相發電機 12‧‧‧Three-phase generator

14‧‧‧交直流轉換器 14‧‧‧AC-DC converter

16‧‧‧最大功率追蹤器 16‧‧‧Max Power Tracker

18‧‧‧直流鏈結電路 18‧‧‧DC link circuit

20‧‧‧三相換流器 20‧‧‧Three-phase inverter

22‧‧‧風車葉片 22‧‧‧Wind blades

24‧‧‧風車轉子 24‧‧‧Wind rotor

26‧‧‧軸柱 26‧‧‧ shaft column

28‧‧‧負載 28‧‧‧ load

30‧‧‧處理器 30‧‧‧ Processor

32‧‧‧電壓轉換器 32‧‧‧Voltage Converter

34‧‧‧第一電容器 34‧‧‧First capacitor

36‧‧‧第一電子開關 36‧‧‧First electronic switch

38‧‧‧第一二極體 38‧‧‧First Diode

40‧‧‧電感器 40‧‧‧Inductors

42‧‧‧第二電子開關 42‧‧‧Second electronic switch

44‧‧‧第二二極體 44‧‧‧second diode

46‧‧‧第二電容器 46‧‧‧second capacitor

Claims (10)

一種最大功率追蹤之風力發電系統,包含:一風力機,其具有風車葉片,該風力機利用風力產生一機械能,該風車葉片因應該風力而具有一風向角;一三相發電機,連接該風力機,並接收該機械能,以藉此以一轉速運作,且產生三相交流電能;一交直流轉換器,連接該三相發電機,以轉換該三相交流電能為一直流輸入電壓與一直流輸入電流;以及一最大功率追蹤器,連接該風車葉片、該三相發電機與該交直流轉換器,以偵測出該風向角與該轉速,該最大功率追蹤器接收該風向角、該轉速、該直流輸入電壓與該直流輸入電流,以據此進行T-S(Takagi-Sugeno)模糊控制法,該最大功率追蹤器利用該T-S模糊控制法取得該直流輸入電壓與該直流輸入電流之最大功率點,並據此產生一直流輸出電壓與一直流輸出電流;其中該最大功率追蹤器更包含:一處理器,連接該風車葉片、該三相發電機與該交直流轉換器,並偵測出該風向角與該轉速,該處理器接收該風向角、該轉速、該直流輸入電壓、該直流輸入電流與該直流輸出電壓,以據此進行該T-S模糊控制法,進而取得該最大功率點,該處理器根據該最大功率點產生一脈波寬度調變訊號;以及一電壓轉換器,連接該交直流轉換器與該處理器,以接收該直流輸入電壓與該直流輸入電流,並接收該脈波寬度調變 訊號,且據此轉換該直流輸入電壓與該直流輸入電流為該直流輸出電壓與該直流輸出電流。 A wind power generation system with maximum power tracking, comprising: a wind turbine having a wind turbine blade, the wind turbine generating a mechanical energy by using wind power, the wind turbine blade having a wind direction angle due to wind power; and a three-phase generator connecting the a wind turbine, and receiving the mechanical energy to operate at a rotational speed and generating three-phase alternating current electrical energy; an AC-DC converter connected to the three-phase generator to convert the three-phase alternating current electrical energy into a direct current input voltage and a DC input current; and a maximum power tracker connecting the wind turbine blade, the three-phase generator and the AC/DC converter to detect the wind direction angle and the rotation speed, the maximum power tracker receiving the wind direction angle, The rotation speed, the DC input voltage, and the DC input current are used to perform a TS (Takagi-Sugeno) fuzzy control method, and the maximum power tracker obtains the maximum DC input voltage and the DC input current by using the TS fuzzy control method. a power point, and accordingly, generates a DC output voltage and a DC output current; wherein the maximum power tracker further includes: a processor, the connection a wind turbine blade, the three-phase generator and the AC/DC converter, and detecting the wind direction angle and the rotation speed, the processor receiving the wind direction angle, the rotation speed, the DC input voltage, the DC input current, and the DC output a voltage according to which the TS fuzzy control method is performed to obtain the maximum power point, the processor generates a pulse width modulation signal according to the maximum power point; and a voltage converter connected to the AC/DC converter a processor to receive the DC input voltage and the DC input current, and receive the pulse width modulation a signal, and accordingly converting the DC input voltage and the DC input current to the DC output voltage and the DC output current. 如請求項1所述之最大功率追蹤之風力發電系統,其中該風力機更包含一風車轉子,其係透過一軸柱連結該三相發電機,該風車葉片設於該風車轉子上,該風力透過該風車葉片依序帶動該風車轉子與該軸柱轉動,以產生該機械能。 The wind power generation system of claim 1, wherein the wind turbine further comprises a wind turbine rotor coupled to the three-phase generator via a shaft column, the wind turbine blade being disposed on the windmill rotor, the wind passing through The wind turbine blade sequentially drives the windmill rotor and the shaft to rotate to generate the mechanical energy. 如請求項1所述之最大功率追蹤之風力發電系統,其中該三相發電機為永磁同步發電機。 A wind power generation system of maximum power tracking as claimed in claim 1, wherein the three-phase generator is a permanent magnet synchronous generator. 如請求項1所述之最大功率追蹤之風力發電系統,其中該交直流轉換器為三相全波整流電路。 A wind power generation system of maximum power tracking as claimed in claim 1, wherein the AC/DC converter is a three-phase full-wave rectifier circuit. 如請求項1所述之最大功率追蹤之風力發電系統,更包含一直流鏈結電路,其係連接該最大功率追蹤器,該直流輸出電壓與該直流輸出電流透過該直流鏈結電路輸出。 The wind power generation system of claim 1, wherein the maximum power tracking circuit further comprises a DC link circuit connected to the maximum power tracker, and the DC output voltage and the DC output current are output through the DC link circuit. 如請求項5所述之最大功率追蹤之風力發電系統,更包含一三相換流器,其係連接一負載與該直流鏈結電路,以接收該直流輸出電壓與該直流輸出電流,並將其轉換為三相交流電壓供該負載使用。 The wind power generation system with maximum power tracking as claimed in claim 5, further comprising a three-phase inverter connected to a load and the DC link circuit to receive the DC output voltage and the DC output current, and It is converted to a three-phase AC voltage for use by the load. 如請求項1所述之最大功率追蹤之風力發電系統,其中該電壓轉換器更包含:一第一電容器,連接該交直流轉換器,並接收且穩定該直流輸入電壓;一第一電子開關,連接該處理器、該交直流轉換器與該第一電容器,並接收該脈波寬度調變訊號以切換開關狀態; 一第一二極體,其陽極接地,陰極連接該第一電子開關,該第一二極體根據該第一電子開關之該開關狀態,透過該第一電子開關接收該直流輸入電壓與該直流輸入電流,以於該陽極建立一節點電壓;一電感器,連接該陽極與該第一電子開關,並接收該節點電壓,以產生一電感電流;一第二電子開關,連接該電感器、該交直流轉換器與該處理器,並接收該脈波寬度調變訊號以切換開關狀態;一第二二極體,其陽極連接該第二電子開關與該電感器,並根據該第二電子開關之該開關狀態接收該電感電流,以產生該直流輸出電壓與該直流輸出電流;以及一第二電容器,連接該第二二極體之該陰極與該交直流轉換器,以穩定該直流輸出電壓。 The maximum power tracking wind power generation system of claim 1, wherein the voltage converter further comprises: a first capacitor connected to the AC/DC converter, and receiving and stabilizing the DC input voltage; a first electronic switch, Connecting the processor, the AC/DC converter and the first capacitor, and receiving the pulse width modulation signal to switch the switch state; a first diode having an anode connected to the cathode and a cathode connected to the first electronic switch, the first diode receiving the DC input voltage and the DC through the first electronic switch according to the switching state of the first electronic switch Inputting a current to establish a node voltage at the anode; an inductor connecting the anode and the first electronic switch, and receiving the node voltage to generate an inductor current; and a second electronic switch connecting the inductor, the An AC/DC converter and the processor, and receiving the pulse width modulation signal to switch the switch state; a second diode having an anode connected to the second electronic switch and the inductor, and according to the second electronic switch The switch state receives the inductor current to generate the DC output voltage and the DC output current; and a second capacitor connecting the cathode of the second diode to the AC/DC converter to stabilize the DC output voltage . 如請求項7所述之最大功率追蹤之風力發電系統,其中該T-S模糊控制法依據下列公式而實現: ,其中 ,其中,△ ai (t)=(t), ,△ bi (t)=(t); ,其中 ;以及 ,其中[K 1i K 2i ]=M i X -1 i<j,且 V(x(t))為李亞普諾夫函數,(x(t))為該李亞普諾夫函數之變化率,x(t)為系統狀態變數,x(t)=[V wdc (t)I L (t)V dc (t)] T (t)為該系統狀態 變數之變化率,t為時間,x w (t)為新狀態變數,(t)為 該新狀態變數之變化率,y(t)為最大功率點誤差,y T (t) 為y(t)之轉置矩陣,v(t)為干擾訊號向量,v T (t) 為v(t)之轉置矩陣,v '(t)為總干擾, bs為二極體偏壓項,bi為二極體偏壓向量,s(t)為目標 誤差之積分,(t)為該目標誤差,V obj (t)為最大功率點電壓,V obj (t)取決於該風向角與該轉速,V wdc (t)為該直流輸入電壓,V dc (t)為該直流輸出電壓,I L (t)為該電感電流,i為模糊規則數指標,j為模糊規則數指標,γ為干擾的抵抗能力、α為加快收斂速率的衰減率,r為T-S模糊規則數,z(t)為T-S(Takagi-Sugeno)模糊規則前鑑部變數,z(t)包含該直流輸入電流,u(t)為該脈波寬度調變訊號之責任週期,h i (z(t))為第i個正規化權重,h j (z(t))為第j個正規化權重,A i 為T-S(Takagi-Sugeno)模糊子系統之第i個第一系統矩陣,A i T A i 之轉置矩陣,A j 為該T-S(Takagi-Sugeno)模糊子系統之第j個第一系統矩陣,A j T A j 之轉置矩陣,B i 為該T-S(Takagi-Sugeno)模糊子系統之 第i個第二系統矩陣,B i T B i 之轉置矩陣,B j 為該T-S(Takagi-Sugeno)模糊子系統之第j個第二系統矩陣,B j T B j 之轉置矩陣,γ ai 為第i個該第一系統矩陣對應之不確定性參數變動範圍,γ aj 為第j個該第一系統矩陣對應之不確定性參數變動範圍,γ bi 為第i個該第二系統矩陣對應之不確定性參數變動範圍,γ bj 為第j個該第二系統矩陣對應之不確定性參數變動範圍,E i 為第i個外界干擾矩陣,E i 之轉置矩 陣,為第i個總外界干擾矩陣,C i 為第i個規則的輸 出矩陣,C i 之轉置矩陣,M i 為第i個增益矩陣,M i =(K 1i +K 2i )XM i 之轉置矩陣,K 1i 為第i個狀態變數增益項,K 2i 為第i個誤差積分增益項,K 2i 之轉置矩陣,M j 為第j個增益矩陣,M j =(K 1j +K 2j )XM j 之轉置矩陣,K 1j 為第j個狀態變數增益項,K 2j 為第j個誤差積分增益項,P為該李亞普諾夫函數之正定矩陣,v(t)=X T PXXP的反矩陣,△A i 為第i個該第一系統矩陣之參數之不確定性,D ai 為第i個該第一系統矩陣對應之第一參數矩陣,D ai 之轉置矩陣,D aj 為第j個該第一系統矩陣對應之第一參數矩陣,△ ai (t)為第i個該第一系統矩陣對應之與時間有關之參數變動對角矩陣,E ai 為第i個該第一系統矩陣對應之第二參數矩陣,E ai 之轉置矩陣,E aj 為第j個該第一系統矩陣對應之第二參數矩陣,E aj 之轉置矩陣,(t)為△ ai (t)之轉置矩陣,△A i =D ai ai (t)E ai ,△B i 為第i個該第二系統矩陣之參數之不確定性,D bi 為第i個該第二系統矩陣對應之第一參數矩陣,D bi 之轉 置矩陣,D bj 為第j個該第二系統矩陣對應之第一參數矩陣,△ bi (t)為第i個該第二系統矩陣對應之與時間有關之參數變動對角矩陣,E bi 為第i個該第二系統矩陣對應之第二參數矩陣,E bi 之轉置矩陣,E bj 為第j個該第二系統矩陣對應之第二參數矩陣,E bj 之轉置矩陣,(t)為△ bi (t)之轉置矩陣,△B i =D bi bi (t)E bi A ij 為第一代替矩陣,為第二代替矩陣,為第三代替矩陣,之轉置矩陣,為第四代替矩陣,為第五代替矩陣,I為單位矩陣,diag()為對角矩陣。 The wind power generation system of maximum power tracking as claimed in claim 7, wherein the TS fuzzy control method is implemented according to the following formula: ,among them ; ,among them ,△ ai ( t )= ( t ), , △ bi ( t )= ( t ); ,among them , ;as well as Where [ K 1 i K 2 i ]= M i X -1 , , i < j , and V ( x ( t )) is a Lyapunov function, ( x ( t )) is the rate of change of the Lyapunov function, x ( t ) is the system state variable, x ( t )=[ V wdc ( t ) I L ( t ) V dc ( t )] T , ( t ) is the rate of change of the state variable of the system, t is time, x w ( t ) is the new state variable, , ( t ) is the rate of change of the new state variable, , y ( t ) is the maximum power point error, and y T ( t ) is the transposed matrix of y ( t ), , v ( t ) is the interfering signal vector, v T ( t ) is the transposed matrix of v ( t ), , v ' ( t ) is the total interference, , bs is the diode bias term, bi is the diode bias vector, and s ( t ) is the integral of the target error. ( t ) is the target error, V obj ( t ) is the maximum power point voltage, V obj ( t ) depends on the wind direction angle and the speed, V wdc ( t ) is the DC input voltage, V dc ( t ) is The DC output voltage, I L ( t ) is the inductor current, i is the fuzzy rule number index, j is the fuzzy rule number index, γ is the interference resistance, α is the decay rate of the convergence rate, and r is the TS fuzzy rule. The number, z ( t ) is the TS (Takagi-Sugeno) fuzzy rule pre-measurement variable, z ( t ) contains the DC input current, u ( t ) is the duty cycle of the pulse width modulation signal, h i ( z ) ( t )) is the i-th normalized weight, h j ( z ( t )) is the jth normalized weight, and A i is the i-th first systematic matrix of the TS (Takagi-Sugeno) fuzzy subsystem, A i T is the transposed matrix of A i , A j is the jth first system matrix of the TS (Takagi-Sugeno) fuzzy subsystem, A j T is the transposed matrix of A j , and B i is the TS (Takagi -Sugeno) the i-th second system matrix of the fuzzy subsystem, B i T is the transposed matrix of B i , B j is the jth second systematic matrix of the TS (Takagi-Sugeno) fuzzy subsystem, B j T is B j The transposed matrix, γ ai is the variation range of the uncertainty parameter corresponding to the i-th first system matrix, and γ aj is the variation range of the uncertainty parameter corresponding to the jth first system matrix, and γ bi is the i-th The uncertainty parameter variation range corresponding to the second system matrix, γ bj is the variation range of the uncertainty parameter corresponding to the jth second system matrix, and E i is the ith external interference matrix. Is the transposed matrix of E i , For the ith total external interference matrix, , C i is the output matrix of the i-th rule, For the transposed matrix of C i , M i is the ith gain matrix, M i =( K 1 i + K 2 i ) X , Is the transposed matrix of M i , K 1 i is the i-th state variable gain term, and K 2 i is the i-th error integral gain term, Is the transposed matrix of K 2 i , M j is the jth gain matrix, M j =( K 1 j + K 2 j ) X , Is the transposed matrix of M j , K 1 j is the jth state variable gain term, K 2 j is the jth error integral gain term, P is the positive definite matrix of the Lyapunov function, v ( t )= X T PX , X is the inverse matrix of P , Δ A i is the uncertainty of the parameter of the i-th first system matrix, and D ai is the first parameter matrix corresponding to the i-th first system matrix, a transposed matrix of D ai , D aj is a first parameter matrix corresponding to the jth first system matrix, and Δ ai ( t ) is a time-dependent parameter variation diagonal corresponding to the i-th first system matrix a matrix, E ai is a second parameter matrix corresponding to the i-th first system matrix, a transposed matrix of E ai , where E aj is the second parameter matrix corresponding to the jth first system matrix, Transposed matrix for E aj , ( t ) is the transposed matrix of Δ ai ( t ), Δ A i = D ai Δ ai ( t ) E ai , Δ B i is the uncertainty of the parameter of the i-th second system matrix, D bi is The first parameter matrix corresponding to the i-th second system matrix, a transposed matrix of D bi , D bj is the first parameter matrix corresponding to the jth second system matrix, and Δ bi ( t ) is a time-dependent parameter variation diagonal corresponding to the i-th second system matrix a matrix, E bi is a second parameter matrix corresponding to the i-th second system matrix, a transposed matrix of E bi , where E bj is the second parameter matrix corresponding to the jth second system matrix, Is the transposed matrix of E bj , ( t ) is a transposed matrix of Δ bi ( t ), Δ B i = D bi Δ bi ( t ) E bi , A ij is the first substitution matrix, For the second replacement matrix, For the third replacement matrix, for Transposed matrix, For the fourth replacement matrix, For the fifth replacement matrix, I is the identity matrix and diag() is the diagonal matrix. 如請求項8所述之最大功率追蹤之風力發電系統,其中 該時,,且該第二二極體之偏壓為 V D L為該電感器之電感值;以及該時, ,且該第一二極體與該第二二極體之偏 壓皆為V D L為該電感器之電感值。 A wind power generation system with maximum power tracking as recited in claim 8 wherein Time, And the bias voltage of the second diode is V D , where L is an inductance value of the inductor; Time, And the bias voltage of the first diode and the second diode is V D , where L is an inductance value of the inductor. 如請求項7所述之最大功率追蹤之風力發電系統,其中該第一電子開關與該第二電子開關皆為金氧半場效電晶體。 The maximum power tracking wind power generation system of claim 7, wherein the first electronic switch and the second electronic switch are both gold oxide half field effect transistors.
TW103144669A 2014-12-19 2014-12-19 Maximum power tracking of wind power generation systems TWI567524B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103144669A TWI567524B (en) 2014-12-19 2014-12-19 Maximum power tracking of wind power generation systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103144669A TWI567524B (en) 2014-12-19 2014-12-19 Maximum power tracking of wind power generation systems

Publications (2)

Publication Number Publication Date
TW201624167A TW201624167A (en) 2016-07-01
TWI567524B true TWI567524B (en) 2017-01-21

Family

ID=56984708

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103144669A TWI567524B (en) 2014-12-19 2014-12-19 Maximum power tracking of wind power generation systems

Country Status (1)

Country Link
TW (1) TWI567524B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108874733A (en) * 2018-04-25 2018-11-23 明阳智慧能源集团股份公司 A kind of large-scale half direct-drive unit health state evaluation method
CN110349188B (en) * 2019-07-18 2023-10-27 深圳大学 Multi-target tracking method, device and storage medium based on TSK fuzzy model
CN112486019B (en) * 2020-11-17 2022-06-07 九江学院 Maximum power tracking fuzzy control method of uncertain wind driven generator system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200801328A (en) * 2006-06-02 2008-01-01 Univ Yuan Ze Grid-connected wind generation system and its maximum-power-extraction control method
CN101498282A (en) * 2008-02-01 2009-08-05 北京能高自动化技术有限公司 Yaw control method for large-sized wind-driven generator group
CN101498283B (en) * 2008-02-01 2011-07-06 北京能高自动化技术有限公司 Variable pitch control method for large-sized wind-driven generator group
CN102185508A (en) * 2011-05-23 2011-09-14 南昌航空大学 Pulse-width modulation (PWM) inverted power supply system and algorithm based on fuzzy predictive control technology
CN101604954B (en) * 2009-07-13 2011-12-28 山西合创电力科技有限公司 Comprehensive method for vector or direct torque control of doubly-fed wind generator
CN102900603B (en) * 2012-09-19 2014-11-19 河北工业大学 Variable pitch controller design method based on finite time non-crisp/guaranteed-cost stable wind turbine generator set

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200801328A (en) * 2006-06-02 2008-01-01 Univ Yuan Ze Grid-connected wind generation system and its maximum-power-extraction control method
CN101498282A (en) * 2008-02-01 2009-08-05 北京能高自动化技术有限公司 Yaw control method for large-sized wind-driven generator group
CN101498283B (en) * 2008-02-01 2011-07-06 北京能高自动化技术有限公司 Variable pitch control method for large-sized wind-driven generator group
CN101604954B (en) * 2009-07-13 2011-12-28 山西合创电力科技有限公司 Comprehensive method for vector or direct torque control of doubly-fed wind generator
CN102185508A (en) * 2011-05-23 2011-09-14 南昌航空大学 Pulse-width modulation (PWM) inverted power supply system and algorithm based on fuzzy predictive control technology
CN102900603B (en) * 2012-09-19 2014-11-19 河北工业大学 Variable pitch controller design method based on finite time non-crisp/guaranteed-cost stable wind turbine generator set

Also Published As

Publication number Publication date
TW201624167A (en) 2016-07-01

Similar Documents

Publication Publication Date Title
Hussain et al. Adaptive maximum power point tracking control algorithm for wind energy conversion systems
Puchalapalli et al. A microgrid based on wind-driven DFIG, DG, and solar PV array for optimal fuel consumption
Saleh et al. Resolution-level-controlled WM inverter for PMG-based wind energy conversion system
Şerban et al. A sensorless control method for variable-speed small wind turbines
WO2021110171A1 (en) P-u droop characteristic-based virtual direct current motor control method
Jha A comprehensive review on wind energy systems for electric power generation: Current situation and improved technologies to realize future development
TWI567524B (en) Maximum power tracking of wind power generation systems
Errami et al. Control scheme and power maximisation of permanent magnet synchronous generator wind farm connected to the electric network
Syskakis et al. MPPT for small wind turbines: Zero-oscillation sensorless strategy
Kala‐Konga et al. Steady‐state and small‐signal models of a three‐phase quasi‐Z‐source AC–DC converter for wind applications
Hussein et al. Simple maximum power extraction control for permanent magnet synchronous generator based wind energy conversion system
Guo et al. Decoupled control of active and reactive power for a grid-connected doubly-fed induction generator
Jain et al. Intelligent Proportional Integral Terminal Sliding Mode Control for variable speed standalone wind energy conversion system
Tiwari et al. Artificial neural network-based control strategies for PMSG-based grid connected wind energy conversion system
Verma et al. PMSG based WECS with MPPT via modified P & O algorithm
Kumar et al. Experimental evaluation of matrix converter for wind energy conversion system under various abnormal conditions
Kanagachidambaresan et al. Perturb and Observe (P&O) based MPPT controller for PV connected brushless DC motor drive
Rahim Optimum relation based maximum power point tracking of a PMSG wind generator through converter controls
Fu et al. MPPT control based fuzzy for wind energy generating system
Chub et al. Grid integration issues of PMSG-based residential wind turbines
Serhoud et al. Sliding mode control of brushless doubly-fed machine used in wind energy conversion system
Premkumar et al. Grey wolf Optimized PID Voltage and Power Factor Controlled AC to DC System
Sharma et al. Power optimization technique for small wind turbine system using an incremental current control
Agarwal et al. PID/FO-PID Controller Implementation for the Optimal Controlling of Wind Driven PMSG
Naveen Kilari et al. A 3-Ф grid connected wind system with a technique of DC link control using fewer sensors with fuzzy controller