TWI308226B - Microlens structure and fabricating method thereof - Google Patents

Microlens structure and fabricating method thereof Download PDF

Info

Publication number
TWI308226B
TWI308226B TW95130548A TW95130548A TWI308226B TW I308226 B TWI308226 B TW I308226B TW 95130548 A TW95130548 A TW 95130548A TW 95130548 A TW95130548 A TW 95130548A TW I308226 B TWI308226 B TW I308226B
Authority
TW
Taiwan
Prior art keywords
film
micro
microbump
layer
concentrating mirror
Prior art date
Application number
TW95130548A
Other languages
Chinese (zh)
Other versions
TW200811477A (en
Inventor
Ho Sung Liao
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW95130548A priority Critical patent/TWI308226B/en
Publication of TW200811477A publication Critical patent/TW200811477A/en
Application granted granted Critical
Publication of TWI308226B publication Critical patent/TWI308226B/en

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Description

1308226 九、發明說明: 【發明所屬之技術領域】 本發明係有關於-種製作微聚光鏡之方法以及其結 構,特別是指一種利用蝕刻製程製作微聚光鏡之方法以及 其結構。 【先前技術】 互補式金氧半導體電晶體影像感測器(CM〇simage sensor,CIS)和載子偶合裝置(charge_c〇Upied devices, CCDs)都是習知技術中常用來將光轉換為電子訊號的光學 電路元件,兩者的應用範圍皆很廣泛,包括有掃描器、攝 影機以及照相機等等’但是因為载子偶合裝置受限於價位 以及體積的問題,所以目前市面上以互補式金氧半導體電 晶體影像感測器較為普及。 器以應用在掃瞒器等產品為主,面型互補式金氧半 導艚電晶餒 由於立補式金氧半導體電晶體影像感測器是以傳統 的半導體製程製作,因此可以大幅減少所需成本及元件尺 兮,而其應用範圍包括個人電腦相機以及數位相機等數位 電子商品,目前互補式金氧半導體電晶體影像感測器大致 二為線裂、面獾兩種’而線型互補式金氧半導體電晶體影 .影像感測器則以應用在數位相機等產品為主 1308226 請參考第1圖至第2圖’第1圖至第2圖為習知技術 中製作互補式金氧半導體電晶體影像感測器5〇之方法示 意圖。如第1圖所示,半導體基底2包含複數個淺溝隔離 (shallow trench isolation,STI) 4 以及複數個感光二極體 (photodiode) 6。其中,各感光二極體6係另電連接相對 應之重置電晶體(reset transistor)、電流没取元件(current source follower)及列選擇開關(row selector)等金氧半導體 (MOS)電晶體(未顯示),而且淺溝隔離4係用來作為任兩 相鄰之感光二極體6與金氧半導體電晶體之間的絕緣體 (insulator),以避免感光二極體6因和其他元件相接觸而 發生短路。 隨後於半導體基底2上形成一層間介電(interlayer dielectric,ILD)層8,覆蓋感光二極體6與淺溝隔離4,接 著再於間介電層8上進行一金屬化製程,以形成一多重金 屬内連線(multilevel interconnects)層9。其中,多重金屬内 連線層9又包含有一隔離用之金屬間介電(inter metal dielectric,IMD)層11,以及作為金氧半導體電晶體等之電 路連結用的金屬層10與金屬層12,且其皆形成於各淺溝 隔離4的上方,以避免遮蔽各感光二極體6,並可使入射 光(未顯示)射入時得以聚集於感光二極體6,而不發生 散射,造成訊號干擾(cross talk)。之後,再於金屬層12上 形成平坦化層13,平坦化層13可為多層結構,例如由高 J308226 密度電漿(high density plasma)方法製得之氧化石夕層(簡 稱HDP層)與利用電漿增強式化學氣相沉積方法由四乙氧 基石夕烧(tetra-ethyl-ortho-silicate,TEOS)製得之氧化石夕層 (plasma enhanced TEOS,PETEOS)所組成。再於平坦化 層13上形成氮化石夕等之保護層(paSSivati〇nlayer) 14,以 防止外界之水氣與其他雜質進入元件區中。 然後,於保護層14上方形成複數個由紅色、綠色、 藍色(R / G/ B)濾光圖案所構成彩色濾光陣列(c〇1〇r fmer array,CFA) 18,並分別位於各個相對應之感光二極體6 上方,接著於彩色濾光陣列18上方再形成一間隔層(spacer layer) 20,並於間隔層20上方形成一具有感光劑 (photoactive compound)之樹脂(Γ^η)層(未顯示)。 然後利用波長365奈米(nm)紫外光(n)作為曝光光 源’此為目前業界針對互補式金氧半導體電晶體影像感測 器之微聚光鏡(mien>lens)製作所常用的曝光波長,在經 過波長365奈米紫外光曝光並③ 乂顒影之後,即可形成一塊塊 呈陣列排列之感光區塊22。 接著,請參考第2圖,利用 & 〜熱回流(reflow )製程, t讓互補式金氧半導㈣晶料像❹以5〇置於高溫 % i兄約5至1 〇分鐘左右’使得 π, 寸从樹脂為材料的感光區塊 22經由尚溫回流而改變形狀, _由第1圖中具正方形形狀 1308226 的感光區塊22,變成第2圖中微聚光鏡%中類似半球體 的形狀,取後再於微聚光鏡24上方形成―保護層%以保 護微聚光鏡24 ’至此完成互補式金氧半導體電晶體影像感 測器50的製作。 由於習知技術使用樹脂之‘、 <顯的有機材料作為微聚光 鏡,因此無法應用在250。(:以上> ^ 二义尚溫環境,例如應用於 南溫環境的影像感測器或特殊_用、△ 行殊用途之雷射讀寫裝置等,否 則會產生破裂、變形等問題。μ ,^ ^ H .,, 此外’由於有機材料的硬度 低’並且谷易受到外界環琦篝田 兄寻因素的影響,因此習知技術 必須在微聚光鏡上方額外再形成1^。 【發明内容】 -構本Γ二供—種製作微聚光鏡之^法以及其 紇構,特別疋扣一種利用餘刻贺 4 β ^^ 表程以及沉積製程製作微聚 光鏡之方法以及其結構,以紐4 #决上述習知技術所遭遇到的 限制與問題。 根據本之巾%專利範圍,係提供—種製作微聚光 鏡之方法’包含有下料驟,提供—基底,且該基底上具 有至少-介電層,於該介電層表面形成至少—微凸塊,以 及於該微凸塊表面與該介電層表面形成一找膜,該光學 膜與該微凸塊即構成該微聚光鏡。 1308226 減本發明之巾請專顺圍,另提供—種微聚光鏡結 -構,適用於一半導體元件,包含有一基底,且該基底上具 有至夕;|電層,至少一微凸塊,設置於該介電層上,以 及-光學膜’覆蓋於該微凸塊表面與該介電層表面,且該 光學膜與該微凸塊構成該微聚光鏡。 由於本發明可以利用各種蝕刻製程先形成一無機介電 材料之微凸塊,再搭配使用化學氣相沉積製程形成一無機 介電材料之光學膜以製作微聚光鏡,因此相較於習知技 術,本發明所製作之微聚光鏡可以應用在25〇tW上之高 /皿環境例如應用於雷射讀寫裝置,而不會產生破裂的^ 題’並且由於無機介電材料之硬度夠高,例如氮化矽 (Si3N4),對鹼金屬離子的防堵能力很稿,且不容易被水 氣所滲透,因此相較於習知技術,本發明可以不需要在微 • 聚光鏡上額外製作一保護層。此外,當本發明製作之微聚 光鏡應用於互補式金氧半導體電晶體影像感測器和載子偶 合裝置時’本發明還可以使用紅色、綠色、藍色濾光層作 為光學臈’沉積於微凸塊上,如此一來便可*以取代習知技 術中位於感光二極體上方之彩色濾光陣列,不但降低成 本,還可以減少微聚光鏡與感光二極體之間的距離,以進 一步將歪斜光線所產生的問題極小化。 【實施方式】 J308226 請參考第3圖至第8圖,第3圖至第8圖為詳細解說 本發明第一較佳實施例之製作方法各步驟的結構剖面示意 圖。如第3圖所示,本發明首先提供一基底1〇〇,且基底 100上具有一介電層1〇2。其中,基底1〇〇係為一半導體基 底’但不限制為一石夕晶圓(wafer)或一石夕覆絕緣(s〇I)等之基 底’而基底100可包含有複數個感光性之結構96,例如感 光二極體(photodiode)等,用來接收外部的光線並感測光照 的強度’而且該等感光性之結構另電連接有重置電晶體、 電流没取元件或列選擇開關等之CMOS電晶體(未顯示), 以及複數個絕緣物98,例如淺溝隔離(shallow trench isolation,STI)或局部矽氧化絕緣層(i〇cai οχΜ^ίοη 〇f silicon isolation layer,LOCOS),用以避免該等感光性之結 構、MOS電晶體與其他元件相接觸而發生短路。此外,介 電層 102 可包含有一間介電(intei· layer dielectric, ILD)層 103、一金屬間介電(inter metal dielectric, IMD)層 105、 一平坦化層107、以及一氮化矽等之保護層i〇8,而金屬間 介電層105與平坦化層1〇7則形成有複數個金屬層104與 金屬層106等之多重金屬内連線(muitilevel interconnects) 層,作為該等感光性之結構、MOS電晶體與其他元件之電 路連結用,且其皆形成於各淺溝隔離的上方,以避免遮蔽 各感光性之結構’並可使入射光(未顯示)射入時得以聚 集於感光性之結構,而不發生散射,造成訊號干擾(cross talk)。 1308226 ,進行一沉積製程,以於介電層 110 ’隨後再形成一圖案化光阻層 用以定義各微聚光鏡的位置。其 接著,如第4圖所示 102表面形成一第一薄膜 112於第一薄膜11〇上, 中’第-薄膜110可以包含—無機介電材料,例如氮化石夕 (Si3N4)或聚ϋ亞胺(⑽yimide)等。祕,如第5圖所示,1308226 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a method of fabricating a micro concentrating mirror and a structure thereof, and more particularly to a method of fabricating a micro concentrating mirror by an etching process and a structure thereof. [Prior Art] Complementary MOS transistor image sensor (CIS) and carrier-coupled devices (CCDs) are commonly used in the prior art to convert light into electronic signals. Optical circuit components, both of which are used in a wide range of applications, including scanners, cameras, cameras, etc. 'But because the carrier coupling device is limited by price and volume, there are currently complementary MOS semiconductors on the market. Transistor image sensors are more popular. The device is mainly applied to products such as brooms, and the surface-type complementary MOS transistor is made of a conventional semiconductor process because the stand-up MOS transistor image sensor is manufactured by a conventional semiconductor process. Cost and component size are required, and its application range includes digital electronic products such as personal computer cameras and digital cameras. Currently, complementary MOS transistor image sensors are roughly two types: line splitting and face '. Metal oxide semiconductor crystal image. Image sensor is mainly used in digital cameras and other products. 1308226 Please refer to Figure 1 to Figure 2 'Figure 1 to Figure 2 for making complementary MOS semiconductors in the prior art. Schematic diagram of the method of the transistor image sensor. As shown in Fig. 1, the semiconductor substrate 2 includes a plurality of shallow trench isolation (STI) 4 and a plurality of photodiodes 6. Wherein, each of the photodiodes 6 is electrically connected to a corresponding metal oxide semiconductor (MOS) transistor such as a reset transistor, a current source follower, and a row selector. (not shown), and the shallow trench isolation 4 is used as an insulator between any two adjacent photodiodes 6 and MOS transistors to prevent the photodiode 6 from interfacing with other components. A short circuit occurs during contact. Then, an interlayer dielectric (ILD) layer 8 is formed on the semiconductor substrate 2, covering the photodiode 6 and the shallow trench isolation 4, and then a metallization process is performed on the interlayer dielectric layer 8 to form a Multiple metal interconnects layer 9. The multiple metal interconnect layer 9 further includes an inter metal dielectric (IMD) layer 11 for isolation, and a metal layer 10 and a metal layer 12 for circuit connection such as a MOS transistor. And all of them are formed above the shallow trench isolations 4 to avoid shielding the photosensitive diodes 6, and the incident light (not shown) can be collected on the photosensitive diode 6 without scattering, resulting in scattering. Signal cross talk. Thereafter, a planarization layer 13 is formed on the metal layer 12. The planarization layer 13 may have a multi-layer structure, such as a oxidized stone layer (referred to as HDP layer) and utilized by a high-density plasma method of J308226. The plasma enhanced chemical vapor deposition method consists of a plasma enhanced TEOS (PETEOS) made of tetra-ethyl-ortho-silicate (TEOS). Further, a protective layer of nitride or the like is formed on the planarization layer 13 to prevent moisture and other impurities from entering the element region. Then, a plurality of color filter arrays (c〇1〇r fmer arrays, CFAs) 18 formed of red, green, and blue (R / G/B) filter patterns are formed on the protective layer 14 and are respectively located on the respective layers. Above the corresponding photodiode 6, a spacer layer 20 is formed over the color filter array 18, and a resin having a photoactive compound is formed over the spacer layer 20. ) layer (not shown). Then, the wavelength of 365 nanometers (nm) ultraviolet light (n) is used as the exposure light source. This is the exposure wavelength commonly used in the fabrication of micro condensers (mien>lens) for complementary MOS transistor image sensors. After the wavelength of 365 nm ultraviolet light exposure and 3 shadows, a photosensitive block 22 arranged in an array is formed. Next, please refer to Figure 2, using the & ~ reflow process, t to make the complementary gold-oxygen semiconductor (four) crystal image like ❹ placed at 5 高温 in the high temperature % i brother about 5 to 1 〇 minutes The π, inch is changed from the photosensitive material block 22 of the resin to the shape by the temperature reflow, and is changed from the photosensitive block 22 having the square shape 1308226 in FIG. 1 to the shape resembling a hemisphere in the micro condenser concentrating lens in FIG. After the concentrating lens 24 is formed, a "protective layer%" is formed to protect the micro condensing mirror 24'. Thus, the fabrication of the complementary MOS transistor image sensor 50 is completed. Since the conventional technique uses a resin of ', <, an organic material as a micro concentrator, it cannot be applied at 250. (: Above > ^ 二义尚温环境, for example, it is applied to image sensors in the south temperature environment or laser read/write devices for special use and △ special purposes, otherwise it will cause problems such as cracking and deformation. , ^ ^ H .,, In addition, 'because of the low hardness of organic materials' and the valley is susceptible to the influence of the outside world, it is necessary to additionally form 1^ above the micro-concentrating mirror. - The structure of the Γ Γ 供 种 种 种 种 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作 制作Limitations and problems encountered by the above-mentioned prior art. According to the patent scope of the present invention, a method for producing a micro-concentrating mirror includes a blanking step, providing a substrate, and having at least a dielectric layer on the substrate Forming at least a microbump on the surface of the dielectric layer, and forming a film on the surface of the microbump and the surface of the dielectric layer, the optical film and the microbump forming the micro concentrating mirror. Please take care of the towel Further provided is a micro-concentrating mirror junction structure, suitable for a semiconductor component, comprising a substrate having an upper layer; an electrical layer, at least one microbump disposed on the dielectric layer, and - optics The film 'covers the surface of the microbump and the surface of the dielectric layer, and the optical film and the microbump constitute the micro concentrating mirror. Since the present invention can form a microbump of an inorganic dielectric material by using various etching processes, The optical film of an inorganic dielectric material is formed by using a chemical vapor deposition process to form a micro concentrating mirror. Therefore, compared with the prior art, the micro concentrating mirror manufactured by the present invention can be applied to a high/dish environment of 25 〇tW, for example. It is applied to laser reading and writing devices without cracking problems and because the hardness of inorganic dielectric materials is high enough, such as tantalum nitride (Si3N4), the anti-blocking ability to alkali metal ions is very easy to draft. It is infiltrated by water vapor, so the present invention can eliminate the need to additionally make a protective layer on the micro concentrator compared to the prior art. In addition, when the micro concentrator manufactured by the present invention is applied to the complementary galvanic half In the case of a conductor transistor image sensor and a carrier coupling device, the present invention can also be deposited on a microbump using a red, green, and blue filter layer as an optical ,', so that it can replace the conventional technology. The color filter array located above the photodiode not only reduces the cost, but also reduces the distance between the micro condenser and the photodiode, so as to further minimize the problem caused by the skew light. [Embodiment] J308226 Referring to Figures 3 through 8, Figures 3 through 8 are schematic cross-sectional views showing the steps of the manufacturing method of the first preferred embodiment of the present invention. As shown in Figure 3, the present invention first provides a substrate. 1〇〇, and the substrate 100 has a dielectric layer 1〇2, wherein the substrate 1 is a semiconductor substrate 'but is not limited to a wafer or a stone insulation (s〇I) The substrate 100 may include a plurality of photosensitive structures 96, such as photodiodes, for receiving external light and sensing the intensity of the illumination' and the photosensitive structures are electrically charged. Connected A CMOS transistor (not shown) such as a transistor, a current-missing element or a column selection switch, and a plurality of insulators 98, such as shallow trench isolation (STI) or local tantalum oxide insulating layer (i〇cai) οχΜ^ίοη 〇f silicon isolation layer (LOCOS), in order to avoid such a photosensitive structure, the MOS transistor is in contact with other components to cause a short circuit. In addition, the dielectric layer 102 may include an inte layer dielectric layer (ILD) layer 103, an inter metal dielectric (IMD) layer 105, a planarization layer 107, and a tantalum nitride layer. The protective layer i 〇 8 , and the inter-metal dielectric layer 105 and the planarization layer 1 〇 7 are formed with a plurality of metal layer 104 and metal layer 106 and other multiple metal interconnect lines (muitilevel interconnects) layer as the sensitization The structure of the MOS transistor is connected to the circuit of other components, and they are formed above the isolation of each shallow trench to avoid shielding the photosensitive structure' and allow the incident light (not shown) to be collected when it is incident. In the photosensitive structure, no scattering occurs, causing cross talk. 1308226, a deposition process is performed to form a patterned photoresist layer on the dielectric layer 110' to define the position of each micro condenser. Next, as shown in FIG. 4, a first film 112 is formed on the first film 11A, and the 'th film-110 may include an inorganic dielectric material, such as a nitride (Si3N4) or a poly Amine ((10) yimide) and the like. Secret, as shown in Figure 5,

利用圖案化光阻層112當作糊遮罩(_k)來對第一薄膜 110進订-關製程,例如使用祕刻製程或韻刻製程 等’以將圖案化光阻層112之圖案轉移至第一薄膜11〇中, 形成複數個微凸塊114,之後去除圖案化光阻層112。在本 第-較佳實施例中,隨著圖案化光阻層112的曝光、顯影 製程與此蝕刻製程的參數控制的調整,可選擇性地將各個 微凸塊114蝕刻成為梯形或矩形等各種形狀。如第6圖所 示,接著可對各個微凸塊114進行一圓角化製程,例如利 用一熱回流製程(reflow process)或一濕蝕刻製程,用以 將各個微凸塊114蝕刻成為具有圓角之梯形或矩形。 最後’如第7圖所示,進行一沉積製程,於介電層1〇2 與各個微凸塊114上沉積一第二薄膜116,以使覆蓋有第二 薄膜116之各微凸塊114形成複數個微聚光鏡118。其中, 此沉積製程可以為一常壓化學氣相沉積製程(atmospheric pressure chemical vapor deposition,APCVD)或一次常壓 化學氣相沈積法(sub-atmospheric pressure chemical vapor Deposition,SACVD)等之化學氣相沉積製程,以使得所 J308226Using the patterned photoresist layer 112 as a paste mask (_k) to staple the first film 110, for example, using a secret process or a rhyme process, etc. to transfer the pattern of the patterned photoresist layer 112 to In the first film 11A, a plurality of microbumps 114 are formed, and then the patterned photoresist layer 112 is removed. In the first preferred embodiment, each of the microbumps 114 can be selectively etched into a trapezoidal or rectangular shape as the exposure and development process of the patterned photoresist layer 112 and the parameter control of the etching process are adjusted. shape. As shown in FIG. 6, each of the microbumps 114 can be subjected to a fillet process, for example, by a reflow process or a wet etch process for etching each of the microbumps 114 into rounded corners. Trapezoidal or rectangular. Finally, as shown in FIG. 7, a deposition process is performed to deposit a second film 116 on the dielectric layer 1〇2 and each of the microbumps 114 to form the microbumps 114 covered with the second film 116. A plurality of micro condensers 118 are provided. The deposition process may be an atmospheric pressure chemical vapor deposition (APCVD) or a sub-atmospheric pressure chemical vapor deposition (SACVD) chemical vapor deposition. Process to make J308226

/儿積之第—㈣116具有較平滑之表面。而且第二薄膜IK 可以為-相同於微凸塊114之無機介電材料,或一相異於 f鬼m之無機介電材料,或者為—具麵光功能之無 機"電材料’例如氧化鈦(titanium〇xide,肌)或氧化 组(tantalumoxide’Ta2〇5)等材質製作而成的分色膜 (dichroic film)等之光學膜。 值得庄思的疋,在一較佳的實施例中,微凸塊⑴之 折射率係大於或等於第二薄膜116之折射率。另外,本發 明可選擇性改變微凸塊114的厚度與寬度,調整各個微聚光 鏡118之形狀、曲率等。本發明也可以選擇性地對第二薄 膜116再進行一回餘刻製程,用以調整第二薄膜μ之厚 度。此外’本發明亦可以選擇性地再進行—熱製程以消除 微凸塊114與第一薄膜116間之介面’如第8圖所示,其 中此熱製程的溫度係大於25(rc。 明參考第9圖至第13圖,第9圖至第13圖為詳細解 說本發明ϋ佳實施狀製作方法各步㈣結構剖面示 意圖。如第9圖所示,本發明首先提供一基底2〇〇,且基 底200上具有一介電層2〇2。如同上述實施例之態樣,基 底200亦包含有複數個感光性之結構196、CMOS電晶體 (未顯示)以及複數個淺溝隔離198等,而介電層2〇2則 可包含有一間介電(ILd)層203、複數個金屬層2〇4、一 1308226/ Child's first - (four) 116 has a smoother surface. Moreover, the second film IK may be an inorganic dielectric material similar to the microbumps 114, or an inorganic dielectric material different from the f-g, or an inorganic "electrical material having a surface-light function, such as oxidation. An optical film such as a dichroic film made of a material such as titanium (titanium 〇 xide) or oxidized group (tantalum oxide 'Ta 2 〇 5). It is worthwhile to think that in a preferred embodiment, the microbump (1) has a refractive index greater than or equal to the refractive index of the second film 116. In addition, the present invention can selectively change the thickness and width of the microbumps 114, and adjust the shape, curvature, and the like of each of the micro-condensers 118. The present invention can also selectively perform a further process on the second film 116 to adjust the thickness of the second film μ. In addition, the present invention can also be selectively performed again - a thermal process to eliminate the interface between the microbump 114 and the first film 116 as shown in FIG. 8 , wherein the temperature of the thermal process is greater than 25 (rc. 9 to 13 are a cross-sectional view showing the structure of each step (4) of the manufacturing method of the present invention in detail. As shown in Fig. 9, the present invention first provides a substrate 2 The substrate 200 has a dielectric layer 2〇2. As in the above embodiment, the substrate 200 also includes a plurality of photosensitive structures 196, CMOS transistors (not shown), and a plurality of shallow trench isolations 198, etc. The dielectric layer 2〇2 may include a dielectric (ILd) layer 203, a plurality of metal layers 2〇4, and a 1308226.

金屬間介電(IM 層207以及一上層205、複數個金屬層206、〆平坦化 保瘦層208等之結構,在此不多加贅述。 接著,如第1〇 表面形成 202 第 圖所示,進行一沉積製程,以於介電層 、薄膜210,隨後再形成一圖案化光阻層 a乐溥祺2 中,第一策 ’用以疋義各微聚光鏡的位置。The structure of the inter-metal dielectric (IM layer 207 and an upper layer 205, a plurality of metal layers 206, a flattened thin layer 208, etc.) will not be described here. Next, as shown in the first surface formation 202, A deposition process is performed on the dielectric layer, the film 210, and then a patterned photoresist layer a, which is used to delimit the position of each micro condenser.

币缚膜21 〇 --p 11圖所示,利用°』以包含一無機介電材料。然後,如第 薄獏210進行一圖案化光阻層212當作蝕刻遮罩來對第一 艟欽石哲 T一麵刻製程,以將圖案化光阻層212之圖案 轉移至第一薄 中’形成複數個圖案化第一薄膜213 ’ 然後去除圖案化朵 一非等向性t 汔阻層212。其中’此蝕刻製程可選擇使用 Λ丨製程’例如一滅擊蚀刻製程(sputteringetching ) 電默餘刻製程(plasma etching process )、或一反應性 離子姓刻製程(reactive ion etching process,RIE process)等。The coin-bonding film 21 〇 --p 11 shows the use of an inorganic dielectric material. Then, a patterned photoresist layer 212 is used as an etch mask to etch the first 艟 石 哲 哲 T to transfer the pattern of the patterned photoresist layer 212 to the first thin film. 'Forming a plurality of patterned first films 213' and then removing the patterned anisotropic t-resist layer 212. The 'etching process can choose to use a tantalum process', such as a sputtering etching process, a plasma etching process, or a reactive ion etching process (RIE process). .

接著,如第12圖所示,進行一沉積製程以及一回蝕刻 製程,以於各個圖案化第一薄膜213之周圍侧壁形成一側 壁子(spacer)214,而每一個具有側壁子214結構之圖案化 第一薄膜213即構成此第二較佳實施例之微凸塊215,且 各個微凸塊215之形狀即略為具有圓角之梯形。 最後,如第13圖所示,進行一沉積製程,於介電層 202與各個微凸塊215上沉積一第二薄膜216’以使覆蓋有 1308226 第二薄膜216之各微凸塊215形成複數個微聚光鏡us。 其中此沉積製程可以為一常壓化學氣相沉積製程戋一次常 壓化學氣相沉積製程等,以使得所沉積之第二薄膜216具 有較平滑之表面。同樣的,第二薄膜216可以為一相同於 微凸塊215之無機介電材料,或一相異於微凸塊215之無 機介電材料,或一具有濾光功能之無機介電材料,例如一 分色膜等。 值得注意的是,微凸塊215之折射率係大於或等於第 二薄膜216之折射率。另外,本發明可選擇性改變微凸塊 215的厚度與寬度,調整各個微聚光鏡218之形狀、曲率等。 本發明也可以選擇性地對第二薄膜216再進行一回蝕刻製 程,用以調整第二薄膜216之厚度。此外,本發明亦可以 選擇性地再進行-熱製程以消除微凸塊215之圖案化第一Next, as shown in FIG. 12, a deposition process and an etch process are performed to form a spacer 214 on each of the surrounding sidewalls of the patterned first film 213, and each has a sidewall 214 structure. The patterned first film 213 constitutes the microbumps 215 of the second preferred embodiment, and the shape of each of the microbumps 215 is slightly trapezoidal with rounded corners. Finally, as shown in FIG. 13, a deposition process is performed to deposit a second film 216' on the dielectric layer 202 and each of the microbumps 215 to form a plurality of microbumps 215 covered with the 1308226 second film 216. A micro condenser s. The deposition process may be an atmospheric pressure chemical vapor deposition process, a primary pressure chemical vapor deposition process, etc., so that the deposited second film 216 has a smoother surface. Similarly, the second film 216 can be an inorganic dielectric material identical to the microbumps 215, or an inorganic dielectric material different from the microbumps 215, or an inorganic dielectric material having a filtering function, such as A color separation film, etc. It should be noted that the refractive index of the microbumps 215 is greater than or equal to the refractive index of the second film 216. In addition, the present invention can selectively change the thickness and width of the microbumps 215, and adjust the shape, curvature, and the like of the respective micro condensing mirrors 218. The second film 216 can also be selectively etched back to adjust the thickness of the second film 216. In addition, the present invention can also selectively perform a further thermal process to eliminate the patterning of the microbumps 215.

〇同上述各實施例之態樣, 之結構296、CMOS電晶 離298等,而介電層302 基底300亦包含有複數個感光性 體(未顯示)以及複數個湣澧隐 以及複數個淺溝隔離2卯 1308226 則可包含有一間介電(ILD)層303、複數個金屬層304、 一金屬間介電(IMD)層305、複數個金屬層306、一平坦 化層307以及一保護層308等之結構,在此亦不多加贅述。 接著,如第15圖所示,進行一沉積製程,以於介電層 302表面形成一第一薄膜310,隨後再形成一圖案化光阻層 312於第一薄膜310上,用以定義各微聚光鏡的位置。其 中,圖案化光阻層312係利用一半色調光罩(halftone mask ) 所形成,所以在曝光後,其可以形成一半圓形、半橢圓形、 或階梯狀之圖案化光阻層312,此外,第一薄膜310可以 包含一無機介電材料。 然後,如第16圖所示,利用圖案化光阻層312當作蝕 刻遮罩來對第一薄膜310進行一非等向性蝕刻製程,以將 圖案化光阻層312之圖案轉移至第一薄膜310中,形成複 數個與圖案化光阻層312相同形狀之微凸塊314。其中此 非等向性蝕刻製程可以選擇使用一非等向性乾蝕刻製程, 例如一滅擊敍刻製程、一電衆敍刻製程、或一反應性離子 蝕刻製程等。 最後,如第17圖所示,進行一沉積製程,於介電層 302與各個微凸塊314上沉積一第二薄膜316,以使覆蓋有 第二薄膜316之各微凸塊314形成複數個微聚光鏡318。 1308226 同樣地’此沉積製程可以為—常壓化學氣相、 次常壓化學氣相沉積製程等,以使得所沉積之/ ^或一 具有較平滑之表面,而且第二薄膜316亦〜犋316 ^塊3H之無機介電材料,或一相異於微凸==同於 機,I電材料’或-具有逯光功能之無機介電 之無 分色膜等。 ; 例如一In the same manner as the above embodiments, the structure 296, the CMOS electro-crystal separation 298, and the like, and the substrate 300 of the dielectric layer 302 also includes a plurality of photosensitive bodies (not shown) and a plurality of hidden and a plurality of shallow The trench isolation 2 卯 1308226 may include a dielectric (ILD) layer 303, a plurality of metal layers 304, an inter-metal dielectric (IMD) layer 305, a plurality of metal layers 306, a planarization layer 307, and a protective layer. The structure of 308, etc., will not be repeated here. Next, as shown in FIG. 15, a deposition process is performed to form a first film 310 on the surface of the dielectric layer 302, and then a patterned photoresist layer 312 is formed on the first film 310 to define each micro The position of the condenser. Wherein, the patterned photoresist layer 312 is formed by a halftone mask, so that after exposure, it can form a semicircular, semi-elliptical, or stepped patterned photoresist layer 312. The first film 310 may comprise an inorganic dielectric material. Then, as shown in FIG. 16, an anisotropic etching process is performed on the first film 310 by using the patterned photoresist layer 312 as an etch mask to transfer the pattern of the patterned photoresist layer 312 to the first In the film 310, a plurality of microbumps 314 having the same shape as the patterned photoresist layer 312 are formed. The non-isotropic etching process may select an anisotropic dry etching process, such as a killing process, a power process, or a reactive ion etching process. Finally, as shown in FIG. 17, a deposition process is performed to deposit a second film 316 on the dielectric layer 302 and each of the microbumps 314 to form a plurality of microbumps 314 covered with the second film 316. Micro condenser 318. 1308226 Similarly, the deposition process can be an atmospheric pressure chemical vapor phase, a sub-atmospheric pressure chemical vapor deposition process, etc., such that the deposited / ^ or a smoother surface, and the second film 316 is also ~ 316 ^ Block 3H of inorganic dielectric material, or a different from micro-convex = = the same machine, I electrical material 'or - an inorganic dielectric colorless film with a calender function. For example

疋’㈣塊314之折射率係大於 二薄膜316之折射率。另外,本發明可選擇性改變凸^ 州的厚度與寬度,調整各個微聚光鏡训之形狀7凸塊 本發明也可以選擇性地對第二薄膜316再進行—回專。 用以調整第二薄膜316之厚度。此外,本發明亦= 選擇性地再進行-減程以齡微凸塊314與第二薄膜 316間之介面,如同第一實施例之第8圖所示,其中此埶 製程的溫度係大於250¾。 …、 綜上所述,由於本發明可以利用蝕刻製程先形成一無機 介電材料之微凸塊,再搭配使用化學氣相等之沉積製程形 成一無機介電材料之光學膜以製作微聚光鏡,因此本發明 所製作之微聚光鏡可以應用在250¾以上之高溫環境,例 如應用於尚溫環境的景> 像感測器或特殊用途之雷射讀寫裳 置等,而不會產生破裂、變形等問題。並且由於無機介電 材料之硬度夠高,例如氮化矽等,對鹼金屬離子的防堵能 16 1308226 力很高,且不容易被水氣所滲透,故本發明可以不需要在 微聚光鏡上額外製作一保護層。此外,當本發明製作之微 聚光鏡應用於互補式金氧半導體電晶體影像感測器和載子 偶合裝置等影像感測裝置時,本發明還可以使用紅色、綠 色、藍色濾光層、分色膜等之各式可以分離色彩之光學膜, 沉積於微凸塊上,如此一來便可以取代習知技術中位於感 _ 光二極體上方之彩色濾光陣列,不但降低成本,還可以減 少微聚光鏡與感光二極體之間的距離,以進一步將歪斜光 線(oblique light)所產生的問題極小化。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範 圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 【圖式簡單說明】 鲁 第1至2圖係為習知技術中製作互補式金氧半導體電晶體 影像感測器之方法示意圖。 第3圖至第8圖係為詳細解說本發明第一較佳實施例之製 作方法各步驟的結構剖面示意圖。 第9圖至第13圖係為詳細解說本發明第二較佳實施例之製 作方法各步驟的結構剖面示意圖。 第14圖至第π圖係為詳細解說本發明第三較佳實施例之 製作方法各步驟的結構剖面示意圖。 1308226 •【主要元件符號說明】 - 2:半導體基底 4:淺溝隔離 6:感光二極體 8、103、203、303 :間介電層 9:多重金屬内連線層 10、12、104、1〇6、204、206、304、306 :金屬層 • 11、1〇5、205、305 :金屬間介電層 13、 107、207、307 :平坦化層 14、 26、108、208 ' 308 :保護層 18 :彩色濾光陣列 20 :間隔層 22 :感光區塊 24、118、218、318 :微聚光鏡 鲁 50 :互補式金氧半導體電晶體影像感測器 96、196、296 :感光性之結構 98、198、298 :絕緣物 100、200、300 :基底 102、202、302 ··介電層 110、210、310 :第一薄膜 112、212、312:圖案化光阻層 114、215、314 :微凸塊 116、216、316:第二薄膜 1308226 213 :圖案化第一薄膜 214 :側壁子The refractive index of the 疋' (four) block 314 is greater than the refractive index of the second film 316. In addition, the present invention can selectively change the thickness and width of the convex state, and adjust the shape of each micro-concentrating mirror. 7 Bumps The present invention can also selectively perform the second film 316 again. It is used to adjust the thickness of the second film 316. In addition, the present invention also selectively re-decrements the interface between the age-old microbump 314 and the second film 316, as shown in Fig. 8 of the first embodiment, wherein the temperature of the process is greater than 2503⁄4. In summary, the present invention can form a micro-bump of an inorganic dielectric material by an etching process, and then form an optical film of an inorganic dielectric material by using a deposition process of a chemical vapor or the like to form a micro-concentrating mirror. The micro concentrating mirror manufactured by the invention can be applied to a high temperature environment of 2503⁄4 or more, for example, for a scene in a warm environment, such as a sensor or a special-purpose laser reading and writing device, without causing cracks, deformation, etc. problem. And because the hardness of the inorganic dielectric material is high enough, such as tantalum nitride, etc., the anti-blocking energy of the alkali metal ions is high, and is not easily penetrated by water vapor, so the invention can be omitted on the micro condenser. Make an extra layer of protection. In addition, when the micro concentrator manufactured by the present invention is applied to an image sensing device such as a complementary MOS transistor image sensor and a carrier coupling device, the present invention can also use a red, green, and blue filter layer. The color film and the like can be separated from the color optical film and deposited on the micro bumps, so that the color filter array located above the photosensitive diode can be replaced in the prior art, which not only reduces the cost but also reduces The distance between the micro condenser and the photodiode to further minimize the problems caused by oblique light. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should fall within the scope of the present invention. [Simple diagram of the diagram] Lu Figures 1 to 2 are schematic diagrams of a method for fabricating a complementary MOS transistor image sensor in the prior art. 3 to 8 are schematic cross-sectional views showing the steps of the manufacturing method of the first preferred embodiment of the present invention in detail. Fig. 9 through Fig. 13 are schematic cross-sectional views showing the steps of the manufacturing method of the second preferred embodiment of the present invention in detail. Fig. 14 through Fig. π are schematic cross-sectional views showing the steps of the steps of the manufacturing method of the third preferred embodiment of the present invention. 1308226 • [Main component symbol description] - 2: Semiconductor substrate 4: shallow trench isolation 6: Photosensitive diodes 8, 103, 203, 303: dielectric layer 9: multiple metal interconnect layers 10, 12, 104, 1〇6, 204, 206, 304, 306: metal layer • 11, 1〇5, 205, 305: inter-metal dielectric layer 13, 107, 207, 307: planarization layer 14, 26, 108, 208 ' 308 : Protective layer 18: color filter array 20: spacer layer 22: photosensitive block 24, 118, 218, 318: micro-concentrating mirror Lu 50: complementary MOS transistor image sensor 96, 196, 296: photosensitivity Structure 98, 198, 298: Insulator 100, 200, 300: Substrate 102, 202, 302 · Dielectric layer 110, 210, 310: First film 112, 212, 312: Patterned photoresist layer 114, 215 314: microbumps 116, 216, 316: second film 1308226 213: patterned first film 214: sidewall

Claims (1)

1308226 十、申請專利範圍: 1 · 一種製作微聚光鏡之方法,包含有下列步驟: 提供一基底,且該基底上具有至少一介電層; 於該介電層表面形成一第一薄膜; 蝕刻該第一薄膜以形成至少一微凸塊;以及 於該微凸塊表面與該介電層表面形成一第二薄膜,且該 第二薄膜與該微凸塊即構成該微聚光鏡。 1如申請專利範圍第丨賴述之方法,其巾縣底具有至 少一感光元件。 3.、如申請專利範圍第!項所述之方法,其中侧該第一薄 膜以形成該微凸塊之方法又包含有: 形成一圖案化光阻層於該第一薄膜上;1308226 X. Patent Application Range: 1 . A method for fabricating a micro concentrating mirror, comprising the steps of: providing a substrate having at least one dielectric layer thereon; forming a first film on a surface of the dielectric layer; etching the The first film forms at least one microbump; and a second film is formed on the surface of the microbump and the surface of the dielectric layer, and the second film and the microbump constitute the micro concentrator. 1 As for the method of applying for the patent scope, the bottom of the towel county has at least one photosensitive element. 3. If you apply for a patent scope! The method of the present invention, wherein the method for forming the micro-bumps further comprises: forming a patterned photoresist layer on the first film; 第一薄膜以形成 利用該圖案化光阻層作為遮罩钱刻該 該微凸塊;以及 去除該圖案化光阻層。 4.如申請專利範圍第3 „ . 項所述之方法,其中在去除該圖案 化光阻層之後,又包含有一 β 圓月化(corner rounding)該微 凸塊之步驟。 5.如申請專利範圍第4 項所述之方法,其中該圓角化該微 1308226 凸塊之步驟包含熱回流(reflow)或蝕刻。 如申明專利範圍第i項所述之方法,更包含有一回蝕刻 ^第二薄膜之步驟。 7 站玄如申請專利範圍第1項所述之方法,其中該微凸塊之折 射率大於或等於該第二薄膜之折射率。 利㈣第1項所述之方法,其中該微凸塊與該 溥膜a係為相同之介電材料。 9含^=^_峨狀綠,編介電材料包 請專利範圍第1項所述之方法,其中該第二薄膜包 3,慮光材料或一分色膜(dichroicfilm)。 、 狀係為申^^爾1項所述之方法,其中該微凸塊之形 * 51形、梯形、矩形、或具有圓角之梯形或矩形。 如申μ專利㈣第丨項所狀方法, 於25〇t之埶贺铲ra 负,皿度大 介面。以消除該微凸塊與該第二薄膜間之 1308226 '13·—^種製作微聚光鏡之方法,包含有下列步驟: - 提供—基底,且該基底上具有至少—介電層; 於該介電層表面形成一第一薄膜; 蝕刻該第一薄膜以形成-圖案化第-薄膜; 於該圖案化第-薄膜之周圍形成一侧壁子,且該圖案化 第一薄膜與該側壁子係構成一微凸塊;以及 〃、 …於賴凸塊表面與該介電層表面形成一第二薄膜,且 該第二薄膜與該微凸塊即構成該微聚光鏡。 請專職_13項所叙枝,其巾縣底具有 至少一感光元件。 15树料職㈣13顧叙枝 薄臈以形成該圖案化第一薄膜之方法又包含有,第- ❿ 形成一圖案化光阻層於該第一薄膜上; 利用該圖案化光阻層作為遮罩㈣該第—薄膜 該圖案化第一薄膜;以及 攻 去除該圖案化光阻層。 如申請專利範圍第13項所述之方法,更包含有一回敍 刻該第二薄膜之步驟。 ,17.如申請專利範圍第13項所述之方法,其中該微凸塊之 1308226 折射率大於鱗於該帛二薄狀折射率。 ’其中該微凸塊與 18·如申請專利範圍第13項所述之方法 °亥第一薄膜皆係為相同之介電材料。The first film is formed to form the microbump by using the patterned photoresist layer as a mask; and the patterned photoresist layer is removed. 4. The method of claim 3, wherein after removing the patterned photoresist layer, further comprising a step of β rounding the microbumps. The method of claim 4, wherein the step of rounding the micro 1308226 bump comprises thermal reflow or etching. The method of claim i, further comprising an etching back The method of claim 1, wherein the refractive index of the microbump is greater than or equal to the refractive index of the second film. The micro-bump and the ruthenium film a are the same dielectric material. 9 includes ^=^_峨-shaped green, and the dielectric material is packaged according to the method of claim 1, wherein the second film package 3, A light-sensitive material or a dichroic film. The method is the method of claim 1, wherein the micro-bump is shaped like a shape, a trapezoid, a rectangle, or a trapezoid or rectangle with rounded corners. Such as the method of the application of the patent (4) of the application, the shovel ra The method of fabricating a micro-concentrating mirror to eliminate the 1308226 '13·-- between the microbumps and the second film comprises the following steps: - providing a substrate, and having at least - a dielectric layer; forming a first film on the surface of the dielectric layer; etching the first film to form a patterned first film; forming a sidewall around the patterned first film, and the patterning A thin film and the sidewall sub-system form a micro-bump; and a second film is formed on the surface of the sub-bump and the surface of the dielectric layer, and the second film and the micro-bump constitute the micro-concentrating mirror. Please refer to the full-time _13 item, which has at least one photosensitive element at the bottom of the towel county. The method of forming the patterned first film is further included in the method of forming the patterned first film, and the first layer is formed into a pattern. a photoresist layer on the first film; using the patterned photoresist layer as a mask (4) the first film to pattern the first film; and attacking and removing the patterned photoresist layer. The method described further includes The method of claiming the second film, wherein the method of claim 13 wherein the microbump 1308226 has a refractive index greater than a scale of the second thin refractive index. And the method of claim 18, wherein the first film is the same dielectric material. 19.如申請專利範圍第 包含無機介電材料。 18項所述之方法, 其中該介電材料 20^申請專利範圍第13項所述之方法,其中該第二薄旗 匕3 —濾光材料或一分色膜(dichr〇iCfilm)。 、 21·如申請專利範圍第13項所述之方法,另包含有—溫度 大於25代之㈣程,収消除該微凸塊與該第二薄^ 之介面。 22.—種微聚光鏡結構,適用於一半導體元件,包含: 一基底’且該基底上具有至少一介電層,· 至少一微凸塊,設置於該介電層上;以及 光學膜,覆蓋於該微凸塊表面與該介電層表面,且該 光學膜與該微凸塊構成該微聚光鏡。 23.如申請專利範圍第22項所述之微聚光鏡結構,其中該 基底具有至少一感光元件。 1308226 - 24.如申請專利範圍第22項戶斤述之微聚光鏡結構,其中該 • 微凸塊包含有一圖案化第〆薄骖,以及一側壁子環繞於該 圖案化第一薄膜之周圍。 25. 如申請專利範圍第22項戶斤述之微聚光鏡結構,其中該 微凸塊之形狀包含半圓形、梯形、矩形、或具有圓角之梯 形或矩形。 26. 如申請專利範圍第22項戶/fii·之微聚光鏡結構,其中該 微凸塊之折射率大於或等於该光子膜之折射帛 27. 如申請專利範圍第22項所述之微聚光鏡結構’其中該 微凸塊與該光學膜包含相同么介電材料。 28. 如申請專利範圍第27項戶斤述之微聚光鏡結構,其中該 W 介電材料係為無機介電材料。 29. 如申請專利範圍第22項戶斤述之微聚光鏡結構,其中^ 光學膜包含一濾光材料或一分色膜(dichroic film) ° 30. 如申請專利範圍第22項所述之微聚光鏡結構’其中該 半導體元件係為一互補式金氧半導體電晶體影像感測器 - 卜〆感 (CMOS image sensor, CIS ),且該基底上另具有矣7 光二極體(photodiode)相對應於該微聚光鏡結構。19. The inorganic dielectric material is included in the scope of the patent application. The method of claim 18, wherein the dielectric material is the method of claim 13, wherein the second thin flag is a filter material or a dichroic film. 21) The method of claim 13, wherein the method further comprises: the temperature is greater than 25 generations (four), and the interface between the microbump and the second thin is removed. 22. A micro concentrating mirror structure for a semiconductor device comprising: a substrate 'having at least one dielectric layer on the substrate, at least one microbump disposed on the dielectric layer; and an optical film covering And a surface of the microbump and the surface of the dielectric layer, and the optical film and the microbump form the micro concentrating mirror. 23. The micro concentrator structure of claim 22, wherein the substrate has at least one photosensitive element. 1308226 - 24. The micro-concentrating mirror structure of claim 22, wherein the microbump includes a patterned second thin crucible, and a side wall surrounds the patterned first film. 25. The micro-concentrating mirror structure of claim 22, wherein the shape of the microbump comprises a semicircular shape, a trapezoidal shape, a rectangular shape, or a trapezoidal shape or a rectangular shape with rounded corners. 26. The micro-concentrating mirror structure of claim 22, wherein the micro-bump has a refractive index greater than or equal to a refractive index of the photonic film. 27. The micro-concentrating mirror structure according to claim 22 'Where the microbump contains the same dielectric material as the optical film. 28. The micro-concentrating mirror structure of claim 27, wherein the W dielectric material is an inorganic dielectric material. 29. The micro-concentrating mirror structure of claim 22, wherein the optical film comprises a filter material or a dichroic film. 30. The micro condenser as described in claim 22 The structure of the semiconductor device is a complementary CMOS transistor image sensor (CIS), and the substrate further has a photodiode corresponding to the photodiode. Micro condenser structure.
TW95130548A 2006-08-18 2006-08-18 Microlens structure and fabricating method thereof TWI308226B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95130548A TWI308226B (en) 2006-08-18 2006-08-18 Microlens structure and fabricating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95130548A TWI308226B (en) 2006-08-18 2006-08-18 Microlens structure and fabricating method thereof

Publications (2)

Publication Number Publication Date
TW200811477A TW200811477A (en) 2008-03-01
TWI308226B true TWI308226B (en) 2009-04-01

Family

ID=44767721

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95130548A TWI308226B (en) 2006-08-18 2006-08-18 Microlens structure and fabricating method thereof

Country Status (1)

Country Link
TW (1) TWI308226B (en)

Also Published As

Publication number Publication date
TW200811477A (en) 2008-03-01

Similar Documents

Publication Publication Date Title
US7393477B2 (en) Method of fabricating microlens structure
US7883926B2 (en) Methods for fabricating image sensor devices
US7557337B2 (en) Micro-lens configuration for small lens focusing in digital imaging devices
KR100731128B1 (en) Method for manufacturing cmos image sensor
JP4939206B2 (en) Image sensor and manufacturing method thereof
JP2003229553A (en) Semiconductor device and its manufacturing method
JP2009523317A (en) Method and apparatus for providing uniform color filter in recessed area of imager
US10804306B2 (en) Solid-state imaging devices having flat microlenses
TWI390721B (en) Imagers with contact plugs extending through the substrates thereof and imager fabrication methods
KR102564457B1 (en) Image sensor and method of manufacturing the same
US20140159184A1 (en) Image sensor and method for fabricating the same
US20220262845A1 (en) Lens structure configured to increase quantum efficiency of image sensor
KR20050106939A (en) Cmos image sensor having prism and fabricating method thereof
KR20050079306A (en) Image sensor and method for forming the same
KR20090068572A (en) Image sensor and method for manufacturing the sensor
TWI308226B (en) Microlens structure and fabricating method thereof
KR100449951B1 (en) Image sensor and method of fabricating the same
KR100790288B1 (en) Cmos image sensor and method for manufacturing thereof
JP2017216396A (en) Solid-state image sensor
CN113725240A (en) Semiconductor device and method of forming the same
KR100649020B1 (en) CMOS Image sensor and method for fabricating the same
JP3664997B2 (en) Semiconductor device and manufacturing method thereof
KR102420729B1 (en) Lens structure configured to increase quantum efficiency of image sensor
KR100913326B1 (en) Image sensor and method for fabricating the same
JP2008306096A (en) Solid-state image pickup device and manufacturing method of the same