TWI307566B - - Google Patents

Download PDF

Info

Publication number
TWI307566B
TWI307566B TW95117068A TW95117068A TWI307566B TW I307566 B TWI307566 B TW I307566B TW 95117068 A TW95117068 A TW 95117068A TW 95117068 A TW95117068 A TW 95117068A TW I307566 B TWI307566 B TW I307566B
Authority
TW
Taiwan
Prior art keywords
antenna
coplanar waveguide
ghz
band
patent application
Prior art date
Application number
TW95117068A
Other languages
Chinese (zh)
Other versions
TW200743266A (en
Inventor
wen-zhong Liu
hong-jun Liu
Original Assignee
Univ Nat Formosa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Formosa filed Critical Univ Nat Formosa
Priority to TW095117068A priority Critical patent/TW200743266A/en
Publication of TW200743266A publication Critical patent/TW200743266A/en
Application granted granted Critical
Publication of TWI307566B publication Critical patent/TWI307566B/zh

Links

Description

1307566 九、發明說明: 【發明所屬之技術領域】 本發明所屬之技術領域係關於一種小型共面波導饋入頻段 可調之彎線型微帶單偶極天綵設計。其中涉及藉由在一微 波基板之單層導體面上嵌入兩條不同形狀之折彎型開迴路 槽孔,使形成一個含有兩個不對稱接地面之共面波導饋入 單元連結一彎線型微帶輻射元之天線結構,藉由接地面與 > 彎線型微帶輻射元的尺寸調整及兩者間之電磁耦合效應可 產生小型並適合在無線區域網路5.25 GHz頻段或無線區域網路 /無線射頻辨識系統5· 8 GHz頻段操作之天線特性的技術領域 〇 【先前技術】 近年來由於國内半導體技術的迅速提升,使無線通訊產業得 以蓬勃發展,致各種行動通訊產品相繼問世,而無線通訊的使用 ►戶亦因而激增。為了使無線通訊產品具更高之行動性以符合市場 需求,具輕、薄、短、小且結構簡單易於無線通訊裝置之系統電 路結合等特點的天線設計越來越被重視,其中特別是被應用在無 線區域網路(WLAN)與無線射頻辨識系統上面之天線設 計,需求更是迫切。 在無線區域網路系統方面,其應用射頻阳)技術來做無線高 速資料傳輸’使得在安裝及維護上,提供了相當良好的自由度及 5 1307566 便利性。無線區域網路傳輪標準是以國際電機電子工程師協會制 定之IEEE 802.11為主。其中,正证8〇2] i a應用頻帶為515〇〜535〇 MHz 及 5725〜5825 MHz,傳輸速率為 6, 9,12,18,24, 36, 54 Mbps, 其提供了高速率的傳輸,能有效地支援大量資料與影像的傳輸, 使得無線區域網路的應用更加廣泛^ 至於無線射頻辨識系統它是一種非接觸式的無線傳輸系統, 主要是由電子標籤(Tag)、讀取帥ea㈣、和相關期電路所組 成,可應用於庫存管理、車輛收費自動識別、安全系統、電子存 取卡、收銀櫃台自動扣款、物流管理及醫療上等。此系統所使用 之電子標戴裝置與條碼標藏相比較,其讀取距離較遠且可在更惡 劣的環境中工作’如透過塗料、水、污物、灰塵、人體或加裝標 籤之物體本身。然電子標籤主要由微晶片傳輸電路與天線所組 成,因此天線結構對該標籤的應用效益有著極為嚴重之影響。 而目前市面上應餘無線區域網路或無線射頻辨識系統之天 線設計皆依尋不_特性絲來進行設計,衫為_在微波基 板上並利用同轴饋入方式之折彎線(meander line)型天線、隙縫藕 合(aperture-coupled)盤天線、介電共振子型天線(didectric resonator antenna)或使用同軸饋入方式之立體式的天線。惟,上述 習用之天線常因結構複雜而增加了製造成本及與系統電路結合之 困難度,或因天線尺寸過大降低了通訊裝置的行動性,進而降低 產品的商業價值。 6 l3〇7566 因此’在本案中我們針對天線結構的佈局技術加以研究發-明,描* Φ ^ 了一種尺寸極小、使用共面波導饋入技術且操作頻 段可調之-線型微帶單偶極天線設計它不僅可滿足無線區 域網路5.25 GHz頻段或無線區域網路/無線射頻辨識系統μ GHz 頻段之細需求’同_天線只印製在微波基板之科體面上, 使本發明具有尺寸甚小、易與系統電路結合 、平面低姿態及 結構簡單之特點’極具有商業應用之價值。1307566 IX. OBJECTS OF THE INVENTION: TECHNICAL FIELD The technical field to which the present invention pertains relates to a curved line type microstrip single dipole sky color design with a small coplanar waveguide feeding frequency band adjustable. The invention relates to embedding a two-shaped curved open-circuit slot hole on a single-layer conductor surface of a microwave substrate to form a coplanar waveguide feeding unit having two asymmetric ground planes and connecting a curved line type micro The antenna structure with radiating elements can be small and suitable for use in the wireless local area network 5.25 GHz band or wireless area network by the ground plane and the size adjustment of the curved line microstrip radiating element and the electromagnetic coupling effect between the two. Technical Field of Antenna Characteristics for Operation of Radio Frequency Identification System in the 5·8 GHz Band〇 [Prior Art] In recent years, due to the rapid advancement of domestic semiconductor technology, the wireless communication industry has been booming, resulting in various mobile communication products, and wireless The use of communication has also led to a surge in households. In order to make the wireless communication products have higher mobility to meet the market demand, antenna designs with light, thin, short, small and simple structure and easy to combine the system and circuit of the wireless communication device are more and more important, especially Demand is even more urgent in antenna designs for wireless local area networks (WLANs) and radio frequency identification systems. In wireless local area network systems, the use of radio frequency technology for wireless high-speed data transmission has provided considerable freedom in installation and maintenance and 5 1307566 convenience. The wireless area network transmission standard is based on IEEE 802.11 developed by the International Institute of Electrical and Electronics Engineers. Among them, the positive 8〇2] ia application frequency band is 515〇~535〇MHz and 5725~5825 MHz, and the transmission rate is 6, 9, 12, 18, 24, 36, 54 Mbps, which provides high-speed transmission. It can effectively support the transmission of a large amount of data and images, making the application of wireless local area network more widely. 2. As for the wireless identification system, it is a non-contact wireless transmission system, mainly by electronic tag (Tag), reading handsome ea (4) And related period circuit, can be applied to inventory management, automatic vehicle charge identification, security system, electronic access card, cashier counter automatic debit, logistics management and medical treatment. The electronic standard device used in this system is farther away from the bar code and can work in harsher environments, such as through paint, water, dirt, dust, human body or tagged objects. itself. However, the electronic tag is mainly composed of a microchip transmission circuit and an antenna, and thus the antenna structure has an extremely serious influence on the application efficiency of the tag. At present, the antenna design of the wireless local area network or the radio frequency identification system on the market is designed according to the non-characteristic wire, and the shirt is _ on the microwave substrate and utilizes the coaxial feeding mode bending line (meander line). A type antenna, an aperture-coupled disk antenna, a didectric resonator antenna, or a stereoscopic antenna using a coaxial feed mode. However, the above-mentioned conventional antennas often increase the manufacturing cost and the difficulty of combining with the system circuit due to the complicated structure, or reduce the mobility of the communication device due to the excessive size of the antenna, thereby reducing the commercial value of the product. 6 l3〇7566 Therefore, in this case, we have studied the layout technology of the antenna structure, and we have a very small size, using the coplanar waveguide feeding technology and the operating frequency band is adjustable - the linear microstrip single couple The pole antenna design not only satisfies the fine demand of the wireless local area network 5.25 GHz band or the wireless area network/radio frequency identification system μ GHz band. The same antenna is only printed on the surface of the microwave substrate, so that the invention has the size. Very small, easy to combine with the system circuit, low profile and simple structure, 'very valuable for commercial applications.

7 1307566 【發明内容】 本發明之目的係提供一種小型利用共面波導饋入且頻严 可調之單偶極天線的創新設計,經由結構上之微調可拳易 地得到不同諧振頻率與足夠頻寬以滿足無線區域網路 GHz頻段或無線區域網路/無線射頻辨識系統5·8 GHz頻段之咸用 需求。本發明天線包括:一微波基板u,具有一上層導體 表面111 ; 一印製於微波基板上層導體表面lu的共面波 鲁 導傳輸單元12,共面波導的兩接地面則分別以一細槽線122 的距離非對稱的安排在中央金屬微帶線121的的兩邊,左 邊為一方型接地面123,右邊為一倒L型接地面124(包含 一垂直接地段1241及一水平接地段1242),此種接地面时 安排與習知之共面波導傳輸單元使用兩相同接地面的安排 不同,為一創新設計。共面波導的中央金屬微帶線121的 底端13為天線信號饋入端,金屬微帶線121的頂端則連接 _ 至一彎線型微帶輻射元14,用以傳輸訊號。本發明天線的 彎線型微帶輻射元14為天線輻射電磁波之主要部份,由下 而上包含下水平導線段141、垂直導線段142及上水平導線段 143。此天線之尺寸縮小效果可藉由此輻射元的折彎方式來 達成,而天線的諧振點則可由此彎線型微帶輻射元與共面 波導之接地面的結構安排及相互電磁搞合來調整產生。 本發明天線整個結構僅印製在一微波基板11的上層 1307566 導體表面111,天線可輕易地與系統之硬體電路結合。同 時天線之結構簡單、尺寸甚小,除了可解決習用單偶極天 線與系統電路不易整合連接的問題外,也降低了天線製作 的困難度與成本,具有極高之產業應用價值。 1307566 【實施方式】 本發明所述天線實際製作的實施例,其佈局如第一圖,實施 例罝測結果於圖一至圖四說明,其中天線基板(subs杜^此)使用表面 導體外圍面積僅有9(寬)X 9.5(高)平方公釐、厚度〗.6公爱、介電 係數4.4的FR4微波基材11 ; 50歐姆共面波導傳輸單元之中央金 屬微帶線121的大小為2公釐(寬)X5.5公釐(高);兩接地面與中 央金屬微帶線間之槽線122的寬度為〇·5公釐;共面波導的 • 中央金屬微帶線左邊第一接地面123的寬高尺寸分別為4公釐 及3.5公爱’中央金屬微帶線右邊第二接地面124的垂直接地段 1241與水平接地段的寬X南尺寸分別為2公蟹Χ7·5公爱及5公爱X 1.5公釐;金屬微帶線121頂端所連接之彎線型微帶輻射元 14其結構尺寸為:下水平導線段hi大小為3公釐(寬)χ15公釐 (南)’垂直導線段142大小為1.5公爱(寬)χ5·5公爱(高)及上水平 導線段143大小為5公釐(寬)χ1·5公釐(高)。第二圖為本發明天線 • 實施例之反射損失(retumloss)量測結果;其中曲線21為第一圖實 施例的量測結果’可以觀察到此天線的謂振頻率位在5 36GHz, 反射損失可達約-41dB,低於-10dB之阻抗分佈從4.54 GHz至5.^ GHz,操作頻寬達i〇6〇MHz或對應中心頻率為19.8 %的頻寬百分 比’所產生之可操作頻率範圍含蓋了無線區域網路5. 25 GHz頻段 (5· 15~5· 35 GHz)。曲線22為將前述天線實施例中的彎線型微帶 輻射元之上水平導線段143的寬度增加使其大小變為7.5公釐 1307566 (寬)χ1·5公釐(高)及將共面波導的第二接地面124的水平接地段 1242的寬度縮小至0公爱(亦即使倒L型接地面只剩下垂直段)的▲ 反射損失曲線量測結果,可以觀察到此天線的諧振頻率上移至 5.69 GHz,反射損失可達約-30 dB,低於-l〇dB之阻抗分佈從5 46 GHz至5.86 GHz,操作頻寬達400 MHz或對應中心頻率為7 %的 頻寬百分比,所產生之可操作頻率範圍含蓋了無線區域網路5.8 GHz頻段(5. 725〜5.825 GHz)或無線射頻辨識系統5.8 GHz頻段之 應用需求。 第二圖所示為第二圖曲線21佈局實施例在諸振頻率5.25 GHz 處的輻射場型(Radiation pattern)量測結果。其結果顯示在水平方向 面(H-plane: x-y面)之天線輻射場型接近全向性 (omni-directional) ’ 而垂直方向面(E-planes: x-z 及 y-z 面)之天線 轄射場型則顯現交叉極化(cross-polarization)與並行極化 (co-polarization)大小非常接近的情況。此一輻射特性對無線通訊系 統之通訊效果的提昇將有助益,特別是對無線區域網路通訊系 統。主要是因為交叉極化與並行極化大小相近的場型可避免在複 雜的通訊環境中因多重傳播路徑使傳輸訊號產生不可預測的褪化 情形而導致通訊系統傳輸效率降低的情況。第四圖則是第二圖曲 *. 線21佈局實施例在操作頻帶内的天線增益(antenna gain)的量測結 果,其結果顯示在-10 dB阻抗頻寬範圍内之天線增益分佈在5 6 至6.9 dBi之間,平均值約為6.25dBi。 1307566 由以上結果顯示,本發明天線含蓋足夠的頻寬,同時具有良 好之輻射場型與天線增益,非常適合通訊相關產業的實際應用, 足符合發明創作之目標。 以上所敘述之實施例僅說明本發明之原理及其功效,而非限 制本發明;凡其他未脫離本發明所揭示之精神下所完成之修改及 變化,均應包含在後述之申請專利範圍内。 <7 1307566 SUMMARY OF THE INVENTION The object of the present invention is to provide an innovative design of a single-dipole antenna that utilizes a coplanar waveguide feed and is frequency-adjustable, and can obtain different resonant frequencies and sufficient frequencies through structural fine-tuning. Wide enough to meet the salt demand of the wireless local area network GHz band or the wireless local area network/radio frequency identification system 5·8 GHz band. The antenna of the present invention comprises: a microwave substrate u having an upper conductor surface 111; a coplanar wave conduction transmission unit 12 printed on the surface conductor surface of the microwave substrate, and the two ground planes of the coplanar waveguide are respectively a fine groove The distance of the line 122 is asymmetrically arranged on both sides of the central metal microstrip line 121, the left side is a one-type ground plane 123, and the right side is an inverted L-type ground plane 124 (including a vertical ground section 1241 and a horizontal ground section 1242). This arrangement of the ground plane is different from the conventional arrangement of the coplanar waveguide transmission unit using two identical ground planes, which is an innovative design. The bottom end 13 of the central metal microstrip line 121 of the coplanar waveguide is the antenna signal feed end, and the top end of the metal microstrip line 121 is connected to a curved line type microstrip radiating element 14 for transmitting signals. The curved-line type microstrip radiation element 14 of the antenna of the present invention is a main portion of the antenna radiating electromagnetic waves, and includes a lower horizontal wire segment 141, a vertical wire segment 142 and an upper horizontal wire segment 143 from bottom to top. The size reduction effect of the antenna can be achieved by the bending method of the radiation element, and the resonance point of the antenna can be adjusted by the structural arrangement of the curved line type microstrip radiation element and the ground plane of the coplanar waveguide and the mutual electromagnetic interaction. produce. The entire structure of the antenna of the present invention is printed only on the upper surface 1307566 conductor surface 111 of the microwave substrate 11, and the antenna can be easily combined with the hardware circuit of the system. At the same time, the structure of the antenna is simple and the size is very small. In addition to solving the problem that the conventional single dipole antenna and the system circuit are not easily integrated, the difficulty and cost of the antenna fabrication are also reduced, and the industrial application value is extremely high. 1307566 [Embodiment] The embodiment of the antenna actually fabricated in the present invention has a layout as shown in the first figure, and the measurement results of the embodiment are illustrated in FIG. 1 to FIG. 4, wherein the antenna substrate (subs) uses the surface area of the surface conductor only FR4 microwave substrate 11 having 9 (width) X 9.5 (height) square mm, thickness 〖.6 gong, dielectric constant 4.4; size of central metal microstrip line 121 of 50 ohm coplanar waveguide transmission unit is 2 PCT (width) X5.5 mm (height); the width of the groove line 122 between the two ground planes and the central metal microstrip line is 〇·5 mm; the coplanar waveguide • the first side of the central metal microstrip line The width and height of the ground plane 123 are 4 mm and 3.5, respectively, and the vertical grounding section 1241 of the second ground plane 124 on the right side of the central metal microstrip line and the width X of the horizontal grounding section are respectively 2 male crabs 7.5. Public love and 5 public love X 1.5 mm; the curved microstrip radiation element 14 connected to the top of the metal microstrip line 121 has the following structural dimensions: the lower horizontal wire segment hi is 3 mm (width) χ 15 mm (south) ) 'Vertical wire segment 142 size is 1.5 gong (width) χ 5 · 5 gong (high) and upper horizontal wire segment 143 size is 5 gong (Wide) χ1 · 5 mm (height). The second figure is the result of the retumloss measurement of the antenna embodiment of the present invention; wherein the curve 21 is the measurement result of the first figure embodiment, it can be observed that the pre-excitation frequency of the antenna is at 5 36 GHz, and the reflection loss Up to about -41dB, below -10dB impedance distribution from 4.54 GHz to 5.^ GHz, operating bandwidth up to i〇6〇MHz or corresponding operating frequency range corresponding to a center frequency of 19.8% bandwidth percentage Covers the 5.25 GHz band of the wireless local area network (5·15~5·35 GHz). Curve 22 is to increase the width of the horizontal wire segment 143 above the curved microstrip radiation element in the foregoing antenna embodiment to a size of 7.5 mm 1307566 (width) χ 1 · 5 mm (height) and a coplanar waveguide The width of the horizontal grounding section 1242 of the second ground plane 124 is reduced to 0 Ω (and even if only the vertical section of the inverted L-shaped ground plane is left), the reflection loss curve measurement result can be observed at the resonant frequency of the antenna. Moving to 5.69 GHz, the reflection loss can reach about -30 dB, the impedance distribution below -1 〇dB is from 5 46 GHz to 5.86 GHz, the operating bandwidth is 400 MHz or the bandwidth percentage corresponding to the center frequency is 7%. The resulting operational frequency range covers the application requirements for the 5.8 GHz band (5. 725 to 5.825 GHz) of the wireless LAN or the 5.8 GHz band of the RFID system. The second figure shows the Radiation pattern measurement results of the layout example of the second graph curve 21 at the vibration frequency of 5.25 GHz. The results show that the antenna radiation pattern of the horizontal plane (H-plane: xy plane) is close to omni-directional 'and the antenna plane type of the vertical plane (E-planes: xz and yz plane) It appears that the cross-polarization is very close to the size of co-polarization. This radiating characteristic will contribute to the improved communication performance of the wireless communication system, especially for the wireless local area network communication system. The main reason is that the cross-polarization and the similarity of the parallel polarization can avoid the situation that the transmission efficiency of the communication system is reduced due to the unpredictable fade of the transmission signal due to multiple propagation paths in a complex communication environment. The fourth picture is the measurement result of the antenna gain in the operating band of the second picture line. The result shows that the antenna gain is distributed in the range of -10 dB impedance bandwidth at 5 Between 6 and 6.9 dBi, the average is about 6.25 dBi. 1307566 It is shown by the above results that the antenna of the present invention covers a sufficient bandwidth and has a good radiation field type and antenna gain, and is very suitable for the practical application of the communication-related industry, which is in line with the goal of invention creation. The embodiments described above are merely illustrative of the principles of the present invention and its effects, and are not intended to limit the scope of the present invention. . <

12 1307566 【圖式簡單說明】 第一圖係為本發明天線之實施例結構圖。 第二圖係為本發明天線實施例之反射損失量測結果。 第三圖係為本發明天線實施例操作於諧振頻率5.25 GHz的輻射場 型量測結果。 第四圖係為本發明天線實施例操作於5.25 GHz頻段之天線增益量 測結果。 13 1307566 【主要元件符號說明】 1:本發明之適用5 GHz頻段可調之小型共面波導饋入天線一 實施例 11:微波基板 111:微波基板上層導電表面 12 :共面波導傳輸單元 121 :共面波導的中央金屬微帶線 _ 122 :共面波導的槽線 123 :共面波導的第一接地面 124 :共面波導的第二接地面 1241 :共面波導的第二接地面之垂直接地段 1242 :共面波導的第二接地面之水平接地段 13 :信號馈入端 14:彎線型微帶輻射元 • 141 :彎線型微帶輻射元之下水平導線段 142 :彎線型微帶輻射元之垂直導線段 143 :彎線型微帶輻射元之上水平導線段12 1307566 [Simple description of the drawings] The first figure is a structural diagram of an embodiment of the antenna of the present invention. The second figure is the result of the reflection loss measurement of the antenna embodiment of the present invention. The third figure is a measurement of the radiation field type of the antenna embodiment operating at a resonant frequency of 5.25 GHz. The fourth figure is the antenna gain measurement result of the antenna embodiment of the present invention operating in the 5.25 GHz band. 13 1307566 [Description of main component symbols] 1: Small-sized coplanar waveguide feeding antenna with adjustable 5 GHz frequency band of the present invention. Embodiment 11: Microwave substrate 111: Microwave substrate upper conductive surface 12: Coplanar waveguide transmission unit 121: The central metal microstrip line of the coplanar waveguide _122: the slot line 123 of the coplanar waveguide: the first ground plane 124 of the coplanar waveguide: the second ground plane 1241 of the coplanar waveguide: the sag of the second ground plane of the coplanar waveguide Direct segment 1242: horizontal ground segment 13 of the second ground plane of the coplanar waveguide: signal feed terminal 14: curved line microstrip radiation element 141: curved wire microstrip radiation element below horizontal wire segment 142: curved line microstrip Vertical wire segment 143 of the radiation element: horizontal wire segment above the curved line microstrip radiation element

Claims (1)

1307566 十、申請專利範圍: .種適用5 GHz頻段可調之小型共面波導饋入天線,包含 一微波基板,具有一上層導體表面; 一輻射元件,印製於微波基板上層導體表面,是由 個彎線型微帶導線組成,包含二個水平導線及一個垂 直導線連接而成,而底部則作為此輪射元件的訊號饋入 Mk, > 一共面波導傳輸單元,印製於微波基板上層導體表 面,該共面波導的中央金屬微帶線連接至該天線之輻射 兀的底部訊號饋入點,用以傳遞訊號,而共面波導的兩 個接地面分別為方型與倒L型並安排於中央金屬微帶線 的左右兩邊,且以槽線將中央金屬微帶線與兩個接地面 分開。 2. 如申請專利範圍第i項所述之適用5GHz頻段可調之小 _ 型共面波導饋入天線,其中,該彎線型微帶輻射元的結 構安排及兩非對稱接地面間的電磁耦合效應,用以產生 該天線之5 GHz操作頻段。 3. 如申請專利範圍第i項所述之適用5GHz頻段可調之小 型共面波導饋入天線,其中,該彎線型微帶輻射元的水 平段及垂直段尺寸可作各種組合以適應不同工作頻帶及 頻寬之需求。。 4·如申請專利範圍第1項所述之適用在5GHz頻段可調之 15 1307566 小型共面波導饋入天線,其中,該兩接地面的形狀及尺 寸可作各種組合,以適應不同工作頻帶及頻寬之需求。、 5.如申請專利範圍第1項所述之適用在5 GHz頻段可調之 小型共面波導饋入天線,其中,該共面波導傳輸單元的中 央金屬微帶線與接地面間的槽線,可依需求設置成一種以上之 不同寬度,以適應不同工作頻帶及頻寬之需求。1307566 X. Patent application scope: A small coplanar waveguide feed antenna adaptable to the 5 GHz frequency band, comprising a microwave substrate having an upper conductor surface; a radiating element printed on the upper surface of the microwave substrate conductor A curved line type microstrip wire consisting of two horizontal wires and one vertical wire connected, and the bottom is fed as a signal of the rotating component to Mk, > a coplanar waveguide transmission unit printed on the upper layer of the microwave substrate a surface, the central metal microstrip line of the coplanar waveguide is connected to a bottom signal feed point of the antenna of the antenna for transmitting a signal, and the two ground planes of the coplanar waveguide are square and inverted L and arranged On the left and right sides of the central metal microstrip line, the central metal microstrip line is separated from the two ground planes by a slot line. 2. The small-type coplanar waveguide feeding antenna with adjustable 5GHz frequency band as described in item i of the patent application scope, wherein the structure of the curved microstrip radiating element and the electromagnetic coupling between the two asymmetric ground planes Effect to generate the 5 GHz operating band of the antenna. 3. The small coplanar waveguide feed antenna with adjustable 5GHz frequency band as described in item i of the patent application scope, wherein the horizontal and vertical segments of the curved microstrip radiation element can be combined in various combinations to suit different work. Band and bandwidth requirements. . 4. The 15 1307566 small coplanar waveguide feed antenna, which is adjustable in the 5 GHz band, as described in item 1 of the patent application scope, wherein the shape and size of the two ground planes can be variously combined to suit different operating frequency bands and The need for bandwidth. 5. A small coplanar waveguide feed antenna adjustable in the 5 GHz band as described in claim 1 of the patent application, wherein the slot between the central metal microstrip line and the ground plane of the coplanar waveguide transmission unit It can be set to more than one different width according to requirements to meet the needs of different working frequency bands and bandwidths.
TW095117068A 2006-05-15 2006-05-15 Miniature coplanar waveguide feed-in antenna suitable for 5 GHz adjustable frequency band TW200743266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW095117068A TW200743266A (en) 2006-05-15 2006-05-15 Miniature coplanar waveguide feed-in antenna suitable for 5 GHz adjustable frequency band

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW095117068A TW200743266A (en) 2006-05-15 2006-05-15 Miniature coplanar waveguide feed-in antenna suitable for 5 GHz adjustable frequency band

Publications (2)

Publication Number Publication Date
TW200743266A TW200743266A (en) 2007-11-16
TWI307566B true TWI307566B (en) 2009-03-11

Family

ID=45071621

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095117068A TW200743266A (en) 2006-05-15 2006-05-15 Miniature coplanar waveguide feed-in antenna suitable for 5 GHz adjustable frequency band

Country Status (1)

Country Link
TW (1) TW200743266A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI351787B (en) 2008-01-22 2011-11-01 Asustek Comp Inc Triple band antenna
TWI497827B (en) * 2012-11-28 2015-08-21 Wistron Neweb Corp Antenna and array antenna
TWI634699B (en) * 2016-12-15 2018-09-01 國立高雄科技大學 Dual-band circularly polarized coplanar-fed monopole antenna for wireless local area network (wlan) applications
CN110797629B (en) * 2019-11-15 2021-06-29 中国电子科技集团公司第十八研究所 Array solar cell slice antenna based on coplanar waveguide structure

Also Published As

Publication number Publication date
TW200743266A (en) 2007-11-16

Similar Documents

Publication Publication Date Title
CN103915678B (en) Omni-directional
US9142889B2 (en) Compact tapered slot antenna
US6008774A (en) Printed antenna structure for wireless data communications
EP2047563B1 (en) Embedded multi-mode antenna architectures for wireless devices
TWI374575B (en) Wide band antenna
US7554507B2 (en) UWB antenna with unidirectional radiation pattern
US20050248499A1 (en) Multiple meander strip monopole antenna with broadband characteristic
TWI307566B (en)
EP2833475B1 (en) Dipole antenna
JP5213039B2 (en) Single-sided radiation antenna
KR20040054107A (en) Small planar antenna with ultra wide bandwidth and manufacturing method thereof
TW201208196A (en) A multi-loop antenna system and a electronic device having the multi-loop antenna system
CN102474013A (en) Dipole antenna
US7586448B2 (en) Multi-frequency antenna
KR100729627B1 (en) UWB antenna with uni -directional radiation pattern
Gummalla et al. Compact dual-band planar metamaterial antenna arrays for wireless LAN
US20130082894A1 (en) Integrated antenna and method for operating integrated antenna device
KR100685749B1 (en) Planar antenna
TW200417077A (en) Multiband antenna
Wang A compact antenna design for UHF RFID applications
EP2037532A1 (en) Flat dual-band antenna
US20090079659A1 (en) Multi-mode resonant wideband antenna
TW200803052A (en) Triple-band single dipole antenna of small coplanar waveguide feed-in type
KR20180123804A (en) Ultra wideband planar antenna
TWM547192U (en) Multiband antenna

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees