TWI307093B - Gain adjusting method for optical disk drive - Google Patents

Gain adjusting method for optical disk drive Download PDF

Info

Publication number
TWI307093B
TWI307093B TW95114735A TW95114735A TWI307093B TW I307093 B TWI307093 B TW I307093B TW 95114735 A TW95114735 A TW 95114735A TW 95114735 A TW95114735 A TW 95114735A TW I307093 B TWI307093 B TW I307093B
Authority
TW
Taiwan
Prior art keywords
gain
error signal
signal
tracking
tracking error
Prior art date
Application number
TW95114735A
Other languages
Chinese (zh)
Other versions
TW200741680A (en
Inventor
Chihkung Hsu
Ya Ting Yu
Original Assignee
Via Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Via Tech Inc filed Critical Via Tech Inc
Priority to TW95114735A priority Critical patent/TWI307093B/en
Publication of TW200741680A publication Critical patent/TW200741680A/en
Application granted granted Critical
Publication of TWI307093B publication Critical patent/TWI307093B/en

Links

Landscapes

  • Optical Recording Or Reproduction (AREA)

Description

1307093 九、發明說明: 【發明所屬之技術領域】 本發明係關於— 光碟機之循㈣㈣柄機增益調整方法,特別是關於 i糸统之增益調整方法。 【先前技術】 辦;I; ^著數位夕媒體的高度發展,高容量的光資訊儲存媒 體相繼問世,兔Ύ1307093 IX. Description of the Invention: [Technical Field] The present invention relates to a method for adjusting the gain of a (4) (four) handle of an optical disc drive, and more particularly to a gain adjustment method for an i. [Prior technology] Office; I; ^ Highly developed digital media, high-capacity optical information storage media have come out one after another, rabbits

存媒和,確地存取這些高容量的光資訊儲 、二* 、機及其控制系統的優劣亦是重要的一環。 光碟機之況號生成主要係由光學讀寫頭讀取光儲存 媒體產生’而光學讀寫頭可藉由兩種方式讀取光儲存媒 體刀別疋推拉誤差(Differential Push-Pull,DPP)檢測 方法與相位疾差(Differentiai phase Detection,DPD)檢 測方法。清參照圖丨所示,其係為習知推拉誤差檢測方法 之示意圖。光學讀寫頭10的光感測元件1〇2感測區域 A-Η的光度以產生主推拉訊號與副推拉訊號。主推拉訊號 (Main Push-Pull-Signal Offset,MPPO)係依據區域 (A+B+C+D )的亮度所產生’副推拉訊號 (Sub-Push-Pull-Signal Offset,SPPO)係依據區域 (E+F+G+H)的亮度所產生。圖2係為習知相位誤差檢測 方法之一示意圖。當信號藉由相位誤差檢測方法產生時, 光學讀寫頭10的光感測元件104係感測區域A-D的光度 與相位而產生相位誤差訊號與中心誤差訊號。相位誤差訊 號(DPD signal)係依據區域(A+B) - (C+D)的相位差所 6 1307093 產生’中心誤差訊號(Central Error,CE)係依據區域(A+B) -(C+D)的亮度差所產生。 光碟機之控制系統係處理光學讀寫頭1〇產生之訊 號,以判定光學讀寫頭之位址與資料讀寫之狀態,進而控 制光學項寫頭10正常讀寫資料。請參照圖3,其係為習知 循轨控制系統之一方塊圖。循軌控制器11與光學讀寫頭 10係形成一回授控制迴路,循軌控制器11係依據循軌誤 差訊號(Tracking Error,ΤΕ)111產生一循軌控制訊號 (Tracking Control Signal,TR0)112以定執伺服控制光學讀 寫頭10。當光學讀寫頭10之訊號係藉由推拉誤差檢測方 法產生時,訊號121係主推拉訊號,訊號122係副推拉訊 號。副推拉訊號122經過增益放大器13放大後與主推拉 訊號121相加以產生循軌誤差訊號ill 〇循執控制器η接 收此循執誤差訊號111後產生一循軌控制訊號112並輸出 至光學讀寫頭10,以控制光學讀寫頭之位移。光學讀寫頭 10再輸出主推拉訊號121與副推拉訊號122,依此形成回 授控制迴路。 另外,當光學讀寫頭10之訊號係藉由相位誤差檢測 方法產生時,訊號121係相位誤差訊號,訊號122係中心 誤差訊號。中心誤差訊號122經過增益放大器13放大後 與相位誤差訊號121相加以產生循軌誤差訊號111。循轨 控制器11接收此循軌誤差訊號111後產生一循軌控制訊號 112並輸出至光學讀寫頭10,以控制光學讀寫頭之位移。 光學讀寫頭10再輸出相位誤差訊號121與中心誤差訊號 7 1307093 122,依此形成回授控制迴路。 為使光碟機之控制系統穩定,習知技術可於光碟機自 光儲存媒體讀取或寫入資料前,先行調整循軌控制系統之 增益放大器13之增益值,以得到一較佳之增益值,並將 此較佳之增益值預設於增益放大器13中,使得循軌誤差 訊號111較為穩定,進而產生一穩定之循軌控制訊號112 以控制光學讀寫頭10之位移。此增益值之重要性在於光 碟機之讀寫能力需涵蓋多樣之光儲存媒體,而光學讀寫頭 於各不同之光儲存媒體所讀取之輸出訊號並不相同’因此 其循軌錯誤訊號亦不相同。若預設一增益值可能無法適用 於各光儲存媒體,導致讀寫能力產生落差,造成使用者之 不便。因此,如何提供一種能夠解決上述問題之光碟機增 益調整方法,正是當前的重要課題之一。 【發明内容】 本發明提供一種光碟機增益調整方法,包含以下步 驟。首先,依據複數個增益值產生一循軌誤差訊號。接著, 依據該循軌誤差訊號輸出一循轨控制訊號以控制一光學 讀寫頭。然後,記錄每一增益值與對應之循軌誤差訊號以 及相對應之循軌控制訊號。比較該循軌誤差訊號以及相對 應之循軌控制訊號以找出相位與循軌控制訊號相反且其 值最小之循軌誤差訊號。最後,設定該相位與循軌控制訊 號相反且其值最小之循執誤差訊號所對應之增益值為一 最佳增益值。 1307093 【實施方式】 以下將參照相關圖式,說明依本發明較佳實施例之光 碟機伺服控制方法,其中相同的元件將以相表昭 ' 加以說明。 /“、、付唬 ' α下將配合圖4舉例說明本發明增益調整方法的運作 情形。光碟機2包含一循執控制器2卜一光學讀寫頭2〇、 -循轨馬達23以及—主軸馬達24,其中循軌控制器_ • 單元211以及一循軌模組212。循轨控制 益21係控制主轴馬達24與循執馬s 23作動。在本 例中之光學讀寫頭2〇是依據推拉誤差檢測方法產生一主 推拉訊號221與一副推拉訊號222至增益調整單元211。 在開啟循軌控制功能之前,增益調整單元211分別將 拉訊號222乘上複數個增益值(Gain),再與主推拉訊號如 相加而得到循軌誤差訊號21〇,其中複數個增益值為 增或是遞減數列’可預先存放在暫存器(圖未杀)中。德軌 • 模組212係依據循執誤差訊號210而產生循執控制訊號 213以控制循轨馬達23。循軌馬達23係依據循軌控制郭| ' 號213移動光學讀寫頭20,使光學讀寫頭20得以存取先 資訊儲存媒體3。 請參照圖5’舉例來說,當設定複數個增益值為自lldB 以ldB遞增至18dB時,循軌誤差訊號21〇亦相對改變。 循軌模組212依據楯軌誤差訊號21〇產生循執控制訊號 213以控制光學讀寫頭2〇之位移。此時循軌控制器21記 錄每一增益值與對應之循軌誤差訊號210以及相對應的循 9 1307093 軌控制訊號213。接著,一外部微處理器(圖未示)比較上述 之循軌誤差訊號210與循軌控制訊號213以找出相位與循 軌控制訊號213相反且其值最小之循軌誤差訊號210。在 本實施例中’一個完整週期的循軌誤差訊號210係具有一 第一半週期波P1與一第二半週期波P2,循軌誤差訊 之值可為第一半週期波P1之平均振幅Αι與第二半週期波 P2之平均振幅八2間之距離d、第一半週期波P1之平均振 幅Α!或是第一半週期波p2之平均振幅a2。It is also an important part of the media and the access to these high-capacity optical information stores, computers, and their control systems. The status of the optical disk drive is mainly generated by the optical read/write head reading the optical storage medium. The optical read/write head can read the optical storage medium by means of differential push-pull (DPP) detection. Method and phase difference (Differentiai Phase Detection (DPD) detection method. As shown in the figure ,, it is a schematic diagram of a conventional push-pull error detection method. The light sensing element 1 〇 2 of the optical pickup 10 senses the luminosity of the area A-Η to generate a main push signal and a sub push signal. The Main Push-Pull-Signal Offset (MPPO) is based on the brightness of the area (A+B+C+D). The Sub-Push-Pull-Signal Offset (SPPO) is based on the area (Sub-Push-Pull-Signal Offset (SPPO)). The brightness of E+F+G+H) is generated. Figure 2 is a schematic diagram of one of the conventional phase error detection methods. When the signal is generated by the phase error detecting method, the light sensing element 104 of the optical pickup 10 senses the illuminance and phase of the area A-D to generate a phase error signal and a center error signal. The phase error signal (DPD signal) is generated according to the phase difference of the region (A+B) - (C+D) 6 1307093. The central error signal (CE) is based on the region (A+B) - (C+ The difference in brightness of D) is generated. The control system of the optical disk drive processes the signal generated by the optical pickup 1 to determine the address of the optical pickup and the state of reading and writing data, thereby controlling the normal reading and writing of the optical write head 10. Please refer to FIG. 3, which is a block diagram of a conventional tracking control system. The tracking controller 11 and the optical pickup 10 form a feedback control loop, and the tracking controller 11 generates a tracking control signal (TR0) according to the tracking error signal (Tracking Error, ΤΕ) 111. 112 controls the optical pickup 10 by a servo. When the signal of the optical pickup 10 is generated by the push-pull error detection method, the signal 121 is the main push-pull signal, and the signal 122 is the sub-push signal. The sub-push signal 122 is amplified by the gain amplifier 13 and added to the main push-pull signal 121 to generate a tracking error signal ill. The circulator controller n receives the tracking error signal 111 and generates a tracking control signal 112 and outputs it to the optical reading and writing. The head 10 controls the displacement of the optical pickup. The optical pickup 10 then outputs the main push-pull signal 121 and the secondary push-pull signal 122, thereby forming a feedback control loop. In addition, when the signal of the optical pickup 10 is generated by the phase error detecting method, the signal 121 is a phase error signal, and the signal 122 is a center error signal. The center error signal 122 is amplified by the gain amplifier 13 and added to the phase error signal 121 to generate a tracking error signal 111. The tracking controller 11 receives the tracking error signal 111 and generates a tracking control signal 112 and outputs it to the optical pickup 10 to control the displacement of the optical pickup. The optical pickup 10 then outputs a phase error signal 121 and a center error signal 7 1307093 122, thereby forming a feedback control loop. In order to stabilize the control system of the optical disc drive, the prior art can adjust the gain value of the gain amplifier 13 of the tracking control system to obtain a better gain value before the optical disc machine reads or writes data from the optical storage medium. The preferred gain value is preset in the gain amplifier 13 so that the tracking error signal 111 is relatively stable, thereby generating a stable tracking control signal 112 to control the displacement of the optical pickup 10 . The importance of this gain value is that the read/write capability of the optical disc drive needs to cover a variety of optical storage media, and the output signals read by the optical read/write heads on different optical storage media are not the same. Therefore, the tracking error signal is also Not the same. If the preset gain value may not be applicable to each optical storage medium, the reading and writing ability may cause a drop, which may cause inconvenience to the user. Therefore, how to provide a CD player gain adjustment method that can solve the above problems is one of the current important topics. SUMMARY OF THE INVENTION The present invention provides a method for adjusting a gain of an optical disc drive, comprising the following steps. First, a tracking error signal is generated based on a plurality of gain values. Then, a tracking control signal is output according to the tracking error signal to control an optical pickup. Then, each gain value is recorded with a corresponding tracking error signal and a corresponding tracking control signal. The tracking error signal and the corresponding tracking control signal are compared to find a tracking error signal whose phase is opposite to the tracking control signal and whose value is the smallest. Finally, the gain value corresponding to the tracking error signal whose phase is opposite to the tracking control signal and whose value is the smallest is set to an optimum gain value. [Embodiment] Hereinafter, a servo control method for a disk drive according to a preferred embodiment of the present invention will be described with reference to the related drawings, in which the same elements will be described. The operation of the gain adjustment method of the present invention will be exemplified in Fig. 4. The optical disk drive 2 includes a circulator controller 2, an optical pickup 2, a tracking motor 23, and The spindle motor 24, wherein the tracking controller _ • the unit 211 and a tracking module 212. The tracking control 21 controls the spindle motor 24 and the steerable horse s 23. In this example, the optical pickup 2 〇 According to the push-pull error detection method, a main push-pull signal 221 and a pair of push-pull signals 222 are generated to the gain adjustment unit 211. Before the tracking control function is turned on, the gain adjustment unit 211 multiplies the pull signal 222 by a plurality of gain values (Gain), respectively. Then, if the main push-pull signal is added, the tracking error signal 21〇 is obtained, wherein the plurality of gain values are incremented or decremented, and can be pre-stored in the register (not killed). The tracking control signal 213 is generated according to the compliance error signal 210 to control the tracking motor 23. The tracking motor 23 is based on the tracking control Guo | ' No. 213 mobile optical pickup 20 to enable the optical pickup 20 to be stored. Take the first information storage media 3. Please For example, when the plurality of gain values are set from lldB to 18 dB from lldB, the tracking error signal 21〇 is also relatively changed. The tracking module 212 generates the circumstance control according to the tracking error signal 21〇. The signal 213 controls the displacement of the optical pickup head 2. At this time, the tracking controller 21 records each gain value and the corresponding tracking error signal 210 and the corresponding 9 1307093 rail control signal 213. Then, an external micro The processor (not shown) compares the tracking error signal 210 and the tracking control signal 213 to find a tracking error signal 210 whose phase is opposite to the tracking control signal 213 and whose value is the smallest. In this embodiment, The tracking error signal 210 of the complete cycle has a first half-period wave P1 and a second half-period wave P2, and the value of the tracking error signal can be the average amplitude Αι and the second half-period of the first half-period wave P1. The average amplitude of P2 is the distance d between the two and eight, the average amplitude of the first half-period wave P1, or the average amplitude a2 of the first half-period wave p2.

當找出相位與循軌控制訊號213相反且其值最小之循 執誤差訊號210時,外部微處理器(圖未示)設定此循執誤 差訊號21G所對應之増益值為一最佳增益值至增益調整單 兀211。以圖5來說,當增益值為16dB時,循軌誤差訊號 210之值加(第—半週期波與第二半週期波之平均振幅間 之距離)為最小值,目此卿應為最佳增益值。此後, 立曰益調1單7C 211中的增益值即設定為i6dB。之後當光碟 機j軌$田!推拉訊號222係乘上最佳增益值(16dB)後盘 主推拉訊號221 i日·/>、+ 、 m再依據上十、加以產生循執誤差訊號210。循執模組 213。循絲1 循軌誤差訊號210產生循執控制訊號 ·、·、達23則藉此循軌控制訊號213位移光學1冑 頭^讀取光資訊儲存媒體3。 移先子遺寫 檢測方法來m ’循軌誤差訊號210係可由相位誤差 , 5lJ.,. 主推拉訊號221係可由相位誤差訊號 Γί 一拉峨222係可由中心誤差訊號替換。另外, 貫施例t ’光碟機增益調整方法係可域㈣軌誤 1307093 差訊號210之最小值,並於最小值附近找出與循軌控制訊 號213之相位相反之循執誤差訊號210以及其對應之增益 值。 本發明之光碟機增益調整方法之應用時機可應用於 光碟機系統開機時先行找出最佳增益值,或是當每次進行 循執之前先行找出最佳增益值,亦或是當循執發生錯誤時 再應用本發明之方法找出最佳增益值。 請參照圖6,其係為本發明之光碟機增益調整方法之 流程圖。首先,於步驟S01中,依據複數個增益值產生一 循軌誤差訊號。於步驟S02中,依據上述之循軌誤差訊號 輸出一循執控制訊號以控制一光學讀寫頭。於步驟S03 中,記錄每一增益值與對應之循執誤差訊號以及相對應之 循執控制訊號。於步驟S04中,比較上述之循軌誤差訊號 以及相對應之循軌控制訊號以找出相位與循軌控制訊號 相反且其值最小之循執誤差訊號。於步驟S05中,設定此 相位與循軌控制訊號相反且其值最小之循軌誤差訊號所 對應之增益值為一最佳增益值。於步驟S06中,依據此最 佳增益值產生循軌控制訊號以控制上述之光學讀寫頭。 本發明提出一種光碟機增益調整方法,用於調整循軌 控制系統之增益放大器之增益值,使光碟機可於讀寫資料 前調整其增益放大器之增益值至一最佳增益值,進而提昇 讀寫之能力。因此,光學讀寫頭係能夠於該最佳增益值下 穩定循執,並能正確地讀取光碟片的資料,減少光碟機挑 片情形,避免造成使用者的不便。 11 1307093 以上所述僅為舉例性,而非為限制性者,此方法非僅 適用於光碟機之循執控制系統,經適當修改亦可用於其他 伺服控制系統之領域。任何未脫離本發明之精神與範疇, 而對其進行之等效修改或變更,均應包含於後附之申請專 利範圍中。 【圖式簡單說明】 圖1為習知推拉誤差檢測方法之一示意圖; 圖2為習知相位誤差檢測方法之一示意圖; 圖3為習知循軌控制系統之一方塊圖; 圖4為應用本發明光碟機增益調整方法之光碟機; 圖5為應用本發明光碟機增益調整方法之循執控制訊 號與循軌誤差訊號之一關係圖;以及 圖6為本發明之光碟機增益調整方法之流程圖。 元件符號說明: 10、20 光學讀寫頭 102 、 104 光感測元件 11 ' 21 循執控制器 111 ' 210 循軌誤差訊號 112 、 213 循執控制訊號 121 > 122 訊號 ; 13 增益放大器 2 光碟機 211 增益調整單元 212 循執模組 221 主推拉訊號 222 副推拉訊號 23 循軌馬達 24 主轴馬達 3 光儲存媒體 P1 第一半週期波 12 1307093 P2 第二半週期波 Αι 第一半週期波之平均振幅 A2 第二半週期波之平均振幅 D 距離 ml S01-S06 步驟 最小值When the tracking error signal 210 whose phase is opposite to the tracking control signal 213 and whose value is the smallest is found, the external microprocessor (not shown) sets the benefit value corresponding to the tracking error signal 21G to an optimal gain value. Go to gain adjustment unit 211. As shown in Fig. 5, when the gain value is 16 dB, the value of the tracking error signal 210 plus (the distance between the average amplitude of the first half-period wave and the second half-period wave) is the minimum value, which should be the most Good gain value. Thereafter, the gain value in the 7C 211 is set to i6dB. Then, when the optical disk drive is in the field, the push-pull signal 222 is multiplied by the optimal gain value (16 dB), and the disk main push-pull signal 221 i day·/>, +, m is further generated according to the tenth, and the cycle error signal 210 is generated. . Circulatory module 213. The tracking error signal 210 is generated by the tracking error signal 210, and the tracking signal 213 is used to shift the optical signal to the optical information storage medium 3. The first step of the detection method is to detect the m ‘the tracking error signal 210 can be phase error, 5lJ.,. The main push-pull signal 221 can be replaced by the phase error signal Γί 峨 222 can be replaced by the central error signal. In addition, the embodiment t' disc drive gain adjustment method is the minimum value of the difference signal 210 in the domain (4) track error 1307093, and finds the tracking error signal 210 opposite to the phase of the tracking control signal 213 near the minimum value and Corresponding gain value. The application timing of the optical disc gain adjustment method of the present invention can be applied to find the optimal gain value when the optical disc system is powered on, or to find the optimal gain value before each execution, or when The method of the present invention is applied to find the optimum gain value when an error occurs. Please refer to FIG. 6, which is a flow chart of the method for adjusting the gain of the optical disc drive of the present invention. First, in step S01, a tracking error signal is generated according to the plurality of gain values. In step S02, a tracking control signal is output according to the tracking error signal to control an optical pickup. In step S03, each gain value and the corresponding tracking error signal and the corresponding execution control signal are recorded. In step S04, the tracking error signal and the corresponding tracking control signal are compared to find a tracking error signal whose phase is opposite to the tracking control signal and whose value is the smallest. In step S05, the gain value corresponding to the tracking error signal whose phase is opposite to the tracking control signal and whose value is the smallest is set to an optimum gain value. In step S06, a tracking control signal is generated according to the optimum gain value to control the optical head described above. The invention provides a method for adjusting the gain of the optical disc drive, which is used for adjusting the gain value of the gain amplifier of the tracking control system, so that the optical disc drive can adjust the gain value of the gain amplifier to an optimal gain value before reading and writing data, thereby improving reading. Ability to write. Therefore, the optical head can stably follow the optimum gain value, and can correctly read the data of the optical disc, thereby reducing the situation of the disc player and avoiding the inconvenience of the user. 11 1307093 The above description is for illustrative purposes only and is not a limitation. This method is not only applicable to the circulatory control system of the optical disk drive, but can be used in other servo control systems as appropriate. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a conventional method for detecting push-pull error; FIG. 2 is a schematic diagram of a conventional method for detecting phase error; FIG. 3 is a block diagram of a conventional tracking control system; FIG. 5 is a diagram showing a relationship between a loop control signal and a tracking error signal of a disc gain adjustment method of the present invention; and FIG. 6 is a method for adjusting a gain of an optical disc drive according to the present invention; flow chart. Component symbol description: 10, 20 optical pickup 102, 104 optical sensing component 11 ' 21 circulator controller 111 ' 210 tracking error signal 112, 213 circulatory control signal 121 > 122 signal; 13 gain amplifier 2 CD Machine 211 Gain adjustment unit 212 Circulatory module 221 Main push signal 222 Sub push signal 23 Track motor 24 Spindle motor 3 Optical storage medium P1 Half cycle wave 12 1307093 P2 Second half cycle wave Α First half cycle wave Average amplitude A2 Average amplitude of the second half-period wave D Distance ml S01-S06 Step minimum

1313

Claims (1)

1307093 十、申請專利範圍: 1、 一種光碟機增益調整方法,包含·· 依據複數個增益值產生一循軌誤差訊號; 依據該循轨誤差訊號輸出一循軌控制訊號以控制一光 學讀寫頭; 記錄每一增益值與對應之循軌誤差訊號以及相對應之 循軌控制訊號; 比較該循軌誤差訊號以及相對應之循軌控制訊號以找 出相位與循轨控制訊號相反且其值最小之循軌誤差 訊號;以及 設定該相位與循執控制訊號相反且其值最小之循軌誤 差訊號所對應之增益值為一最佳增益值。 2、 如申請專利範圍第1項所述之光碟機增益調整方法, 更包含’· 依據該最佳增益值產生該循執控制訊號以控制該光學 讀寫頭。 3、 如申請專利範圍的1項所述之光碟機增益調整方法, 其中該複數個增益值係為一遞增或遞減數列。 4、如申請專利範圍的1項所述之光碟機增益調整方法, 其中該複數個增益值預先存放在一暫存器中。 1307093 其所述之光碟機增益調整方法, 週期波? 具有一第一半週期波與-第二半 均誤差訊號之值係該第—半週期波之平 々振幅與該第二半週期波之平均振關之距離。 6 =申請專利範圍第1項所述之光碟機增益調整方法, :、中該循執誤差訊號具有一第一半週期波與一第二半 2波,該循轨誤差訊號之值係該第—半週期波或是 該第二半週期波之平均振幅。 如申請專利範圍第i項所述之光碟機增益調整方法, 其中該光學讀寫頭係由相位誤差檢測方法產生一相位 誤差訊號與一中心誤差訊號。 、如申請專利範圍第7項所述之光碟機增益調整方法, 其中依據該複數個增益值產生該循執誤差訊號之步驟 更包含: 分別將該中心誤差訊號乘上該複數個增益值後與該相 位誤差訊號相加而得到該循軌誤差訊號。 9、如申請專利範圍第1項所述之光碟機增益調整方法, 其中該光學讀寫頭係由推拉誤差檢測方法產生一主推 拉訊號與一副推拉訊號。 15 1307093 ίο 利範圍第9項所述之光碟機增益調整方法, 其中依據該複數個增益值產生該聽誤差訊號之步 驟更包含·· 分別將該副推拉訊號乘上該複數個增益值後與該主 推拉訊號相加而得到該循軌誤差訊號。1307093 X. Patent application scope: 1. A method for adjusting gain of an optical disc drive, comprising: generating a tracking error signal according to a plurality of gain values; outputting a tracking control signal according to the tracking error signal to control an optical reading head Recording each gain value and the corresponding tracking error signal and the corresponding tracking control signal; comparing the tracking error signal with the corresponding tracking control signal to find the phase opposite to the tracking control signal and having the smallest value The tracking error signal; and the gain value corresponding to the tracking error signal whose phase is opposite to the execution control signal and whose value is the smallest is an optimal gain value. 2. The method for adjusting the gain of the optical disc drive according to claim 1 of the patent application, further comprising: generating the cyclic control signal according to the optimal gain value to control the optical pickup. 3. The disc drive gain adjustment method of claim 1, wherein the plurality of gain values are an increment or decrement sequence. 4. The disc drive gain adjustment method of claim 1, wherein the plurality of gain values are pre-stored in a register. 1307093 The method for adjusting the gain of the optical disc drive, the periodic wave has a first half period wave and a value of the second half average error signal is the average amplitude of the first half period wave and the average of the second half period wave The distance of the vibration. 6 = The method for adjusting the gain of the optical disc drive according to item 1 of the patent application scope, wherein: the tracking error signal has a first half-period wave and a second half-wave, and the value of the tracking error signal is the first - a semi-periodic wave or the average amplitude of the second half-period. The optical disc gain adjustment method according to claim i, wherein the optical head generates a phase error signal and a center error signal by a phase error detecting method. The method for adjusting the gain of the optical disc drive according to the seventh aspect of the invention, wherein the step of generating the cyclic error signal according to the plurality of gain values further comprises: multiplying the central error signal by the plurality of gain values respectively; The phase error signals are added to obtain the tracking error signal. 9. The method according to claim 1, wherein the optical head generates a main push signal and a push signal by a push-pull error detection method. The method for adjusting the gain of the optical disc drive according to the ninth item, wherein the step of generating the acoustic error signal according to the plurality of gain values further comprises: multiplying the sub-push signal by the plurality of gain values respectively The main push signal is added to obtain the tracking error signal.
TW95114735A 2006-04-25 2006-04-25 Gain adjusting method for optical disk drive TWI307093B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95114735A TWI307093B (en) 2006-04-25 2006-04-25 Gain adjusting method for optical disk drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95114735A TWI307093B (en) 2006-04-25 2006-04-25 Gain adjusting method for optical disk drive

Publications (2)

Publication Number Publication Date
TW200741680A TW200741680A (en) 2007-11-01
TWI307093B true TWI307093B (en) 2009-03-01

Family

ID=45071540

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95114735A TWI307093B (en) 2006-04-25 2006-04-25 Gain adjusting method for optical disk drive

Country Status (1)

Country Link
TW (1) TWI307093B (en)

Also Published As

Publication number Publication date
TW200741680A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
TWI357597B (en)
JPH067413B2 (en) Tracking control system for optical pickup
US7280304B2 (en) Method and circuit for compensating slow-varying runout of disk storage system
TWI307093B (en) Gain adjusting method for optical disk drive
US7046598B2 (en) Apparatus for and method of detecting phase difference between phase reference signal and wobble
JP5188200B2 (en) Optical recording / reproducing device
US20040027944A1 (en) Disk reproducing device
WO2006112509A1 (en) Optical disc control device
WO2002049031A1 (en) Disk reproduction device
US8520334B2 (en) Disk storage device, controller of the same, controlling method performed by the same, and electronic device
JPH11339210A (en) Magnetic disk device and automatic adjusting method for device parameters thereof
JP2006172525A (en) Optical disk device
TW477966B (en) Playback method and device for a disk
TW463160B (en) Tracking servo circuit
JPH11213403A (en) Tracking servo method and optical disk device
TW484044B (en) Controlling method of dynamically adjusting the static error of the principal axis motor
TWI258753B (en) Optical recording apparatus and related method
TW501094B (en) Laser output apparatus, disc drive apparatus, and laser power setting method
JP2006155818A (en) Servo information write method and disk storage apparatus
TWI238402B (en) Focus position adjustment method and system thereof
US7903520B2 (en) Optical disc recording apparatus
TW200522039A (en) Optical disc device and method for controlling tilt servo in optical disc device
JPH1153829A (en) Disk drive device
JP3566961B1 (en) Demodulation method, demodulation device, and information recording medium device
JP3638277B2 (en) Demodulation circuit, optical disc apparatus, and demodulation method