TWI306269B - - Google Patents

Download PDF

Info

Publication number
TWI306269B
TWI306269B TW91113908A TW91113908A TWI306269B TW I306269 B TWI306269 B TW I306269B TW 91113908 A TW91113908 A TW 91113908A TW 91113908 A TW91113908 A TW 91113908A TW I306269 B TWI306269 B TW I306269B
Authority
TW
Taiwan
Prior art keywords
data
processing
processed
processing result
operation data
Prior art date
Application number
TW91113908A
Other languages
Chinese (zh)
Inventor
Hideki Tanaka
Satoshi Harada
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Application granted granted Critical
Publication of TWI306269B publication Critical patent/TWI306269B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Description

1306269 A7 B7 五、發明説明Q ) 1 【發明領域】 (請先聞讀背面之注意事項再填寫本頁) 本發明是關於例如以半導體製造裝置處理的晶圓等的 被處理體或裝置狀態的處理結果的預測方法以及處理裝置 【發明背景】 【習知技藝之說明】 在半導體製程中種種的處理裝置被使用。例如半導體 晶圓或玻璃基板等的被處理體的成膜製程或在蝕刻製程中 電漿處理裝置等的處理裝置廣泛地被使用。各個處理裝置 分別具有對被處理體的固有的製程特性。因此,當使用各 個處理裝置對被處理體(例如半導體晶圓)實施例如蝕刻 處理時,例如預先製作測試晶圓(Test wafer ),對測試 晶圓定期地進行蝕刻處理,根據其處理結果(例如測試晶 圓的削去量等),判斷該時候的處理裝置狀態。 經濟部智慧財產局員工消費合作社印製 但是,根據測試晶圓判斷該時候的處理裝置狀態的方 法需要製作許多測試晶圓。而且,使用處理裝置處理許多 測S式晶圓’因需要每次都測定各個處理結果,故有對測試 晶圓的製作以及處理結果的測定,需要騰出許多工數與時 間的問題。 而且,在日本特開平1 0 - 1 2 5 6 6 0號公報提出 電漿處理裝置的製程監控方法。此方法在處理前使用適用 晶圓,作成反映電漿狀態的電氣訊號及與電槳處理特性有 關聯的模式(Model ),將處理實際晶圓時所獲得的電氣 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 1306269 A7 B7 五、發明説明(2 ) 訊號的檢測値代入模式,預測電漿處理特性。 此方法在可預測電漿處理特性的點上優良的像包含經 時的批(L 〇 t )變動與高頻功率的施加狀態的突發的變 動的實際的晶圓處理,對於進行高精度的預測並不充分, 有必要進一部的改善。 本發明乃鑒於習知技術所具有的上述問題點所進行的 創作,其目的爲提供僅藉由收集處理少數試樣而獲得的少 數運轉資料以及製程特性資料,就能求出製程特性的預測 式(模式)’然後套用處理被處理體時的運轉資料於預測 式’可簡單且高精度地預測製程特性的處理結果的預測方 法以及處理裝置。 【發明槪要】 爲了解決上述課題,如果依照本發明的第一觀點提供 一種處理結果的預測方法,在例如電漿處理裝置等的處理 裝置的處理室內一片一片地處理(例如蝕刻處理)複數個 被處理體(例如半導體晶圓)的過程,根據該處理裝置的 運轉資料與處理結果資料預測處理結果,其特徵包含: 收集該運轉資料以及該處理結果資料的步驟; 根據收集的該運轉資料以及該處理結果資料(資料群 ),進行多變量解析的步驟; 經由該多變量解析,求出該運轉資料以及該處理結果 資料的相關關係的步驟;以及 根據該相關關係’使用處理獲得該相關關係的被處理 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 、τ 經濟部智慧財產局員工消費合作社印製 -5- 經濟部智慧財產局S工消費合作社印製 1306269 Λ7 B7 五、發明説明() 〇 體以外的該被處理體時的運轉資料,預測處理結果的步 驟。 爲了解決上述課題,如果依照本發明的第二觀點提供 一種處理裝置’在處理室內一片一片地處理(例如鈾刻處 理)複數片被處理體(例如半導體晶圓)的過程,根據運 轉資料與處理結果資料預測處理結果的例如電漿處理裝置 等的處理裝置,其特徵包含: 儲存該運轉資料的機構; 儲存該處理結果資料的機構; 根據儲存的該運轉資料以及該處理結果資料,進行多 變量解析的機構; 經由該多變量解析,求出該運轉資料與該處理結果資 料的相關關係的機構; 儲存求出的該相關關係的機構;以及 根據儲存的該相關關係,使用處理獲得該相關關係的 被處理體以外的該被處理體時的運轉資料,預測處理結果 的機構。 如果依照本發明的第一觀點以及第二觀點,僅藉由收 集處理例如少數的試料而獲得的少數運轉資料以及處理結 果資料’可藉由多變量解析求出運轉資料與處理結果資料 的相關關係(例如迴歸式等的預測式)。然後,僅將處理 被處理體時的運轉資料套入相關關係,可簡單且高精度地 預測被處理體的處理結果。 而且’上述多變量解析若如進行重迴歸分析而構成的 本紙張尺度適用中國國家標隼(CNS) A4規格(210x297公釐) (請先閲讀背面之注意事項再填寫本頁) 訂 -6- 1306269 Λ7 B7 五、發明説明(,) 4 話,藉由重迴歸分析即使是多數的變量資料,也能容易求 出運轉資料與處理結果資料的相關關係的迴歸式。 (請先閲讀背面之注意事項再填寫本頁) 而且,在進行上述多變量解析時若如使用P L S法而 構成的話,即使是多數的變量資料,也能容易求出運轉資 料與處理結果資料的相關關係的關係式。 而且,上述運轉資料包含載置上述被處理體的載置台 的溫度資料也可以,再者包含背氣體壓力的資料也可以。 運轉資料容易影響處理結果資料(有相關),因包含載置 台的溫度資料、背氣體壓力的資料,故可提高處理結果的 預測精度。 而且,上述運轉資料包含背氣體壓力(例如H e氣等 的背側氣體壓力)的標準偏差的資料也可以,包含背氣體 壓力的被處理體的面內壓力差(例如令背氣體爲中心、中 央、邊緣的三系統時的該壓力差等)的資料也可以。因這 些背氣體壓力的標準偏差等是表示背氣體壓力的穩定性, 故特別是被處理體的處理結果資料對於預測晶圓W的削去 量的面內均勻性有用性高,預測精度也提高。 經濟部智慧財產局員工消費合作社印製 而且,上述運轉資料至少使其包含在處理上述被處理 體時所施加的高頻電源的電壓資料也可以,至少使其包含 該高頻電源的累計動作時間的資料也可以。而且,使其包 含高頻電源的電壓資料與高頻電源的累計動作時間的資料 的兩方也可以。這些高頻電源的電壓資料、高頻電源的累 計動作時間的資料特別是被處理體的處理結果資料對於預 測晶圚W的削去量(例如蝕刻率(E t c h i n g r a t e ))的有 本紙張尺度適用中國國家標準(CNS ) A4規格(210X29*7公釐) 1306269 A7 B7 五、發明説明() 5 用性高,預測精度也提高。 (請先閲讀背面之注意事項再填寫本頁) 而且,上述高頻電源的累計動作時間使其在每次進行 該處理室的維修保養(Maintain)時進行重設(Reset) 成零也可以。對於追蹤資料(Trace data)的高頻功率的 施加累計時間,例如因每次進行濕式清洗(Wet cleaning )等的維修保養,使施加累計時間爲零,故可獲得每次濕 式清洗循環的施加累計時間的資料。因此,若以高頻功率 的施加累計時間當作運轉資料使用的話,即使是像藉由進 行濕式清洗使傾向改變的處理結果資料,也能以高精度地 進行預測。 經濟部智慧財產局員工消費合作社印製 而且,上述處理結果資料是當作關於包含上述被處理 體的削去量的資料或削去量的面內均勻性的資料的鈾刻之 被處理體的處理結果資料,上述處理結果是當作關於包含 上述被處理體的削去量的資料或削去量的面內均勻性的資 料的蝕刻之被處理體的處理結果也可以。據此,僅藉由收 集處理例如少數的試料而獲得的少數運轉資料以及處理結 果資料’關於像上述被處理體的削去量的資料或削去量的 面內均勻性的資料的蝕刻的被處理體的處理結果,也能簡 單且高精度地預測。 【圖式之簡單說明】 圖1是顯示與適用本發明中的預測方法的第一實施形 態有關的處理裝置的剖面圖。 圖2是顯示與同實施形態有關的多變量解析裝置的一 ^紙張尺度適用中國國家標準(€奶)八4規格(210父297公釐)~~ ~ ~ 1306269 at Β7五、發明説明() 經濟部智慧財產局員工消費合作社印製 上 的 得 獲 所 置 裝 析 解 量 變 多 的 示 所 2 圖 以 示 。 顯 圖是 塊 3 方圖 的 例 處 的 得 獲 所 置 裝 析 解 旦里 變 多。 的圖 。 示化 圖所變 化 2 時 變圖經 時以的 經示度 的顯溫 度是面 溫 4 壁 極圖的 電 室 7VJ 3二 咅 理 下 的 得 獲 所 置 裝 析 解 量 變 多 的 示 。 所圖 2 化 圖變 以時 示經 顯的 是度 5 溫 圖極 電 RH 咅 Η 0 的 得 獲 所 置 裝 。 析圖 解化 量變 變時 多經 4^- ^^、'-^ 示値 所差 2 偏 圖準 以標 示的 顯力 是壓 6 體 圖氣 高 的 得 獲 所 置 裝 析 解 量 變 多 的。 示圖 所化 2 變 圖時 以經 示的 顯壓 是電 7 的 圖源 電 頻 晶 的 得 。 獲圖 所化 置變 裝時 析經 解的 量性 變句 多均 的內 示面 所的 2 量 圖去 以 削 示的 顯膜 是化 8 氧 圖的 W 圓 料的 資料 性資 特性 程特 製程 及製 以的 料得 資獲 轉所 運置 的裝 8 析 圖解。 ~ 量圖 3 變的 圖多値 用以測 使 2 實 是圖及 9 在以 圖示値 顯測 ’ 預 測 實 與 値 測 預 的 到 得 所 態 形 施 實 同 由 藉 示 。 顯圖 是係 ο 關 1 關 圖相 的 値 的 1 關 圖有 態 形 施 實 二 第 的 法 方 測 預 的 中 明。 發圖 本面 用剖 適的 與置 示裝 顯理 是處 的 置 裝 析 解 量 變 多 的 關 有 態 形 施 實 同 與 示 顯。 是圖 2 塊 1 方 圖的 例 得係 獲關 所的 置數 裝片 析理 解處 量 圓 變晶 多與 的率 示刻 所蝕 2 的 1 膜 圖化 以氧 示D 顯V 是 C 3 的 1 W 圖 圓 晶 的 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) (請先聞讀背面之注意事項再填寫本頁) 訂 -9- 1306269 at B7 五、發明説明b ) 圖。 圖1 4 ( a )是顯示運轉資料使用光學資料,不進行 (請先閲讀背面之注意事項再填寫本頁) 前處理時的蝕刻率的預測値以及實測値的圖,圖1 4 ( b )是顯示預測値與實測値的相關關係圖。 圖1 5 ( a )是顯示運轉資料使用光學資料與追蹤資 料,不進行前處理時的鈾刻率的預測値以及實測値的圖, 圖1 5 ( b )是顯示預測値與實測値的相關關係圖。 圖1 6 ( a )是顯示運轉資料使用追蹤資料,不進行 前處理時的蝕刻率的預測値以及實測値的圖,圖1 6 ( b )是顯示預測値與實測値的相關關係圖。 圖1 7 ( a )是顯示運轉資料使用V I探針資料,不 進行前處理時的蝕刻率的預測値以及實測値的圖,圖1 7 (b )是顯示預測値與實測値的相關關係圖。 圖1 8 ( a )是顯示運轉資料使用光學資料,進行利 用0 S C的前處理時的飩刻率的預測値以及實測値的圖, 圖1 8 ( b )是顯示預測値與實測値的相關關係圖。 圖1 9 ( a )是顯示運轉資料使用光學資料與追蹤資 經濟部智慧財產局員工消費合作社印製 料,進行利用◦ S C的前處理時的蝕刻率的預測値以及實 測値的圖,圖1 9 ( b )是顯示預測値與實測値的相關關 係圖。 圖2 0 ( a )是顯示運轉資料使用追蹤資料,進行利 用〇C S的前處理時的蝕刻率的預測値以及實測値的圖, 圖2 0 ( b )是顯示預測値與實測値的相關關係圖。 圖2 1 ( a )是顯示運轉資料使用V I探針資料,進 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公董) -10- 1306269 A7 B7 經濟部智慧財產局員工消費合作社印製 五 、發明説明 (8 ) 1 1 行 利 用 0 C S 的 前 處 理 時 的 蝕 刻 率 的 預 測 値 以 及 實 測 値 的 1 1 圖 圖 2 1 ( b ) 是 顯 示 預 測 値 與 實 測 値 的 相 關 關 係 圖 〇 1 1 圖 2 2 ( a ) 是 顯 示 運 轉 資 料 使 用 光 學 資 料 進 行 利 請 先 1 1 用 S Ν V 的 、八 刖 處 理 時 的 蝕 刻 率 的 預 測 値 以 及 測 値 的 圖 , Μ % 背 1 I 圖 2 2 ( b ) 是 顯 示 預 測 値 與 實 測 値 的 相 關 關 係 圖 0 之 1 1 圖 2 3 ( a ) 是 顯 示 運 轉 資 料 使 用 光 學 資 料 與 追 蹤 資 意 事 1 1 I 料 進 行 利 用 S N V 的 刖 處 理 時 的 蝕 刻 率 的 預 測 値 以 及 管 項 再 1 測 値 的 圖 圖 2 3 ( b ) 是 顯 示 預 測 値 與 實 測 値 的 相 關 關 本 頁 Nw^ 嗓 1 係 圖 〇 1 I 圖 2 4 ( 3 ) 是 顯 示 運 轉 資 料 使 用 追 蹤 資 料 進 行 利 1 1 I 用 S Ν V 的 、夕一 刖 處 理 時 的 蝕 刻 率 的 預 測 値 以 及 實 測 値 的 圖 » 1 1 圖 訂 2 4 ( b ) 是 顯 示 預 測 値 與 測 値 的 相 關 關 係 圖 〇 1 圖 2 5 ( a ) 是 顯 示 運 轉 資 料使 用 V I 探 針 資 料 進 1 1 行 利 用 S N V 的 前 處 理 時 的 蝕 刻 率 的 預 測 値 以 及 實 測 値 的 1 1 圖 圖 2 5 ( b ) 是 顯 示 預 測 値 與 實 測 値 的 相 關 關 係 圖 〇 Μ 1 从令 圖 2 6 ( a ) 是 顯 示 運 轉 資 料使 用 光 學 資 料 進 行 利 i rp 用 Μ S C 的 前 處 理 時 的 蝕 刻 率 的 預 測 値 以 及 管 測 値 的 圖 , 1 1 圖 2 6 ( b ) 是 顯 示 預 測 値 與 實 測 値 的 相 關 關 係 圖 〇 1 1 圖 2 7 ( a ) 是 顯 示 運 轉 資 料 使 用 光 學 資 料 與 追 蹤 資 1 I 料 進 行 利 用 Μ S C 的 刖 處 理 時 的 鈾 刻 率 的 預 測 値 以 及 1 I 測 値 的 圖 圖 2 7 ( b ) 是 顯 示 預 測 値 與 測 値 的 相 關 關 1 1 係 圖 〇 1 1 圖 2 8 ( a ) 是 顯 示 運 轉 資 料 使 用 追 蹤 資 料 9 進 行 利 1 1 用 Μ S C 的 前 處 理 時 的 蝕 刻 率 的 預 測 値 以 及 實 測 値 的 圖 , 1 1 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -11 - 1306269 A7 __ B7 五、發明説明() 9 圖2 8 ( b )是顯示預測値與實測値的相關關係圖。 圖29 (a)是顯示運轉資料使用VI探針資料,進 (請先閲讀背面之注意事項再填寫本頁) 行利用M S C的前處理時的飩刻率的預測値以及實測値的 圖’圖2 9 ( b )是顯示預測値與實測値的相關關係圖。 圖3 0是由圖1 4〜圖2 9的各圖(a )中的實驗結 果歸納預測誤差P E的表。 圖3 1是由圖14〜圖29的各圖(b)中的實驗結 果歸納相關係數R的表。 圖3 2是對追蹤資料中的各種類的資料歸納對預測結 果的影響變數V I P的表。 圖3 3 ( a )是顯示使用由追蹤資料僅去除高頻電壓 V P p的資料時的鈾刻率的預測値以及實測値的圖,圖 3 3 ( b )是顯示預測値與實測値的相關關係圖。 圖3 4 ( a )是顯示使用由追蹤資料僅去除高頻功率 的施加累計時間的資料時的蝕刻率的預測値以及實測値的 圖,圖3 4 ( b )是顯示預測値與實測値的相關關係圖。 圖3 5 ( a )是顯示使用由追蹤資料僅去除高頻電壓 經濟部智慧財產局員工消費合作社印製 v P P與高頻功率的施加累計時間的資料時的蝕刻率的預 測値以及實測値的圖,圖3 5 ( b )是顯示預測値與實測 値的相關關係圖。 【符號說明】 1 : 處理室 1 A : 上室 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -12- 1306269 Λ7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(Μ ) 10 1 B : 下室 ic: 排氣管 1 D : A P C 閥 2 : 下部電極 2 A : 絕緣材 3 : 支持體 3 A : 冷煤流路 3 B : 氣體流路 4 '· 上部電極 4 B : 孔 5 : 偶極環磁石 6 : 聞閥 7 : 高頻電源 7 A : 整合器 7a、7B、9a: 功率計 7b: 累計部 8 : 靜電吸盤 8 A : 電極板 9 : 直流電源 10: 處理裝置 10a: 聚磁環 12: 滾珠螺桿機構 13: 風箱 14: 冷煤配管 (請先閱讀背面之注意事項再填寫本頁)1306269 A7 B7 V. INSTRUCTION DESCRIPTION OF THE INVENTION Q) 1 [Field of the Invention] (Please read the back of the page and then fill in the page.) The present invention relates to a processed object or device such as a wafer processed by a semiconductor manufacturing apparatus. BACKGROUND OF THE INVENTION [Description of the Prior Art] Various processing devices in a semiconductor process are used. For example, a film forming process of a target object such as a semiconductor wafer or a glass substrate, or a processing device such as a plasma processing apparatus in an etching process is widely used. Each processing device has its own process characteristics inherent to the object to be processed. Therefore, when the processing object (for example, a semiconductor wafer) is subjected to, for example, an etching process using each processing device, for example, a test wafer is prepared in advance, and the test wafer is periodically subjected to an etching process according to the processing result (for example, The amount of chipping of the test wafer, etc.), and the state of the processing device at that time is determined. Printed by the Ministry of Economic Affairs, the Intellectual Property Office, and the Consumer Cooperative. However, the method of judging the state of the processing device at that time based on the test wafer requires a lot of test wafers to be produced. Further, since a plurality of S-type wafers are processed by a processing device, it is necessary to measure the respective processing results each time, so that the measurement of the fabrication of the test wafer and the measurement of the processing result require a lot of work and time. Further, a process monitoring method of a plasma processing apparatus is proposed in Japanese Laid-Open Patent Publication No. Hei 10 - 1 2 5 6 6 0. This method uses the applicable wafer before processing, and creates an electrical signal reflecting the state of the plasma and a mode associated with the processing characteristics of the electric paddle. The electrical paper size obtained when processing the actual wafer is applied to the Chinese national standard ( CNS ) A4 size (210X 297 mm) 1306269 A7 B7 V. INSTRUCTIONS (2) The detection of the signal is substituted into the mode to predict the plasma processing characteristics. This method is excellent in the point of predicting the plasma processing characteristics, and includes actual wafer processing including a change in the batch (L 〇t ) with time and a sudden change in the applied state of the high-frequency power. The forecast is not sufficient and it is necessary to improve one. The present invention has been made in view of the above problems of the prior art, and its object is to provide a predictive formula for process characteristics by providing only a small amount of operational data and process characteristic data obtained by collecting and processing a small number of samples. (Mode) 'The prediction method and the processing device for predicting the processing result of the process characteristics can be simply and accurately predicted by applying the operation data when the object to be processed is processed to the prediction formula. SUMMARY OF THE INVENTION In order to solve the above problems, according to a first aspect of the present invention, a method for predicting a processing result is provided, which is processed one by one (for example, an etching process) in a processing chamber of a processing device such as a plasma processing device. The process of the object to be processed (for example, a semiconductor wafer) predicts the processing result based on the operation data of the processing device and the processing result data, and the feature includes: a step of collecting the operation data and the processing result data; and according to the collected operation data and a step of performing multivariate analysis on the processing result data (data group); a step of obtaining a correlation relationship between the operation data and the processing result data via the multivariate analysis; and obtaining the correlation relationship by using the correlation relationship The size of the paper to be processed is applicable to the Chinese National Standard (CNS) Α4 specification (210X297 mm) (please read the notes on the back and fill out this page), τ Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printing-5- Ministry of Economic Affairs Intellectual Property Bureau S Workers Consumption Cooperative Printed 1306269 Λ7 B7 V. DESCRIPTION OF EMBODIMENT () The operation data at the time of the object to be processed other than the body, and the steps of predicting the processing result. In order to solve the above problems, according to a second aspect of the present invention, a processing apparatus for processing (for example, uranium engraving) a plurality of processed objects (for example, semiconductor wafers) one by one in a processing chamber is provided according to the operation data and processing. The processing device for predicting the processing result, such as a plasma processing device, includes: a mechanism for storing the operational data; a mechanism for storing the processing result data; and performing multivariate according to the stored operational data and the processing result data a mechanism for analyzing; a mechanism for obtaining a correlation between the operation data and the processing result data by the multivariate analysis; a mechanism for storing the obtained correlation relationship; and obtaining the correlation relationship by using the correlation according to the stored correlation relationship The operation data at the time of the object to be processed other than the object to be processed, and the mechanism for predicting the processing result. According to the first aspect and the second aspect of the present invention, the correlation between the operational data and the processing result data can be obtained by multivariate analysis only by collecting a small amount of operational data and processing result data obtained by processing, for example, a small number of samples. (for example, a predictive formula such as regression). Then, only the operation data when the object to be processed is processed is placed in the correlation, and the processing result of the object to be processed can be predicted simply and accurately. Moreover, the above-mentioned multivariate analysis is subject to the Chinese National Standard (CNS) A4 specification (210x297 mm) if it is subjected to heavy regression analysis (please read the note on the back and fill in this page). 1306269 Λ7 B7 V. Inventive Note (,) 4, by means of re-regression analysis, even if it is a large number of variable data, it is easy to find the regression equation of the correlation between the operational data and the processing result data. (Please read the precautions on the back and fill out this page.) If the PLS method is used for the above multivariate analysis, even if it is a large number of variable data, it is easy to find the operation data and the processing result data. The relationship of the relationship. Further, the operation data may include temperature data of the mounting table on which the object to be processed is placed, and may include data of the back gas pressure. The operation data is easy to affect the processing result data (related). Since the temperature data of the stage and the back gas pressure are included, the prediction accuracy of the processing result can be improved. Further, the operation data may include a standard deviation of the back gas pressure (for example, a back side gas pressure such as He gas), and may include an in-plane pressure difference of the object to be treated including the back gas pressure (for example, the back gas is centered, Information on the pressure difference at the center and the edge of the three systems can also be used. Since the standard deviation of the back gas pressure and the like is indicative of the stability of the back gas pressure, in particular, the processing result data of the object to be processed is useful for predicting the in-plane uniformity of the amount of wafer W to be removed, and the prediction accuracy is also improved. . The Ministry of Economic Affairs, the Intellectual Property Office, the employee consumption cooperative, and the operation data includes at least the voltage data of the high-frequency power source applied when the object to be processed is processed, and at least includes the cumulative operation time of the high-frequency power source. The information is also available. Further, it is also possible to include both the voltage data of the high-frequency power source and the data of the accumulated operation time of the high-frequency power source. The voltage data of the high-frequency power source and the accumulated operation time of the high-frequency power source are particularly applicable to the paper size of the processed object by the processing result data for predicting the amount of chipping (for example, etching rate). China National Standard (CNS) A4 Specification (210X29*7 mm) 1306269 A7 B7 V. Invention Description () 5 High usability and improved prediction accuracy. (Please read the precautions on the back and fill out this page.) The cumulative operation time of the above-mentioned high-frequency power supply can be reset to zero every time the maintenance of the processing room is performed. For the cumulative time of application of the high-frequency power of the trace data, for example, maintenance by a wet cleaning (Wet cleaning), for example, the cumulative application time is zero, so that each wet cleaning cycle can be obtained. Apply accumulated time data. Therefore, when the accumulated time of application of the high-frequency power is used as the operation data, the prediction result can be accurately predicted even if the processing result data is changed by the wet cleaning. In the case of the uranium engraved object of the information on the in-plane uniformity of the data of the above-mentioned object to be processed, or the amount of the in-plane uniformity of the amount of the object to be processed, The processing result data may be a processing result of the object to be processed which is etched as information on the in-plane uniformity of the data of the amount of the object to be processed or the amount of the chipping amount of the object to be processed. According to this, only a small amount of the operation data and the processing result data obtained by the processing of, for example, a small number of samples are etched, and the information on the in-plane uniformity of the data of the object to be processed or the amount of the in-plane uniformity of the amount of the object to be processed is etched. The processing result of the processed body can also be predicted simply and accurately. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a processing apparatus relating to a first embodiment of a prediction method to which the present invention is applied. Fig. 2 is a view showing a multi-variable analysis device according to the embodiment, a paper scale applicable to the Chinese national standard (€奶) 八4 specification (210 parent 297 mm)~~~~1306269 at Β75, invention description () The Ministry of Economic Affairs, the Intellectual Property Office, and the employee-consumer cooperatives have printed on the display of the amount of disassembly and analysis. The display is more than the case where the block 3 square chart is obtained. Figure. The change of the indicator map 2 The time-varying temperature of the time-varying graph is the surface temperature of the wall-wall diagram of the 7VJ 3 2 咅 的 得 得 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The change of the graph of Fig. 2 shows that the temperature of the graph 5 is the result of the RH 咅 Η 0. When the amount of resolution is changed, 4^-^^, '-^ shows the difference. 2 The deviation is marked. The apparent force is that the pressure of the 6-body diagram is higher, and the amount of the solution is much larger. When the graph is changed, the oscillating pressure shown by the graph is the source of the electric crystal of the electric source 7 . The 2-quantity map of the inner surface of the quantitative variation sentence which is analyzed by the disintegration of the figure is used to cut the visible film. The process and the materials produced are obtained and transferred to the equipment. ~ Quantitative graph 3 The graph 値 値 用以 用以 用以 用以 用以 用以 用以 用以 用以 用以 用以 用以 用以 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The mapping is the 关1 of the 1 关 关 关 关 1 1 1 关 关 关 关 关 关 关 关 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The surface of the map is shown in the form of a section with a large amount of analysis and a large amount of analysis. It is the example of the block diagram of the block 1 of the block diagram. The set of the sample is analyzed. The volume of the circle is changed. The rate of the crystal is more than the rate of the etched 2. The film is represented by oxygen. The D is V C. 1 W Figure round paper size is applicable to China National Standard (CNS) Α4 specification (210X297 mm) (please read the back note first and then fill out this page) -9- 1306269 at B7 V. Invention description b) Figure. Figure 1 4 ( a ) is the use of optical data to display the operating data, not carried out (please read the back of the note before filling this page) Pre-processing etch rate prediction 値 and the actual measurement 値, Figure 14 4 (b) It is a graph showing the correlation between the predicted 値 and the measured 値. Figure 1 5 (a) is a graph showing the prediction of uranium engraving rate and the measured enthalpy of the optical data and tracking data for the operational data. Figure 15 (b) shows the correlation between the predicted enthalpy and the measured enthalpy. relation chart. Fig. 16 (a) is a graph showing the prediction of the etching rate and the measured enthalpy when the tracking data of the operating data is not used, and Fig. 16 (b) is a correlation diagram showing the predicted enthalpy and the measured enthalpy. Fig. 1 7 ( a ) is a graph showing the prediction of the etching rate and the measured enthalpy when the VI probe data is used for the operation data, and the pre-processing is not performed. Figure 17 (b) shows the correlation between the predicted 値 and the measured 値. . Fig. 1 8 ( a ) is a graph showing the predicted 値 and measured 値 of the etch rate when the optical data is used for the operation data, and Fig. 18 (b) shows the correlation between the predicted 値 and the measured 値. relation chart. Figure 1 9 (a) is a graph showing the prediction of the etching rate and the measured enthalpy when using the optical data of the operating data and the printed materials of the employee's consumer cooperatives of the Intellectual Property Office of the Ministry of Economic Affairs. 9 (b) is a graph showing the correlation between predicted 实 and measured 値. Fig. 20 ( a ) is a graph showing the prediction of the etching rate and the measured 値 when using the tracking data of the operating data, and Fig. 20 (b) shows the correlation between the predicted 値 and the measured 値. Figure. Figure 2 1 (a) shows the VI probe data for the operation data. The Chinese National Standard (CNS) A4 specification (210X297 Gongdong) is applied to the paper scale. -10- 1306269 A7 B7 Printed by the Intellectual Property Office of the Ministry of Economic Affairs V. INSTRUCTION OF THE INVENTION (8) The prediction of the etch rate when using the pre-processing of 0 CS and the 1 1 of the actual measurement 图 Figure 2 1 (b) shows the correlation between the predicted 値 and the measured 〇1 1 Fig. 2 2 ( a ) is a graph showing the prediction of the etch rate and the measurement of the etch rate when using the optical data for the operation data using the optical data, Μ % Back 1 I Figure 2 2 ( b) is the correlation between the predicted 値 and the measured 图. Fig. 0 1 1 Fig. 2 3 ( a ) is the etch rate when the SNV treatment is performed using the optical data and the tracking information 1 1 I material. Figure 2 3 (b) of the prediction 値 and the tube re-measurement Related to the actual measurement 本页 Nw^ 嗓1 〇 1 I Figure 2 4 ( 3 ) is the etch rate when the tracking data of the operating data is used to perform the processing of the 1 刖 V Predicted 値 and measured 値 map » 1 1 Figure 2 4 ( b ) is the correlation between the predicted 値 and the measured 〇 1 Figure 2 5 ( a ) shows the use of the VI data in the operational data into the 1 1 row The prediction of the etch rate at the pre-processing of SNV and the 1 图 of the measured 値 Figure 2 5 ( b ) is a correlation diagram showing the predicted 値 and the measured 〇Μ 1 令 Figure 2 6 ( a ) shows the operational data Using the optical data to predict the etch rate and the tube 値 when pre-processing for Μ SC, 1 1 Figure 2 6 (b) shows the correlation between predicted 实 and measured 〇1 1 2 7 ( a ) is showing operation The data using optical data and tracking data for the prediction of uranium engraving rate using Μ SC 値 and 1 I 値 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图Fig. 1 1 Fig. 2 8 ( a ) is a graph showing the prediction of the etching rate and the measured enthalpy when the tracking data of the operating data is used for the pre-processing of the 1 SC 1 1 1 The paper scale is applicable to the Chinese country. Standard (CNS) A4 specification (210X297 mm) -11 - 1306269 A7 __ B7 V. Description of invention () 9 Figure 2 8 (b) is a correlation diagram showing the predicted 値 and the measured 値. Figure 29 (a) shows the use of the VI probe data for the operation data, and enters (please read the precautions on the back side and then fill out this page). The prediction of the engraving rate when using the pre-processing of the MSC and the graph of the actual measurement ' 2 9 ( b ) is a graph showing the correlation between predicted 实 and measured 値. Fig. 30 is a table summarizing the prediction error P E from the experimental results in each of the graphs (a) of Figs. 14 to 29. Fig. 31 is a table summarizing the correlation coefficient R from the experimental results in each of Figs. 14 to 29 (b). Fig. 3 2 is a table summarizing the influence variables V I P of the various types of data in the tracking data on the predicted results. Fig. 3 3 ( a ) is a graph showing the prediction of uranium engraving rate and the measured enthalpy when using the data of the high frequency voltage VP p removed by the tracking data, and Fig. 3 3 (b) shows the correlation between the predicted enthalpy and the measured enthalpy. relation chart. Fig. 3 4 (a) is a graph showing the predicted 値 of the etch rate and the measured 値 when the data of the applied cumulative time of the high frequency power is removed by the tracking data, and Fig. 34 (b) shows the predicted 値 and the measured 値. Correlation diagram. Figure 3 5 (a) shows the prediction of the etch rate when using the tracking data to remove only the data of the cumulative time of the application of the v PP and the high-frequency power printed by the Intellectual Property Office of the Intellectual Property Bureau. Fig. 3(b) is a graph showing the correlation between predicted 实 and measured 値. [Description of symbols] 1 : Processing room 1 A : Upper room paper size applicable to China National Standard (CNS) A4 specification (210X297 mm) -12- 1306269 Λ7 B7 Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printing 5, invention Explanation (Μ ) 10 1 B : Lower chamber ic: Exhaust pipe 1 D : APC valve 2 : Lower electrode 2 A : Insulating material 3 : Support 3 A : Cold coal flow path 3 B : Gas flow path 4 '· Upper Electrode 4 B : Hole 5 : Dipole ring magnet 6 : Smell valve 7 : High frequency power supply 7 A : Integrator 7a, 7B, 9a: Power meter 7b: Accumulator 8 : Electrostatic chuck 8 A : Electrode plate 9 : DC power supply 10: Processing device 10a: Polymagnetic ring 12: Ball screw mechanism 13: Wind box 14: Cold coal piping (please read the notes on the back and fill out this page)

、1T 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) -13- 1306269 五、發明L ) A7 B7 1 5 氣 體 導 入 機 構 1 6 風 箱 蓋 1 7 配 管 1 8 、 18 ; 製 程 氣 體供 給系 1 8 A 、1 8 A : C 4 F ί 3氣體供給 ί源 1 8 D 、1 8 D - 0 2氣體供給源 1 8 G 、1 8 G A r氣 體供給源 1 8 B 、1 8 E 、 1 8 Η 、1 8 B /、 1 8 Ε ^ Η - 閥 1 8 C 、1 8 F 、 1 8 I 、1 8 C / 、 1 8 F ^ (請先閲讀背面之注意事項再填寫本頁) 1 8 I > : 質流控制器, 1T This paper scale applies to China National Standard (CNS) Α4 specification (210Χ297 mm) -13- 1306269 V. Invention L) A7 B7 1 5 Gas introduction mechanism 1 6 Bellows cover 1 7 Piping 1 8 , 18 ; Process gas Supply system 1 8 A , 1 8 A : C 4 F ί 3 gas supply ί source 1 8 D , 1 8 D - 0 2 gas supply source 1 8 G , 1 8 GA r gas supply source 1 8 B , 1 8 E , 1 8 Η , 1 8 B /, 1 8 Ε ^ Η - Valves 1 8 C , 1 8 F , 1 8 I , 1 8 C / , 1 8 F ^ (Please read the notes on the back and fill out this page ) 1 8 I > : Mass Flow Controller

、1T 20: 光學計測器 5 0: 多變量解析裝置 5 1: 運轉資料儲存部 5 2: 處理結果資料儲存部 5 3: 多變量解析程式儲存部 5 4: 多變量解析處理部 經濟部智慧財產局員工消費合作社印製 5 5: 多變量解析結果儲存部 60: 輸入輸出裝置 100: 處理裝置 【較佳實施例之詳細說明】 以下,參照添附圖面詳細說明適用本發明於電漿鈾刻 裝置的處理結果的預測方法的情形的第一實施形態。 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) -14- 1306269 Λ7 B7 五、發明説明(12 ) 首先,說明第一實施形態的電漿蝕刻裝置以磁控管( Magnetron)反應性飽刻處理裝置(以下稱爲〔處理裝置 10〕)。此處理裝置1 〇例如如圖1所示,具備鋁製的 處理室1、經由絕緣材2 A支持配置於此處理室1內的下 部電極2的可升降的鋁製的支持體3、配置於此支持體3 的上方且供給製程氣體且兼具上部電極的噴氣頭(1T 20: Optical measuring device 5 0: Multivariable analysis device 5 1: Operation data storage unit 5 2: Processing result data storage unit 5 3: Multivariate analysis program storage unit 5 4: Multivariate analysis processing unit Economic Department Intellectual Property Bureau employee consumption cooperative printing 5 5: Multivariate analysis result storage unit 60: Input/output device 100: Processing device [Detailed description of preferred embodiment] Hereinafter, a plasma uranium engraving device to which the present invention is applied will be described in detail with reference to the accompanying drawings. The first embodiment of the case of the prediction method of the processing result. This paper scale applies to the Chinese National Standard (CNS) Α4 specification (210Χ297 mm) -14- 1306269 Λ7 B7 V. Inventive Note (12) First, the plasma etching apparatus of the first embodiment will be described as a magnetron reaction. A saturating processing device (hereinafter referred to as [processing device 10]). As shown in FIG. 1, the processing apparatus 1 includes, for example, a processing chamber 1 made of aluminum, and a support body 3 made of aluminum which can be lifted and lowered by the insulating material 2A to support the lower electrode 2 disposed in the processing chamber 1. a jet head that is above the support 3 and supplies process gas and has an upper electrode (

Shower head)(以下依照需要也稱爲〔上部電極〕)4 〇 上述處理室1其上部是以小直徑的上室1 A而形成, 下部是以大直徑的下室1 B而形成。上室1 A被偶極環( Dipole ring )磁石5包圍。此偶極環磁石5其複數個非等 向性片段(Segment)柱狀磁石是被收容於由環狀的磁性 體構成的外殼內而配置,在上室1 A內全體形成朝一方向 的同樣的水平磁場。在下室1 B的上部形成有用以傳出傳 入晶圓W的出入口,在此出入口安裝有閘閥(Gate valve )6 〇 在下部電極2經由整合器7 Α連接有高頻電源7,由 此高頻電源7對下部電極2施加1 3 . 5 6 Μ Η z的高頻 功率,在上室1 Α內與上部電極4之間形成垂直方向的電 場。在整合器7 A內具備測定下部電極2側(高頻電壓的 輸出側)的高頻(R F )電壓V p p的測定器(未圖示) 〇 在整合器7 A與下部電極2側(高頻功率的輸出側) 連接有功率計7 B。藉由此功率計7 B測定來自高頻電源 本纸張尺度適用中國國家標準(CNS )八4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) %? 經濟部智慧財產局員工消費合作社印製 -15-Shower head) (hereinafter also referred to as [upper electrode] as needed) 4 〇 The upper portion of the processing chamber 1 is formed by a small-diameter upper chamber 1 A, and the lower portion is formed by a large-diameter lower chamber 1 B. The upper chamber 1 A is surrounded by a dipole ring magnet 5. In the dipole ring magnet 5, a plurality of anisotropic segment magnets are housed in a casing made of a ring-shaped magnetic body, and the entire upper chamber 1A is formed in the same direction in one direction. Horizontal magnetic field. An inlet and outlet for transferring the incoming wafer W is formed in the upper portion of the lower chamber 1 B, and a gate valve (Gate valve) 6 is attached to the inlet and outlet, and a high-frequency power source 7 is connected to the lower electrode 2 via the integrator 7 The frequency power source 7 applies a high frequency power of 13.56 Μ Η z to the lower electrode 2 to form an electric field in the vertical direction between the upper chamber 1 and the upper electrode 4. The integrator 7A includes a measuring device (not shown) for measuring the high-frequency (RF) voltage V pp on the lower electrode 2 side (the output side of the high-frequency voltage) 〇 on the integrator 7 A and the lower electrode 2 side (high The output side of the frequency power is connected to the power meter 7 B. The power meter 7 B is measured from the high-frequency power source. The paper size applies to the Chinese National Standard (CNS) VIII 4 specifications (210X297 mm) (please read the back note first and then fill in this page) %? Ministry of Economics intellectual property Bureau employee consumption cooperative printing -15-

1306269 AV B7 五、發明説明(13 ) 7的高頻功率P。在上室1 A內經由製程氣體藉由由高頻 電源7產生的電場與由偶極環磁石5產生的水平磁場生成 有磁石放電,生成有供給到上室1 A內的製程氣體的電獎 〇 在上述下部電極2的頂面配置有靜電吸盤(Static chuck) 8,在此靜電吸盤8的電極板8 A連接有直流電源 9。因此,藉由在高真空下由直流電源9對電極板8 A施 加高電壓,利用靜電吸盤8靜電吸附晶圓W。在此下部電 極2的外周配置有聚fe環(Focusing ring)l 0 a ,在上室 1 A內生成的電漿集中於晶圖w,在聚磁環1 0 a的下側 配置有安裝於支持體3的上部的排氣環11。複數個孔在 此排氣環1 1遍及全周’形成於圓周等間隔,經由這些孔 將上室1 A內的氣體排到下室1 b。 上述支持體3經由滾珠螺桿(Ball screw)機構1 2 以及風箱(Bellows) 1 3可在上室1 A與下室1 B間升 降。因此,對於供給晶圓W到下部‘電極2上的情形,經由 支持體3下部電極2下降到下室1 b,開放閘閥6經由未 圖示的傳送機構,供給晶圓W到下部電極2上。 在支持體3的內部形成有連接於冷煤配管1 4的冷煤 流路3 A ’經由冷煤配管1 4在冷煤流路3 A內使冷煤循 環,調整晶圓W到預定的溫度。 在支持體3、絕緣材2 A、下部電極2以及靜電吸盤 8分別形成有氣體流路3 B ’由氣體導入機構1 5經由氣 體配管1 5 A在靜電吸盤8與晶圓w間的間隙以預定的壓 本紙張尺度適用中國國家標隼(CNS ) A4規格(21〇 χ297公楚) (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 -16- 1306269 at B7 五、發明説明(,) 14 力供給H e氣當作背側氣體(Back side gas ) ’經由H e 氣提高靜電吸盤8與晶圓W間的熱傳導性。背側氣體的壓 力檢測壓力感測器(未圖示)’將該檢測値顯示於壓力計 1 5B。此外,16爲風箱蓋16。 在上述噴氣頭4的頂面形成有氣體導入部4 A ’在此 氣體導入部4A經由配管17連接有製程氣體供給系18 。製程氣體供給系1 8具有C 4 F 8氣體供給源1 8 A、 0 2氣體供給源1 8 D、A r氣體供給源1 8 G。 這些氣體供給源1 8 A、1 8 D、1 8 G分別經由閥 1 8 B、1 8 E、1 8 Η以及質流控制器(Mass flow controller) 1 8 C、1 8 F、1 8 I ,以預定的流量供 給各個氣體到噴氣頭4,在其內部以具有預定的配合比的 混合氣體調整。複數個孔4 B在噴氣頭4的底面遍及全面 均等地配置,經由這些孔4 B由噴氣頭4對上室1 A內供 給混合氣體當作製程氣體。此外,在圖1中1 C爲排氣管 ,1 9爲由連接於排氣管1 C的真空泵等構成的排氣系。 上述處理裝置1 0例如圖2所示,具備統計地處理運 轉資料以及處理結果資料的多變量解析裝置5 0,與輸入 處理結果資料並且輸出解析結果等的資訊的輸入輸出裝置 6 0。處理裝置1 〇經由多變量解析裝置5 0進行運轉資 料以及處理結果資料的多變量解析,求出兩者的相關關係 後,依照需要由輸入輸出裝置6 0輸出解析結果等的資訊 〇 上述多變量解析裝置5 0如圖2所示具備運轉資料儲 本紙張尺度適用中國國家標準(CNS ) Α4规格(210X297公釐) (請先閔讀背面之注意事項再填寫本頁) 、?τ 辦 經濟部智慧財產局員工消費合作社印製 -17- 1306269 at B7 五、發明説明(π ) 15 存部5 1、處理結果資料儲存部5 2、多變量解析程式儲 存部5 3、多變量解析處理部5 4以及多變量解析結果儲 存部5 5。 上述運轉資料儲存部5 1構成儲存運轉資料的機構, 上述處理結果資料儲存部5 2構成儲存處理結果資料的機 構。多變量解析處理部5 4構成根據與求出運轉資料與處 理結果資料的相關關係(例如預測式、迴歸式)的機構之相 關關係,預測處理結果的機構。多變量解析結果儲存部 5 5構成儲存藉由多變量解析處理部5 4求出的相關關係 的機構。 上述多變量解析裝置5 0例如由根據來自多變量解析 程式儲存部5 3的程式而動作的微處理器等構成也可以。 上述運轉資料儲存部5 1、處理結果資料儲存部5 2、多 變量解析結果儲存部5 5分別以記憶體等的記錄機構構成 也可以,而且在硬碟等的記錄機構配設各個記憶體區域而 構成也可以。 多變量解析裝置5 0藉由運轉資料以及製程特性資料 的輸入,在運轉資料儲存部5 1以及處理結果資料儲存部 5 2儲存各個資料後,將這些資料以及多變量解析程式儲 存部5 3的程式取出到多變量解析處理部5 4,在多變量 解析處理部5 4中進行運轉資料以及製程特性資料的多變 量解析,在多變量解析結果儲存部5 5儲存其處理結果。 此處運轉資料是意味著分別由附設於處理晶圓W時的 處理裝置1 0的複數個測定器所得到的檢測資料,處理結 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 -18- 1306269 Λ7 B7 五、發明説明() 16 果資料是意味著關於處理晶圓W的結果所獲得的晶圓W的 製程特性資料、關於處理室1內的狀態的裝置狀態資料。 運轉資料在處理晶圓W間間歇地測定,處理結果資料在晶 圓的處理後依照需要進行測定。這些測定結果被儲存在各 個儲存部5 1、5 2。 在第一實施形態求出運轉資料與處理結果資料的相關 關係的關係上,運轉資料使用容易影響處理結果的資料較 佳。在第一實施形態運轉資料使用處理室1內的複數位置 的溫度、背側氣體的壓力、處理裝置1 0的電氣資料。 在第一實施形態處理結果資料之中製程特性資料使用 例如關於包含在表面具有氧化矽膜的晶圓W的氧化矽膜的 削去量或此削去量的面內均句性之蝕刻的資料。 處理結果資料之中裝置狀態資料可使用顯示包含處理 室1內的副生成物的沉積膜厚、聚磁環1 0 a等的構件的 消耗量的裝置狀態的資料等。在第一實施形態使用處理結 果資料之中製程特性資料,其中也使用晶圓W的削去量的 面內均勻性。 處理室1內的溫度在第一實施形態使用上部電極的噴 氣頭4的溫度,處理室1的內壁面的溫度以及下部電極2 的溫度。特別是下部電極2的溫度的影響大。這些溫度可 經由配置於各個部位的熱電偶等的習知公知的溫度感測器 (未圖示)測定。更具體爲處理室1內的溫度使用處理上 述各個部位中的一片晶圚間的平均溫度。 處理室1內的壓力可使用例如處理室1內的製程氣體 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 -19- 1306269 A7 _ B7 五、發明説明() 17 的壓力或H e氣等的背側氣體的壓力。在第一實施形態處 理室1內的壓力使用背側氣體的壓力。 處理裝置1 0的電氣資料可使用例如由高頻電源7施 加的高頻功率的基本波、高次諧波的電壓、電流、相位' 阻抗等。在第一實施形態使用藉由整合器7 A內的測定器 (未圖示)測定的整合器7 A的輸出側的高頻電壓(R F 電壓)V p p。高頻電壓vp p例如圖7所示,即使在 6 0小時附近有瞬間地大變動也能反映於預測値。 製程特性資料所使用的晶圓W的氧化矽膜的削去量的 面內均勻性使用測定例如處理前後的晶圓w的面內的1 3 點中的氧化矽膜的膜厚,顯示由這些膜厚間的差的誤差得 到的面內的均勻性的資料。面內均勻性使用由(最大値一 測定値的最小値)/( 2 X測定値的平均値)求出者。 經濟部智慧財產局員工消費合作社印製 在第一實施形態中上述多變量解析裝置5 0是使用多 變量解析程式求出以複數種的運轉資料爲說明變量(說明 變數),以製程特性資料爲被說明變量(目的變量、目的 變數)爲以下(1 )的關係式(迴歸式等的預測式、模型 (Model ))。在以下(1 )的迴歸式中,X意味著說明 變量的矩陣,Y意味著被說明變量的矩陣。而且,B爲由 說明變量的係數(權重)構成的迴歸矩陣,E爲餘差矩陣 (Residual matrix ) 。 Y - B X + E ··· ( 1 ) 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -20- 1306269 A7 B7 五、發明説明(18 ) 在第一實施形態中當求出上述(1 )時,使用例如揭 (請先閲讀背面之注意事項再填寫本頁) 示於 JOURNAL OF CHEMOMETRICS,V0L.2 ( p P 2 1 1 一 228) (1998)的PLS (部分最小二乘,1306269 AV B7 V. Inventive Note (13) 7 high frequency power P. In the upper chamber 1A, a magnetic field is generated by the electric field generated by the high-frequency power source 7 and the horizontal magnetic field generated by the dipole ring magnet 5 in the upper chamber 1A, and a power award is generated for the process gas supplied into the upper chamber 1A. A static chuck 8 is disposed on the top surface of the lower electrode 2, and a DC power source 9 is connected to the electrode plate 8 A of the electrostatic chuck 8. Therefore, the wafer W is electrostatically adsorbed by the electrostatic chuck 8 by applying a high voltage to the electrode plate 8 A by the DC power source 9 under a high vacuum. On the outer circumference of the lower electrode 2, a collecting ring 10a is disposed, and the plasma generated in the upper chamber 1A is concentrated on the crystal pattern w, and is disposed on the lower side of the collecting ring 10 a. The exhaust ring 11 of the upper portion of the support body 3. A plurality of holes are formed at equal intervals in the circumference of the exhaust ring 11 over the entire circumference, and the gas in the upper chamber 1 A is discharged to the lower chamber 1 b through the holes. The support 3 can be raised between the upper chamber 1 A and the lower chamber 1 B via a ball screw mechanism 1 2 and a bellows 13 . Therefore, in the case where the wafer W is supplied onto the lower electrode 2, the lower electrode 2 is lowered to the lower chamber 1b via the support 3, and the open gate valve 6 is supplied to the lower electrode 2 via a transfer mechanism (not shown). . A cold coal flow path 3 A ' connected to the cold coal pipe 14 is formed inside the support 3 to circulate the cold coal in the cold coal flow path 3 A via the cold coal pipe 14 to adjust the wafer W to a predetermined temperature. . In the support 3, the insulating material 2 A, the lower electrode 2, and the electrostatic chuck 8, a gas flow path 3 B ' is formed in the gap between the electrostatic chuck 8 and the wafer w by the gas introduction mechanism 15 via the gas pipe 15 A. The predetermined paper size is applicable to the China National Standard (CNS) A4 specification (21〇χ297 public) (please read the note on the back and fill out this page). Printed by the Ministry of Economic Affairs, Intellectual Property Bureau, Staff Consumer Cooperative Printed-16- 1306269 at B7 V. INSTRUCTION DESCRIPTION (,) 14 Force supply of He gas as back side gas 'The heat conductivity between the electrostatic chuck 8 and the wafer W is improved by the He gas. The pressure detecting pressure sensor (not shown) of the back side gas displays the detection 値 on the pressure gauge 15B. In addition, 16 is a bellows cover 16. A gas introduction portion 4A' is formed on the top surface of the air jet head 4. Here, the gas introduction portion 4A is connected to the process gas supply system 18 via a pipe 17. The process gas supply system 18 has a C 4 F 8 gas supply source 1 8 A, a 0 2 gas supply source 1 8 D, and an Ar gas supply source 1 8 G. These gas supply sources 1 8 A, 1 8 D, and 1 8 G are via valves 1 8 B, 1 8 E, 1 8 Η, and Mass flow controllers 1 8 C, 1 8 F, 1 8 I, respectively. Each gas is supplied to the air jet head 4 at a predetermined flow rate, and is internally adjusted with a mixed gas having a predetermined mixing ratio. The plurality of holes 4 B are disposed uniformly over the bottom surface of the air jet head 4, and the mixed gas is supplied from the air jet head 4 to the upper chamber 1 A as a process gas via the holes 4 B. Further, in Fig. 1, 1 C is an exhaust pipe, and 19 is an exhaust system constituted by a vacuum pump or the like connected to the exhaust pipe 1 C. For example, as shown in Fig. 2, the processing device 10 includes a multivariate analysis device 50 that statistically processes the operation data and the processing result data, and an input/output device 60 that inputs the processing result data and outputs information such as the analysis result. The processing device 1 performs multivariate analysis of the operation data and the processing result data via the multivariate analysis device 50, and obtains the correlation between the two, and outputs information such as the analysis result to the input/output device 60 as needed. As shown in Figure 2, the analysis device 50 has the operating data storage paper scale applicable to the Chinese National Standard (CNS) Α 4 specification (210X297 mm) (please read the back note and fill out this page), ?? Intellectual Property Office Staff Consumer Cooperative Printed -17-1306269 at B7 V. Invention Description (π) 15 Storage Unit 5 1. Processing Result Data Storage Unit 5 2. Multivariate Analysis Program Storage Unit 5 3. Multivariate Analysis Processing Unit 5 4 and a multivariate analysis result storage unit 5 5 . The operation data storage unit 51 constitutes a mechanism for storing operation data, and the processing result data storage unit 52 constitutes a mechanism for storing processing result data. The multivariate analysis processing unit 54 constitutes a mechanism for predicting the processing result based on the correlation with the mechanism for obtaining the correlation between the operation data and the processing result data (for example, the prediction formula and the regression equation). The multivariate analysis result storage unit 5 5 constitutes a mechanism for storing the correlation obtained by the multivariate analysis processing unit 54. The multivariate analysis device 50 may be configured by, for example, a microprocessor that operates in accordance with a program from the multivariate analysis program storage unit 53. The operation data storage unit 5 1 , the processing result data storage unit 5 2 , and the multivariate analysis result storage unit 5 5 may be configured by a recording unit such as a memory, and each memory area may be disposed in a recording mechanism such as a hard disk. The composition is also ok. The multivariate analysis device 50 stores the data in the operation data storage unit 51 and the processing result data storage unit 52 by inputting the operation data and the process characteristic data, and then stores the data and the multivariate analysis program storage unit 53. The program is taken out to the multivariate analysis processing unit 504, and the multivariate analysis processing unit 54 performs multivariate analysis of the operation data and the process characteristic data, and stores the processing result in the multivariate analysis result storage unit 55. Here, the operation data means the detection data obtained by the plurality of measuring devices attached to the processing device 10 when the wafer W is processed, and the processing paper size is applicable to the Chinese National Standard (CNS) A4 specification (210×297 mm). (Please read the notes on the back and fill out this page.) Ordered by the Ministry of Economic Affairs, Intellectual Property Office, Staff and Consumer Cooperatives -18- 1306269 Λ7 B7 V. Invention Description () 16 The data means the result of processing the wafer W. The process characteristic data of the obtained wafer W and the device state data regarding the state in the processing chamber 1. The operation data is intermittently measured between the processing wafers W, and the processing result data is measured as needed after the processing of the wafer. These measurement results are stored in the respective storage sections 5 1 and 5 2 . In the first embodiment, the relationship between the operational data and the processing result data is obtained, and the information on the operational data that is likely to affect the processing result is preferable. In the first embodiment, the temperature of the plurality of positions in the processing chamber 1 and the pressure of the back side gas and the electrical data of the processing apparatus 10 are used. In the process characteristic data in the processing result data of the first embodiment, for example, the etching amount of the yttrium oxide film containing the wafer W having the yttrium oxide film on the surface or the etching of the in-plane uniformity of the amount of the etched amount is used. . The device state data in the processing result data can be used to display information on the device state including the deposition film thickness of the by-product in the processing chamber 1 and the consumption amount of the member such as the magnetism collecting ring 10 a. In the first embodiment, process characteristic data among the processing result data is used, in which the in-plane uniformity of the amount of removal of the wafer W is also used. The temperature in the processing chamber 1 uses the temperature of the gas jet head 4 of the upper electrode, the temperature of the inner wall surface of the processing chamber 1, and the temperature of the lower electrode 2 in the first embodiment. In particular, the influence of the temperature of the lower electrode 2 is large. These temperatures can be measured by a known temperature sensor (not shown) such as a thermocouple disposed in each part. More specifically, the temperature in the processing chamber 1 is used to treat the average temperature between one of the above-mentioned crystal grains in each of the above-mentioned portions. The pressure in the processing chamber 1 can be used, for example, the process gas in the processing chamber 1. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210×297 mm) (please read the notes on the back and fill in the page) Property Bureau Staff Consumer Cooperative Printed -19- 1306269 A7 _ B7 V. Inventive Note () 17 Pressure or Hee gas pressure of the back side gas. In the first embodiment, the pressure in the processing chamber 1 uses the pressure of the back side gas. The electric data of the processing device 10 can be, for example, a fundamental wave of a high-frequency power applied by the high-frequency power source 7, a voltage of a harmonic, a current, a phase 'impedance, or the like. In the first embodiment, the high-frequency voltage (R F voltage) V p p on the output side of the integrator 7 A measured by a measuring device (not shown) in the integrator 7 A is used. The high-frequency voltage vp p is, for example, as shown in Fig. 7, and can be reflected in the prediction 値 even if there is a momentary large fluctuation in the vicinity of 60 hours. The in-plane uniformity of the amount of the cerium oxide film to be removed from the wafer W used in the process characteristic data is measured by, for example, the film thickness of the yttrium oxide film in the surface of the wafer w before and after the treatment. The in-plane uniformity of the error between the film thicknesses is obtained. The in-plane uniformity is determined by (the minimum 値 of the maximum 値 measured 値) / (the average 値 of 2 X measured 値). In the first embodiment, the multi-variable analysis device 50 uses a multivariate analysis program to obtain a plurality of types of operation data as explanatory variables (description variables), and process characteristic data. The explanatory variables (destination variables and destination variables) are the following (1) relational expressions (predictive equations such as regression equations, and models). In the regression equation of (1) below, X means a matrix describing variables, and Y means a matrix of variables to be explained. Further, B is a regression matrix composed of coefficients (weights) of explanatory variables, and E is a residual matrix (Residual matrix). Y - BX + E ··· ( 1 ) This paper scale applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) -20- 1306269 A7 B7 V. Invention Description (18) In the first embodiment, For the above (1), use for example (please read the note on the back and then fill out this page). PLS (partial least squares) shown in JOURNAL OF CHEMOMETRICS, V0L.2 (p P 2 1 1 - 228) (1998) ,

Partial Least Squares)法。此 P L S 法即使矩陣 X、Y 分別有多數個說明變量以及被說明變量,若有各個少數的 實測値則可求出X與Y的關係式。而且,即使是以少的實 測値獲得的關係式,穩定性以及可靠度高也是P L S法的 特徵。 在多變量解析程式儲存部5 3儲存有P L S法用的程 式,在多變量解析處理部5 4中依照程式的順序處理運轉 資料以及製程特性資料,求出上述(1 )式’以多變量解 析結果儲存部5 5儲存此結果。因此,若在第一實施形態 求出上述(1 )式,則之後藉由以運轉資料當作說明變量 套入矩陣X中可預測製程特性。而且,此預測値爲可靠度 闻者。 經濟部智慧財產局員工消費合作社印製 例如對X τ Y矩陣’對應第i個固有値的第i主成分 以t i表示。矩陣X若使用此第i主成分的得分t 1與向 量P i的話,可以以下的(2 )式表示’矩陣Y若使用此 第i主成分的得分t i與向量c ^的話,可以以下的(3 )式表示。此外,在以下的(2)式、(3)式中+ i 、¥1 + 1爲又、Y的餘差矩陣,^^爲又的轉置矩陣。以 下指數T意味著轉置矩陣。 X= tiPi+ t2P2+ t3p3+··· tiPi + Xi+1 ··· (2) 本紙張尺度適用中國國家標準(CNS >八4跡(210X297公着) -21 - 1306269 Λ7 Α7 Β7 五、發明説明() 19 Y= tlCl+ t2c2+ t3c3 + ... tiCi + Yi + i ...(3) 而且,在第一實施形態使用的P L S法爲以少的計算 量算出使上述式(2 )、( 3 )相關的情形的複數個固有 値以及各個固有向量的手法。 P L S法是由以下的順序實施。首先在第一階段進行 矩陣X、Y的定心(Centering)以及定標(Scaling)的 操作。而且,設定i = 1 ,令Χι = Χ,Yi = Y。而且 ’ U i設定矩陣Y 1的第一列。此外,定心是指由各列的 各個値扣除各個列的平均値的操作,定標是指以各列的標 準偏差除各列的各個値的操作(處理)。 在第二階段求出Wi = XiTUi / ( Ιΐ/ΐΐί)後, 正規化w ί的行列式,求出t i = X i w i。而且,對於矩 陣Y也進行同樣的處理。在求出C i = YiT t i/ ( t i T t i )後,正規化c :的行列式,求出u i = Y i c i / C c i τ c i )。 在第三階段求出X負荷量(Loading) pi = XiTti / C t * T t i ) ,Y 負荷量 Q.sYiTui/CUiTui )。而且,求出使u迴歸到t的b i = u i T t , / ( t ' T t ,)。其次,求出餘差矩陣Xi = Xi—tlPlT ’餘差矩陣Yi=Y1—bitlClT。而且’增加i設定 i = i + 1 ,重複自第二階段的處理。重複這些一連的處 理直到依照P L S法的程式滿足預定的停止條件爲止或使 餘差矩陣Χ1 + ι收斂到零,以求出餘差矩陣的最大固有値 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 -22- 1306269 A7 B7 五、發明説明(2Q ) 以及其固有向量。 P L S法對餘差矩陣X i + i的停止條件或零的收斂快 ’僅1 0次左右的計算的重複,餘差矩陣收斂於停止條件 或零。一般藉由4〜5次的計算的重複,餘差矩陣收斂於 停止條件或零。使用藉由此計算處理求出的最大固有値以 及其固有向量,求出χτγ矩陣的第一主成分,可得知X 矩陣與γ矩陣的最大相關關係。 其次,說明上述處理裝置1 0的動作與本發明方法的 一實施形態。在第一實施形態首先求出用以藉由多變量解 析預測製程特性的上述(1 )式後,處理預定的晶圓W。 在晶圓W的處理階段,藉由將任意時點中的運轉資料套入 (1 )式,可預測當時的製程特性。 若開始處理裝置1 0的運轉的話,支持體3經由滾珠 螺桿機構1 2下降到處理室1的下室1 Β,並且閘閥6由 開放的出入口傳入晶圓W載置於下部電極2上。晶圓W傳 入後,閘閥6關閉並且排氣系1 9動作,維持處理室1內 於預定的真空度。此時,由氣體導入機構1 5供給H e氣 當作背氣體,提高晶圓W與下部電極2具體上爲靜電吸盤 8與晶圓W間的熱傳導性,提高晶圓W的冷卻效率。 另一方面,由製程氣體供給系1 8以1 6 s c c m的 流量供給C 4 F 8氣體,以3 0 0 S c c m的流量供給〇2 氣體,而且,也以4 0 s c cm的流量供給A r氣體。此 時的處理室1內的壓力例如5 3 m T 〇 r r。在此狀態下 若由高頻電源7以1 7 0 0W施加高頻功率的話,與偶極 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閣讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 -23- 1306269 A7 B7 五、發明説明L ) 環磁石5的作用結合使磁控管放電發生,生成製程氣體的 電漿以蝕刻晶圓W的氧化膜。在蝕刻終了後以與傳入時相 反的操作由處理室1內傳出處理後的晶圓W,對後續的晶 圓W重複同樣的處理’處理預定的片數,完成一連的處理 〇 在第一實施形態於處理實際的晶圚W前,令混合實際 的晶圓W與同一 6片晶圓W與1 9片的虛擬晶圓(Partial Least Squares). This P L S method has a plurality of explanatory variables and explanatory variables for each of the matrices X and Y, and a relationship between X and Y can be obtained if there are a few actual measured enthalpy. Moreover, even with a relationship obtained with a small number of measured flaws, stability and high reliability are characteristics of the P L S method. The multi-variable analysis program storage unit 53 stores the program for the PLS method, and the multi-variable analysis processing unit 54 processes the operation data and the process characteristic data in the order of the program, and obtains the above (1) formula for multivariate analysis. The result storage unit 55 stores the result. Therefore, when the above formula (1) is obtained in the first embodiment, the process characteristics can be predicted by inserting the operation data into the matrix X as an explanatory variable. Moreover, this prediction is a reliable one. The Ministry of Economic Affairs Intellectual Property Office employee consumption cooperative prints, for example, the ith principal component corresponding to the i-th inherent 値 of the X τ Y matrix ′ is represented by t i . When the matrix X uses the score t 1 and the vector P i of the i-th principal component, the following equation (2) can be expressed. If the matrix Y uses the score ti and the vector c ^ of the i-th principal component, the following can be used ( 3) Expression. In addition, in the following formulas (2) and (3), + i and ¥1 + 1 are the remainder matrices of Y and Y, and are further transposed matrices. The following index T means the transposed matrix. X= tiPi+ t2P2+ t3p3+··· tiPi + Xi+1 ··· (2) This paper scale applies to Chinese national standards (CNS > eight 4 traces (210X297 public) -21 - 1306269 Λ7 Α7 Β7 V. Invention description ( 19 Y= tlCl+ t2c2+ t3c3 + ... tiCi + Yi + i (3) Further, the PLS method used in the first embodiment calculates the above equations (2) and (3) with a small amount of calculation. The complex inherent 値 and the eigenvectors of the related cases. The PLS method is implemented in the following order: First, the centering and scaling operations of the matrix X, Y are performed in the first stage. Set i = 1 and let Χι = Χ, Yi = Y. And ' U i sets the first column of matrix Y 1. In addition, centering refers to the operation of deducting the average 値 of each column from each column of each column, scaling It refers to the operation (processing) of dividing each column of each column by the standard deviation of each column. After finding Wi = XiTUi / ( Ιΐ / ΐΐί) in the second stage, normalize the determinant of w ί and find ti = X Iwi. Also, the same processing is performed for the matrix Y. After finding C i = YiT ti / ( ti T ti ), Of c: the determinant obtained u i = Y i c i / C c i τ c i). In the third stage, the X load (Loading) pi = XiTti / C t * T t i ) and the Y load Q.sYiTui/CUiTui are obtained. Further, b i = u i T t , / ( t ' T t ,) which returns u to t is obtained. Next, the residual matrix Xi = Xi - tlPlT ' residual matrix Yi = Y1 - bitlClT is found. And 'increasing the i setting i = i + 1 , repeating the processing from the second stage. Repeat these processes until the program according to the PLS method satisfies the predetermined stop condition or converge the residual matrix Χ1 + ι to zero to find the maximum inherent paper size of the residual matrix. The Chinese National Standard (CNS) Α4 specification is applied. (210X297 mm) (Please read the note on the back and fill out this page) Ordered by the Ministry of Economic Affairs, Intellectual Property Office, Staff Consumer Cooperatives -22- 1306269 A7 B7 V. Invention Description (2Q) and its inherent vector. The P L S method converges to the stop condition of the residual matrix X i + i or zero. The repetition of the calculation of only about 10 times, the residual matrix converges to the stop condition or zero. The remainder of the matrix is typically converge to a stop condition or zero by a repetition of 4 to 5 calculations. Using the maximum intrinsic 求出 obtained by this calculation process and its eigenvector, the first principal component of the χτγ matrix is obtained, and the maximum correlation between the X matrix and the γ matrix can be known. Next, an embodiment of the operation of the processing apparatus 10 and the method of the present invention will be described. In the first embodiment, the predetermined wafer W is processed by first obtaining the above formula (1) for predicting the process characteristics by multivariate analysis. At the processing stage of the wafer W, the process characteristics at that time can be predicted by inserting the operation data at any time point into the equation (1). When the operation of the processing apparatus 10 is started, the support 3 is lowered to the lower chamber 1 of the processing chamber 1 via the ball screw mechanism 12, and the gate valve 6 is placed on the lower electrode 2 by the open inlet and outlet wafer W. After the wafer W is transferred, the gate valve 6 is closed and the exhaust system 19 is operated to maintain the predetermined degree of vacuum in the processing chamber 1. At this time, the gas introduction mechanism 15 supplies He gas as the back gas, and the wafer W and the lower electrode 2 are specifically made to have thermal conductivity between the electrostatic chuck 8 and the wafer W, thereby improving the cooling efficiency of the wafer W. On the other hand, the process gas supply system 18 supplies C 4 F 8 gas at a flow rate of 16 sccm, and supplies 〇2 gas at a flow rate of 300 S ccm, and also supplies A r at a flow rate of 40 sc cm. gas. The pressure in the processing chamber 1 at this time is, for example, 5 3 m T 〇 r r . In this state, if the high-frequency power supply 7 applies high-frequency power at 190 W, the Chinese National Standard (CNS) A4 specification (210 X 297 mm) is applied to the dipole paper scale (please read the back of the cabinet first) Fill in this page) Order Ministry of Economic Affairs Intellectual Property Bureau Staff Consumer Cooperative Printed -23- 1306269 A7 B7 V. Invention Description L) The function of the ring magnet 5 combines to cause the magnetron discharge to occur, and the plasma of the process gas is generated to etch the crystal. An oxide film of a circle W. After the end of the etching, the processed wafer W is transferred from the processing chamber 1 by the operation opposite to the incoming, and the same processing is repeated for the subsequent wafer W. The predetermined number of processing is processed, and the processing is completed. In one embodiment, before the actual wafer W is processed, the actual wafer W is mixed with the same 6 wafers W and 19 virtual wafers (

Dummy wafer )的 2 5 片晶圓爲一批(L 〇 t ),以 3 〔 分/曰曰圓〕的處理時間處理’每隔1 0小時或5小時重複 處理1 1批份,以得到關於6片晶圓W的運轉資料以及製 程特性資料,進行多變量解析。在第一實施形態因使用資 料數少即可完成的P L S法’故僅使用例如第2以及第 1 1批中的晶圓W的運轉資料以及製程特性資料,使用 P L S法由這些資料求出上述(1 )式。此外,6片晶圓 W插入到各批的第1片、第3片、第5片、第1〇片以及 第2 5片。 在進行這種晶圓W的處理間,分別間歇地檢測噴氣頭 (上部電極)4、處理室1的上室1 a的壁面、下部電極 2的各溫度作爲運轉資料,這些檢測訊號τ :、T 2、T 3 經由A / D轉換器依次輸入到多變量解析裝置5 〇,在蓮 轉資料儲存部5 1儲存。 而且,間歇地檢測H e氣的壓力當作其他運轉資料, 此檢測訊號P經由A / D轉換器依次輸入到多變量解析裝 置5 0,根據這些輸入値,經由多變量解析處理部5 4算 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公楚) (請先閲讀背面之注意事項存填寫本頁) 丨0' 好 經濟部智慧財產局員工消費合作社印製 -24- 1306269 at B7 五、發明説明(22 ) 出標準偏差,在運轉資料儲存部51儲存。 (請先閲讀背面之注意事項再填寫本頁) 再者,間歇地檢測高頻電源7的電壓當作其他運轉資 料’此檢測訊號V經由A / D轉換器依次輸入到多變量解 析裝置5 0,在運轉資料儲存部5 1儲存。 其次,關於H e氣壓力以外各個運轉資料的各晶圓w 的平均値,經由多變量解析處理部5 4關於H e氣壓力求 出運轉資料的每一各晶圓W的標準偏差。 其次,在運轉資料儲存部5 1儲存每一各晶圓W的每 一個運轉資料的平均値以及標準偏差’或者原封不動地準 備到下一個處理。 此處,圖示所有的晶圓W的上部電極溫度的檢測訊號 T i、壁面溫度的檢測訊號T 2、下部電極溫度的檢測訊 號T 3的各個平均値的經時變化者顯示於圖3〜圖5。顯 示H e氣的檢測訊號P的標準偏差的經時變化者顯示於圖 6,顯示高頻功率的檢測訊號V的平均値的經時變化者顯 示於圖7。 經濟部智慧財產局員工消費合作社印製 而且,取出處理後的晶圓W,此晶圓W的氧化矽膜的 面內的1 3點的削去量由輸入輸出裝置6 〇輸入到多變量 解析裝置5 0,根據此輸入値經由多變量解析處理部5 4 算出面內均勻性,令此算出値爲製程特性資料,在處理結 果資料儲存部5 2儲存。顯示這種製程特性資料(面內均 勻性)的經時變化者顯示於圖8。 圖3〜圖8所示的運轉資料以及製程特性資料之中, 根據第2批與第1 1批的運轉資料以及製程特性資料藉由 本紙張尺度適用中國國家標準(CNS ) A4规格(210X297公釐) -25- 1306269 A7 B7 五、發明説明() 23 P L S法求出上述(1 )式的迴歸矩陣B以及餘差矩陣E 。而且,使用此式預測上述批以及上述批以外的批中的晶 圓W的製程特性資料,畫X記號的圖顯示於圖9。而且, 以圖9的□記號顯示的圖爲製程特性資料的實測値。 在圖9中第2批與第1 1批的批的預測値與實測値一 致乃因是在求出(1 )式時使用此時的晶圓W。得知顯示 其他的晶圓W的製程特性資料的預測値也極爲接近每一批 (每1 0小時)變動的實測値的値。特別是在6 0小時附 近大的均勻性的惡化預測値、實測値都可確認。此爲反映 在圖7中確認的高頻(R F )電壓的突發的降低。即使用 如圖3〜圖6反映可檢測經時的批變動的上部電極溫度、 壁面溫度、下部電極溫度以及H e氣壓力等的處理室1內 的狀態之資料’與如圖7批變動的檢測困難反映高頻功率 的施加狀態的資料的兩方爲有效。 在圖1 0顯示畫圖9所示的預測値與實測値的關係而 得的相關關係。此相關關係由圖1 〇明顯地得知若相關係 數R = 0 · 9 0 5 3的話相關性高,預測値與實測値大槪 一致。此外,在第一實施形態用以比較預測値與實測値, 實測與所有的晶圓W有關的運轉資料以及製程特性資料者 顯示於圖3〜圖9。此外,得知由這種實驗結果在第一實 施形態的製程特性資料的晶圓W的削去量的面內均勻性的 預測時,特別是以下部電極溫度的各晶圓W的平均値與 H e氣壓力的各晶圓w的標準偏差爲運轉資料使用對於用 以提高預測精度很重要。 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 、τ 經濟部智慧財產局員工消費合作社印製 -26- 1306269 at B7 五、發明説明(24 ) (請先閲讀背面之注意事項再填寫本頁) 如此,在本實施形態中在處理實際的晶圓w前,與此 相同的晶圓W使用少數片(在第一實施形態第2與第1 1 批的1 2片),如上述求出運轉資料以及製程特性資料。 使用這些少數的運轉資料以及製程特性資料,藉由P L S 法求出迴歸式(1 )後,當處理實際的晶圓W時檢測任意 的晶圓W的運轉資料。而且,僅藉由將各運轉資料套入迴 歸式(1 )可預測實際的晶圓W的面內均勻性當作製程特 性資料。而且,可進行精度極高的製程預測。 經濟部智慧財產局員工消費合作社印製 如以上的說明如果依照第一實施形態,收集處理像預 定批的晶圓的少數測試晶圓時的運轉資料以及處理結果資 料(例如製程特性資料),根據這些收集資料群(運轉資 料以及處理結果資料)進行多變量解析,經由此多變量解 析求出運轉資料與處理結果資料的相關關係,根據此相關 關係用以預測像晶圓的削去量的面內均勻性等的晶圓W的 處理結果(例如製程特性),在實際處理晶圓W時,僅藉 由求出晶圓W的運轉資料,可高精度地預測晶圓W的面內 均勻性當作製程特性。而且,在進行多變量解析求出運轉 資料與處理結果資料的相關關係時,因使用P L S法故可 以短時間有效地求出迴歸式(1 )。 因此,如果依照第一實施形態,無須如習知製作許多 測試晶圓,或使用處理裝置1 〇處理許多測試晶圓,以測 定各個處理結果,對測試晶圓的製作以及處理結果的測定 無須騰出許多工數與時間。而且,可比習知的預測方法還 高精度地預測處理結果。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -27- 1306269 A7 B7___ 五、發明説明() 25 (請先閲讀背面之注意事項再填寫本頁) 再者,如果依照第一實施形態,因運轉資料使用對製 程特性資料(晶圓W的面內均勻性)容易影響的資料,即 處理室1內的複數位置的溫度(上部電極溫度' 處理室1 的壁面溫度以及下部電極溫度)、處理室內的壓力(H e 氣等的背氣壓力)、電氣資料(高頻功率的電壓),故運 轉資料與製程特性資料的相關關係強,可高精度地預測製 程特性。再者,製程特性資料因採用晶圓W的面內均句性 ’故可高精度地預測利用蝕刻的晶圓W的面內的均勻性的 好壞。 此外,在第一實施形態雖然使用第2批與第1 1批的 測試晶圓,求出實測値與預測値的相關關係,惟對於求出 相關關係的情形在實際的製程處理晶圓W間定期地處理測 試晶圓以求出相關關係也可以,或者不定期地處理測試晶 圓以求出相關關係也可以。在求出一次相關關係後,藉由 使用適宜測試晶圓追加資料更新相關關係,可更提高預測 、{/由 [-rV? ^度。 經濟部智慧財產局員工消費合作社印製 而且,在上述第一實施形態運轉資料雖然使用上部電 極溫度、處理室壁面溫度、下部電極溫度,惟使用容易影 響製程特性的其他部位的溫度也可以,此時若使用至少一 個位置的溫度的話佳。特別是製程特性資料當預測晶圓w 的削去量的面內均勻性時,下部電極溫度較佳。 而且,處理室內的壓力雖然使用H e氣的壓力,惟使 用製程氣體的壓力也可以。特別是製程特性資料當預測晶 圓W的削去量的面內均勻性時,使用表示H e氣的壓力的 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -28- 1306269 A7 B7 五、發明説明k ) 穩定性的標準偏差較佳,而且,使用H e氣的晶圓W的面 內壓力差(例如令背氣體爲中心、中央、邊緣的三系統時 的該壓力差等)較佳。 而且’在第一實施形態運轉資料的電氣資料雖然使用 高頻電源的電壓,惟使用高頻電源的基本波、高次諧波的 電流、相位以及阻抗等也可以。 而且,在第一實施形態處理結果資料使用製程特性資 料,此製程特性資料雖然使用晶圓W的削去量的面內均句 性,惟其他的製程特性資料除了晶圓W的削去量外,使用 顯示蝕刻圖案的線寬或錐角等的蝕刻特性也可以。 其次,參照添附圖面詳細說明適用本發明於電漿蝕刻 裝置的處理結果的預測方法的情形的第二實施形態。此外 ,在第二實施形態中對於與上述第一實施形態中的同一部 分附加同一符號,省略詳細的說明。 在第二實施形態變更或追加作爲運轉資料的參數,處 理結果資料使用製程特性資料之中的晶圓W的削去量(例 如蝕刻率)進行多變量解析,預測晶圓W的蝕刻率。 首先,與第二實施形態有關的電漿蝕刻裝置,對於磁 控管反應性蝕刻處理裝置(以下稱爲〔處理裝置1 0 0〕 )’參照圖1 1說明。此外’在圖1 1中對同一部分附加 同一符號,省略詳細的說明。 在圖1 1所示的處理裝置1 0 0的噴氣頭4配設有檢 測處理室1內的電漿發光的光譜儀(以下稱爲〔光學計測 器〕。)2 0。令藉由此光學計測器2 0得到的特定的波 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 -29- 1306269 at B7 五、發明説明g ) 長範圍(例如2 0 0〜9 5 0 nm)的發光光譜強度爲光 學的資料。 在氣體導入部4 A經由配管1 7連接有製程氣體供給 系1 8 /。製程氣體供給系1 8 >具有C5F8氣體供給 源1 8 A 、0 2氣體供給源1 8 D 、A r氣體供給源 1 8 G /。 這些氣體供給源18A>、18D>、18G>分別 經由閥1 8 B / 、1 8 E > 、1 8 Η —以及質流控制器 18C —、18F>、18 1 / ,以預定的流量供給各個 氣體到噴氣頭4,在其內部以具有預定的配合比的混合氣 體調整。各氣體流量可藉由各個質流控制器1 8 C >、 1 8 F /、1 8 I —檢測。在第二實施形態檢測各氣體流 量之中C5F8氣體的氣體流量與A r氣體的氣體流量。 被檢測的這些氣體流量的資料被作成追蹤資料。 在排氣管1C配設有APC (自動壓力控制器,Auto Pressure Controller)閥1 D,就處理室1內的壓力自動 地調節A P C閥的開度。在第二實施形態檢測藉由A P C 閥1 D的A P C開度。被檢測的A P C開度被作成追蹤資 料。 在靜電吸盤8的電極板8 A與直流電源9之間,連接 有檢測靜電吸盤8的施加電流、施加電壓的功率計9 a。 由此功率計9 a檢測的靜電吸盤8的施加電流、施加電壓 的資料被作成追蹤資料。 在導入背側氣體(例如H e氣)的氣體導入機構1 5 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 -30- 1306269 Λ7 B7 五、發明説明ς。) 28 配設有例如質流控制器(未圖示),藉由此質流控制器檢 測背側氣體的氣體流量。背側氣體的氣體流量與藉由壓力 計1 5 B檢測的背側氣體的氣體壓力一起被作成追蹤資料 0 上述整合器7A例如內裝兩個可變電容器C 1、C 2 、電容器C以及線圈L,經由可變電容器C 1 、C 2取得 阻抗整合。整合狀態下的可變電容器C 1、C 2的位置( Position )被作成追蹤資料。 上述整合器7 A配設功率計7 a ,藉由此功率計7 a 計測高頻功率的供給線(電線)與處理裝置1 〇 〇的接地 之間的電壓V d c。此高頻功率供給線(電線)與接地間 的電壓V d c被作成追蹤資料。 在上述整合器7 A的下部電極2側(高頻電壓的輸出 側)安裝有電氣計測器(例如V I探針)7 C,經由此電 氣計測器7 C藉由被施加到下部電極2的高頻功率P將根 據產生於上室1 A內的電漿的基本波(高頻功率的進行波 以及反射波)以及高次諧波的高頻電壓V、高頻電流I 、 高頻相位P、阻抗Z當作電氣資料檢測。其中高頻功率的 進行波以及反射波被作成追蹤資料。而且,高次諧波的高 頻電壓V、尚頻電流I 、局頻相位P、阻抗Z被作成V I 探針資料。 在高頻電源7與功率計7 B之間連接有累計高頻功率 的施加時間的累計部7 b。藉由此累計部7 b檢測的高頻 功率的施加累計時間也被作成追蹤資料。此處所謂的施加 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閣讀背面之注意事項再填寫本頁) 、11 經濟部智慧財產局員工消費合作社印製 -31 - 經濟部智慧財產局員工消費合作社印製 1306269 Λ7 Β7 五、發明説明L ) 累計時間是累計每次處理晶圓W施加高頻功率的時間。 累計部7 b在每次進行處理裝置1 〇 〇的維修保養用 以重設上述高頻功率的施加累計時間爲零。因此,此處所 謂的高頻功率的施加累計時間爲到進行下一個維修保養爲 止的施加累計時間。 上述維修保養例如有用以除去因蝕刻而產生的處理裝 置1 0 0內的副生成物(例如微粒(Particle ))等而進 ί了的濕式清洗、消耗品或測定器的交換等。在第二實施形 態每次進行濕式清洗用以重設上施加累計時間爲零。 其次,第二實施形態中的多變量解析裝置5 〇的方塊 圖顯示於圖1 2。在第二實施形態將由各測定器檢測的運 轉資料分成光學資料、追蹤資料、V I探針資料而使用。 光學資料使用由上述光學計測器2 0檢測的例如2 0 0〜 9 5 0 n m的波長範圍的發光光譜強度。 追蹤資料除了第一實施形態說明的處理室1內的複數 個位置的溫度(上部電極溫度T i、壁面溫度Τ 2、下部 電極溫度T 3 )、背側氣體的壓力、整合器7 A的輸出側 的闻頻電壓(R F電壓)V p p的資料外,更加入以下的 資料而使用。 即將處理氣體的C 5 F 8氣體與A r氣體的氣體流量 、背側氣體的流量、藉由AP C閥1 D的AP C開度、靜 電吸盤8的施加電流以及施加電壓、整合器7 A中的可變 電容器C 1、C 2的位置、整合器7 A中的高頻功率供給 線與接地間的電壓V d c、高頻功率的進行波以及反射波 本紙張只ϋ用中國國家標準(CNS ) A4規格(210X297公釐) ~~一 -32- (請先閲讀背面之注意事項再填寫本頁} . 訂 1306269 at B7 五、發明説明) (請先閲讀背面之注意事項再填寫本頁) 的資料、高頻功率的施加累計時間加入追蹤資料。此外, 背側氣體的壓力、流量分別使用例如晶圓w的中心與邊緣 中的流量。 V I探針資料使用高次諧波的高頻電壓V、高頻電流 I 、高頻相位P、阻抗。製程特性資料使用晶圓W的削去 量。具體上晶圓W的晶圓W的削去量在晶圓W的表面對例 如由C V D (化學氣相成長法)形成的C V D氧化膜進行 鈾刻處理時的蝕刻率(A/ m i η )的資料。 在第二實施形態中的多變量解析裝置5 0以上述運轉 資料之中例如光學資料等爲說明變數,處理結果資料以製 程特性資料之一的晶圓W的蝕刻率爲被說明變數(目的變 量),使用例如P L S法用的多變量解析程式求出在上述 第一實施形態說明的迴歸式((1 )的關係式)。而且, 將運轉資料輸入求出的迴歸式,預測晶圓W的蝕刻率。 經濟部智慧財產局員工消費合作社印製 在第二實施形態中的多變量解析處理部5 4於進行( 1 )的關係式(迴歸式)的算出等的多變量解析前,用以 對運轉資料以及處理結果資料進行前處理。前處理例如用 以選擇性地進行0 S C (正交訊號校正,Orthogonal Signal Correction)、MSC(乘法訊號校正,Multiplicative Signal Correction)、SNV(標準正規變量變換,Standard Normal Variate Transformation)的任一個。 利用上述0 S C的前處理一般爲由說明變數X對目的 變數Y去除無關係的成分(與γ垂直的成分)的前處理。 此外,對於利用上述0 S C的前處理的詳細例如揭示於 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -33- 1306269 at B7 五、發明説明k )Dummy wafer ) 2 5 wafers are batch (L 〇t ), treated with 3 [min/min] processing time 'repeated 1 1 batch every 10 hours or 5 hours to get Multi-variable analysis is performed on the operation data and process characteristics of six wafers W. In the first embodiment, the PLS method can be completed by using a small number of data. Therefore, only the operation data and the process characteristic data of the wafer W in the second and the first batches are used, and the above-mentioned data is obtained from the data using the PLS method. (1) Formula. Further, six wafers W are inserted into the first, third, fifth, first and second sheets of each batch. During the processing of the wafer W, the temperature of each of the wall surface of the upper chamber 1 a and the lower electrode 2 of the jet head (upper electrode) 4 and the processing chamber 1 is intermittently detected as operation data, and these detection signals τ : T 2 and T 3 are sequentially input to the multivariate analysis device 5 via the A/D converter, and stored in the lotus transfer data storage unit 51. Further, the pressure of the He gas is intermittently detected as another operation data, and the detection signal P is sequentially input to the multivariate analysis device 50 via the A/D converter, and based on these inputs, the multivariate analysis processing unit 5 calculates This paper scale applies to China National Standard (CNS) A4 specification (210X297 public Chu) (please read the note on the back to fill out this page) 丨0' Good Ministry of Economic Affairs Intellectual Property Bureau Staff Consumer Cooperative Printed -24- 1306269 at B7 V. Description of Invention (22) The standard deviation is stored in the operation data storage unit 51. (Please read the precautions on the back and fill out this page.) In addition, the voltage of the high-frequency power supply 7 is intermittently detected as other operation data. 'This detection signal V is sequentially input to the multivariable analysis device via the A/D converter. It is stored in the operation data storage unit 51. Then, the average value of each wafer w of each operation data other than the He gas pressure is obtained by the multivariate analysis processing unit 5 to determine the standard deviation of each wafer W of the operation data with respect to the He gas pressure. Next, the operation data storage unit 51 stores the average 値 and standard deviation ′ of each of the operation data of each wafer W or prepares it to the next process as it is. Here, the time-lapse change of the detection signal T i of the upper electrode temperature of all the wafers W, the detection signal T of the wall surface temperature, and the detection signal T 3 of the lower electrode temperature are shown in FIG. 3 . Figure 5. The time-dependent change of the standard deviation of the detection signal P indicating the He gas is shown in Fig. 6, and the time-lapse change of the average 値 of the detection signal V showing the high-frequency power is shown in Fig. 7. Printed by the Ministry of Economic Affairs, the Intellectual Property Office, and the employee's consumer cooperative, the processed wafer W is taken out, and the amount of clipping of 13 points in the plane of the yttrium oxide film of the wafer W is input to the multivariate analysis by the input/output device 6 Based on the input, the device 50 calculates the in-plane uniformity via the multivariate analysis processing unit 5, and calculates the data as the process characteristic data, and stores it in the processing result data storage unit 52. The time-dependent change showing such process characteristic data (in-plane uniformity) is shown in Fig. 8. Among the operating data and process characteristics data shown in Figures 3 to 8, the operating data and process characteristics of the second and first batches are applied to the Chinese National Standard (CNS) A4 specification (210X297 mm) by this paper scale. -25- 1306269 A7 B7 V. Inventive Note () 23 The PLS method is used to obtain the regression matrix B and the residual matrix E of the above formula (1). Further, using this formula, the process characteristic data of the wafer W in the batch and the batch other than the above batch is predicted, and a graph in which the X mark is drawn is shown in Fig. 9. Further, the graph shown by the □ mark of Fig. 9 is the actual measurement of the process characteristic data. In Fig. 9, the predictions of the second batch and the first batch of batches are the same as the actual measurement, because the wafer W at this time is used when the equation (1) is obtained. It is known that the prediction of the process characteristic data of other wafers W is also very close to the measured 値 of each batch (every 10 hours). In particular, it is possible to confirm the deterioration prediction of the uniformity in the vicinity of 60 hours. This is a reflection of the sudden decrease in the high frequency (R F ) voltage confirmed in Fig. 7 . That is, as shown in FIG. 3 to FIG. 6 , the data of the state in the processing chamber 1 such as the upper electrode temperature, the wall temperature, the lower electrode temperature, and the He gas pressure which can detect the batch fluctuation over time are reflected as shown in FIG. It is effective to detect both of the data that reflect the application state of the high-frequency power. Fig. 10 shows the correlation between the predicted 値 and the measured 値 shown in Fig. 9. This correlation is clearly shown in Fig. 1 若 If the correlation coefficient R = 0 · 9 0 5 3 is high, the correlation is high, and the prediction 一致 is consistent with the measured 値. Further, in the first embodiment, the comparison of the predicted enthalpy and the actual measurement 値, the actual measurement of the operation data and the process characteristic information relating to all the wafers W are shown in Figs. 3 to 9 . Further, when the in-plane uniformity of the amount of removal of the wafer W in the process characteristic data of the first embodiment is predicted by the results of the experiment, the average 値 of each wafer W at the lower electrode temperature is obtained. The standard deviation of each wafer w of the H e gas pressure is important for the use of operational data to improve prediction accuracy. This paper scale is applicable to China National Standard (CNS) Α4 specification (210X297 mm) (please read the note on the back and fill out this page), τ Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative print -26- 1306269 at B7 V. OBJECT OF THE INVENTION (24) (Please read the precautions on the back side and fill in the page again.) In this embodiment, before processing the actual wafer w, a wafer is used in the same wafer W (in the first embodiment). In the first and second batches of the first and second batches, the operating data and the process characteristics data were obtained as described above. Using these few operating data and process characteristic data, the regression equation (1) is obtained by the P L S method, and the operation data of an arbitrary wafer W is detected when the actual wafer W is processed. Moreover, the in-plane uniformity of the actual wafer W can be predicted as process characteristic data only by inserting each operation data into the regression equation (1). Moreover, process prediction with extremely high precision can be performed. According to the above description, the Ministry of Economic Affairs Intellectual Property Office employee consumption cooperative prints the operation data and processing result data (for example, process characteristic data) when processing a small number of test wafers like a predetermined batch of wafers according to the first embodiment, according to The collected data group (operation data and processing result data) is subjected to multivariate analysis, and the correlation between the operation data and the processing result data is obtained through the multivariate analysis, and the correlation is used to predict the amount of wafer shaving. The processing result of the wafer W such as internal uniformity (for example, process characteristics), when the wafer W is actually processed, the in-plane uniformity of the wafer W can be accurately predicted only by obtaining the operation data of the wafer W. As a process feature. Further, when the correlation between the operation data and the processing result data is obtained by multivariate analysis, the regression equation (1) can be efficiently obtained in a short time by using the P L S method. Therefore, according to the first embodiment, it is not necessary to fabricate a plurality of test wafers as in the prior art, or to process a plurality of test wafers using the processing apparatus 1 to measure the respective processing results, and to test the fabrication of the test wafers and the determination of the processing results. A lot of work and time. Moreover, the processing result can be predicted with high precision than the conventional prediction method. This paper scale is applicable to China National Standard (CNS) A4 specification (210X297 mm) -27- 1306269 A7 B7___ V. Invention description () 25 (Please read the note on the back and fill in this page) Again, if you follow the first In the embodiment, the data that easily affects the process characteristic data (in-plane uniformity of the wafer W), that is, the temperature at the plural position in the processing chamber 1 (the upper electrode temperature 'the wall surface temperature of the processing chamber 1 and the lower electrode) are used. Temperature), pressure in the processing chamber (back gas pressure such as He gas), and electrical data (voltage of high frequency power), so the correlation between the operating data and the process characteristic data is strong, and the process characteristics can be predicted with high precision. Further, since the process characteristic data uses the in-plane uniformity of the wafer W, it is possible to accurately predict the uniformity of the in-plane of the wafer W to be etched. Further, in the first embodiment, the test wafers of the second batch and the first batch are used, and the correlation between the measured enthalpy and the predicted enthalpy is obtained, but in the case where the correlation is obtained, the actual process is processed between the wafers W. The test wafer may be processed periodically to determine the correlation, or the test wafer may be processed irregularly to determine the correlation. After finding a correlation, the prediction can be further improved by using the appropriate test wafer to update the correlation, {/ by [-rV? ^ degrees. In the first embodiment, the operation data of the first embodiment is used, and the temperature of the upper electrode, the wall temperature of the processing chamber, and the temperature of the lower electrode are used, but the temperature of other parts that easily affect the process characteristics may be used. It is better if you use the temperature of at least one position. In particular, when the process characteristic data predicts the in-plane uniformity of the amount of chipping of the wafer w, the lower electrode temperature is preferable. Further, although the pressure in the treatment chamber is used, the pressure of the process gas is used. In particular, the process characteristic data. When predicting the in-plane uniformity of the amount of wafer W to be removed, the paper scale using the pressure indicating the He gas is applicable to the Chinese National Standard (CNS) A4 specification (210×297 mm) -28- 1306269 A7 B7 V. INSTRUCTION DESCRIPTION k) The standard deviation of stability is better, and the in-plane pressure difference of the wafer W using He gas (for example, the pressure difference when the back gas is centered, centered, and edged) Etc.) Better. Further, in the electric data of the operation data of the first embodiment, the voltage of the high-frequency power source is used, but the fundamental wave of the high-frequency power source, the current of the harmonic wave, the phase, and the impedance may be used. Further, in the first embodiment, the processing result data uses the process characteristic data, and although the process characteristic data uses the in-plane uniformity of the amount of the wafer W to be removed, other process characteristic data except the amount of wafer W is removed. It is also possible to use an etching characteristic such as a line width or a taper angle which shows an etching pattern. Next, a second embodiment in the case where the prediction method of the processing result of the plasma etching apparatus of the present invention is applied will be described in detail with reference to the accompanying drawings. In the second embodiment, the same portions as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. In the second embodiment, the parameter as the operation data is changed or added, and the processing result data is subjected to multivariate analysis using the amount of removal of the wafer W (e.g., etching rate) in the process characteristic data, and the etching rate of the wafer W is predicted. First, the plasma etching apparatus according to the second embodiment will be described with reference to Fig. 11 for a magnetron reactive etching processing apparatus (hereinafter referred to as "processing apparatus 100"). Further, the same reference numerals are given to the same portions in Fig. 11. The detailed description is omitted. In the jet head 4 of the processing apparatus 100 shown in Fig. 11, a spectrometer (hereinafter referred to as "optical meter") for detecting plasma light in the processing chamber 1 is disposed. The specific wave paper size obtained by this optical meter 20 is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) (please read the note on the back and then fill out this page) Employee Consumption Cooperative Printed -29- 1306269 at B7 V. INSTRUCTION DESCRIPTION g) The luminescence intensity of a long range (eg, 2 0 0 to 95 nm) is optical. The process gas supply system 1 8 / is connected to the gas introduction unit 4 A via a pipe 17 . The process gas supply system 1 8 > has a C5F8 gas supply source 1 8 A , a 0 2 gas supply source 1 8 D , and an Ar gas supply source 1 8 G /. These gas supply sources 18A >, 18D>, 18G> are supplied at predetermined flow rates via valves 1 8 B / , 1 8 E >, 18 Η - and mass flow controllers 18C -, 18F > 18 1 / respectively. Each of the gases is supplied to the air jet head 4, and is internally adjusted with a mixed gas having a predetermined mixing ratio. Each gas flow rate can be detected by each of the mass flow controllers 1 8 C >, 1 8 F /, 1 8 I. In the second embodiment, the gas flow rate of the C5F8 gas and the gas flow rate of the Ar gas are detected among the respective gas flows. The data of these gas flows being detected is made into tracking data. An APC (Auto Pressure Controller) valve 1 D is disposed in the exhaust pipe 1C, and the opening of the A P C valve is automatically adjusted with respect to the pressure in the process chamber 1. In the second embodiment, the A P C opening degree by the A P C valve 1 D is detected. The detected A P C opening is made into a tracking data. A power meter 9a for detecting an applied current of the electrostatic chuck 8 and applying a voltage is connected between the electrode plate 8A of the electrostatic chuck 8 and the DC power source 9. The data of the applied current and the applied voltage of the electrostatic chuck 8 detected by the power meter 9a is made into tracking data. The gas introduction mechanism for introducing the back side gas (for example, He gas) is 5 The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) (please read the notes on the back and fill out this page) Intellectual Property Bureau employee consumption cooperative printing -30- 1306269 Λ7 B7 V. Invention description ς. 28 is provided with, for example, a mass flow controller (not shown) by which the gas flow rate of the back side gas is detected by the mass flow controller. The gas flow rate of the back side gas is made into a tracking data together with the gas pressure of the back side gas detected by the pressure gauge 15B. The above integrator 7A includes, for example, two variable capacitors C1, C2, a capacitor C, and a coil. L, impedance integration is obtained via variable capacitors C 1 , C 2 . The position of the variable capacitors C 1 and C 2 in the integrated state is made into tracking data. The integrator 7 A is provided with a power meter 7 a by which the voltage V d c between the supply line (wire) of the high-frequency power and the ground of the processing device 1 计 is measured. The voltage V d c between the high-frequency power supply line (wire) and the ground is made into tracking data. An electric measuring device (for example, a VI probe) 7 C is attached to the lower electrode 2 side of the integrator 7 A (the output side of the high-frequency voltage), via which the electric measuring device 7 C is applied to the lower electrode 2 The frequency power P is based on the fundamental wave of the plasma generated in the upper chamber 1 A (the wave of the high-frequency power and the reflected wave) and the high-frequency voltage V of the harmonic, the high-frequency current I, the high-frequency phase P, Impedance Z is used as electrical data detection. Among them, the wave of the high-frequency power and the reflected wave are made into tracking data. Further, the high frequency voltage V, the frequency current I, the local frequency phase P, and the impedance Z of the higher harmonics are made into V I probe data. An integrating portion 7b that accumulates the application time of the high-frequency power is connected between the high-frequency power source 7 and the power meter 7B. The cumulative time of application of the high frequency power detected by the accumulating portion 7b is also created as tracking data. The so-called application of this paper scale applies the Chinese National Standard (CNS) A4 specification (210X297 mm) (please read the back note on the front page and then fill out this page), 11 Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative print -31 - Ministry of Economic Affairs, Intellectual Property Bureau, Staff Consumer Cooperatives, Printing 1306269 Λ7 Β7 V. Invention Description L) The cumulative time is the cumulative time for applying high frequency power to the wafer W each time. The accumulating unit 7b resets the application time for resetting the high-frequency power by zero for each maintenance of the processing apparatus 1 。. Therefore, the cumulative application time of the high-frequency power referred to here is the cumulative application time until the next maintenance. The above-described maintenance can be used, for example, to remove wet cleaning, consumables, or measuring instrument exchanges such as by-products (e.g., particles) in the processing apparatus 1000 caused by etching. In the second embodiment, each time the wet cleaning is performed for resetting, the applied cumulative time is zero. Next, a block diagram of the multivariate analysis device 5 in the second embodiment is shown in Fig. 12. In the second embodiment, the operation data detected by each measuring device is divided into optical data, tracking data, and V I probe data. The optical data uses the luminescence spectral intensity of a wavelength range of, for example, 2 0 0 to 950 nm which is detected by the optical measuring device 20 described above. The tracking data is in addition to the temperature (upper electrode temperature T i , wall surface temperature Τ 2, lower electrode temperature T 3 ) in the processing chamber 1 described in the first embodiment, the pressure of the back side gas, and the output of the integrator 7 A. In addition to the information on the side of the frequency (RF voltage) V pp, the following information is added. Gas flow rate of C 5 F 8 gas and Ar gas to be treated gas, flow rate of back side gas, AP C opening degree by AP C valve 1 D, applied current of electrostatic chuck 8 and applied voltage, integrator 7 A The position of the variable capacitors C 1 and C 2 in the middle, the voltage V dc between the high-frequency power supply line and the ground in the integrator 7 A, the wave of the high-frequency power, and the reflected wave paper are only used in the Chinese national standard ( CNS ) A4 size (210X297 mm) ~~一-32- (Please read the note on the back and fill out this page again.) Book 1306269 at B7 V. Invention description) (Please read the notes on the back and fill out this page. ) The data and the cumulative time of application of high-frequency power are added to the tracking data. Further, the pressure and flow rate of the back side gas use, for example, the flow rate in the center and the edge of the wafer w. The V I probe data uses a high-frequency voltage V of a harmonic, a high-frequency current I, a high-frequency phase P, and an impedance. The process characteristic data uses the amount of wafer W removed. Specifically, the amount of dicing of the wafer W of the wafer W is etched (A/ mi η ) at the time of uranium etching of the CVD oxide film formed by, for example, CVD (Chemical Vapor Growth) on the surface of the wafer W. data. In the multivariate analysis device 50 according to the second embodiment, for example, optical data or the like is used as the explanatory variable, and the etching rate of the wafer W in which the processing result data is one of the process characteristic data is described as a variable (destination variable) The regression equation ((1) relational expression) described in the first embodiment described above is obtained using, for example, a multivariate analysis program for the PLS method. Then, the operation data is input to the regression equation obtained, and the etching rate of the wafer W is predicted. In the multivariate analysis processing unit 5 of the second embodiment, the multivariate analysis processing unit 54 of the second embodiment performs the multivariate analysis such as the calculation of the relational expression (regressive equation) of (1), and is used for the operational data. And processing the result data for pre-processing. The pre-processing is used, for example, to selectively perform any of 0 S C (Orthogonal Signal Correction), MSC (Multiplicative Signal Correction), and SNV (Standard Normal Variate Transformation). The pre-processing using the above 0 S C is generally a pre-processing of removing the unrelated component (component perpendicular to γ) from the objective variable Y by the explanatory variable X. In addition, the details of the pre-processing using the above 0 S C are disclosed, for example, in the paper scale applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) -33-1306269 at B7 V. Invention description k)

Wold,et al..( 1 99 8a), Orthogonal Signal Correction of Near-Infrared Spectra, Chemometrics and Intellegent Laboratory Systems, 44, 1 75- 1 8 5 ° 利用上述S N V的前處理一般爲了校正樣品(Sample )(此處爲每一晶圓W的運轉資料以及處理結果資料)的 誤差的影響,在每一樣品於資料方向進行基準化的前處理 。具體上,利用上述S NV的前處理是例如藉由標準偏差 基準化各樣品以進行補正。此外,對於利用上述S N V的 前處理的詳細例如揭示於Barnes, et al...(1989), Standard Normal Variate Transformation and De-trending on Near-Infrared Diffuse Reflectance Spectra, Applied Spectroscopy, 43, 772-777 ° 利用上述M S C的前處理一般爲由樣品藉由獲得理想 光譜,使樣品間的分散更小而進行補正的前處理。具體上 ,利用上述M S C的前處理是例如每一樣品在波長方向算 出平均(理想光譜),對各樣品算出與理想光譜的線性迴 歸直線。由線性迴歸直線得到的斜率與切片,補正各樣品 的資料。此外,對於利用上述S Ν V的前處理的詳細例如 揭不於 Gelad, et al..(1985), Linearization and Scatter-infrared Reflactance Spectra of Meat, Applied Spectroscopy 3, 491-500 ° 其次’說明第二處理裝置1 0 0的動作。若開始處理 裝置1 0 0的運轉的話,由光學計測器2 〇等的各測定器 間歇地檢測的檢測資料被逐次地輸入多變量解析裝置5 〇 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) (請先閲讀背面之注意事項再填寫本頁}Wold, et al.. (1 99 8a), Orthogonal Signal Correction of Near-Infrared Spectra, Chemometrics and Intellegent Laboratory Systems, 44, 1 75- 1 8 5 ° Pre-treatment with the above SNV is generally used to calibrate the sample (Sample) Here, the influence of the error of the operation data and the processing result data of each wafer W is performed before each sample is subjected to the reference in the data direction. Specifically, the pre-processing using the above S NV is to correct each sample by standard deviation, for example. Further, details of the pre-processing using the above SNV are disclosed, for example, in Barnes, et al... (1989), Standard Normal Variate Transformation and De-trending on Near-Infrared Diffuse Reflectance Spectra, Applied Spectroscopy, 43, 772-777 ° The pretreatment using the above MSC is generally a pretreatment for correcting the sample by obtaining a desired spectrum and making the dispersion between the samples smaller. Specifically, the pretreatment using the above M S C is, for example, that each sample is averaged in the wavelength direction (ideal spectrum), and a linear regression line with the ideal spectrum is calculated for each sample. The slope and slice obtained from the linear regression line are used to correct the data for each sample. In addition, the details of the pre-processing using the above S Ν V are not disclosed, for example, in Gelad, et al. (1985), Linearization and Scatter-infrared Reflactance Spectra of Meat, Applied Spectroscopy 3, 491-500 °. The operation of the processing device 100. When the operation of the processing device 100 is started, the detection data intermittently detected by each measuring device such as the optical measuring device 2 is sequentially input to the multivariable analyzing device 5. The paper size is applied to the Chinese National Standard (CNS) Α 4 specification. (210Χ297 mm) (Please read the notes on the back and fill out this page again)

、1T 經濟部智慧財產局員工消費合作社印製 -34- 1306269 A7 B7 五、發明説明(32 ) 。此處,蝕刻處理時的條件爲令處理室內的壓力5 0 m τ 、施加到下部電極的高頻功率爲1 5 0 〇w、處理氣體爲 C 5 F 8與〇 2與A r的混合氣體、背側氣體爲H e氣。 接著,經由多變量解析處理部5 4求出各個運轉資料 的每一各晶圓W的平均値。其次,在運轉資料儲存部5 1 儲存每一各晶圓W的各個運轉資料的平均値,或者原封不 動地準備到下一個處理。 然後,取出處理後的晶圓W,此晶圓W的C V D氧化 膜的蝕刻率由輸入輸出裝置6 0輸入到多變量解析裝置 5 0,此輸入値在處理結果資料儲存部5 2儲存作爲製程 特性資料。而且,不進行前處理或進行前處理後,求出利 用PLS法的迴歸式((1)的關係式)。 此處,晶圓W的處理片數與測定的蝕刻率的關係顯示 於圖1 3。在圖1 3中WC (濕式清洗循環)1爲到進行 第一次的處理裝置1 0 0的濕式清洗的區間,WC 2爲由 進行第一次的濕式清洗到進行第二次的濕式清洗爲止的區 間’ w C 3爲由進行第二次的濕式清洗到進行第三次的濕 式清洗爲止的區間,W C 4爲由進行第三次的濕式清洗到 進行第四次的濕式清洗爲止的區間, 上述運轉資料以及處理結果資料之中,根據濕式清洗 循環WC1 (第1片〜第16片)的資料,利用PLS法 求出迴歸式((1 )的關係式)的迴歸矩陣B以及餘差矩 陣E。而且,使用此式預測上述WC 1以及上述|(3 1以 外的WC2 (第17片〜第36片)、WC3 (第37片 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) ' _ -- (請先閲讀背面之注意事項再填寫本頁)1T Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printing -34- 1306269 A7 B7 V. Invention description (32). Here, the conditions at the time of the etching treatment are such that the pressure in the processing chamber is 50 m τ, the high-frequency power applied to the lower electrode is 150 〇w, and the processing gas is a mixed gas of C 5 F 8 and 〇 2 and A r . The back side gas is He gas. Next, the average value of each wafer W of each operation data is obtained by the multivariate analysis processing unit 54. Next, the operation data storage unit 5 1 stores the average value of each operation data of each wafer W, or prepares for the next process as it is. Then, the processed wafer W is taken out, and the etching rate of the CVD oxide film of the wafer W is input to the multivariate analysis device 50 by the input/output device 60, and the input is stored in the processing result data storage unit 52 as a process. Characteristic data. Further, after the pre-processing or the pre-processing, the regression equation using the PLS method (the relational expression of (1)) is obtained. Here, the relationship between the number of processed wafer W and the measured etching rate is shown in Fig. 13. In Fig. 13, WC (wet cleaning cycle) 1 is a section to the wet cleaning of the first processing apparatus 100, and WC 2 is performed by the first wet cleaning to the second time. The section 'w C 3 from the wet cleaning is the section from the second wet cleaning to the third wet cleaning, and the WC 4 is the third wet cleaning to the fourth In the section from the wet cleaning, the regression data ((1) relationship is obtained by the PLS method from the data of the wet cleaning cycle WC1 (the first to the 16th) in the operation data and the processing result data. The regression matrix B and the residual matrix E. Furthermore, using this formula, the above WC 1 and the above | (WC2 other than 3 1 (17th to 36th), WC3 (the 37th paper size applies to the Chinese National Standard (CNS) A4 specification (210X297 mm)) ' _ -- (Please read the notes on the back and fill out this page)

、ST .新 經濟部智慧財產局員工消費合作社印製 -35- 1306269 A7 B7 五、發明説明() 33 〜第47片)、WC4(第48片〜第52片)中的處理 結果資料的晶圓W的蝕刻率的資料。 (請先閲讀背面之注意事項再填寫本頁) 將晶圓W的蝕刻率的預測結果作成□記號的圖顯示於 圖14〜圖29的各圖(a)。這些各圖(a)之中,以 ◊記號表示的圖爲晶圓W的蝕刻率的資料的實測値。對於 圖1 4〜圖2 9的各圖(a )的實驗結果,分別算出預測 誤差(PE: Prediction Error)。此預測誤差P E是求出由 各晶圓的資料的實測値減去預測値的二次方的値的綜合, 除以處理該綜合的晶圓片數,求出其平方根。預測誤差 P E以〇最佳,此値越小表示實測値與預測値的誤差越少, ST. New Economy Ministry Intellectual Property Bureau employee consumption cooperative printing -35-1306269 A7 B7 V. Invention description () 33 ~ 47), WC4 (48th to 52nd) processing results data crystal Information on the etching rate of the circle W. (Please read the precautions on the back side and fill out this page.) A graph in which the prediction result of the etching rate of the wafer W is marked with a mark is shown in each of Figs. 14 to 29 (a). Among the figures (a), the graph indicated by the ◊ mark is the actual measurement of the data of the etching rate of the wafer W. The prediction error (PE: Prediction Error) was calculated for each of the experimental results of Fig. 14 to Fig. 29 (a). The prediction error P E is obtained by subtracting the square of the prediction 値 from the actual measurement of the data of each wafer, and dividing the number of wafers for processing the integration to obtain the square root. The prediction error P E is optimal, and the smaller the 値 is, the less the error between the measured 値 and the predicted 値

Q 畫出圖1 4〜圖2 9的各圖(a )所示的預測値與實 測値的關係所得的相關關係分別顯示於圖1 4〜圖2 9的 各圖(b)。對於圖14〜圖29的各圖(b)的實驗結 果求出相關係數R。相關係數R以1最佳,顯示此値越大 越有相關。因此,綜合起來上述預測誤差P E越接近◦且 相關係數R越接近1,預測精度越佳。 經濟部智慧財產局員工消費合作社印製 此外,對於上述實驗結果,因WC 1〜WC 4都以相 同蝕刻條件進行蝕刻,故在求出預測誤差P E、相關係數 時,使用到w C 1〜W C 4的資料。但是,對於以V I探 針資料爲說明變量的蝕刻率的實驗結果(圖1 7、圖2 1 、圖25、圖29),由實驗上的理由,因僅WC4與其 他的WC 1〜WC 3蝕刻率條件不同,故在求出圖1 7、 圖21、圖25、圖29的實驗結果中的預測誤差PE、 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -36- 1306269 A7 B7 五、發明説明ς,) 34 相關係數時,使用到W C 4的資料以外的W C 1〜W C 3 的資料。 (請先閲讀背面之注意事項再填寫本頁) 圖1 4〜圖1 7顯示不進行前處理進行利用P L S法 的多變量解析的情形的實驗結果。圖1 4爲令上述光學資 料爲說明變量的情形,圖1 5爲令上述光學資料以及上述 追蹤資料爲說明變量的情形。圖1 6爲令上述追蹤資料爲 說明變量的情形。圖1 7爲令上述V I探針資料爲說明變 量的情形。 圖1 8〜圖2 1顯示前處理在進行上述0 S C後,進 行利用P L S法的多變量解析的情形的實驗結果。圖1 8 爲令上述光學資料爲說明變量的情形,圖1 9爲令上述光 學資料以及上述追蹤資料爲說明變量的情形。圖2 0爲令 上述追蹤資料爲說明變量的情形,圖2 1爲令上述V I探 針資料爲說明變量的情形。 經濟部智慧財產局員工消費合作社印製 圖2 2〜圖2 5顯不即處理在進行上述SNV後,進 行利用P L S法的多變量解析的情形的實驗結果。圖2 2 爲令上述光學資料爲說明變量的情形,圖2 3爲令上述光 學資料以及上述追蹤資料爲說明變量的情形。圖2 4爲令 上述追蹤資料爲說明變量的情形,圖2 5爲令上述V I探 針資料爲說明變量的情形。 圖2 6〜圖2 9顯示前處理在進行上述MS C後,進 行利用P L S法的多變量解析的情形的實驗結果。圖2 6 爲令上述光學資料爲說明變量的情形,圖2 7爲令上述光 學資料以及上述追蹤資料爲說明變量的情形。圖2 8爲令 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -37- 1306269 B7 五 、發明説明ς5 ) 上述追蹤資料爲說明變量的情形,圖2 9爲令上述V〗探 針資料爲說明變量的情形。 (請先閱讀背面之注意事項再填寫本頁) 由上述圖1 4〜圖2 9的各圖(a )中的實驗結果求 出預測誤差P E整理於表者顯示於圖3 〇,由上述圖丄4 〜圖2 9的各ffl ( b )中的實驗結果求出相關係數R整理 於表者顯示於圖31。 由多變量解析所使用的資料的觀點從大局上看的話, 如果依照圖3 0,預測誤差p E在使用光學資料的情形最 大,依使用光學資料與追蹤資料的情形、使用v〗探針資 料的情形、使用追蹤資料的情形的順序而變小,使用追蹤 貝料的情形取小。再者’如果依照圖3丄,相關係數R在 使用光學資料的情形最小,依使用光學資料與追蹤資料的 情形、使用V丨探針資料的情形、使用追蹤資料的情形的 順序而變大,使用追蹤資料的情形最大。 經濟部智慧財產局員工消費合作社印製 因此,由多變量解析所使用的資料的觀點從大局上看 的話’得知預測精度依使用光學資料的情形、使用光學資 料與追縱資料的情形、使用V〗探針資料的情形 '使S追 蹤資料的情形的順序而提高,使用追蹤資料的情形預測= 度最佳,對於預測有效。 θ 本纸張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) 對於使用預測精度最佳的追蹤資料的情形,更由前處 理的有無或種類的觀點從大局上看的話,如果依照圖3 0 ’預測誤差Ρ Ε若去除〇 s C的情形’進行前處理的情形 比不進行前處理的情形小。而且,預測誤差Ρ Ε對於、'隹广 前處理的情形依0 S C、S Ν V、M s c的順序變小,前 -38 A7 B7 1306269 五、發明説明(^ ) (請先閲讀背面之注意事項再填寫本頁) 處理以進行M S C的情形最小。再者,如果依照圖3 1 , 相關係數R若去除0 S C的情形,進行前處理的情形比不 進行前處理的情形大。而且,相關係數R對於進行前處理 的情形依0 S C、S Ν V、M S C的順序變大,前處理以 進行M S C的情形最大。 因此,對於使用預測精度最佳的追蹤資料的情形,更 由前處理的有無或種類的觀點從大局上看的話,前處理若 去除進行0 S C,得知預測精度進行前處理的情形比不進 行前處理的情形佳,有效。再者,對於進行前處理的情形 依0 S C、S Ν V、M S C的順序預測精度變佳,前處理 以進行M S C的情形預測精度最佳,有效。 由以上對於預測晶圓W的蝕刻率,說明變量使用追蹤 資料進行多變量解析,然後在多變量解析之前,前處理以 進行M S C的情形預測精度最佳,最有效。 經濟部智慧財產局員工消費合作社印製 此處,檢討上述追蹤資料之中的哪一種類的資料最影 響預測結果呢。對於追蹤資料中的各種類的資料,求出對 預測結果的影響變數V I P (Variable Influenceon Projection)作成表者顯示於圖3 2。影響變數V I P是 顯示預料目的變數Y時的每一各說明變數X的影響的大小 。例如令a爲分量(Component) 、R爲負荷向量、W爲 權衡向量(Weight vector) 、R2 y爲Υ的相關係數的舌舌 ,以規格化上述影響變數V I P (W〔 a〕的二次方)X (R 2 y 〔 a〕)的各分量的總和表示。 如果依照圖3 2,影響變數V I P其整合器7A的輸 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -39- 1306269 at B7 五、發明説明(q7 ) 出側的高頻電壓(RF電壓)v p p最大’其次’高頻功 率的施加累計時間大。因此’得知高頻電壓v p P與高頻 功率的施加累計時間大大地影響預測結果。 因此,若由追縱資料去除筒頻電壓V P P、尚頻功率 的施加累計時間,進行多變量解析預測晶圓w的蝕刻率的 話,可得到像圖3 3〜圖3 5所示的實驗結果。在圖3 3 〜圖3 5的各圖(a ) ’以□記號的圖表示晶圓W的蝕刻 率的預測結果。 這些各圖(a )之中’以◊記號表示的圖爲晶圓w的 鈾刻率的資料的實測値。畫出圖3 3〜圖3 5的各圖(a )所示的預測値與實測値的關係所得到的相關關係分別顯 示於圖3 3〜圖3 5的各圖(b)。 圖3 3爲使用由追蹤資料僅去除高頻電壓Vp p的資 料的情形,圖3 4爲使用由追蹤資料僅去除高頻功率的施 加累計時間的資料的情形’圖3 5爲使用由追蹤資料僅去 除高頻電壓V P P與高頻功率的施加累計時間的資料的情 形。 對於圖3 3〜圖3 5的各圖(a )的實驗結果,若分 別算出預測誤差P E的話爲4 9 · 7 A/ m 1 η、 55 ’ 1 A/mi η、66 · 3 A/mi η。此處若比較 使用上述追蹤資料的所有的資料的情形(圖1 6 ( a )) 的預測誤差4 3 · 7 A/m i η的話,得知預測誤差在圖 3 3〜圖3 5 ( a )的任意情形也都比圖1 6 ( a )的情 形還大。 本紙張尺度適用中國國家標準(CNS )八4規格(21〇X29?公楚〉 (請先閲讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 -40- 1306269 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明() 〇〇 其次對於圖3 3〜圖3 5的各圖(b )的實驗結果 ,若分別算出相關係數R的話爲0 · 82、〇 . 83、 〇 . 5 7。此處,若比較使用上述追蹤資料的所有的營料 的情形(圖1 6 ( b ))的相關係數0 . 9 〇的話,得知 相關係數在圖3 3〜圖3 5 ( b )的任意情形也都比圖 1 6 ( b )的情形還小。 因此,使用僅去除筒頻電壓v p P的追縱資料的情开多 (圖3 3 );使用僅去除高頻功率的施加累計時間的追_ 資料的情形(圖3 4):使用去除高頻電壓vpp與高頻 功率的施加累計時間的追蹤資料的情形(圖3 6 )的任一 情形都可確認預測精度比使用追蹤資料的所有資料的情形 is低。而且,去除筒頻電壓V p p與高頻功率的施加旱計 時間的情形預測精度最差也可確認。 因此,當預測晶圓W的鈾刻率時,追縱資料至少具有 高頻電壓V p p爲有效,再者具有高頻功率的施加累計時 間更佳。 如以上的說明如果依照第二實施形態,收集處理像一 個濕式循環(W C )的晶圓的少數的測試晶圓時的運轉資 料以及處理結果資料(例如製程特性資料),根據這些收 集資料群(運轉資料以及處理結果資料)進行多變量解析 ’經由此多變量解析求出運轉資料與處理結果資料的相關 關係’根據此相關關係用以預測像晶圓的削去量(例如触 刻率)的晶圓W的處理結果(例如製程特性),在實際處 理晶圓W時,僅藉由求出晶圓w的運轉資料,可高精度地 (請先閲讀背面之注意事項再填寫本頁) — 訂 辦 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -41 - 1306269 Λ7 B7 五、發明説明ς。) 預測晶圚W的削去量(例如蝕刻率)當作製程特性。而且 ,在進行多變量解析求出運轉資料與處理結果資料的相關 關係時,因使用P L S法故可以短時間有效地求出迴歸式 (1 ) ° 因此,如果依照第二實施形態,無須如習知製作許多 測試晶圓,或使用處理裝置1 0處理許多測試晶圓,以測 定各個處理結果,對測試晶圓的製作以及處理結果的測定 無須騰出許多工數與時間。而且,可比習知的預測方法還 高精度地預測處理結果。 再者,如果依照第二實施形態,藉由對在第一實施形 態使用的資料更追加高頻電壓V p P、包含高頻功率的施 加累計時間的追蹤資料、光學資料、V I探針資料等對製 程特性資料容易影響的資料當作運轉資料,可更提高製程 特性資料的預測精度。 特別是藉由使用包含對當作製程特性資料的晶圓W的 削去量(例如蝕刻率)容易影響的高頻電壓V p p、高頻 功率的施加累計時間的追蹤資料,可更提高晶圓W的削去 量的預測精度。 而且,在進行多變量解析前,藉由進行預定的前處理 ,可更提高製程特性資料的預測精度。 而且,製程特性資料因採用晶圓W的蝕刻率,故可高 精度地預測利用蝕刻的晶圓W的鈾刻率的好壞。 如上述即使以光學資料或V I探針資料作爲運轉資料 使用預測精度也能提高。但是,在例如如在進行圖1 3所 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) 訂 經濟部智慧財產局員工消費合作社印製 -42- 1306269 A7 _ B7 五、發明説明() 40 (請先聞讀背面之注意事項再填寫本頁) 示的濕式循環等的維修保養前後,製程特性資料(例如飽 刻率)的傾向大大地變化的情形,有預測精度降低的情形 。例如在圖1 4、圖1 7作成利用多變量解析的迴歸式( 模型)的濕式清洗循環(WC 1 )以外的濕式清洗循環( w C 3 ),預測精度降低。此點,若以包含高頻電壓 v P P、高頻功率的施加累計時間的追蹤資料作爲運轉資 料使用的話,如圖1 6所示在所有的濕式清洗循環( 〜WC4)中,可提高預測精度。 特別是對於追蹤資料的高頻功率的施加累計時間,因 例如每次進行濕式清洗等的維修保養都使施加累計時間爲 零’故可得到每一濕式清洗循環的施加累計時間的資料。 因此,若以高頻功率的施加累計時間當作運轉資料使用的 話’即使是藉由進行濕式清洗,像傾向改變的處理結果資 料也能以高精度進行預測。 經濟部智慧財產局員工消費合作社印製 如此如果依照本發明,可提供僅藉由收集處理少數的 試樣而獲得的少數運轉資料以及製程特性資料,可求出製 程特性的預測式,然後僅將處理被處理體時的運轉資料套 入預測式,可簡單且高精度地預測製程特性的處理結果的 預測方法。 以上根據發明的實施形態具體地說明了由本發明者所 創作的發明,惟本發明並非限定於前述發明的實施形態, 當然在不脫離其要旨的範圍熟習該項技術者可進行種種的 變更。對於這些變更例以及修正例,可了解爲屬於本發明 的技術範圍。 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -43- 1306269 at B7 五、發明説明(41 ) (請先閲讀背面之注意事項再填寫本頁) 例如在上述第二實施形態處理資料作爲製程特性資料 使用,此製程特性資料雖然使用晶圓w的削去量(例如餓 刻率),惟其他的製程特性資料使用顯示蝕刻圖案的線寬 或錐角等的蝕刻特性的資料也可以。 而且’在上述第一以及第二實施形態中的處理結果資 料使用與處理室內的副生成物的膜厚、聚磁環 1 〇 a等的零件的消耗量等的裝置狀態有關的裝置狀態資 料也可以。藉由以副生成物的膜厚、聚磁環1 〇 a等的零 件的消耗量當作裝置狀態資料使用,可預測處理裝置1 ◦ 的清洗時期或聚磁環1 0 a等的零件的交換時期。 而且,在上述第一以及第二實施形態雖然說明蝕刻處 理晶圓W的情形,惟蝕刻處理以外的成膜處理等的處理裝 置也可適用於本發明。而且,並未限制於被處理體的晶圓 〇 經濟部智慧財產局員工消費合作社印製 而且.,在上述第一以及第二實施形態雖然在進行多變 量解析時使用PLS法求出迴歸式(1),惟使用PLS 法以外的其他習知公知的數値計算手法(例如次方乘法等 )求出固有値及其固有向量也可以。 【產業上的可利用性】 本發明可適用於例如預測以半導體製造裝置處理的晶 圓等的被處理體或裝置狀態的處理結果的方法以及處理裝 置,特別是可適用於進行電漿蝕刻的電漿處理裝置以及這 種裝置中的處理結果的預測方法。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -44 -Q The relationship between the predicted 値 and the measured 値 shown in each of the graphs (a) of Figs. 14 to 2 is shown in Fig. 14 to Fig. 29 (b). The correlation coefficient R was obtained for the experimental results of each of Fig. 14 to Fig. 29 (b). The correlation coefficient R is optimal at 1, indicating that the larger the 値 is, the more relevant it is. Therefore, the closer the above prediction error P E is to ◦ and the closer the correlation coefficient R is to 1, the better the prediction accuracy. In addition, for the above experimental results, since WC 1 to WC 4 are etched under the same etching conditions, the prediction error PE and correlation coefficient are used, and w C 1 to WC are used. 4 information. However, the experimental results of the etch rate using the VI probe data as explanatory variables (Fig. 17.7, Fig. 2, Fig. 25, Fig. 29) are for experimental reasons, since only WC4 and other WC 1 to WC 3 Since the etching rate conditions are different, the prediction error PE in the experimental results of Fig. 17, Fig. 21, Fig. 25, Fig. 29 is obtained, and the paper size is applied to the Chinese National Standard (CNS) A4 specification (210X297 mm) -36- 1306269 A7 B7 V. Description of invention ς,) 34 For the correlation coefficient, use WC 1 to WC 3 data other than WC 4 data. (Please read the precautions on the back and fill out this page.) Figure 1 4 to Figure 1 7 shows the experimental results in the case of multivariate analysis using the P L S method without pre-processing. Fig. 14 is a case where the above optical material is an explanatory variable, and Fig. 15 is a case where the above optical data and the above-mentioned tracking data are explanatory variables. Figure 16 is the case where the above tracking data is used as an explanatory variable. Fig. 17 is a view showing the above V I probe data as a description of the variables. Fig. 18 to Fig. 2 1 show experimental results of the case where the pre-processing performs the multivariate analysis by the P L S method after the above 0 S C is performed. Fig. 18 is a case where the above optical data is used as an explanatory variable, and Fig. 19 is a case where the above optical data and the above-mentioned tracking data are explanatory variables. Fig. 20 is a case where the above tracking data is an explanatory variable, and Fig. 21 is a case where the above V I probe data is an explanatory variable. Printed by the Intellectual Property Office of the Ministry of Economic Affairs, the Consumers' Cooperatives. Figure 2 2 to Figure 2 shows the experimental results of the multivariate analysis using the P L S method after the above SNV is performed. Fig. 2 2 shows the case where the above optical data is used as an explanatory variable, and Fig. 23 is a case where the above optical data and the above-mentioned tracking data are explanatory variables. Fig. 24 shows the case where the above tracking data is an explanatory variable, and Fig. 25 shows a case where the above V I probe data is an explanatory variable. Fig. 26 to Fig. 2 show experimental results of the case where the pre-processing performs the multivariate analysis by the P L S method after performing the above MS C. Fig. 26 is a case where the above optical data is used as an explanatory variable, and Fig. 27 is a case where the above optical data and the above-mentioned tracking data are explanatory variables. Figure 2 8 is to make the paper scale applicable to China National Standard (CNS) A4 specification (210X297 mm) -37-1306269 B7 V. Invention description ς5) The above tracking data is for the case of explanatory variables, and Figure 29 is for the above V The probe data is the case of the variable. (Please read the precautions on the back and fill out this page.) From the experimental results in each of the above figures (a) of Figure 14 to Figure 2, the prediction error PE is found in the table shown in Figure 3, from the above figure. The experimental results obtained in the respective ffl (b) of 丄4 to Fig. 2 9 are obtained by the correlation coefficient R and are shown in Fig. 31. From the point of view of the data used in multivariate analysis, if the prediction error p E is the largest in the case of using optical data according to Fig. 30, the use of optical data and tracking data, using the v probe information The situation is small in the order in which the tracking data is used, and the situation in which the tracking material is used is small. Furthermore, 'according to Fig. 3, the correlation coefficient R is the smallest in the case of using optical data, and becomes larger depending on the case of using optical data and tracking data, the case of using V丨 probe data, and the order of using tracking data. The most common use of tracking data. The Ministry of Economic Affairs, the Intellectual Property Office, and the Employees' Cooperatives are printed. Therefore, the viewpoints of the data used in the multivariate analysis are based on the overall situation. 'The prediction accuracy depends on the use of optical data, the use of optical data and the tracking of data, and the use. V. The case of the probe data 'increased the order of the S tracking data. The prediction using the tracking data = the best, and is valid for the prediction. θ This paper scale applies to the Chinese National Standard (CNS) Α4 specification (210X297 mm). For the case of using the tracking data with the best prediction accuracy, it is more important from the perspective of the overall situation. 3 0 'Predictive error Ρ Ε If 〇 s C is removed, the case of pre-processing is smaller than the case where pre-processing is not performed. Moreover, the prediction error Ρ Ε for the case of '隹广前” is smaller in the order of 0 SC, S Ν V, M sc, pre-38 A7 B7 1306269 V. Invention description (^) (Please read the back of the note first) Matters refilling this page) The situation is minimal when dealing with MSCs. Further, if the correlation coefficient R is removed in the case of 0 S C according to Fig. 31, the case where the pre-processing is performed is larger than the case where the pre-processing is not performed. Further, the correlation coefficient R becomes larger in the order of 0 S C, S Ν V, and M S C for the pre-processing, and the pre-processing is the largest in the case of performing M S C . Therefore, in the case of using the tracking data having the best prediction accuracy, the viewpoint of the presence or absence of the pre-processing or the type of the pre-processing, if the pre-processing is removed and the 0 SC is performed, it is better than the case where the prediction accuracy is pre-processed. The pre-processing situation is good and effective. Furthermore, in the case of pre-processing, the prediction accuracy is better in the order of 0 S C, S Ν V, and M S C , and the pre-processing is optimal for the prediction accuracy of the M S C case. From the above, for the etch rate of the predicted wafer W, it is explained that the variable uses the tracking data for multivariate analysis, and then before the multivariate analysis, the pre-processing is optimal for the prediction of the M S C and is most effective. Printed by the Intellectual Property Office of the Ministry of Economic Affairs, the Consumer Cooperatives. Here, which of the above-mentioned tracking data is reviewed most affects the forecast results. For the various types of data in the tracking data, the influence variable V I P (Variable Influenceon Projection) for the prediction result is shown in Fig. 3 . The influence variable V I P is the magnitude of the influence of each explanatory variable X when the expected purpose variable Y is displayed. For example, let a be the component (Component), R be the load vector, W be the trade-off vector (Weight vector), and R2 y be the correlation coefficient of Υ, to normalize the quadratic of the influence variable VIP (W[ a] The sum of the components of X (R 2 y [ a ]) is expressed. According to Figure 3 2, the paper size of the integrator 7A affecting the variable VIP is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) -39-1306269 at B7 V. Invention Description (q7) The voltage (RF voltage) vpp is maximum 'second' and the application time of the high frequency power is large. Therefore, it is known that the application time of the high-frequency voltage v p P and the high-frequency power greatly affects the prediction result. Therefore, if the cumulative frequency of the tube frequency voltage V P P and the application frequency of the remaining frequency is removed from the tracking data, and the etching rate of the wafer w is multivariate-analyzed, the experimental results shown in Figs. 33 to 35 can be obtained. The results of the prediction of the etching rate of the wafer W are shown by the □ mark in each of the figures (a) of Figs. 3 to 35. The figure indicated by the ◊ mark in each of the figures (a) is the actual measurement of the uranium engraving rate of the wafer w. The correlations between the predicted enthalpy and the actual measured enthalpy shown in each of the graphs (a) of Figs. 3 3 to 3 are shown in Fig. 33 to Fig. 35 (b). FIG. 3 is a case where only the data of the high-frequency voltage Vp p is removed by the tracking data, and FIG. 34 is a case where only the data of the applied cumulative time of the high-frequency power is removed by the tracking data. FIG. 35 is the use of the tracking data. Only the case of the data of the cumulative time of application of the high-frequency voltage VPP and the high-frequency power is removed. For the experimental results of each of the graphs (a) of FIG. 3 to FIG. 3, if the prediction error PE is calculated separately, it is 4 9 · 7 A/ m 1 η, 55 ' 1 A/mi η, 66 · 3 A/mi. η. Here, if the prediction error of 4 3 · 7 A/mi η is used for comparing all the data of the above-mentioned tracking data (Fig. 16 ( a )), it is known that the prediction error is in Fig. 3 3 to Fig. 5 (a). Any situation is also greater than in the case of Figure 16 (a). This paper scale applies to China National Standard (CNS) VIII 4 specifications (21〇X29? 公楚) (please read the note on the back and fill out this page). The Ministry of Economic Affairs, Intellectual Property Bureau, Staff Consumer Cooperative Printed -40- 1306269 A7 B7 Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printing 5, invention description () 〇〇 Next, for the experimental results of each figure (b) of Figure 3 3 to Figure 3, if the correlation coefficient R is calculated separately, it is 0 · 82, 〇. 83, 〇. 5 7. Here, if the correlation coefficient of the case of all the materials of the above-mentioned tracking data (Fig. 16 (b)) is compared with 0.9 〇, the correlation coefficient is found in Fig. 3 3 ~ Figure 3 5 (b) is also smaller than the case of Figure 16 (b). Therefore, the use of only the removal of the tube frequency voltage vp P of the tracking data is more open (Figure 3 3); use only The case where the tracking data of the application time of the high-frequency power is removed (Fig. 34): Any case where the tracking data of the high-frequency voltage vpp and the application time of the high-frequency power is removed (Fig. 36) can be used. It is confirmed that the prediction accuracy is lower than the case where all the data of the tracking data is used. It is also confirmed that the prediction accuracy of the tube frequency V pp and the high frequency power is the worst. Therefore, when predicting the uranium engraving rate of the wafer W, the tracking data has at least the high frequency voltage V pp effective. Further, it is preferable to apply the accumulated time of the high-frequency power. As described above, according to the second embodiment, the operation data and processing when processing a small number of test wafers like a wet-cycle (WC) wafer are collected. The result data (for example, the process characteristic data) is subjected to multivariate analysis based on the collected data group (operation data and processing result data). The correlation between the operation data and the processing result data is obtained by the multivariate analysis. Predicting the processing result (for example, process characteristics) of the wafer W such as the amount of wafer removal (for example, the etch rate), when the wafer W is actually processed, the operation data of the wafer w can be obtained only by high precision. Ground (please read the notes on the back and fill out this page) — Book the paper size for the Chinese National Standard (CNS) A4 specification (210X297 mm) -41 - 13062 69 Λ7 B7 V. Inventive Note ς.) Predict the amount of chipping of the wafer W (for example, etching rate) as the process characteristic. Further, when the correlation between the operation data and the processing result data is obtained by multivariate analysis, the regression equation (1) can be efficiently obtained in a short time by using the PLS method. Therefore, according to the second embodiment, it is not necessary to It is known that many test wafers are produced, or a plurality of test wafers are processed by the processing device 10 to determine the respective processing results, and it is not necessary to make a lot of work and time for the fabrication of the test wafer and the measurement of the processing results. Moreover, the processing result can be predicted with high precision than the conventional prediction method. According to the second embodiment, the high-frequency voltage V p P and the tracking data including the application time of the high-frequency power, the optical data, the VI probe data, and the like are added to the data used in the first embodiment. As the operational data, the data that is easy to influence the process characteristic data can improve the prediction accuracy of the process characteristic data. In particular, the wafer can be further improved by using a trace data of a high-frequency voltage V pp and an application time of application of high-frequency power which are easily affected by the amount of chip removal (for example, etching rate) of the wafer W as a process characteristic data. The prediction accuracy of the amount of W cut. Further, before performing multivariate analysis, the prediction accuracy of the process characteristic data can be further improved by performing predetermined pre-processing. Further, since the process characteristic data uses the etching rate of the wafer W, it is possible to accurately predict the uranium engraving rate of the wafer W to be etched. As described above, even if optical data or V I probe data is used as the operation data, the prediction accuracy can be improved. However, for example, the Chinese National Standard (CNS) A4 specification (210X297 mm) is applied to the paper scale as shown in Figure 13. (Please read the note on the back and fill out this page.) Co-operative printing -42- 1306269 A7 _ B7 V. Invention description () 40 (Please read the precautions on the back and fill out this page.) Before and after maintenance such as wet cycle, process characteristics data (such as saturation rate) In the case where the tendency of the change greatly changes, there is a case where the prediction accuracy is lowered. For example, in FIG. 14 and FIG. 17, a wet cleaning cycle (w C 3 ) other than the wet cleaning cycle (WC 1 ) of the regression equation (model) using multivariate analysis is performed, and the prediction accuracy is lowered. At this point, if the tracking data including the high-frequency voltage v PP and the application cumulative time of the high-frequency power is used as the operation data, the prediction can be improved in all the wet cleaning cycles (~WC4) as shown in Fig. 16. Precision. In particular, the cumulative time of application of the high-frequency power of the tracking data is obtained by, for example, performing maintenance such as wet cleaning, so that the cumulative application time is zero, so that the cumulative time of application of each wet cleaning cycle can be obtained. Therefore, if the cumulative time of application of the high-frequency power is used as the operation data, even if the wet cleaning is performed, the processing result information of the tendency change can be predicted with high precision. According to the present invention, a small amount of operational data and process characteristic data obtained by collecting only a small number of samples can be provided, and a predictive formula of process characteristics can be obtained, and then only The operation data when the object to be processed is processed is inserted into the prediction formula, and the prediction method of the processing result of the process characteristic can be predicted simply and accurately. The invention made by the inventors of the present invention is specifically described above, but the invention is not limited to the embodiments of the invention, and various modifications may be made without departing from the spirit and scope of the invention. These modifications and modifications are understood to fall within the technical scope of the present invention. This paper scale applies to China National Standard (CNS) A4 specification (210X297 mm) -43- 1306269 at B7 V. Invention description (41) (Please read the note on the back and fill in this page) For example, in the second implementation above The morphological processing data is used as the process characteristic data. Although the process characteristic data uses the amount of dicing of the wafer w (for example, the etch rate), other process characteristic data uses etching characteristics such as line width or taper angle of the etch pattern. Information is also available. In addition, the device state data relating to the device state such as the film thickness of the by-product in the processing chamber and the consumption amount of the component such as the magnetism ring 1 〇a is also used in the processing result data in the above-described first and second embodiments. can. By using the film thickness of the by-product, the amount of consumption of the component such as the magnetism ring 1 〇a as the device state data, it is possible to predict the cleaning period of the processing device 1 或 or the exchange of parts such as the magnetism ring 10 a. period. Further, in the first and second embodiments, the case where the wafer W is processed by etching is described, but a processing apparatus such as a film forming process other than the etching process can be applied to the present invention. Further, it is not limited to the wafer 〇 economic department of the object to be processed, and is printed by the Intellectual Property Office of the Intellectual Property Office. In the first and second embodiments, the multi-variable analysis is performed using the PLS method to obtain the regression equation ( 1) However, it is also possible to obtain the intrinsic enthalpy and its eigenvector by using a conventionally known number calculation method other than the PLS method (for example, a power multiplication method or the like). [Industrial Applicability] The present invention is applicable to, for example, a method and a processing apparatus for predicting a processing result of a processed object or a device state such as a wafer processed by a semiconductor manufacturing apparatus, and is particularly applicable to plasma etching. A plasma processing apparatus and a method of predicting the processing results in such a device. This paper scale applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) -44 -

Claims (1)

1306269 A8 B8 C8 D8 六、申請專利範圍1 1、 一種處理結果的預測方法,係在電漿處理裝置的 處理室內以電漿處理被處理體的過程,根據該電漿處理裝 置的運轉資料與處理結果資料預測處理結果的方法,其特 徵爲具有: 收集該運轉資料以及該處理結果資料的步驟; 根據收集的該運轉資料以及該處理結果資料,進行多 變量解析的步驟; 經由該多變量解析,求出該運轉資料與該處理結果資 料的相關關係的步驟;以及 根據該相關關係,使用處理獲得該相關關係的被處理 體以外的該被處理體時的運轉資料,預測處理結果的步 驟; 該運轉資料包含:配設於該處理室內,用於載置該 被處理體的載置台的溫度資料。 2、 如申請專利範圍第1項所述之處理結果的預測方 法,其中該運轉資料更包含供給於該被處理體與該載置 台之間的背氣體壓力的資料。 經濟部智慧財產局員工消費合作社印製 3、 如申請專利範圍第1項所述之處理結果的預測方 法,其中該運轉資料更包含供給於該被處理體與該載置 台之間的背氣體壓力的標準偏差的資料。 4、 如申請專利範圍第1項所述之處理結果的預測方 法,其中該運轉資料更包含供給於該被處理體與該載置 台之間的背氣體壓力的被處理體的面內壓力差的資料。 5、 一種處理結果的預測方法,係在電漿處理裝置的 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 1306269 A8 B8 C8 D8 六、申請專利範圍2 處理室內以電漿處理被處理體的過程,根據該電漿處理裝 置的運轉資料與處理結果資料預測處理結果的方法,其特 徵爲具有: 收集該運轉資料以及該處理結果資料的步驟; 根據收集的該運轉資料以及該處理結果資料,進行多 變量解析的步驟; 經由該多變量解析,求出該運轉資料與該處理結果資 料的相關關係的步驟;以及 根據該相關關係,使用處理獲得該相關關係的被處理 體以外的該被處理體時的運轉資料,預測處理結果的步 驟; 該運轉資料至少包含:高頻電源之累計動作時間資 料,俾於該處理室內產生處理氣體之電漿。 6、 如申請專利範圍第5項所述之處理結果的預測方 法,其中該高頻電源的累計動作時間,係在每次進行該處 理室的維修保養時重設成零。 經濟部智慧財產局員工消費合作社印製 7、 一種處理裝置,係在處理室內以電漿處理被處理 體的過程,根據運轉資料與處理結果資料預測處理結果的 處理裝置,其特徵爲具備: 儲存該運轉資料的機構; 儲存該處理結果資料的機構; 根據儲存的該運轉資料以及該處理結果資料,進行多 變量解析的機構; 經由該多變量解析,求出該運轉資料與該處理結果資 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -46- 1306269 A8 B8 C8 D8 六、申請專利範圍3 料的相關關係的機構; 儲存求出的該相關關係的機構;以及 根據儲存的該相關關係’使用處理獲得該相關關係的 被處理體以外的該被處理體時的運轉資料,預測處理結果 的機構; 該運轉資料包含:配設於該處理室內,用於載置該被 處理體的載置台的溫度資料。 8、 如申請專利範圍第7項所述之處理裝置,其中該 運轉資料更包含:供給於該被處理體與該載置台之間的背 氣體壓力的資料。 9、 如申請專利範圍第7項所述之處理裝置,其中該 運轉資料更包含:供給於該被處理體與該載置台之間的背 氣體壓力的標準偏差的資料。 1 0、如申請專利範圍第7項所述之處理裝置,其中 該運轉資料更包含:供給於該被處理體與該載置台之間的 背氣體壓力的被處理體的面內壓力差的資料。 經濟部智慧財產局員工消費合作社印製 1 1、一種處理裝置’係在處理室內以電漿處理被處 理體的過程,根據運轉資料與處理結果資料預測處理結果 的處理裝置,其特徵爲具備: 儲存該運轉資料的機構; 儲存該處理結果資料的機構; 根據儲存的該運轉資料以及該處理結果資料,進行多 變量解析的機構; 經由該多變量解析’求出該運轉資料與該處理結果資 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -47- 1306269 經濟部智慧財產局員工消費合作社印製 A8 B8 C8 D8 六、申請專利範圍4 料的相關關係的機構; 儲存求出的該相關關係之機構;及 根據儲存之該相關關係’使用獲得該相關關係的被處 理體以外之被處理體之處理時的運轉資料,來預測處理結 果的機構; 該運轉資料至少包含:高頻電源之累計動作時間資料 俾於該處理室內產生處理氣體之電漿。 1 2、如申請專利範圍第1 1項所述之處理裝置,其 中該高頻電源的累計動作時間,係在每次進行該處理室的 維修保養時進行重設成零。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -48 -1306269 A8 B8 C8 D8 VI. Patent Application Range 1 1. A method for predicting the processing result is a process of treating a treated object by plasma in a processing chamber of a plasma processing apparatus, according to the operation data and processing of the plasma processing apparatus a method for predicting a result of processing a data, comprising: a step of collecting the operation data and the processing result data; and performing a multivariate analysis step according to the collected operation data and the processing result data; a step of determining a correlation between the operation data and the processing result data; and a step of predicting a processing result by using an operation data when the processing target other than the object to be processed is obtained by the processing according to the correlation relationship; The operation data includes temperature data that is disposed in the processing chamber and that is used to mount the workpiece of the object to be processed. 2. A method of predicting a result of processing as described in claim 1 wherein the operational data further comprises information on a back gas pressure supplied between the object to be processed and the stage. Printed by the Intellectual Property Office of the Ministry of Economic Affairs, Employees' Consumption Cooperatives 3. The method for predicting the processing results as described in item 1 of the patent application scope, wherein the operational data further includes back gas pressure supplied between the object to be processed and the stage Information on the standard deviation. 4. The method of predicting a processing result according to claim 1, wherein the operation data further comprises an in-plane pressure difference of the object to be treated supplied to the back gas pressure between the object to be processed and the stage. data. 5. A method for predicting the processing results is applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm) in the paper scale of the plasma processing device. 1306269 A8 B8 C8 D8 VI. Patent application scope 2 Processing chamber with plasma treatment The process of the object to be processed, the method for predicting the processing result based on the operation data of the plasma processing device and the processing result data, characterized in that: the step of collecting the operation data and the processing result data; according to the collected operation data and the a step of processing the result data to perform multivariate analysis; a step of obtaining a correlation between the operation data and the processing result data by the multivariate analysis; and, according to the correlation, using the processing to obtain the correlation relationship The operation data of the object to be processed and the step of predicting the processing result; the operation data includes at least the accumulated operation time data of the high frequency power source, and the plasma of the processing gas is generated in the processing chamber. 6. A method of predicting the processing result as set forth in claim 5, wherein the cumulative operating time of the high frequency power source is reset to zero each time the maintenance of the processing room is performed. Printed by the Ministry of Economic Affairs, the Intellectual Property Bureau, and the Consumer Cooperatives. 7. A processing device, which is a process for processing a processed object by plasma in a processing chamber, and a processing device for predicting the processing result based on the operating data and the processing result data, and is characterized by: a mechanism for storing the processing data; a mechanism for storing the processing result data; performing a multivariate analysis mechanism based on the stored operation data and the processing result data; and obtaining the operation data and the processing result capital paper by the multivariate analysis The scale applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) -46- 1306269 A8 B8 C8 D8 6. The organization that applies for the patent related scope 3; the organization that stores the relevant relationship; and according to the storage The correlation relationship 'a mechanism for predicting a processing result using an operation data when the object to be processed other than the object to be processed is obtained, and the operation data includes: being disposed in the processing chamber for placing the processed Temperature data of the mounting table of the body. 8. The processing apparatus of claim 7, wherein the operational data further comprises: information on a back gas pressure supplied between the object to be processed and the stage. 9. The processing apparatus of claim 7, wherein the operational data further comprises: information on a standard deviation of back gas pressure supplied between the object to be processed and the stage. The processing device according to claim 7, wherein the operation data further includes: a data of an in-plane pressure difference of the object to be treated supplied to the back gas pressure between the object to be processed and the stage . Ministry of Economic Affairs, Intellectual Property Office, Staff and Consumer Cooperatives Printing 1 1. A processing device is a processing device that processes a processed object by plasma in a processing chamber, and predicts a processing result based on the operating data and the processing result data, and is characterized by: a mechanism for storing the operation data; a mechanism for storing the processing result data; a mechanism for performing multivariate analysis based on the stored operation data and the processing result data; and obtaining the operation data and the processing result capital by the multivariate analysis The paper scale applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) -47- 1306269 Ministry of Economic Affairs Intellectual Property Bureau employee consumption cooperative printed A8 B8 C8 D8 6. The organization that applies for the patent relationship 4; And a mechanism for predicting the processing result according to the stored relationship data of the processed object other than the object to be processed that obtains the correlation relationship; the operation data includes at least: The accumulated operating time data of the frequency power supply is in the processing room Health plasma processing gases. 1. The processing apparatus according to claim 1, wherein the cumulative operation time of the high-frequency power source is reset to zero each time the maintenance of the processing chamber is performed. This paper scale applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) -48 -
TW91113908A 2001-06-27 2002-06-25 TWI306269B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001194762 2001-06-27

Publications (1)

Publication Number Publication Date
TWI306269B true TWI306269B (en) 2009-02-11

Family

ID=19032842

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91113908A TWI306269B (en) 2001-06-27 2002-06-25

Country Status (3)

Country Link
JP (1) JP4220378B2 (en)
TW (1) TWI306269B (en)
WO (1) WO2003003437A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6616759B2 (en) 2001-09-06 2003-09-09 Hitachi, Ltd. Method of monitoring and/or controlling a semiconductor manufacturing apparatus and a system therefor
WO2003098677A1 (en) 2002-05-16 2003-11-27 Tokyo Electron Limited Method of predicting processing device condition or processed result
JP4363861B2 (en) * 2003-02-04 2009-11-11 株式会社日立ハイテクノロジーズ Semiconductor manufacturing equipment
JP4707421B2 (en) * 2005-03-14 2011-06-22 東京エレクトロン株式会社 Processing apparatus, consumable part management method for processing apparatus, processing system, and consumable part management method for processing system
US7291285B2 (en) * 2005-05-10 2007-11-06 International Business Machines Corporation Method and system for line-dimension control of an etch process
KR101286240B1 (en) 2007-10-23 2013-07-15 삼성전자주식회사 Prognostic System Of Process Parameter Predicting Shape Of Semiconductor Structure, Semiconductor Fabication Equipment Having The Prognostic System Of Process Parameter And Method Of Using The Semiconductor Fabication Equipment Having The Same
JP4836994B2 (en) * 2008-06-11 2011-12-14 株式会社日立製作所 Semiconductor processing equipment
JP5643528B2 (en) 2009-03-30 2014-12-17 東京エレクトロン株式会社 Substrate processing equipment
JP5782226B2 (en) 2010-03-24 2015-09-24 東京エレクトロン株式会社 Substrate processing equipment
KR102112130B1 (en) * 2013-10-23 2020-05-19 주식회사 디엠에스 A shower head apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212414A (en) * 1990-08-16 1992-08-04 Fuji Electric Co Ltd Plasma process equipment
JP3300816B2 (en) * 1992-02-27 2002-07-08 株式会社日立国際電気 Semiconductor manufacturing apparatus management method and apparatus
US5442562A (en) * 1993-12-10 1995-08-15 Eastman Kodak Company Method of controlling a manufacturing process using multivariate analysis
US6197116B1 (en) * 1996-08-29 2001-03-06 Fujitsu Limited Plasma processing system
JPH10223499A (en) * 1997-02-06 1998-08-21 Hitachi Ltd Method and system for manufacture of product as well as operating method for a plurality of working and treatment devices
US6368975B1 (en) * 1999-07-07 2002-04-09 Applied Materials, Inc. Method and apparatus for monitoring a process by employing principal component analysis

Also Published As

Publication number Publication date
WO2003003437A1 (en) 2003-01-09
JP4220378B2 (en) 2009-02-04
JPWO2003003437A1 (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP4464276B2 (en) Plasma processing method and plasma processing apparatus
US7289866B2 (en) Plasma processing method and apparatus
Gomez et al. Atomic oxygen surface loss coefficient measurements in a capacitive/inductive radio-frequency plasma
US7505879B2 (en) Method for generating multivariate analysis model expression for processing apparatus, method for executing multivariate analysis of processing apparatus, control device of processing apparatus and control system for processing apparatus
TWI306269B (en)
CN108281346A (en) Method of the feature extraction to control technique end point is carried out from the time series of spectrum
KR100709360B1 (en) Plasma processing apparatus and method
US8073667B2 (en) System and method for using first-principles simulation to control a semiconductor manufacturing process
CN100552889C (en) Plasma processing apparatus
JP2004335841A (en) Prediction system and prediction method for plasma treatment apparatus
TW201028808A (en) Self-diagnostic semiconductor equipment
US20050199341A1 (en) Method and system for analyzing data from a plasma process
US8237928B2 (en) Method and apparatus for identifying the chemical composition of a gas
US20040181299A1 (en) Prediction method and apparatus of a processing result
JP6230437B2 (en) Temperature measuring method and plasma processing system
CN101369551B (en) Process controls for improved wafer uniformity using integrated or standalone metrology
JP2004349419A (en) Method and device for judging cause of abnormality in plasma processor
TWI276162B (en) Multi-variable analysis model forming method of processing apparatus, multi-variable analysis method for processing apparatus, control apparatus of processing apparatus, and control system of processing apparatus
US6553335B2 (en) Method and apparatus for determining end-point in a chamber cleaning process
US7630064B2 (en) Prediction method and apparatus for substrate processing apparatus
TWI297904B (en)
US20100004795A1 (en) Plasma processing method and plasma processing apparatus
JP2007250902A (en) Estimation method and estimation device for substrate processor
Splichal et al. Application of chemometrics to optical emission spectroscopy for plasma monitoring
TW511128B (en) Method of monitoring and/or controlling a semiconductor manufacturing apparatus and a system therefor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees