TWI301960B - Liquid crystal display and driving apparatus thereof - Google Patents

Liquid crystal display and driving apparatus thereof Download PDF

Info

Publication number
TWI301960B
TWI301960B TW91117090A TW91117090A TWI301960B TW I301960 B TWI301960 B TW I301960B TW 91117090 A TW91117090 A TW 91117090A TW 91117090 A TW91117090 A TW 91117090A TW I301960 B TWI301960 B TW I301960B
Authority
TW
Taiwan
Prior art keywords
gamma reference
reference voltage
sampling
gamma
polarity
Prior art date
Application number
TW91117090A
Other languages
Chinese (zh)
Inventor
Seung-Woo Lee
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020020024781A external-priority patent/KR100859520B1/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Application granted granted Critical
Publication of TWI301960B publication Critical patent/TWI301960B/en

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

1301960 柒、發明說明 【發明所屬之技術領域】 本發明係關係於一液晶顯示器及其一驅動裝置。 · 【先前技術】 * 一種典型液晶顯示器(LCD)包括一上層面板及一下層面 板,其中該上層面板係由一共同電極及一彩色濾光陣列所 組成,而該下層面板係由一複數個薄膜電晶體(TFTs)及一複 數個像素電極所組成。此兩板具有分別對準並覆蓋其上之 ® 薄膜,且一液晶顯示層插入於上述兩板間。該像素電極及 該共同電極係以電壓作應用,且上述電極間之電壓差會形 · 成電場。電場的變動會使液晶層内液晶分子的方向發生改 變,並改變通過該液晶層光線的穿透率,藉以獲得所需圖 像。 · 一典型LCD資料驅動裝置包括一轉換暫存器、一資料 暫存器、一資料閂鎖、一數位-類比(D/A)轉換器以及一輪出 缓衝器。該資料驅動裝置閃鎖住紅(R)、綠(G)以及藍(B)資 料,並與源自一時序控制器之一時序點同步輸入,而改變 φ 時序系統由一點-循序系統成為一線-循序系統,以輸出資料 電壓至一液晶面板組件之資料線。該D/A轉換器由該資料 :鎖刀別轉換1¾ RGB資料至類比電壓,而該類比電壓係由 成。p裝置提供之伽瑪參考電壓VGMA1至vgmai8所組 · 奴模式之LCD使用同一訊號作為R、G及B像素並1301960 发明, DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a liquid crystal display and a driving device thereof. [Prior Art] A typical liquid crystal display (LCD) includes an upper panel and a lower panel, wherein the upper panel is composed of a common electrode and a color filter array, and the lower panel is composed of a plurality of films. The transistors (TFTs) and a plurality of pixel electrodes are formed. The two plates have ® films that are respectively aligned and covered, and a liquid crystal display layer is interposed between the two plates. The pixel electrode and the common electrode are applied with a voltage, and a voltage difference between the electrodes forms an electric field. The variation of the electric field changes the direction of the liquid crystal molecules in the liquid crystal layer and changes the transmittance of light passing through the liquid crystal layer to obtain a desired image. A typical LCD data drive device includes a conversion register, a data register, a data latch, a digital-to-analog ratio (D/A) converter, and a round-out buffer. The data driver flashes the red (R), green (G), and blue (B) data and synchronizes the input with a timing point derived from a timing controller, and changes the φ timing system from a point-sequence system to a line. - A sequential system to output a data voltage to a data line of a liquid crystal panel assembly. The D/A converter uses this data: the lock knife converts the 13⁄4 RGB data to the analog voltage, and the analog voltage is made. The gamma reference voltages VGMA1 to vgmai8 provided by the p device are used. The slave mode LCD uses the same signal as the R, G, and B pixels.

1301960 假定其光學特徵皆相同,然實際上並非如此。因此,各灰 階之色彩效果將不平衡或過度偏斜。 為解決此問題,建議提供不同組之伽瑪參考電壓作為r、g 及B色彩。然而,如此將使資料驅動裝置管腳之數目較先 前增加36根,且其尺寸也會因而增加。此外,用以產生伽 瑪參考電壓之單元中區塊的數量亦將會增加,例如,與r、 G及B三色彩之伽瑪參考電壓組分別產生對應的三個區塊。 另一個問題是外部線路的增加不但使印刷電路板(PCB)之資 料驅動裝置底座面積增加,亦使得LCd之生產成本大為提 兩〇 【内容】 本發明之目的係分別對R、G及B色彩產生單獨之伽 瑪參考電壓組的方式來增進_ LCD的圖像品質。 能# .....岭今、我弟一態樣之一 LCD , :二t LCD包括一時序控制器,用以輪出各R、G、B以 -1位Γ動裝置之數位伽瑪資料°而該資料驅動裝置包 比轉換蚤亏電壓產生器以及一數位-換裔(DAC)。該數位伽瑪儲存 之數位伯臣 °儲存源自該時序控制 数位伽碼資料,且該伽瑪參考 電壓,复由# 堡產生器產生伽瑪參 其中該產生器用於對各R、Gr 資料成A相, 及B ’個別地轉換圖 叶成為類比電壓,而該類比電 圚 瑪資料的方$ 。y 至係由該經儲存之數位 J乃武所組成。該數位-類μ1301960 assumes that its optical characteristics are the same, but it is not. Therefore, the color effects of each gray level will be unbalanced or excessively skewed. To solve this problem, it is recommended to provide different sets of gamma reference voltages as r, g, and B colors. However, this will increase the number of data drive device pins by 36, and the size thereof will increase. In addition, the number of blocks in the cell used to generate the gamma reference voltage will also increase. For example, the gamma reference voltage groups of the three colors of r, G, and B respectively generate corresponding three blocks. Another problem is that the increase of the external circuit not only increases the base area of the data driving device of the printed circuit board (PCB), but also greatly increases the production cost of the LCd. [Contents] The objects of the present invention are respectively for R, G, and B. The color produces a separate gamma reference voltage set to enhance the image quality of the LCD. Can # ..... 凌今, my brother, one of the LCD, : 2 t LCD includes a timing controller to rotate the R, G, B with -1 digits of the digital gamma The data is driven by the packet-to-conversion voltage generator and a digital-to-digital (DAC). The digital gamma storage digital storage is derived from the timing control digital gamma data, and the gamma reference voltage is generated by the # 堡 generator to generate gamma parameters, wherein the generator is used to generate data for each R, Gr Phase A, and B' individually convert the leaf into an analog voltage, and the analogy is the side of the electric gamma material. y is composed of the stored digital J Naiwu. The digit-class μ

Β之圖像資%L > 4,恭、 轉換器轉換各R、G 貝料成為類比電壓並作輪 *出’而該類比電壓係由 1301960 經產生之伽瑪參考電壓所組成。 於此’該伽瑪參考電壓產生器較佳包括一複數個 DACS ’用以接收各R、G及B之數位伽瑪資料並轉換成為 類比資料。 依據本發明第二態樣之一 LCD,該態樣之LCD包括一時序 控制器、一伽瑪參考電壓產生器以及一資料驅動裝置。該 時序控制器輪出各R、G及B之數位伽瑪資料,而該伽瑪參 考電壓產生器由該時序控制器轉換該數位伽瑪資料成為類 比資料並作輸出。該資料驅動裝置包括一取樣/保持單元, 用以於執行該伽瑪參考電壓之取樣/保持處理後,輪出該源 自於伽瑪參考電壓產生器之取樣伽瑪參考電壓,而一數位· 類比轉換器轉換各r、G及B之圖像資料成為類比電壓並作 輸出’而該類比電壓係由該經取樣之伽瑪參考電壓所組成。 【實施方式】 關於本發明較佳實施例中所出現之附圖,於下文中將 作更詳盡的說明。然而,本發明可以多種不同形式實施之, 然不應解釋為只限制於此處所提出的實施例。例如全文中 與元件有關之數詞。 現在’將對本發明實施例中之LCDs及其資料驅動裝置 附圖的部分作詳細描述。 參照第1及第2圖,將詳細描述依據本發明之一實施 例中之一資料驅動裝置以及一伽瑪參考電壓產生器。 第1圖為一示意圖,係說明依據本發明之一實施例中 1301960 之-示範資料驅動裝置,第2圖係說明第〗圖中 瑪參考電壓產生器之結構配置。 如第1圖所示,佑播士欲。口 ...10 ^ 依據本發明之—實施例巾之該資料驅 動裝置10包括一 >/加班漸·六32 , …、暫存器1 00、一伽瑪參考電極產生器 200、一轉換暫存器3〇〇、一資 ° 貝枓δ己錄器400、一資料閂鎖500、 一 D/A轉換器6〇〇,以及一輪中 翰出緩衝器700。該轉換暫存弩 300由一時序控制器(未 ° y、出)轉換R、G及Β資料(D〇〔 7··〇〕 -D5〔 7:0〕)並館存該資料 貝丁叶尽貝科记錄态400中。D/A轉換 裔600接收源自資料門雜 貝枓閃鎖500的資料並將之儲存於資料記 錄|| 4 0 0 ,然後轉拖辞咨诞a 、以貝枓成為類灰階電壓。輸出緩衝器7〇〇 儲存源自 D / A棘施哭. 得換β 600之該類灰階電壓,並於接收到一 負載訊破時’將該類灰Ρ皆雷厭 ^ Ai Jra 頰夂丨自電壓施於一複數個資料線。伽瑪Β 图像 资 资 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 The gamma reference voltage generator preferably includes a plurality of DACSs for receiving the digital gamma data of each of R, G, and B and converting the analog data into analog data. According to an LCD of a second aspect of the present invention, the LCD of the aspect includes a timing controller, a gamma reference voltage generator, and a data driving device. The timing controller rotates the digital gamma data of each of R, G, and B, and the gamma reference voltage generator converts the digital gamma data into analog data and outputs the data. The data driving device includes a sample/hold unit for performing the sampling/holding process of the gamma reference voltage, and rotating the sampling gamma reference voltage derived from the gamma reference voltage generator, and one digit The analog converter converts the image data of each of r, G, and B into an analog voltage and outputs 'the analog voltage is composed of the sampled gamma reference voltage. [Embodiment] The drawings appearing in the preferred embodiments of the present invention will be described in more detail below. However, the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. For example, the numerals related to components in the full text. The portions of the LCDs and their data driving devices in the embodiments of the present invention will now be described in detail. Referring to Figures 1 and 2, a data driving device and a gamma reference voltage generator according to an embodiment of the present invention will be described in detail. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing an exemplary data driving device of 1301960 according to an embodiment of the present invention, and Fig. 2 is a view showing a structural configuration of a reference voltage generator in the first drawing. As shown in Figure 1, you want to broadcast. Port 1010 According to the present invention, the data driving device 10 includes a >/overtime·six32, ..., a temporary register 100, a gamma reference electrode generator 200, a conversion The register 3, the ° ° 枓 枓 400 400, a data latch 500, a D/A converter 6 〇〇, and a round of the buffer 700. The conversion buffer 弩300 converts R, G, and Β data (D〇[7··〇] -D5[7:0]) by a timing controller (not y, out) and stores the data. Do as far as the Beca record state 400. D/A conversion 600 receives the data from the data door, and stores it in the data record || 4 0 0, and then turns to the letter a, and becomes a gray-scale voltage. The output buffer 7 〇〇 is stored from the D / A thorns cry. It is necessary to change the gray scale voltage of β 600, and when receiving a load break, 'the ash is thundering ^ Ai Jra cheek The self-voltage is applied to a plurality of data lines. Gamma

暫存器100分別儲在久D ^ ^ A 刀引保存各R、G及B色彩之數位伽瑪資料,且 該伽瑪參考電壓產生器_產生各m B之-複數個伽 瑪參考電壓組,以提供給該D/A轉換器6⑼,而該伽瑪參考 電壓組係由儲存於該伽瑪暫存器⑽中之該數值所組成之。 A如第2圖所示,伽瑪暫存器1〇〇經由一複數個資料匯 流排接收源自一時序控制器(未示出)的數位伽瑪資料,以回 應該伽瑪負載訊號GM A一負載。該伽瑪參考電壓產生器2⑼ 係連結至二個外部電壓源AVDD以及GND,並轉換i色彩 及各極性之數位伽瑪資料成為類比數值,以提供作為該DM 轉換器600之正/負參考電壓。 此將詳細描述依據本發明之實施例之伽瑪參考電壓產 生益。於本發明之一實施例中,係假設該伽瑪參考電壓產 1301960 生器200所提供該數位伽瑪資料組之數目等於9χ2χ3的情 況下來作說明’比如,正R、G及Β數位伽瑪資料〇\^111-DV9R,DV1G-DV9G,DV1B-DV9B 以及負 R、G 及 B 數位 伽瑪資料 DV10R-DV18R,DV10G-DV18G,DV10B-DV18B。 然而,本發明並非只限於上述資料,而是適當地應用該數 位伽瑪資料組之任何數目。 首先,依據本發明之第一實施例之一伽瑪參考電壓產 生器將描述如下(參考第3圖)。 如第3圖所示,依據本發明之第一實施例之一伽瑪參 考電壓產生器200中分別包括一正伽瑪電壓產生器210,係 作為正伽瑪參考電壓;以及一負伽瑪參考電壓產生器24〇, 係作為負伽瑪參考電壓。 於此實施例中,該伽瑪參考電壓產生器200於同時間 分別接收源自一伽瑪暫存器丨00的r、G及B色彩之數位伽 瑪資料’且D/A轉換器(DACs)221_223以及25 1-253個別產 生對應之伽瑪參考電壓。為使該伽瑪參考電壓產生器2〇〇 月b產生全部R、G及B之伽瑪參考電壓,提供於該伽瑪參考 電壓產生器2 00之dACs 221-2 23及251-2 53的數目需符合 該R、G及B數位伽瑪資料的數目。例如,依據本發明之第 一實施例中,該伽瑪參考電壓產生器200較佳包括9x2x3 DACs。 詳細呂之’該正伽瑪參考電壓產生器210包括各R、G 及B色彩之九個DACs 221-223,各類比-轉換該對應之正R、 G及B之數位伽瑪資料DV1R DV9r、dv1G-DV9G及 1301960 DV1B-DV9B以產生正R、G及B之伽瑪參考電壓V1R-V9R、 V1G-V9G及V1B-V9B。同樣地,該負伽瑪參考電壓產生器 240包括各R、G及B色彩之九個DACs 25 1-253 ,各類比-轉換該對應之正R、G及B之數位伽瑪資料DV10R-DV18R、 DV10G-DV18G、DV10B-DV18B 成為負 R、g 及 B 伽瑪參考 電壓 V10R-V18R、V10G-V18G、V10B-V18B。 該D/A轉換器600轉換R、G及B之圖像資料r〇、G0、 BO、Rl、Gl、B1…成為類比電壓,該類比電壓係由該DACs 221-223以及252-253提供之該正伽瑪參考電壓V1R-V9R、 V1R-V9R、V1B-V9B以及該負伽瑪參考電壓vi〇R-V18R、 V10G-V18G、V10B-V18B 所組成。 同時,該伽瑪參考電壓產生器200中DACs可減少的 數目係與本發明之第一實施例有關,又,於下文中關於第4 至1 2圖之實施例將詳述如後。 首先,依據本發明之一第二實施例之一伽瑪參考電壓 產生器將詳述如下(參考第4及第5圖)。 第4圖為一圖示,說明依據本發明之第二實施例之一 示範伽瑪參考電壓產生器,而第5圖為一電路圖示,表示 依據本發明之第二實施例之伽瑪參考電壓產生器中所包括 之取樣/保持電路中。 如第4圖所示,依據本發明之第二實施例之一伽瑪參 考電壓產生器200中亦包括正伽瑪參考電壓產生器210以 及負伽瑪參考電壓產生器240,且正伽瑪參考電壓產生器210 中包括一 DAC單元220與一取樣/保持單元230;而負伽瑪 1301960 參考電壓產生器240中包括一 DAC單元250與一取樣/保持 單元260。 該DAC單元220包括九個DACs,類比轉換時間-分割 系統中之各R、G及B色彩所輸入之該正數位伽瑪資料 DV1R-DV9R、DV1G-DV9G 以及 DV1B-DV9B,以產生正 R、 G及B伽瑪參考電壓V1R-V9R、V1G-V9G以及Vib-V9b。 該取樣/保持單元230中包括一複數個取樣/保持電路單元 (S/H 1)231-233,其用以由該DAC單元220中取樣該正R、 G及B伽瑪參考電壓V1R-V9R、V1G-V9G及V1B-V9B。同 樣地,該DAC單元250包括九個DACs,類比轉換時間_分 割系統中之各R、G及B色彩所輸入之該負數位伽瑪資料 DV10R-DV18R、DV10G-DV18G 及 DV1 OB-DV 1 8B,以產生 負 R、G及B伽瑪參考電壓V10R-V18R、V10G-V18G及 V10B-V18G。該取樣/保持單元260包括一複數個取樣/保持 電路單元(S/H I) 261_263,其用以由該DAC單元250取 樣該負伽瑪參考電壓 V10R-V18R、V10G-V18G及 V10B V18G 〇 詳細言之,該R取樣/保持電路單元231取樣正R伽碼 參考電壓V1R-V9R以提供予D/A轉換器600。該D/A轉換 器6 00轉換該資料閂鎖500中之R圖像資料R〇、Ri ···成為 類比電壓,該類比電壓係由經取樣之正R伽瑪參考電壓 V1R-V9R所組成。以相同的方式,該G及B取樣/保持電路 單元262及2 63分別取樣該正G及B之伽瑪參考電麼VlG V9G及V1B-V9B,並提供予D/A轉換器600。該負伽瑪參 9 1301960 考電壓產生器240中之該D AC單元250以及該取樣/保持單 元2 6 0,類比轉換該負R、G及B數位伽瑪資料以產生該負 R、G及B伽瑪參考電壓V10R-V18R、V10G-V18G以及 V10B-V18G並作取樣,以提供予d/Α轉換器600。 該取樣/保持單元230及260之取樣/保持電路單元231-233以及261-263中之一個231電路單元將詳細描述如後(參 考第5圖)。The register 100 stores the digital gamma data of each of the R, G, and B colors stored in the long-term D ^ ^ A, and the gamma reference voltage generator generates a plurality of gamma reference voltage groups of each m B Provided to the D/A converter 6 (9), and the gamma reference voltage group is composed of the value stored in the gamma register (10). As shown in FIG. 2, the gamma register 1 receives digital gamma data from a timing controller (not shown) via a plurality of data buss to respond to the gamma load signal GM A A load. The gamma reference voltage generator 2 (9) is coupled to two external voltage sources AVDD and GND, and converts the i-color and digital gamma data of each polarity into analog values to provide a positive/negative reference voltage as the DM converter 600. . This will describe in detail the gamma reference voltage yield in accordance with an embodiment of the present invention. In an embodiment of the present invention, it is assumed that the number of the digital gamma data sets provided by the gamma reference voltage generator 1301960 is equal to 9χ2χ3, for example, positive R, G, and Β gamma Data 〇\^111-DV9R, DV1G-DV9G, DV1B-DV9B and negative R, G and B digital gamma data DV10R-DV18R, DV10G-DV18G, DV10B-DV18B. However, the present invention is not limited to the above information, but any number of the digital gamma data sets is suitably applied. First, a gamma reference voltage generator according to a first embodiment of the present invention will be described below (refer to Fig. 3). As shown in FIG. 3, a gamma reference voltage generator 200 according to a first embodiment of the present invention includes a positive gamma voltage generator 210 as a positive gamma reference voltage and a negative gamma reference, respectively. The voltage generator 24 is used as a negative gamma reference voltage. In this embodiment, the gamma reference voltage generator 200 simultaneously receives digital gamma data of r, G, and B colors derived from a gamma register 丨00, and D/A converters (DACs) 221_223 and 25 1-253 individually generate corresponding gamma reference voltages. In order for the gamma reference voltage generator 2 to generate all of the gamma reference voltages of R, G, and B, the dACs 221-2 23 and 251-2 53 of the gamma reference voltage generator 2 00 are provided. The number must match the number of R, G, and B digital gamma data. For example, in a first embodiment of the invention, the gamma reference voltage generator 200 preferably includes 9x2x3 DACs. The detailed gamma's positive gamma reference voltage generator 210 includes nine DACs 221-223 of each of the R, G, and B colors, and various types of ratio-converted digital gamma data of the positive R, G, and B DV1R DV9r , dv1G-DV9G and 1301960 DV1B-DV9B to generate gamma reference voltages V1R-V9R, V1G-V9G and V1B-V9B of positive R, G and B. Similarly, the negative gamma reference voltage generator 240 includes nine DACs 25 1-253 of each of the R, G, and B colors, and various types of ratio-converted digital gamma data DV10R of the corresponding positive R, G, and B- DV18R, DV10G-DV18G, and DV10B-DV18B become negative R, g, and B gamma reference voltages V10R-V18R, V10G-V18G, and V10B-V18B. The D/A converter 600 converts the image data r, G0, BO, Rl, G1, B1, ... of R, G, and B into an analog voltage, which is provided by the DACs 221-223 and 252-253. The positive gamma reference voltages V1R-V9R, V1R-V9R, V1B-V9B and the negative gamma reference voltages vi〇R-V18R, V10G-V18G, V10B-V18B are composed. Meanwhile, the number of DACs that can be reduced in the gamma reference voltage generator 200 is related to the first embodiment of the present invention, and the embodiments of the fourth to twelfth drawings will be described later in detail. First, a gamma reference voltage generator according to a second embodiment of the present invention will be described in detail below (refer to Figs. 4 and 5). 4 is a diagram illustrating an exemplary gamma reference voltage generator according to a second embodiment of the present invention, and FIG. 5 is a circuit diagram showing a gamma reference according to a second embodiment of the present invention. In the sample/hold circuit included in the voltage generator. As shown in FIG. 4, the gamma reference voltage generator 200 and the negative gamma reference voltage generator 240 are also included in the gamma reference voltage generator 200 according to the second embodiment of the present invention, and the positive gamma reference The voltage generator 210 includes a DAC unit 220 and a sample/hold unit 230; and the negative gamma 1301960 reference voltage generator 240 includes a DAC unit 250 and a sample/hold unit 260. The DAC unit 220 includes nine DACs, which are analogous to the R, G, and B colors in the conversion time-splitting system, and input the positive bit gamma data DV1R-DV9R, DV1G-DV9G, and DV1B-DV9B to generate positive R, G and B gamma reference voltages V1R-V9R, V1G-V9G, and Vib-V9b. The sample/hold unit 230 includes a plurality of sample/hold circuit units (S/H 1) 231-233 for sampling the positive R, G, and B gamma reference voltages V1R-V9R from the DAC unit 220. , V1G-V9G and V1B-V9B. Similarly, the DAC unit 250 includes nine DACs, and the negative gamma data DV10R-DV18R, DV10G-DV18G, and DV1 OB-DV 1 8B input by each of the R, G, and B colors in the analog time-to-segment system. To generate negative R, G, and B gamma reference voltages V10R-V18R, V10G-V18G, and V10B-V18G. The sample/hold unit 260 includes a plurality of sample/hold circuit units (S/HI) 261_263 for sampling the negative gamma reference voltages V10R-V18R, V10G-V18G, and V10B V18G by the DAC unit 250. The R sample/hold circuit unit 231 samples the positive R gamma reference voltages V1R-V9R to provide to the D/A converter 600. The D/A converter 600 converts the R image data R〇, Ri··· in the data latch 500 into an analog voltage, which is composed of the sampled positive R gamma reference voltage V1R-V9R. . In the same manner, the G and B sample/hold circuit units 262 and 2 63 respectively sample the positive G and B gamma reference cells VlG V9G and V1B-V9B and supply them to the D/A converter 600. The negative gamma reference 9 1301960, the D AC unit 250 in the voltage generator 240 and the sample/hold unit 260, analogically convert the negative R, G, and B digital gamma data to generate the negative R, G, and The B gamma reference voltages V10R-V18R, V10G-V18G, and V10B-V18G are sampled to provide a d/Α converter 600. The 231 circuit unit of the sample/hold circuit units 231-233 and 261-263 of the sample/hold units 230 and 260 will be described in detail later (refer to Fig. 5).

該取樣/保持單元2 3 1包括九個取樣/保持電路,分別由 該DAC單元220的九個DACs中取樣該正R伽瑪參考電壓。 各取樣/保持電路包括一開關SW、一電容器C1及一緩衝器 buf。開關SW於回應一取樣起始訊號而開啟,該DAC之伽 瑪參考電壓則儲存於電容器C1中並作取樣,接著該取樣之 伽瑪參考電壓經由類比緩衝器而提供予該D/Α轉換器600。 依據本發明之第二實施例中,該伽瑪參考電壓產生器 200中所提供該DACs之數量相當於9+9=18,與前述依據 本發明之第一實施例相比較,數量降為三分之一。The sample/hold unit 231 includes nine sample/hold circuits that are sampled by nine DACs of the DAC unit 220, respectively. Each sample/hold circuit includes a switch SW, a capacitor C1, and a buffer buf. The switch SW is turned on in response to a sampling start signal, and the gamma reference voltage of the DAC is stored in the capacitor C1 and sampled, and then the sampled gamma reference voltage is supplied to the D/Α converter via the analog buffer. 600. According to the second embodiment of the present invention, the number of the DACs provided in the gamma reference voltage generator 200 is equivalent to 9+9=18, and the number is reduced to three as compared with the foregoing first embodiment according to the present invention. One of the points.

由於本發明之第二實施例利用分離之DAC單元作為正 負極,便可使用能夠支援正負極的DAC。上述實施例將於 下文中詳細描述(參考第6圖)。 第ό圖為一圖示,係說明依據本發明之第三實施例之 一示範伽瑪參考電壓產生器。 如第6圖所示,依據本發明之第三實施例之一伽瑪參 考電壓產生器200,除了作為正、負數位伽瑪資料所使用之 一單一 DAC單元220外,與第二實施例皆相同。 10 1301960 洋細吕之’該DAC單元220包括九個DACs,並數位 轉換時間-分割系統中各R、G及B色彩與極性所依次輸入 之正R、G及B數位伽瑪資料DV1R-DV9R、DV1B_DV9B 以及負R、G及B數位伽瑪資料DV10R-DV18R、DV10G-DV18G、DV1OB-DV18B,以產生正與負R、G及B伽瑪參 考電壓 V1R-V9R、V1G-V9G、V1B-V9B、V10R-V18R、 V10G-V18G 及 V10B-V18B。此外,該 DAC 單元 220 分別 提供該正與負R、G及B伽瑪參考電壓給二個取樣/保持單 兀23 0及260。該取樣/保持單元230及260則與本發明第 二實施例中之彼等描述實質相似。 依據本發明之第三實施例,該伽瑪參考電壓產生器2〇〇 中提供DACs之數量為九個,與依據本發明之第一實施例相 較’數量減少六分之一。 依據本發明之第二及第三實施例,由於該時序控制器 (未示出)依次地輸入各R、G及B色彩之R、G及B數位 伽瑪資料於時間-分割系統中,被提供於該DAC單元中之該 些DACs便與該數位伽瑪資料有了一對一的對應關係。然 而,對於各r、G及B色彩,十八個數位伽瑪資料可被依次 輪入。關於上述實施例之圖示將詳細描述如後。 首先’依據本發明之第四實施例之一伽瑪參考電壓產 生器’將描述如後(參考第7及8圖)。 第7圖係為依據本發明之第四實施例之一示範伽瑪灸 考電壓產生器之圖示,而第8圖說明依據本發明之第四實 施例中’該伽瑪參考電壓產生器所提供之一示範取樣/保持 2 94 11 1301960 電路單元。 如第7圖所示,一伽瑪參考電壓產生器2〇〇如同第一 實施例之'伽瑪參考電壓產生器,亦包括正伽瑪參考電壓產 生器210以及負伽瑪參考電壓產生器240。該正伽瑪參考電 壓產生器210包括三個DACs221-223,此三個DACs 221-223 分別對應正R、G及B數位伽瑪資料DV1R-DV9R、DV1G-DV9G及DV1B-DV9B,以及三個與DACs 221-223分別連接 的取樣/保持單元23 1-233。以相同的方式,該負伽瑪參考 電壓產生器240包括三個DACs 251-253,分別對應R、g 及B數位伽瑪資料DV10R-DV18R、DV10G-DV18G及 DV10B-DV18B以及三個取樣/保持單元261-263。 如第7圖所示,源自該時序控制器之該正r、〇及b 數位伽瑪資料 DV1R-DV9R、DV1G-DV9G、DV1B-DV9B 與 負 R、G 及 B 數位伽瑪資料 DV10R-DV18R、DV10G-DV18G 及DV10B-DV18B,對各R、G及B色彩及極性連續輸入DACs 221-223 以及 25 2-253。該等 DACs 221-223 以及 251-25 3 類 比轉換彼等數位伽瑪資料,並依次地輸出該數位轉換之正 伽瑪參考電壓 DV1R-DV9R、DV1G-DV9G、DV1B-DV9B 與 負伽瑪參考電壓 DV10R-DV18R、DV10G-DV18G 及 DV10B-DV18B分別至該等取樣/保持電路單元231-233及261-263。 該等取樣/保持電路單元231-233及261-263分別取樣正伽 瑪參考電壓V1R-V9R、V1G-V9G、V1B-V9B與負伽瑪參考 電壓 V10R-V18R、V10G-V18G 及 V10B-V18B,以提供予 D/A 轉換器600。 12 1301960 然而描述於第5圖中依據本發明之第二及第三實施例 之各取樣/保持電路單元23 1-233以及261-263係同時地取 樣並輸出其九個伽瑪參考電壓,而依據本發明之第四實施 例之該等取樣/保持電路單元23 1-233以及261-263依次地 取樣並輸出該連續加入之伽瑪參考電壓。例如,如第8圖 所示,一取樣/保持電路單元231包括九個取樣/保持電路並 連結至該DAC 221之輸出端。該取樣/保持電路包括一開關 SW、一電容器C1、一類比緩衝器buf、一轉換暫存器S/R; 該開關SW用以由該DAC 221轉換該伽瑪參考電壓,該電 容器C1經由該開關Sw儲存該輸入之伽瑪參考電壓,該類 比緩衝器buf輸出儲存於該電容器ci之該伽瑪參考電壓至 該D/A轉換器600,該轉換暫存器S/R轉換一取樣起始訊號, 該訊號係對於該開關之開啟或關閉的控制而轉換至下一個 取樣/保持電路。 該取樣/保持電路單元231回應藉由該轉換暫存器S/R 中該轉換之取樣初始訊號,而依次從該DAC 221輸出該伽 瑪參考電壓。 依據本發明之第四實施例,由於該伽瑪參考電壓產生 器200分別利用的六個DACs作為該正R、G及B色彩與該 負R、G及B色彩,故d ACs與第二實施例相比較,數量減 為三分之一。 本發明之第四實施例中,雖然一單一 DAC已經利用各 極性分配至各R、G及B色彩中,但該些DACs與該極性間 並無關係。上述實施例將詳細描述如後(參考第9圖)。 13 1301960 如第9圖所示,依據本發明之第四實施例之一伽瑪參 考電壓產生器200包括r、G及B伽瑪參考電壓產生器21〇r、 210g及210b ,該等電壓產生器係用以分別產生R、〇及B 伽瑪參考電壓《各r、g&b伽瑪參考電壓產生器21〇r、2i〇g 及210b包括一 DAC 22〇r、220g、220b及一取樣/保持單元 23 0r、230g、23 0b’ 且各取樣 /保持單元 23〇Γ、23〇§及 23〇b 都包括二個取樣/保持電路單元(S/H ΙΓ )23 lr、232r與231g、 2 32g 與 231b、2 32b。該些 DACs 22 0r、22 0g、220b 類比轉 換該R、G及B數位伽瑪資料,並依次地接收源自一時序控 制器之 DV1R-DV18R、DV1G-DV18G 及 DV1B-DV18B,並 分別輸出該等類比轉換R、G及B伽瑪參考電壓V1R-V18R、 V1G-V18G及V1B-V18B至該取樣/保持單元230r、230g及 23 0b中。而該取樣/保持單元23Or、230g及230b中,該取 樣/保持電路單元 231r、232r 與 231g、232g 與 231b、232b, 除了該取樣/保持電路單元23 lr、23 lg及231b最後的轉換 暫存器S/R之輸出值外,其餘皆與第8圖所描述之暫存器 相同,該輸出值係作為取樣/保持電路單元232r、232g及232b 的取樣初始訊號。Since the second embodiment of the present invention utilizes a separate DAC unit as the positive and negative electrodes, a DAC capable of supporting the positive and negative electrodes can be used. The above embodiment will be described in detail below (refer to Fig. 6). The first diagram is an illustration of an exemplary gamma reference voltage generator in accordance with a third embodiment of the present invention. As shown in FIG. 6, a gamma reference voltage generator 200 according to a third embodiment of the present invention, except for a single DAC unit 220 used as positive and negative gamma data, is the same as the second embodiment. the same. 10 1301960 洋细吕's DAC unit 220 consists of nine DACs, and the R, G and B color and polarity inputs in the digital conversion time-segment system are sequentially input into the positive R, G and B digital gamma data DV1R-DV9R , DV1B_DV9B and negative R, G and B digital gamma data DV10R-DV18R, DV10G-DV18G, DV1OB-DV18B to generate positive and negative R, G and B gamma reference voltages V1R-V9R, V1G-V9G, V1B-V9B , V10R-V18R, V10G-V18G and V10B-V18B. In addition, the DAC unit 220 provides the positive and negative R, G, and B gamma reference voltages to the two sample/hold 兀 23 0 and 260, respectively. The sample/hold units 230 and 260 are substantially similar to their description in the second embodiment of the present invention. According to the third embodiment of the present invention, the number of DACs provided in the gamma reference voltage generator 2 is nine, which is one-sixth less than the number according to the first embodiment of the present invention. According to the second and third embodiments of the present invention, since the timing controller (not shown) sequentially inputs the R, G, and B digital gamma data of each of the R, G, and B colors in the time-splitting system, The DACs provided in the DAC unit have a one-to-one correspondence with the digital gamma data. However, for each of the r, G, and B colors, eighteen digit gamma data can be sequentially rotated. The illustration of the above embodiment will be described in detail as follows. First, the gamma reference voltage generator according to the fourth embodiment of the present invention will be described later (refer to Figs. 7 and 8). Figure 7 is a diagram showing an exemplary gamma moxibustion voltage generator according to a fourth embodiment of the present invention, and Figure 8 is a view showing the gamma reference voltage generator in the fourth embodiment of the present invention. One of the exemplary sampling/holding 2 94 11 1301960 circuit units is provided. As shown in FIG. 7, a gamma reference voltage generator 2 is similar to the 'gamma reference voltage generator of the first embodiment, and includes a positive gamma reference voltage generator 210 and a negative gamma reference voltage generator 240. . The positive gamma reference voltage generator 210 includes three DACs 221-223 corresponding to positive R, G, and B digital gamma data DV1R-DV9R, DV1G-DV9G, and DV1B-DV9B, respectively, and three Sample/hold units 23 1-233 connected to DACs 221-223, respectively. In the same manner, the negative gamma reference voltage generator 240 includes three DACs 251-253 corresponding to the R, g, and B digital gamma data DV10R-DV18R, DV10G-DV18G, and DV10B-DV18B, and three sample/holds. Units 261-263. As shown in Figure 7, the positive r, 〇 and b digital gamma data from the timing controller are DV1R-DV9R, DV1G-DV9G, DV1B-DV9B and negative R, G and B digital gamma data DV10R-DV18R DV10G-DV18G and DV10B-DV18B, continuously input DACs 221-223 and 25 2-253 for each R, G and B color and polarity. The DACs 221-223 and 251-25 3 analogically convert their digital gamma data, and sequentially output the positive gamma reference voltages DV1R-DV9R, DV1G-DV9G, DV1B-DV9B and negative gamma reference voltages of the digital conversion. DV10R-DV18R, DV10G-DV18G and DV10B-DV18B to the sample/hold circuit units 231-233 and 261-263, respectively. The sample/hold circuit units 231-233 and 261-263 sample positive gamma reference voltages V1R-V9R, V1G-V9G, V1B-V9B and negative gamma reference voltages V10R-V18R, V10G-V18G and V10B-V18B, respectively. Provided to the D/A converter 600. 12 1301960 However, in each of the sample/hold circuit units 23 1-233 and 261-263 described in the fifth and third embodiments of the present invention, the nine gamma reference voltages are simultaneously sampled and output, and The sample/hold circuit units 23 1-233 and 261-263 according to the fourth embodiment of the present invention sequentially sample and output the continuously added gamma reference voltage. For example, as shown in Fig. 8, a sample/hold circuit unit 231 includes nine sample/hold circuits and is coupled to the output of the DAC 221 . The sample/hold circuit includes a switch SW, a capacitor C1, an analog buffer buf, and a conversion register S/R. The switch SW is used to convert the gamma reference voltage by the DAC 221, and the capacitor C1 passes through the The switch Sw stores the gamma reference voltage of the input, and the analog buffer buf outputs the gamma reference voltage stored in the capacitor ci to the D/A converter 600, and the conversion register S/R converts a sampling start Signal, the signal is switched to the next sample/hold circuit for the control of the switch being turned on or off. The sample/hold circuit unit 231 outputs the gamma reference voltage from the DAC 221 in turn in response to the sampled initial signal converted by the conversion register S/R. According to the fourth embodiment of the present invention, since the gamma reference voltage generator 200 respectively uses the six DACs as the positive R, G, and B colors and the negative R, G, and B colors, the d ACs and the second implementation In comparison with the case, the number is reduced by one third. In the fourth embodiment of the present invention, although a single DAC has been assigned to each of the R, G, and B colors using the respective polarities, the DACs have no relationship with the polarity. The above embodiment will be described in detail later (refer to Fig. 9). 13 1301960 As shown in FIG. 9, a gamma reference voltage generator 200 according to a fourth embodiment of the present invention includes r, G, and B gamma reference voltage generators 21〇r, 210g, and 210b, which generate voltages. The device is configured to generate R, 〇, and B gamma reference voltages respectively. "The r, g & b gamma reference voltage generators 21 〇 r, 2i 〇 g, and 210b include a DAC 22 〇 r, 220 g, 220 b, and a sample. / holding unit 23 0r, 230g, 23 0b' and each of the sample/hold units 23A, 23〇§ and 23〇b includes two sample/hold circuit units (S/H ΙΓ ) 23 lr, 232r and 231g, 2 32g and 231b, 2 32b. The DACs 22 0r, 22 0g, 220b analogically convert the R, G, and B digital gamma data, and sequentially receive DV1R-DV18R, DV1G-DV18G, and DV1B-DV18B derived from a timing controller, and output the respectively The analogy converts the R, G, and B gamma reference voltages V1R-V18R, V1G-V18G, and V1B-V18B into the sample/hold units 230r, 230g, and 23b. In the sample/hold units 23Or, 230g, and 230b, the sample/hold circuit units 231r, 232r and 231g, 232g and 231b, 232b, except for the last conversion of the sample/hold circuit units 23 lr, 23 lg, and 231b The output values of the S/R are the same as those of the register described in FIG. 8, and the output values are used as sampling initial signals of the sample/hold circuit units 232r, 232g, and 232b.

詳細言之,該取樣/保持電路單元23 lr依次地取樣該R 伽瑪參考電壓V1R-V18R之該正R伽瑪參考電壓V1R-V9R, 並自該DAC 22Or中連續地輸出至該D/A轉換器600,而該 正R伽瑪參考電壓V1R-V9R係依據該取樣之初始訊號;又取 樣/保持電路單元232r依次地取樣該負R伽瑪參考電壓 V10R-V18R,並輸出該輸出值至D/A轉換器600,而該負R 14 13〇1960In detail, the sample/hold circuit unit 23 lr sequentially samples the positive R gamma reference voltages V1R-V9R of the R gamma reference voltages V1R-V18R, and continuously outputs the D/A from the DAC 22Or to the D/A. The converter 600, and the positive R gamma reference voltage V1R-V9R is based on the initial signal of the sampling; the sample/hold circuit unit 232r sequentially samples the negative R gamma reference voltage V10R-V18R, and outputs the output value to D/A converter 600, and the negative R 14 13〇1960

伽瑪參考電壓V10R-V18R係依據該取樣/保持電路單元231r 最後轉換暫存器S/R的輸出值。以同樣地方式,該取樣/保 持電路單元23 lg、231b,依據該取樣之初始訊號,依次地 對該正G伽瑪參考電壓V1G-V9G及B伽瑪參考電壓V1B-V9B個別作取樣;且該取樣/保持電路單元232g、232b依據 該取樣/保持電路單元231g及232b的最後轉換暫存器S/R, 依次地對該負G伽瑪參考電壓V10G-V18G及該負B伽瑪參 考電壓V10B-V18B作取樣。 依據本發明之第伍實施例,該些DACs與第四實施例相 比較,數量減少一半。由於第五實施例具有各R、G及B之 該等DACs,該等DACs可被用作各極性。關於第1〇圖上 述之一實施例將描述如後。 第1 0圖係說明依據本發明之第6實施例之一示範伽瑪 參考電壓產生器。The gamma reference voltage V10R-V18R is based on the output value of the sample/hold circuit unit 231r to finally convert the register S/R. In the same manner, the sample/hold circuit unit 23 lg, 231b sequentially samples the positive G gamma reference voltage V1G-V9G and the B gamma reference voltage V1B-V9B according to the initial signal of the sampling; The sample/hold circuit units 232g, 232b sequentially select the negative G gamma reference voltage V10G-V18G and the negative B gamma reference voltage according to the last conversion register S/R of the sample/hold circuit units 231g and 232b. V10B-V18B is sampled. According to the second embodiment of the present invention, the number of the DACs is reduced by half compared with the fourth embodiment. Since the fifth embodiment has these DACs of R, G, and B, the DACs can be used as the respective polarities. An embodiment described above with respect to Fig. 1 will be described later. Fig. 10 is a diagram showing an exemplary gamma reference voltage generator in accordance with a sixth embodiment of the present invention.

如第10圖所示,依據本發明之第6實施例之一伽瑪參 考電壓產生器’如同本發明第一實施例之伽瑪參考電壓產 生器,亦包括正伽瑪參考電壓產生器210以及負伽瑪參考 電壓產生器240。該正伽瑪參考電壓產生器210包括一 DAC 220,且一取樣/保持單元230包括三個取樣/保持電路單元 231-23 3。該負伽瑪參考電壓產生器240包括一 DAC 25 0, 且取樣/保持單元260包括三個取樣/保持電路單元26卜 263 ° 該DAC 220依次地接收該正r、g及B數位伽瑪資料 DV1R-DV9R、DV1G-DV9G、DV1B-DV9B,以轉換該些資料 1301960 成為伽瑪參考電壓 V1R-V9R、V1G-V9G、V1B-V9B,並輸 出該些參考電壓至該取樣/保持單元230中。以同樣地方式, 該DAC 250依次地接收該負 R、G及B數位伽瑪資料 DV10R-DV18R、DV10G-DV18G、DV10B-DV18B,以轉換該 些資料成為伽瑪參考電壓V10R-V18R、V10G-V18G、V10B-VI 8B,並輸出該些參考電壓至該取樣/保持單元260中。As shown in FIG. 10, a gamma reference voltage generator according to a sixth embodiment of the present invention, as in the gamma reference voltage generator of the first embodiment of the present invention, also includes a positive gamma reference voltage generator 210 and Negative gamma reference voltage generator 240. The positive gamma reference voltage generator 210 includes a DAC 220, and a sample/hold unit 230 includes three sample/hold circuit units 231-23. The negative gamma reference voltage generator 240 includes a DAC 25 0, and the sample/hold unit 260 includes three sample/hold circuit units 26 263 °. The DAC 220 sequentially receives the positive r, g, and B digital gamma data. DV1R-DV9R, DV1G-DV9G, DV1B-DV9B, to convert the data 1301960 into gamma reference voltages V1R-V9R, V1G-V9G, V1B-V9B, and output the reference voltages to the sample/hold unit 230. In the same manner, the DAC 250 sequentially receives the negative R, G, and B digital gamma data DV10R-DV18R, DV10G-DV18G, and DV10B-DV18B to convert the data into gamma reference voltages V10R-V18R, V10G- V18G, V10B-VI 8B, and output the reference voltages to the sample/hold unit 260.

如同第五實施例所述,該取樣/保持單元23 0之該取樣/ 保持電路單元23 1 -233對該正R、G及B伽瑪參考電壓 V1R-V9R、V1G-V9G、V1B-V9B個別作取樣,此取樣/保持 電路,除了該取樣/保持電路單元231及232之最後轉換暫 存器S/R的輸出值外,與第8圖所描述之取樣/保持電路單 元皆相同,而該輸出值係分別成為該取樣/保持電路單元232 及233之取樣初始訊號。以相同之方式,該取樣/保持單元 260之該取樣/保持電路單元261-263分別對該負R、G及B 伽瑪參考電壓 V10R-V18R、V10G-V18G、V10B-V18B 作取 樣。以依據本發明之第六實施例的該伽瑪參考電壓產生器 來說,只使用兩個DACs。 同時,為了產生各R、G及B之伽瑪參考電壓,不論 該伽瑪參考電壓的極性為何,只有一個DAC可被使用。上 述實施例將描述如後(參考第11圖)。 第11圖係說明依據本發明之第七實施例之一示範伽瑪 參考電壓產生器。 如第11圖所示,依據本發明之第七實施例之一伽瑪參 考電壓產生器200包括一 DAC 220及取樣/保持單元230 , 16 1301960 且該取樣/保持單元230包括六個取樣/保持電路單元231_ 233及261-263。該DAC 220係依次地提供正數位伽瑪資料 DV1R-DV9R、DV1G-DV9G、DV1B-DV9B 及負數位伽瑪資 料 DV10R-DV18R、DV10G-DV18G、DV10B-DV18B ,以轉 換該些資料成為正伽瑪參考電壓V1R-V9R、V1G-V9G、 V1B-V9B 以及成為負伽瑪參 #€MV10R-V18R、V10G-V18G、V10B-V18B,並輸出該些參考電壓至該取樣/保持電 路230中。該取樣/保持單元230之該取樣/保持電路單元 231-233取樣該正R、G及B伽瑪參考電壓V1R-V9R、 V1G-V9G、V1B-V9B,同樣地如第六實施例中所描述;且該 取樣/保持電路單元233之最後轉換暫存器的輸出值成為該 取樣/保持電路單元2 6 1之取樣初始訊號❶接著’該取樣/保 持電路單元261-263依據前述之取樣初始訊號而對該負R、As described in the fifth embodiment, the sample/hold circuit unit 23 1 - 233 of the sample/hold unit 203 has the positive R, G, and B gamma reference voltages V1R-V9R, V1G-V9G, and V1B-V9B individually. For sampling, the sample/hold circuit is identical to the sample/hold circuit unit described in FIG. 8 except for the output values of the last conversion register S/R of the sample/hold circuit units 231 and 232. The output values are the sampling initial signals of the sample/hold circuit units 232 and 233, respectively. In the same manner, the sample/hold circuit units 261-263 of the sample/hold unit 260 sample the negative R, G, and B gamma reference voltages V10R-V18R, V10G-V18G, V10B-V18B, respectively. In the gamma reference voltage generator according to the sixth embodiment of the present invention, only two DACs are used. Meanwhile, in order to generate the gamma reference voltages of the respective R, G, and B, regardless of the polarity of the gamma reference voltage, only one DAC can be used. The above embodiment will be described later (refer to Fig. 11). Figure 11 is a diagram showing an exemplary gamma reference voltage generator in accordance with a seventh embodiment of the present invention. As shown in FIG. 11, a gamma reference voltage generator 200 according to a seventh embodiment of the present invention includes a DAC 220 and sample/hold units 230, 16 1301960 and the sample/hold unit 230 includes six samples/holds. Circuit units 231_233 and 261-263. The DAC 220 sequentially supplies positive digital gamma data DV1R-DV9R, DV1G-DV9G, DV1B-DV9B and negative gamma data DV10R-DV18R, DV10G-DV18G, DV10B-DV18B to convert the data into positive gamma. The reference voltages V1R-V9R, V1G-V9G, V1B-V9B, and the negative gamma parameters #€ MV10R-V18R, V10G-V18G, V10B-V18B, and output the reference voltages to the sample/hold circuit 230. The sample/hold circuit unit 231-233 of the sample/hold unit 230 samples the positive R, G, and B gamma reference voltages V1R-V9R, V1G-V9G, V1B-V9B, as described in the sixth embodiment. And the output value of the last conversion register of the sample/hold circuit unit 233 becomes the sampling initial signal of the sample/hold circuit unit 261, and then the sample/hold circuit unit 261-263 is based on the sampling initial signal described above. And for the negative R,

G 及 B 伽瑪參考電壓 V10R-V18R、V10G-V18G、V10B-V18B 作取樣。 前述依據本發明之第七實施例中,只有一個DAC能用 以產生該伽瑪參考電壓。 同時,該第二及第三實施例中,用以產生該伽瑪參考 電壓之時間係分別為第一實施例的三倍及六倍’且於第四 及第五實施例中,一用以產生該伽瑪參考電壓之時間係分 別為第一實施例的九倍及十八倍。而一用以產生該伽瑪參 考電壓之時間係為第一實施例的五十四倍。 假設一 DAC用以產生伽瑪參考電壓的時間為1微秒’ 使用第5圖之DAC需要1微秒,則使用第13圖之DAC則 1301960 需5 4微秒。既然這樣的脖pq勒p丨& 、佩的Bf間較畫面間無資料之空白間隔為 短’則於顯示一圖像時便不會發生問題。 然而若因這樣的時間而導致問題時,則可能需要減 少使用一取樣/保持電路單元S/H ΠΙ,之時間。 第12圖說明依據本發明之另一實施例之示範取樣7保 持電路S/H III 〇 如第12圖所示,依據本發明之另一實施例之一取樣/ 保持電路單元S/Η係由九個連結至DAC輸出端的取樣/保持 電路所組成’且該取樣/保持電路包括一開關SW、一轉換 暫存器S/R、電容器C1及C2、一類比緩衝器buf、輸入及 輸出轉換器S1及S2。該開關SW依據該取樣初始訊號,而 自該DAC傳送該伽瑪參考電壓;而該轉換暫存器S/R傳送該 取樣初始訊號至下一個取樣/保持電路;該電容器C1及C2 係連結至第一及第二路徑,且該伽瑪參考電壓並沿著該第 一及第二路徑作傳送,以對該Cl、C2電容器作充電;該類 比緩衝器buf於既經充電之該電容器C1及C2中輸出該伽 瑪參考電壓至該D/A轉換器600。於此例中,連結於該開關 SW及該第一及第二路徑間的輸入開關S1係依據一選擇訊 號而在該第一及第二路徑間作交替,而輸入開關S2係連結 於該第一及第二路徑間,且該類比缓衝器係依據該選擇訊 號而在該第一及第二路徑間作交替。 於此取樣/保持電路單元S/H III中,源自一端既輸入之 該伽瑪參考電壓係依據該取樣初始訊號,經由該轉換暫存 器S/R之傳送值而依次地輸出。 18 1301960 一取樣/保持電路單元S/H III之運算將於下文中描述 之。G and B gamma reference voltages V10R-V18R, V10G-V18G, V10B-V18B are sampled. In the seventh embodiment according to the present invention, only one DAC can be used to generate the gamma reference voltage. Meanwhile, in the second and third embodiments, the time for generating the gamma reference voltage is three times and six times that of the first embodiment respectively, and in the fourth and fifth embodiments, one is used. The time for generating the gamma reference voltage is nine times and eighteen times that of the first embodiment, respectively. The time for generating the gamma reference voltage is fifty-four times that of the first embodiment. Suppose a DAC is used to generate the gamma reference voltage for 1 microsecond. Using the DAC of Figure 5 requires 1 microsecond. Using the DAC of Figure 13 requires 130 μs for 54 microseconds. Since such a neck pq 勒 p 丨 amp 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 However, if the problem occurs due to such time, it may be necessary to reduce the time for using a sample/hold circuit unit S/H ΠΙ. Figure 12 illustrates an exemplary sample 7 hold circuit S/H III in accordance with another embodiment of the present invention, as shown in Figure 12, in accordance with another embodiment of the present invention, the sample/hold circuit unit S/Η Nine of the sample/hold circuits connected to the DAC output' and the sample/hold circuit includes a switch SW, a conversion register S/R, capacitors C1 and C2, an analog buffer buf, and an input and output converter S1 and S2. The switch SW transmits the gamma reference voltage from the DAC according to the sampling initial signal; and the conversion register S/R transmits the sampling initial signal to the next sample/hold circuit; the capacitors C1 and C2 are connected to First and second paths, and the gamma reference voltage is transmitted along the first and second paths to charge the Cl and C2 capacitors; the analog buffer buf is charged to the capacitor C1 and The gamma reference voltage is output to the D/A converter 600 in C2. In this example, the input switch S1 connected between the switch SW and the first and second paths alternates between the first and second paths according to a selection signal, and the input switch S2 is coupled to the first Between the first path and the second path, and the analog buffer alternates between the first and second paths according to the selection signal. In the sample/hold circuit unit S/H III, the gamma reference voltage input from one end is sequentially outputted via the transfer value of the transfer register S/R according to the sample initial signal. 18 1301960 The operation of a sample/hold circuit unit S/H III will be described below.

當一伽瑪電壓儲存於該電容器C2時,一改變之伽瑪參 考電壓則被儲存於該電容器C1中,以儲存全部經改變的伽 瑪參考電壓於一電容器中,而該電容器係與電容器C1相對 應,之後,該電容器C1則藉由改變該選擇訊號而輸出該伽 瑪參考電壓。接著,該伽瑪參考電壓便在如此短的時間内 作改變。當此狀態持續且該伽瑪參考電壓發生改變之後, 新的伽瑪參考電壓會儲存於該電容器C2中,而此新的伽瑪 參考電壓在儲存完成後,該電容器C2中只會輸出該既經充 電之伽瑪參考電壓。 於上文及下文所描述之實施例中,吾等可替代該取樣/ 保持電路S/H II及S/Η II,而使用此取樣/保持電路S/H ΙΠ。 許多於上文中之實施例,關於該資料驅動裝置1 〇之内 部知用以產生該伽瑪參考電壓,以及減少該些Dacs佔用之 一區域以產生該伽瑪參考電壓等,都已作過描述。When a gamma voltage is stored in the capacitor C2, a changed gamma reference voltage is stored in the capacitor C1 to store the entire changed gamma reference voltage in a capacitor, and the capacitor system and the capacitor C1 Correspondingly, the capacitor C1 outputs the gamma reference voltage by changing the selection signal. Then, the gamma reference voltage is changed in such a short time. After the state continues and the gamma reference voltage is changed, a new gamma reference voltage is stored in the capacitor C2, and after the new gamma reference voltage is stored, only the capacitor C2 outputs the The charged gamma reference voltage. In the embodiments described above and below, we may use the sample/hold circuit S/H 可 instead of the sample/hold circuits S/H II and S/Η II. Many of the above embodiments have been described with respect to the internal knowledge of the data driving device 1 for generating the gamma reference voltage and reducing the area occupied by the Dacs to generate the gamma reference voltage. .

同時,相距甚遙之資料驅動裝置10中,可實作產生該 伽瑪參考電壓的該些DACs與這樣的實施例將於下文中作簡 單描述(參考第13至18圖)。 第1 3圖係為依據本發明之第八實施例之一示範伽瑪參 考電壓產生器之一圖示。 參照第13圖,本發明之第八實施例除了正伽瑪參考電 壓產生器220及負伽瑪參考電壓產生器25〇外,皆與第二 實施例相同,其資料驅動裝置1〇内部之該正、負伽瑪參考 19 1301960 電壓產生器220、250係分別接收正數位伽瑪資料DV1R_ DV9R、DV1G-DV9G、DV1B-DV9B以及負數位伽瑪資料 DV10R-DV18R、DV10G-DV18G、DV10B-DV18B,以產生正 伽瑪參考電壓V1R-V9R、V1G-V9G、V1B-V9B以及負伽瑪 參考電壓 V10R-V18R、V10G-V18G、V10B-V18B。 該正伽瑪參考電壓產生器220及負參考電壓產生器25〇 係個別由多頻道系統之數位-類比轉換器所組成,且彼等伽 瑪參考電壓產生器輸出正R、G及B伽瑪參考電壓乂1尺_ V9R、V1G-V9G、V1B-V9B以及負R、G及B伽瑪參考電壓 V10R-V18R、V10G-V18G、V10B-V18B,對各 r、G 及 B 作 時間-分割。其資料驅動裝置1 〇内部提供該取樣/保持單元 230及260,且該取樣/保持單元230及260係分別由該正伽 瑪參考電壓產生器220及負伽瑪參考電壓產生器25〇中接 收該正R、G及B伽瑪參考電壓及負r、g及B伽瑪參考電 壓’並對該等參考電壓作取樣。此取樣/保持單元230及26〇 係與第一實施例中之取樣/保持單元相同。 由於本發明之第八實施例具有兩個多頻道系統之數位_ 類比轉換器,該轉換器係為各極性而作分割,不論極性為 何,它都可具有一數位-類比轉換器,如第14圖所示。 第14圖說明依據本發明之第九實施例之一示範伽瑪參 考電壓。 如第14圖所示,該第九實施例中除了一伽瑪參考電壓 產生器220以外’皆與第三實施例相同,其資料驅動裝置j 〇 之内部提供一電壓產生器22〇,該電壓產生器220係用以接 1301960 收源自一時序控制器之數位伽瑪資料〇¥111-0¥911、〇¥10- DV9G、DV1B-DV9B、DV10R-DV18R、DV10G-DV18B、 DV10B-DV18B,以產生伽瑪參考電壓 V1R-V9R、V1G-V9G、 V1B-V9B、V10R-V18R、V10G-V18G、V10B-V18B。 該伽瑪參考電壓產生器220係由數位-類比轉換器所組 成,且該產生器220輸出正r、g及B伽瑪參考電壓乂111-Meanwhile, in the data driving device 10 which is far apart, the DACs which can be used to generate the gamma reference voltage and such an embodiment will be briefly described hereinafter (refer to Figs. 13 to 18). Figure 13 is a diagram showing one of exemplary gamma reference voltage generators in accordance with an eighth embodiment of the present invention. Referring to Fig. 13, an eighth embodiment of the present invention is the same as the second embodiment except for the positive gamma reference voltage generator 220 and the negative gamma reference voltage generator 25, and the data driving device 1 is internally Positive and negative gamma reference 19 1301960 voltage generators 220 and 250 receive positive digital gamma data DV1R_DV9R, DV1G-DV9G, DV1B-DV9B and negative digital gamma data DV10R-DV18R, DV10G-DV18G, DV10B-DV18B, respectively. The positive gamma reference voltages V1R-V9R, V1G-V9G, V1B-V9B, and the negative gamma reference voltages V10R-V18R, V10G-V18G, V10B-V18B are generated. The positive gamma reference voltage generator 220 and the negative reference voltage generator 25 are each composed of a digital-to-analog converter of a multi-channel system, and their gamma reference voltage generators output positive R, G, and B gamma. The reference voltage 乂1 _ V9R, V1G-V9G, V1B-V9B and negative R, G and B gamma reference voltages V10R-V18R, V10G-V18G, V10B-V18B, time-divide for each r, G and B. The data driving device 1 is internally provided with the sample/hold units 230 and 260, and the sample/hold units 230 and 260 are received by the positive gamma reference voltage generator 220 and the negative gamma reference voltage generator 25, respectively. The positive R, G, and B gamma reference voltages and negative r, g, and B gamma reference voltages 'sample the reference voltages. This sampling/holding unit 230 and 26 is the same as the sampling/holding unit in the first embodiment. Since the eighth embodiment of the present invention has two digital-to-analog converters of a multi-channel system, the converter is divided for each polarity, and it can have a digital-to-analog converter, such as the 14th, regardless of the polarity. The figure shows. Figure 14 illustrates an exemplary gamma reference voltage in accordance with one of the ninth embodiments of the present invention. As shown in FIG. 14, the ninth embodiment except for a gamma reference voltage generator 220 is the same as the third embodiment, and a voltage generator 22 is provided inside the data driving device j 〇. The generator 220 is used to receive 1301960 digital gamma data from a timing controller 〇¥111-0¥911, 〇¥10-DV9G, DV1B-DV9B, DV10R-DV18R, DV10G-DV18B, DV10B-DV18B, To generate gamma reference voltages V1R-V9R, V1G-V9G, V1B-V9B, V10R-V18R, V10G-V18G, V10B-V18B. The gamma reference voltage generator 220 is composed of a digital-to-analog converter, and the generator 220 outputs positive r, g, and B gamma reference voltages 乂 111-

V9R、V1G-V9G、V1B-V9B以及輸出負R、G及B伽瑪參考 電壓 V10R-V18R、V10G-V18G、V10B-V18B,並對各 R、G 及B至取樣/保持電路單元231-233及261-263作時間-分割。 該取樣/保持電路單元231-233及261-263係用以分別接收 該正R、G及B伽瑪參考電壓及負R、G及b伽瑪參考電壓, 以對該負料驅動裴置1 〇内該些參考電壓作取樣。 該取樣/保持電路單元23 1 -233及261-263係與第二實 施例之取樣/保持電路單元相同。 如第15圖所示,本發明之一第十實施例除了正、負伽 瑪參考電壓產生器220、250之外,皆與第四實施例相同。 而該正、負伽瑪參考電壓產生器220、250係分別揍收正、 負伽瑪參考貝料,經由一時序控制器以及一數位介面,以 產生正、負伽瑪參考電壓。 該正、負伽碼參考電壓產生器220、250串列化各R、 G及B之該正R、g&b伽瑪參考電壓以及負r、g及B伽 瑪參考電壓’以提供該些參考電壓給予該資料驅動裝置10 内之該取樣/保持單元230及260。該取樣/保持單元230及 260係與第四實施例中之取樣/保持單元相同。 21 1301960 如第16圖所示,依據本發明之一第十一實施例除了一 伽瑪參考電壓產生器220以外,皆與第五實施例相同。該 伽瑪參考電壓產生器220經由一時序控制器以及一數位介 面來接收數位伽瑪資料’以產生伽瑪參考電壓。該伽瑪參 考電壓產生器220串列化各R、g及B之該伽瑪參考電壓, 以提供該些參考電壓給予該資料驅動裝置1 〇内之該取樣/保 持單元230r、230g及230b。此等取樣/保持單元23〇r、23〇g 及23 0b係與第五實施例中之取樣/保持單元23〇γ、23〇g及 2 3 0 b相同。 如第1 7圖所示,依據本發明之一第十二實施例除了正、 負伽瑪參考電壓產生器220、250之外,皆與第六實施例相 同。該電壓產生器220及250分別接收正、負伽瑪參考電 麗’經由一時序控制器以及一數位介面,以產生正、負伽 瑪參考電壓。該正、負伽瑪參考電壓產生器220及250串 列化各R、G及B之該正R、G及B伽瑪參考電壓及負R、 G及B伽瑪參考電壓,以提供該些參考電壓給予該資料驅 動裝置10内之取樣/保持單元230及260。該取樣/保持單 元23 0及260如同第六實施例之取樣/保持單元,各包括三 個取樣/保持電路單元231-233以及261-263。 如第1 8圖所示,依據本發明之一第十三實施例除了一 伽瑪參考電壓產生器220以外,與第七實施例相同。該伽 瑪參考電壓產生器220係經由一時序控制器以及一數位介 面,接收數位伽瑪資料,以產生伽瑪參考電壓。該伽瑪參 考電壓產生器220串列化各R、G及B之伽瑪參考電壓,以 22 1301960 提供該些參考電壓給予該資料驅動裝置1 〇内之取樣/保持單 元230。此等取樣/保持單元23〇如同第七實施例般,亦包 括六個取樣/保持單元231-233及261-263。 如上文所描述,由於該資料驅動裝置具有各R、G及b 之伽瑪參考電壓,使用各r、g及B5之伽瑪參考電壓時, 將可能應所需而調整溫度及色彩協調。 此外’更多變化地實作一色調可能會因為液晶或該彩 色濾光片的特性而有所限制。 再者’因為該時序控制器接收數位伽瑪資料,即使是 在該等移動圖像中’亦會因新的伽瑪值適用於各畫面,而 可能獲得一動態視窗。當然,在應用上述之該驅動積體電 路(1C)時,該時序控制器亦因適時地改變。亦即,當供給電 源予該時序控制器時,對於各R、G及B,傳遞該伽瑪數值 至該資料驅動裝置以數位式為佳,且當一動態視窗需要留 意時,較佳傳遞該伽瑪數值以使得該伽瑪數值可藉由分析 視窗之輸入資料而作調整。 【圖式簡單說明】 上文所提及與其他關於本發明之目標及優點,將於詳 細描述較佳實施例與參考附圖後更顯而易見,其中 第1圖為一示意圖’係表示依據本發明一實施例之一 資料驅動裝置; 第2圖為一圖示,說明第i圖中之一伽瑪參考電壓產 生器; 23 1301960 第3、4圖為一部分圖示,係表示分別依據本發明之第 一及第二實施例中示範資料驅動裝置; 第5圖為一圖示,係表示依據本發明之第二實施例之 該伽瑪參考電壓產生器之一示範取樣/保持電路; 第6、7圖為一部份圖示,係表示分別依據本發明之第 三及第四實施例中之示範資料驅動裝置;V9R, V1G-V9G, V1B-V9B and output negative R, G and B gamma reference voltages V10R-V18R, V10G-V18G, V10B-V18B, and for each R, G and B to sample/hold circuit unit 231-233 And 261-263 for time-segmentation. The sample/hold circuit units 231-233 and 261-263 are configured to respectively receive the positive R, G, and B gamma reference voltages and the negative R, G, and b gamma reference voltages to drive the negative material 1 These reference voltages are sampled in the crucible. The sample/hold circuit units 23 1 - 233 and 261 - 263 are the same as the sample/hold circuit unit of the second embodiment. As shown in Fig. 15, a tenth embodiment of the present invention is the same as the fourth embodiment except for the positive and negative gamma reference voltage generators 220, 250. The positive and negative gamma reference voltage generators 220 and 250 respectively receive positive and negative gamma reference materials, and generate a positive and negative gamma reference voltage via a timing controller and a digital interface. The positive and negative gamma reference voltage generators 220, 250 serialize the positive R, g & b gamma reference voltages and negative r, g and B gamma reference voltages of each of R, G, and B to provide the The reference voltage is applied to the sample/hold units 230 and 260 in the data driving device 10. The sample/hold units 230 and 260 are the same as the sample/hold unit in the fourth embodiment. 21 1301960 As shown in Fig. 16, an eleventh embodiment of the present invention is the same as the fifth embodiment except for a gamma reference voltage generator 220. The gamma reference voltage generator 220 receives the digital gamma data via a timing controller and a digital interface to generate a gamma reference voltage. The gamma reference voltage generator 220 serializes the gamma reference voltages of the respective R, g, and B to provide the reference voltages to the sample/hold units 230r, 230g, and 230b in the data driving device 1. These sample/hold units 23〇r, 23〇g, and 23 0b are the same as the sample/hold units 23〇γ, 23〇g, and 2 3 0 b in the fifth embodiment. As shown in Fig. 17, a twelfth embodiment according to the present invention is the same as the sixth embodiment except for the positive and negative gamma reference voltage generators 220, 250. The voltage generators 220 and 250 receive the positive and negative gamma reference transistors, respectively, via a timing controller and a digital interface to generate positive and negative gamma reference voltages. The positive and negative gamma reference voltage generators 220 and 250 serialize the positive R, G, and B gamma reference voltages and the negative R, G, and B gamma reference voltages of the respective R, G, and B to provide the The reference voltage is applied to the sample/hold units 230 and 260 in the data driving device 10. The sample/hold units 23 0 and 260 are like the sample/hold units of the sixth embodiment, each including three sample/hold circuit units 231-233 and 261-263. As shown in Fig. 18, the thirteenth embodiment of the present invention is the same as the seventh embodiment except for a gamma reference voltage generator 220. The gamma reference voltage generator 220 receives the digital gamma data via a timing controller and a digital interface to generate a gamma reference voltage. The gamma reference voltage generator 220 serializes the gamma reference voltages of the respective R, G, and B, and supplies the reference voltages to the sample/hold unit 230 in the data driving device 1 at 22 1301960. These sample/hold units 23, as in the seventh embodiment, also include six sample/hold units 231-233 and 261-263. As described above, since the data driving device has the gamma reference voltages of R, G, and b, when the gamma reference voltages of each of r, g, and B5 are used, temperature and color coordination may be adjusted as needed. In addition, a more varied implementation of a hue may be limited by the characteristics of the liquid crystal or the color filter. Furthermore, because the timing controller receives digital gamma data, even in the moving images, a dynamic window may be obtained because the new gamma value is applied to each picture. Of course, when the above-described driving integrated circuit (1C) is applied, the timing controller is also changed in due course. That is, when power is supplied to the timing controller, for each of R, G, and B, the gamma value is transmitted to the data driving device in a digital position, and when a dynamic window needs attention, the The gamma value is such that the gamma value can be adjusted by analyzing the input data of the window. BRIEF DESCRIPTION OF THE DRAWINGS The above-mentioned and other objects and advantages of the present invention will be more apparent from the detailed description of the preferred embodiments and the accompanying drawings in which FIG. A data driving device according to an embodiment; FIG. 2 is a diagram illustrating a gamma reference voltage generator in the first drawing; 23 1301960, FIGS. 3 and 4 are partial diagrams showing the respective according to the present invention. Exemplary data driving device in the first and second embodiments; FIG. 5 is a diagram showing an exemplary sample/hold circuit of the gamma reference voltage generator according to the second embodiment of the present invention; 7 is a partial diagram showing exemplary data driving devices according to the third and fourth embodiments of the present invention;

第8圖為一圖示,係表示依據本發明之第四實施例中 之一伽瑪參考電壓產生器之示範取樣/保持電路; 第9至1 1圖為一部份圖示,係表示依據本發明之第四 至第七實施例中之示範資料驅動裝置; 第1 2圖為一圖示,係說明依據本發明之一實施例中之 一示範取樣/保持一伽瑪參考電壓產生器;以及 第1 3至1 8圖為一部分圖示,係表示依據本發明之第 八至第十一實施例之示範資料驅動裝置。 【元件代表符號簡單說明】Figure 8 is a diagram showing an exemplary sample/hold circuit of a gamma reference voltage generator in accordance with a fourth embodiment of the present invention; Figures 9 through 1 1 are a partial diagram showing the basis Exemplary data driving device in the fourth to seventh embodiments of the present invention; FIG. 2 is a diagram illustrating an exemplary sample/hold gamma reference voltage generator according to an embodiment of the present invention; And FIGS. 13 to 18 are partial diagrams showing exemplary data driving apparatuses according to eighth to eleventh embodiments of the present invention. [Simplified description of component symbol]

10 資料驅動裝置 100 伽瑪參考電壓產生器 200 伽瑪參考電壓產生器 210 正伽瑪電壓產生器 21 Or R伽瑪參考電壓產生器 220、250 DAC 單元 220r R數位類比轉換器 220g G數位類比轉換器 24 1301960 220b B數位類比轉換器 221-22 3、25 1 -253 DAC (數位類比轉換器) 230、260 取樣/保持單元 231r、232r R取樣/保持電路單元 231g、23 2g G取樣/保持電路單元 231b、232b B取樣/保持電路單元 233 取樣保持電路單元 240 負伽瑪參考電壓產生器 261-263 取樣/保持電路單元 300 轉換暫存器 400 資料紀錄器 500 資料閃鎖 600 D/A轉換器 700 輸出緩衝器10 data driving device 100 gamma reference voltage generator 200 gamma reference voltage generator 210 positive gamma voltage generator 21 Or R gamma reference voltage generator 220, 250 DAC unit 220r R digital analog converter 220g G digital analog conversion 24 1301960 220b B digital analog converter 221-22 3, 25 1 - 253 DAC (digital analog converter) 230, 260 sample / hold unit 231r, 232r R sample / hold circuit unit 231g, 23 2g G sample / hold circuit Unit 231b, 232b B sample/hold circuit unit 233 sample hold circuit unit 240 negative gamma reference voltage generator 261-263 sample/hold circuit unit 300 conversion register 400 data logger 500 data flash lock 600 D/A converter 700 output buffer

Cl、C2 電容器 SW 開關 buf 緩衝器Cl, C2 capacitor SW switch buf buffer

Claims (1)

1301960 捌、申請專利範圍 1 · 一種液晶顯示器,該液晶顯示器至少包括: 一時序控制器,用以分別輪出R、G及B色彩之數位伽 瑪資料;以及 ~ 一資料驅動裝置,該資料驅動裝置包括一數位伽瑪儲存 ' 器,用以儲存源自該時序控制器之數位伽瑪資料; 一伽瑪參考電壓產生器,用以分別產生R、G及B色彩 之伽瑪參考電壓,該伽瑪參考電壓產生器係用於轉換圖像 訊號成為類比電壓,而該類比電壓係由既經儲存之數位伽 φ 瑪資料所組成; 一數位-類比轉換器,用以轉換各R、0及B之圖像資料 * 成為類比電壓並作輸出,而該等類比電壓係由已產生之伽 瑪參考電壓所組成β 一 2·如申請專利範圍帛!項所述之液晶顯示器,其中上述之伽 瑪參考電壓產生器至少包括—複數個DACs,該等DAG接 收各R、G及B之數位伽瑪資料並轉換該些資料成為類比資 料。 · 3·如申請專利範圍第1項所述之液晶顯示器,其中上述之伽 瑪參考電壓至少包括: ^ w碼翏考電壓產生器,該產生器轉換第 性數位伽瑪資料,且依次地輸入各並轉成類 料,以產生帶有第-極性之各R、G及B的伽瑪參考 26 1301960 以及 一第二極性伽瑪參考電壓產生器,兮 ^ ^ 7 y 產生器轉換第二極 性數位伽瑪資料,且依次地輸入各R、 ^ 及Β並轉成類比資 料,以產生帶有第二極性之各R、G及只& β的伽瑪參考電壓。 4 ·如申請專利範圍第3項所述之液晶顯+ 项不器,其中上述之第 一極性伽瑪參考電壓產生器至少包括一 、 ’ 硬數個DACs,該等 DACs係用於轉換該第一極性數位伽 ^ .针’且依次地輸入各 R、G及B並轉成類比資料,以產生伽 唆Λ 馬參考電壓;以及 一第一極性取樣/保持單元,用以 _ 戮仃該經類比轉換之各 R、G及Β伽瑪參考電壓之取樣 付〜理,以產生經取檨 的R、G及Β伽瑪參考電壓, 展玍,,生取徠 其中上述之該第二極性伽挥金去 f伽瑪參考電壓產生器至少包括. 一複數個DACs ,用以棘拖贫楚· 且依次地輸入各R、G及B 貝付 參 及B並轉成類比資料,以 考電壓;以及 座& φ螞 比 產 一第二極性取樣/保持單 轉換之各R、fu 該4早兀用以執行該經類 :換各…伽瑪參考電壓之取樣/保持處理,以 生經取樣之R、G及B伽碼參考電壓。 5·如申請專利範圍第1項 伽 用 入 、 返之液晶顯示器,其中上械夕 瑪參考電壓產生器至少勺 八甲上述之 以鐘i M u G栝—複數個DACs,該等DACs 以轉換一第一及一第-把 °性數位伽瑪資料,且依次地給 各R、“B並轉成類 3貝叶依人地輸 貝抖,以產生伽瑪參考電壓; 27 1301960 一第一極性取樣/保持單元,該單元用以執行該經類比轉 換之各R、G及b伽瑪參考電壓之取樣/保持處理,以產生 經取樣之R、G及B伽瑪參考電壓;以及 一第二極性取樣/保持單元,該單元用以執行該經類比轉 換之各R、G及B伽瑪參考電壓之取樣/保持處理,以產生 經取樣之R、G及B伽瑪參考電壓。 6·如申請專利範圍第4或5項所述之液晶顯示器,其中上述 之各該第一及該第二極性取樣/保持單元都至少包括三個提 供各R、G、B之取樣/保持電路單元,且該取樣/保持電路 單元係由一複數個取樣/保持電路所組成,而該等電路係連 結至該複數個DACs之輸出端,其中該等取樣保持/電路至 少包括:諸開關’該等開關係因預定取樣初始訊號的反應而 控制開啟/關閉伽瑪參考電壓;諸電容器,該等電容器儲存經 由該等開關輸入之該伽瑪參考電壓;以及諸緩衝器,該等缓 衝器用以輸出儲存於該等電容器内既經取樣之伽瑪參考電 壓。 7·如申請專利範圍第1項所述之液晶顯示器,其中上述之伽 瑪參考電壓產生器至少包括: 一複數個DACs ,該等DACs連續輸出之各伽瑪參考電 麗係由接收及轉換已串列化並帶有一第一及一第二極性之 數位伽瑪資料且轉成類比資料所產生,而經由接收轉換之 後所產生之該類比資料再由一輸出線提供給各r、G及b, 28 1301960 此係一具有多對一(multi-to-one)的方法·以及 一複數個取樣/保持電路單元,該電路單元分別與該複數 個DACs相對應,且於執行該伽瑪參考電壓之取樣/保持處 理後,輸出各R、G及B既經取樣之伽瑪參考電壓,而該伽 瑪參考電壓依次地由該些DACs輪出,此係為具有一對多 (〇ne-to-multi)之一方法。 8·如申請專利範圍第1項所述之液晶顯示器,其中上述之伽 瑪參考電壓產生器至少包括: 一 R伽瑪參考電壓產生器,該電壓產生器於執行伽瑪參 考電壓之取樣/保持處理後,輸出既經取樣之R伽瑪參考電 壓,且藉由依次地接收及轉換已串列化並帶有—第一極性 之R伽瑪資料與已串列化並帶有一第二極性之R伽碼參考 資料而轉成類比資料; 一 G伽瑪參考電壓產生器,該電壓產生器於執行伽瑪參 考電壓之取樣/保持處理後,輸出既經取樣之G伽碼參考電 壓’且藉由依次地接收及轉換已串列化並帶有一第一極性 之G伽瑪資料與已串列化並帶有一第二極性之G伽碼參考 資料而轉成類比資料;以及 一 B伽瑪參考電壓產生器,該電壓產生器於執行伽瑪參 考電壓之取樣/保持處理後,輸出既經取樣之B伽碼參考電 壓,且藉由依次地接收及轉換已串列化並帶有一第一極性 之B伽瑪資料與已串列化並帶有一第二極性之B伽瑪參考 資料而轉成類比資料。 29 1301960 9 ·如申請專利範圍第8項所述之液晶顯示器,其中上述之各 R、G及B伽瑪參考電壓產生器至少包括: 一 DAC,該DAC依次地接收及轉換已串列化並帶有一 第一及第二極性之數位伽瑪資料,該Dac對應各R、G及 B而轉成類比資料,並接著輪出該些類比資料,此係為具有 多對一之一方法; 一第一極性取樣/保持電路單元,該電路單元依次地執行 源自該DAC之該第一極性伽瑪參考電壓之取樣/保持處理並 作輸出;以及 -第二極性取樣/保持電路單元,該電路單元於該第—極 性取樣/保持電路單元之取 早疋之取樣/保持處理完成後,接收源自誃 第一極性取樣/保持電路單 > 之取樣初始訊號,並依次地勃 處理。 以第一極性伽瑪參考電壓之取樣/保持 10.如申請專利範圍第1 固乐 項所述之液晶顯示器,i中卜、 伽瑪參考電壓產生器至少包括: /、中上迷 -第-極性伽瑪參考電壓產生器,該電 伽瑪參考電壓之 屋生器於執 <取樣/保持處理後, 極性之R、G及B伽提“、荆* 乂取樣並帶有第 & 瑪參考電壓,該參考電壓係蕤* h 接收及轉換已串列化並帶有第一極性::由依次 並將該些參考電壓轉成類比資料;以及·、、、貝料所產生 第-極性伽瑪參考電壓產生器’該電壓產生器於執 30 1301960 伽瑪參考電壓之取樣/保持處理後,輸出經取樣並帶有第二 極性之R、G及B伽瑪參考電壓,該參考電壓係藉由依次地 接收及轉換已宰列化並帶有第二極性之伽瑪資料所產生, 並將該些參考電壓轉成類比資料。 11·如申請專利範圍第1〇項所述之液晶顯示器,其中上述之 各該第一及第二伽瑪參考電壓產生器至少包括: 一具有多對一方法之DAC,該DAC輸出伽瑪參考電壓, 而該參考電壓係藉由一線路依次地接收及轉換該已串列化 之數位伽瑪資料成為類比資料所產生丨且 一取樣/保持單元,該單元依次地執行由該DAC所輸出 之各R、G及B伽瑪參考電壓之取樣/保持處理, 其中上述之該取樣/保持單元至少包括三個對應各厌、〇 及B之取樣/保持電路,且其中任一取樣/保持電路單元藉由 取樣初始訊號而進行取樣/保持處理,並且,於該取樣/保持 處理後,該取樣之初始訊號便傳遞至另一取樣/保持電路單 元0 12·如申請專利範圍第1項所述之液晶顯示器,其中上述之 伽瑪參考電壓產生器至少包括: 一具有多對一方法之DAC,,該DAC輸出伽瑪參考電 壓,而該參考電壓係藉由一線路依次地搔收及轉換該已串 列化之數位伽瑪資料成為類比資料所產生; 一第一取樣/保持單元,該單元依次地執行由該DAC所 314 31 1301960 一極性類比伽瑪參考電壓 R、G及B之類比伽瑪參 輸出帶有類比伽瑪參考電壓之第 之取樣/保持處理,並接著輪出各 考電壓;以及 一第二取樣/保持單元,於誃 元之該取樣/保持處理完成後,接—極性取樣/保持電路辱 路單元之取樣初始訊號,並依:::第-極性取樣/保持, 帶有類比伽瑪參考電壓之第-朽執打由該DAC所輸“ 請持處理。 極性類比伽瑪參考電壓之卑1301960 申请, Patent Application No. 1 · A liquid crystal display comprising at least: a timing controller for respectively rotating digital gamma data of R, G and B colors; and ~ a data driving device, the data driving The device includes a digital gamma storage for storing digital gamma data from the timing controller; a gamma reference voltage generator for generating gamma reference voltages of R, G, and B colors, respectively, The gamma reference voltage generator is used for converting the image signal into an analog voltage, and the analog voltage is composed of the stored digital gamma data; a digital-to-analog converter for converting each R, 0 and The image data of B becomes the analog voltage and is output, and the analog voltage is composed of the generated gamma reference voltage. β 2 2. As claimed in the patent scope! The liquid crystal display of the above, wherein the gamma reference voltage generator comprises at least a plurality of DACs, and the DAGs receive the digital gamma data of each of R, G and B and convert the data into analog data. 3. The liquid crystal display according to claim 1, wherein the gamma reference voltage comprises at least: a w code reference voltage generator, the generator converts the digital gamma data, and sequentially inputs Each is converted into a material to generate a gamma reference 26 1301960 with a first polarity of each of R, G, and B, and a second polarity gamma reference voltage generator, and the ^^^7 y generator converts the second polarity The digital gamma data is sequentially input to each of R, ^, and Β and converted into analog data to generate gamma reference voltages for each of R, G, and only & β of the second polarity. 4. The liquid crystal display device according to claim 3, wherein the first polarity gamma reference voltage generator comprises at least one of a plurality of hard DACs, and the DACs are used to convert the first a polarity digit gamma pin. and sequentially input each R, G, and B and convert it into analog data to generate a gamma horse reference voltage; and a first polarity sample/hold unit for _ 戮仃The sampling of the R, G, and gamma gamma reference voltages of the analog conversion is performed to generate the R, G, and gamma gamma reference voltages, and the second gamma is generated. The gold-to-f gamma reference voltage generator includes at least one DACs for punctuality, and sequentially inputs each R, G, and B, and converts it into B, and converts it into analog data to test the voltage; And the seat & φ ratio produces a second polarity sample / hold single conversion of each R, fu 4 early is used to perform the type: change each ... gamma reference voltage sampling / hold processing, to sample R, G, and B gamma reference voltages. 5. If the patent application scope is the first item, the liquid crystal display is used in the gamma. The upper nucleus reference voltage generator is at least scooped by the above-mentioned october i M u G 栝 - a plurality of DACs, and the DACs are converted. a first and a first-to-degree digital gamma data, and sequentially give each R, "B and turn into a class 3 Bayer, and send a gamma reference voltage; 27 1301960 a first a polarity sampling/holding unit for performing a sample/hold process of the R, G, and b gamma reference voltages of the analog conversion to generate sampled R, G, and B gamma reference voltages; A bipolar sampling/holding unit for performing sample/hold processing of the R, G, and B gamma reference voltages of the analog conversion to generate sampled R, G, and B gamma reference voltages. The liquid crystal display of claim 4, wherein each of the first and second polarity sampling/holding units comprises at least three sampling/holding circuit units for providing respective R, G, and B, And the sample/hold circuit unit is composed of a plurality of The sample/hold circuit is configured to be coupled to the output of the plurality of DACs, wherein the sample hold/circuit includes at least: the switches 'the open relationship is controlled to be turned on due to the reaction of the predetermined sampling initial signal/ Turning off the gamma reference voltage; capacitors that store the gamma reference voltage input via the switches; and buffers for outputting the sampled gamma reference stored in the capacitors The liquid crystal display according to claim 1, wherein the gamma reference voltage generator comprises at least: a plurality of DACs, and the gamma reference outputs of the DACs are continuously received and received The conversion is serialized and has a first and a second polarity digital gamma data and is converted into analog data, and the analog data generated after receiving the conversion is further provided to each r, G by an output line. And b, 28 1301960 This is a multi-to-one method and a plurality of sample/hold circuit units, respectively Corresponding to each DAC, and after performing the sampling/holding process of the gamma reference voltage, outputting the sampled gamma reference voltages of each of R, G, and B, and the gamma reference voltage is sequentially rotated by the DACs The liquid crystal display according to claim 1, wherein the gamma reference voltage generator comprises at least: an R gamma a voltage reference generator that outputs a sampled R gamma reference voltage after performing a sample/hold process of the gamma reference voltage, and is serially received and converted by serialization with - The first polarity R gamma data is converted into analog data with the R gamma reference data which has been serialized and has a second polarity; a G gamma reference voltage generator that performs the gamma reference voltage After sampling/holding processing, outputting the sampled G gamma reference voltage ' and sequentially receiving and converting the G gamma data which has been serialized and has a first polarity and is serialized with a first Bipolar G gamma reference material Converting to analog data; and a B gamma reference voltage generator that outputs a sampled B gamma reference voltage after performing a sample/hold process of the gamma reference voltage, and sequentially receives and Converting the B gamma data that has been serialized and having a first polarity to the B gamma reference material that has been serialized and has a second polarity is converted into analog data. The liquid crystal display of claim 8, wherein each of the R, G, and B gamma reference voltage generators includes at least: a DAC that sequentially receives and converts the serialized and Digital gamma data with a first and second polarity, the Dac is converted into analog data corresponding to each of R, G, and B, and then rotated out of the analog data, which is a method having many-to-one; a first polarity sampling/holding circuit unit that sequentially performs sampling/holding processing of the first polarity gamma reference voltage from the DAC and outputs; and a second polarity sampling/holding circuit unit, the circuit After the sampling/holding process of the first polarity sampling/holding circuit unit is completed, the unit receives the sampling initial signal from the first polarity sampling/holding circuit unit > and sequentially processes the samples. Sampling/maintaining with a first polarity gamma reference voltage. 10. The liquid crystal display according to the first aspect of the patent application, the gamma reference voltage generator includes at least: /, middle and upper fans - the first Polar gamma reference voltage generator, the electric gamma reference voltage of the house is after the <sampling/maintaining process, the polarity of R, G and B git", Jing * 乂 sampling with the & Reference voltage, the reference voltage system 蕤* h is received and converted serially with a first polarity: by sequentially converting the reference voltages into analog data; and ·, ,, and the first polarity generated by the material Gamma reference voltage generator 'The voltage generator outputs a sampled R, G, and B gamma reference voltage with a second polarity after performing a sample/hold process of the 30 1301960 gamma reference voltage, the reference voltage system By sequentially receiving and converting the gamma data that has been slaughtered and having the second polarity, and converting the reference voltages into analog data. 11. The liquid crystal display according to claim 1 , each of which is the first and The two gamma reference voltage generator comprises at least: a DAC having a many-to-one method, the DAC outputs a gamma reference voltage, and the reference voltage sequentially receives and converts the serialized digital gamma by a line The data becomes a sample/hold unit generated by the analog data, and the unit sequentially performs sampling/holding processing of each of the R, G, and B gamma reference voltages output by the DAC, wherein the sampling/holding unit is at least The sample/hold circuit corresponding to each of the anaesthesia, 〇, and B is included, and any of the sample/hold circuit units performs sampling/holding processing by sampling the initial signal, and after the sampling/holding process, the sampling is performed. The initial signal is transmitted to another sample/hold circuit unit. The liquid crystal display of claim 1, wherein the gamma reference voltage generator comprises at least: a DAC having a many-to-one method, The DAC outputs a gamma reference voltage, and the reference voltage is sequentially generated by converting and converting the serialized digital gamma data into a analog data. a first sample/hold unit that sequentially performs a sampling of the analog gamma reference voltage of the analog gamma reference output of the polar analog gamma reference voltages R, G, and B by the DAC 314 31 1301960 /maintaining processing, and then rotating the respective test voltages; and a second sampling/holding unit, after the sampling/holding process of the unit is completed, the sampling initial signal of the polarity sampling/holding circuit humiliation unit is connected, and :::Differential-polarity sampling/holding, with the analog gamma reference voltage, the first-to-be-successed by the DAC is sent. Polar analog gamma reference voltage 13.如申請專利範圍第12項所述之液晶顯示器,其中上述之 各該第- &第二極性取樣/保持單元至少包括三個對應各 R、G及B之取樣/保持單元,且任—取樣/保持單元藉由取 樣之初始訊號而進行取樣/保,持處理,並且,於該取樣/保持 處理完成後,該取樣之初始訊號便傳遞給另一取樣/保持電 路單元。13. The liquid crystal display according to claim 12, wherein each of the first & second polarity sampling/holding units comprises at least three sampling/holding units corresponding to respective R, G, and B, and The sampling/holding unit performs sampling/holding by the initial signal of the sampling, and after the sampling/holding process is completed, the initial signal of the sampling is transmitted to the other sampling/holding circuit unit. 14·如申請專利範圍第7、9、U及η項任一項所述之液晶 顯示器,其中上述之該取樣/保持電袼單元至少包括一複數 個以並聯方式連結至該DAC輸出端之取樣/保持電路, 其中上述之該取樣/保持電路至少包括: 一轉換暫存器,用以傳遞取樣初始訊號至一相鄰之取樣/ 保持電路; 一開關,用以對應該取樣初始訊號而控制伽瑪參考電壓 輸出值之開/關; 32 1301960 一電容器,用以儲存經由該開關輸入之伽碼參考電壓以 及 , 一緩衝器,用以輸出該電容器中該取樣之伽瑪參考電 壓0 15·如申請專利範圍帛7、9、11A 13項*一項之液晶顯米 器,其中上述之該取樣/保持電路單元至少包括一複數個以 並聯方式連結至該DAC輸出端之取樣/保持電路 其中上述之該取樣/保持電路至少包括: 一轉換暫存器,用以傳遞取樣初始訊號至一相鄰之取樣/ 保持電路; 一開關,用以對應該取樣初始訊號而控制伽瑪參考電壓 輸出值之開/關; 第及第一電谷器,用以儲存該伽瑪參考電麼· 一輸入開關,該輸入開關連結至該開關,並傳遞該等通 過該開關之伽瑪參考電壓至該第一及第二電容器中·, 緩衝器,用以輸出儲存於該第一及第二電容器中之該 等伽瑪參考電壓;以及 一輸出開關,該輸出開關連結至該第一及第二電容器, 且傳遞儲存於該第一及第二電容器中之該等伽瑪參考電壓 至該緩衝器中。 1 6. —種液晶顯示器,該液晶顯示器至少包括: 一時序控制器’用以輸出各R、G及B之數位伽瑪資料; 1301960 ~瑪參考電壓產生器,用以轉換源自該時序控制器之 該數位伽瑪資料成為類比資料,以產生伽瑪參考電壓;以及 。。貝料驅動裝置,該資料驅動裝置至少包括一取樣/保持 單疋該取樣/保持單疋於執行源自該伽瑪參考電壓產生器 ,該伽瑪參考電壓之取樣/保持處理後,輪出既經取樣之該 等伽瑪參考電壓;以及 數位-類比轉換器’用以轉換各R、G及Β之圖像資料 成為類比電壓並作輪^ ψ ,工 勒出而該等類比電壓係由該經取樣之 伽瑪參考電壓所組成。 17.如申請專利範圍第16項所述之液晶顯示器,其中上述之 該伽瑪參考電壓產生器至少包括_第一及一第二極性伽瑪 參考電壓產生器’並經由一複數個輸出端,依次地輸出各r、 〇及Β之一第一及一第二極性伽瑪參考電壓, 其令上述之該取樣/保持單元至少包括一第—極性取樣/ 保持單元及-第:極性取樣/保持單元;該第一極性取樣/保 持單元用以執行㈣—伽瑪參考電壓之取請持處理,以 輸出-帶有第-極性經取樣之伽瑪參考電壓至該數位類比 轉換器中;而一第二極性取樣/俾姓w y 保持早元用以執行該第二伽瑪 參考電壓之取樣/保持處理,以輪出-帶有第二極性經取樣 之伽瑪參考電壓至該數位-類比轉換器中。 18·如申請專利範圍第16項所述之液晶顯示器,其令上述之 該伽瑪參考電壓產生器經由一複數個輸㈣,而依次地輸 34 1301960 出 第一及 '一第二伽瑪參考電壓, 其中上述之該取樣/保持單元至少包括一第—極 保持單元及一第二極性取樣/保持單元;該第一樣’ 持單元用以執行一源自該伽瑪參考電壓產生器,/保 伽瑪參考電壓之取樣/保持處理,以輸出各r、g及性 樣並帶有一第一極性之伽瑪參考電壓至該數位-類比轉:: 中;而該第二極性取樣/保持單元用以執行源自該伽瑪參考雪 壓產生器之一第二極性伽瑪參考電壓之取樣/保持處理、 輸出各R、…經取樣並帶有—第二極性之伽瑪參考電: 至該數位-類比轉換器中。 19.如申請專利範圍冑17 $ 18項所述之液晶顯示器,其中 述之各該第一及第二取樣/保持單元至少包括三個提供各 R G及B之取樣/保持電路,且該取樣/保持電路單元至少 包括-複數個取樣/保持電路,分別連結至一複數個該伽二 參考電壓產生器之輸出端, 其中上述之該取樣/保持電路至少包括: 開關’用以對應該取樣初始訊號而控制伽瑪參考電壓 輸出值之開/關; 電谷器’用以儲存經由該開關所輸入之該伽瑪參考雷 壓;以及 一緩衝器’用以輸出儲存於該電容器中,經取樣之伽瑪 參考電壓。 35 1301960 2 0 ·如申請專利範圍第^ 6項所述之液晶顯示器,其中上述之 該伽碼參考電壓至少包括一第一極性伽瑪參考電壓產生器 以及—第二極性伽瑪參考電壓產生器,其中該第一極性伽 瑪參考電壓產生器經由各R、G及B之輸出端,串列化各R、 G及β之一第一極性伽瑪參考電壓;而一第二極性伽瑪參考 電壓產生器經由各R、G及Β之輸出端,串列化各R、g及 B之一第二極性伽瑪參考電壓, 其中上述之該取樣/保持單元至少包括一第一極性取樣/ 保持單元以及一第二極性取樣/保持單元;該第一極性取樣/ 保持單元執行各已串列化並帶有一第一極性之各R、G及B 伽瑪參考電壓之取樣/保持處理,以輸出帶有一第一極性之 各R、G及B經取樣之伽瑪參考電壓至該數位類比轉換器 中,而一第一極性取樣/保持單元執行各已串列化並帶有一第 一極性之各R、G及B經取樣之伽瑪參考電壓,以輸出帶有 第一極性之各R、G及B經取樣之伽瑪參考電壓至該數位 -類比轉換器中, 其中上述之各該一第一及一第二極性取樣/保持電路至少 包括二個取樣/保持電路單元,該等電路單元係用以執行各 R、G及B伽瑪參考電壓之取樣/保持處理。 21·如申請專利範圍第16項所述之液晶顯示器,其中上述之 該伽瑪參考電壓產生器串列化一第一及一第二極性伽瑪參 考電壓之各R、G及B,以經由各11、(}及3之輸出端而輸 出各R、G及B, 36 13〇196〇 其。中上述之該取樣/保持單元至少包括R、G及B取樣/ :寺單兀’該R、G及B取樣’保持單元執行經串列化伽瑪 考電壓之各尺、〇及B取樣/保持處理,以輸出各經取樣 之第一及第二極性伽瑪參考電壓至該數位_類比轉換器中, 、 述之各R、G及B取樣/保持單元至少包括一第一 5性取樣/保持電路單元以及-第二極性取樣/保持丹電路單 Z第-極性取樣/保持電路單^依次地執行—第―極性伽 保考電壓之取樣’保持處理並作輸出;而一第二極性取樣/ :持電路單元於該第一極性中該取樣/保持 =該第-極性取樣/保持電路單元之取樣初始:: 輸二執仃-第二極性伽瑪參考電壓之取樣/保持處理並作 2 2 ·如申請專利範圍笫彳6 J犯固弟10項所述之液晶顯示器,其 該伽瑪參考電壓產生器至少包括一第 之 生器以及一第二極性伽瑪參考電壓產生器,其楚 一極性伽瑪參者雷厭客A M第 ”芩亏電壓產生益串列化第一極性R、 參考電壓並作輪屮·文兮咕 及B伽瑪 乍輸出,又該一第二極性伽瑪參考電壓 列化第二極性Rr s u 生器串 R G及B伽瑪參考電壓並作輸出, 其中上述之該取樣/保持單元至少包括 媒 保持單元以及-第二極性取_持單以第-性: 保持單元執行該經串列化之第-極性R、…伽二:雷/ 壓之取樣/保持處理,以輸出經取樣之r、g及^參考電 伽瑪參考電壓·又兮笛- 乐極性 壓,又該第一極性取樣/保持單元執行該經串列 37 1301960 化之第二極性R、Ο及B伽 以輸出經取樣之R、G及b第 碼參考電壓之取樣/保持處 二極性伽瑪參考電壓, 理 〜吟昂二取樣/保持單元至少包技一 個對應至各R、G及B之, 秸二 <取樣/保持電路單元,且任一兮 樣/保持電路單元藉由取梅如仏 取 7初始訊號而執行取樣/保持處理, 且在任一該取樣/保持電 單疋中的該取樣/保持處理完成 後,該取樣初始訊號便會值 。忧膂傳遞至另一個取樣/保持電路 中。 23·如申請專利範圍第u 項所述之液晶顯示器,其中上述之 該伽瑪參考電壓產生器串 ^ ¥列化第一及第二R、G及B伽瑪參 考電壓,並經由一輸出端輸出該些參考電壓, 具中上述之該取樣/保持單元至少包括—第—極性取樣 保持早凡以及一第二極性取樣/保持單元;該第一極性取樣 保持單元依次地執行該經串列化之第一及第二極性伽瑪參 考電壓中之第一極性R、G及Β伽瑪參考電壓取樣,保持處 理後,以輸出經取樣之第一極性R、G及Β伽瑪參考電壓; 又該第二極性取樣/保持單元於該第一取樣/保持單元之該取 樣/保持處理完成後,接收源自該第一取樣/保持單元之取樣 初始訊號,並依次地執行該經串列化之第一及第二極性伽 瑪參考電麗中之第一極性R、G& Β伽瑪參考電麼取樣/保 持處理,以輸出經取樣之第一極性R、G及β伽瑪參考電壓, 其中上述之各該第一及第二極性取樣/保持單元至少包括 二個對應至各R、G及Β之取樣/保持電路,且任一該取樣/ 38 1301960 保持電路單元藉由取樣初始訊號以執行取樣/保持處理,於 該取樣/保持處理完成後,該取樣初始訊號便傳遞至另一個 取樣/保持電路單元中。 24·如申請專利範圍第2〇至23項任一項所述之液晶顯示器, 其中上述之該取樣/保持電路單元至少包括一複數個取樣/保 持電路,該等取樣/保持電路係以並聯之方式連結一輸出端 至該伽瑪參考電廢產生器, 八中上述之該取樣/保持電路至少包括: 一轉換暫存器,用以傳遞取樣初始訊號至一相鄰之取樣/ 保持電路; 一開關’用以對應該取樣初始訊號而控制伽瑪參考電壓 輸出值之開/關; 一電容器,用以儲存經由該開關輸入之伽瑪參考電壓丨以 及 , 一緩衝器,用以輸出儲存於該電容器内經取樣之伽瑪參 考電壓' 25.如申請專利範圍第2〇至23項任一項所述之液晶顯示器, 其中上述之該取樣/保持電路單元至少包括一複數個取樣/保 持電路,該等取樣/保持電路係以並聯的方式連結一輸出端 至該伽瑪餐電壓產生器, 其中上述之該取樣/保持電路至少包括: 一轉換暫存器,用以傳遞取樣初始訊號至一相鄰之取樣/ 39 1301960 保持電路; 開關 用以對應該取樣初始訊號而控制伽瑪參考電壓 之開/關; 第一及第二電容器,用以儲存該伽瑪參考電壓; 一輸出開關,用以連結至該開關,且對應源自一外部裝 選擇訊號’而傳遞已通過該開關之伽瑪參考電壓至該 第一或第二電容器中· 緩衝器’用以輸出儲存於該第一或第二電容器之伽 參考電壓;以及 ,/ 。一輸出開關,該輸出開關連結至該第一及該第二電容 & ’並傳遞儲存於該第-或該第.二電容器中之伽瑪參考雷 壓至該緩衝器中。 t 26.-種液晶顯示器之驅動裝^,該驅動骏置輸出 壓用以顯示該液晶顯示器之圖像,該驅動裝置至少包括, 一數位伽瑪储存器’用以儲存源自一外部裝置二數朽 、1,,1 . 双位伽 瑪資料; 壓, 該伽 一伽瑪參考電壓產生器,用以產生伽瑪參考電〜 瑪參考電壓產生器係用於個別轉換各厌、 成為類比電壓,該類比電壓係由該經儲 貝;斗 仔之數位伽螞窨虫、丨 所組成;以及 貝枓 一數位-類比轉換器,用以分別轉換R、G及B 國像資Μ 成為諸類比電壓並作輸出,而該等類比電☆壓係由該纟_ 料 之伽瑪參考電壓所組成。 !產生 40 1301960 27. —種液晶顯示器之一驅動裝置,該驅動裝置用以輸出資 料電壓以顯示該液晶顯示器之圖像,該驅動裝置至少包括: 一取樣/保持單元,用以執行於一外部端所產生之伽瑪參 考電壓,以輸出經取樣之伽瑪參考電壓;以及 一數位-類比轉換器,用以轉換各R、G及B圖像資料成 為類比電壓並作輸出,該等類比電壓係由經取樣之伽瑪參 考電壓所組成之。The liquid crystal display according to any one of claims 7 to 9, wherein the sampling/holding power unit comprises at least a plurality of samplings connected in parallel to the output end of the DAC. And the holding circuit, wherein the sampling/holding circuit comprises: at least one conversion register for transmitting the sampling initial signal to an adjacent sampling/holding circuit; and a switch for controlling the initial signal to control the gamma The reference voltage output value is turned on/off; 32 1301960 a capacitor for storing the gamma reference voltage input through the switch and a buffer for outputting the gamma reference voltage of the sample in the capacitor 0 15 · The liquid crystal display device of claim 7, wherein the sampling/holding circuit unit comprises at least a plurality of sampling/holding circuits connected in parallel to the output end of the DAC. The sample/hold circuit includes at least: a conversion register for transferring the sampling initial signal to an adjacent sample/hold circuit; a switch for The sampling initial signal controls the on/off of the gamma reference voltage output value; the first and first electric grids are configured to store the gamma reference power, an input switch, the input switch is coupled to the switch, and the Waiting for the gamma reference voltage of the switch to the first and second capacitors, the buffer for outputting the gamma reference voltages stored in the first and second capacitors; and an output switch, An output switch is coupled to the first and second capacitors and transmits the gamma reference voltages stored in the first and second capacitors to the buffer. 1 6. A liquid crystal display, the liquid crystal display at least comprising: a timing controller 'for outputting digital gamma data of each of R, G, and B; and a 1301960-ma reference voltage generator for converting from the timing control The digital gamma data of the device becomes analog data to generate a gamma reference voltage; . a material feeding device, the data driving device comprising at least one sampling/holding unit for performing sampling/holding processing from the gamma reference voltage generator after the sampling/holding process of the gamma reference voltage The sampled gamma reference voltages; and the digital-to-analog converters are used to convert the image data of each of R, G, and 成为 into an analog voltage and perform a round-robin operation, and the analog voltages are The sampled gamma reference voltage is formed. 17. The liquid crystal display of claim 16, wherein the gamma reference voltage generator comprises at least a first and a second polarity gamma reference voltage generator and via a plurality of outputs. And sequentially outputting one of the first and second polarity gamma reference voltages of each of r, 〇 and ,, wherein the sampling/holding unit comprises at least one first polarity sampling/holding unit and - the first polarity sampling/holding a first polarity sampling/holding unit configured to perform a (four)-gamma reference voltage acquisition process to output a gamma reference voltage with a first polarity sampled to the digital analog converter; The second polarity sampling / 俾 last wy is used to perform the sampling/holding process of the second gamma reference voltage to rotate - the gamma reference voltage with the second polarity sampled to the digital-to-analog converter in. 18. The liquid crystal display of claim 16, wherein the gamma reference voltage generator is sequentially input through a plurality of inputs (four), and sequentially outputs 34 1301960 out of the first and a second gamma reference. a voltage, wherein the sampling/holding unit includes at least a first pole holding unit and a second polarity sampling/holding unit; the first holding unit is configured to perform a gamma reference voltage generator, Sampling/holding processing of a gamma reference voltage to output respective r, g, and samples with a gamma reference voltage of a first polarity to the digital-to-analog conversion::; and the second polarity sampling/holding unit a sample/hold process for performing a second polarity gamma reference voltage from the gamma reference snow pressure generator, outputting each R, ... sampled with a second polarity gamma reference: to In a digital-to-analog converter. 19. The liquid crystal display of claim 17, wherein each of the first and second sample/hold units comprises at least three sample/hold circuits for providing RG and B, and the sampling/ The holding circuit unit includes at least a plurality of sampling/holding circuits respectively coupled to an output of the plurality of gamma reference voltage generators, wherein the sampling/holding circuit comprises at least: a switch for corresponding sampling of the initial signal And controlling the on/off of the gamma reference voltage output value; the electric grid device 'for storing the gamma reference lightning pressure input through the switch; and a buffer 'for outputting and storing in the capacitor, sampling Gamma reference voltage. The liquid crystal display of claim 6, wherein the gamma reference voltage includes at least a first polarity gamma reference voltage generator and a second polarity gamma reference voltage generator The first polarity gamma reference voltage generator serializes one of the first polarity gamma reference voltages of each of R, G, and β via the outputs of the respective R, G, and B; and a second polarity gamma reference The voltage generator serializes a second polarity gamma reference voltage of each of R, g, and B via an output end of each of R, G, and ,, wherein the sample/hold unit includes at least a first polarity sampling/holding And a second polarity sampling/holding unit; the first polarity sampling/holding unit performs sampling/holding processing of each of the R, G, and B gamma reference voltages that are serialized and has a first polarity to output Each of the R, G, and B sampled gamma reference voltages of a first polarity is coupled to the digital analog converter, and a first polarity sample/hold unit performs each of the serialized and first polarity Sampled gamma of R, G and B Testing the voltage to output a sampled gamma reference voltage of each of the first polarity, R, G, and B, to the digital-to-analog converter, wherein each of the first and second polarity sample/hold circuits There are at least two sample/hold circuit units for performing sample/hold processing of the respective R, G, and B gamma reference voltages. The liquid crystal display of claim 16, wherein the gamma reference voltage generator serializes each of R, G, and B of a first and a second polarity gamma reference voltage to pass through Each of the outputs of 11, (, and 3) outputs each of R, G, and B, 36 13 〇 196 。. The sampling/holding unit described above includes at least R, G, and B samples /: Temple single 兀 'R , G and B sample 'hold unit performs each scale, 〇 and B sample/hold processing of the serialized gamma test voltage to output each sampled first and second polarity gamma reference voltage to the digital _ analogy In the converter, each of the R, G, and B sample/hold units includes at least a first sigma sampling/holding circuit unit and a second polarity sampling/holding circuit single Z-first polarity sampling/holding circuit unit ^ Executing sequentially - sampling of the "first polarity gamma voltage" is maintained and outputting; and a second polarity sampling /: holding the circuit unit in the first polarity of the sample / hold = the first polarity sampling / holding circuit Initial sampling of the unit:: Input two-sampling - sampling of the second polarity gamma reference voltage / According to the patent application, the gamma reference voltage generator includes at least a first live device and a second polarity gamma reference voltage. The generator, the Chu-polar gamma ginator, Lei 客 AM AM first "芩 电压 电压 产生 产生 产生 产生 产生 产生 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 、 、 、 、 The second polarity gamma reference voltage serializes and outputs the second polarity Rr su generator string RG and the B gamma reference voltage, wherein the sampling/holding unit includes at least the medium holding unit and the second polarity taking_holding order With the first-degree: the holding unit performs the serialized first-polarity R, ... gamma: thunder/pressure sampling/holding process to output the sampled r, g, and ^ reference electrical gamma reference voltages. Flute-to-polar polarity, and the first polarity sample/hold unit performs the second polarity R, Ο, and B gamma of the series 37 1301960 to output the sampled R, G, and b code reference voltage samples. / Keep the two-polar gamma reference voltage, The sampling/holding unit at least one of the R, G, and B, the straw 2 < sample/hold circuit unit, and any sample/hold circuit unit performs sampling by taking the initial signal of the sample /keeping processing, and after the sampling/holding process in any of the sampling/holding sheets is completed, the sampling initial signal will be valued. The sorrow is transmitted to another sampling/holding circuit. The liquid crystal display according to item [5], wherein the gamma reference voltage generator string is configured to string the first and second R, G, and B gamma reference voltages, and output the reference voltages through an output terminal. The sample/hold unit described above includes at least a first polarity sampling hold and a second polarity sample/hold unit; the first polarity sample hold unit sequentially performs the serialized first and second The first polarity R, G and the gamma gamma reference voltage of the polarity gamma reference voltage are sampled, and after being processed, the sampled first polarity R, G and the gamma gamma reference voltage are output; and the second polarity is sampled/ Guarantee After the sampling/holding process of the first sample/hold unit is completed, the unit receives the sampling initial signal from the first sample/hold unit, and sequentially performs the serialized first and second polar gamma The first polarity R, G& gamma gamma reference current sampling/holding process is used to output the sampled first polarity R, G and β gamma reference voltages, wherein each of the first and The second polarity sampling/holding unit includes at least two sample/hold circuits corresponding to each of R, G, and ,, and any of the samples/38 1301960 holding circuit unit performs sampling/holding processing by sampling the initial signal. After the sample/hold process is completed, the sample initial signal is passed to another sample/hold circuit unit. The liquid crystal display according to any one of claims 2 to 23, wherein the sample/hold circuit unit comprises at least a plurality of sample/hold circuits, and the sample/hold circuits are connected in parallel The method of connecting an output terminal to the gamma reference electrical waste generator, wherein the sampling/holding circuit of the eighth method comprises: a conversion register for transmitting the sampling initial signal to an adjacent sampling/holding circuit; The switch is configured to control the on/off of the gamma reference voltage output value corresponding to the initial signal; a capacitor for storing the gamma reference voltage input through the switch; and a buffer for outputting the output A liquid crystal display according to any one of claims 2 to 23, wherein the sample/hold circuit unit includes at least one plurality of sample/hold circuits, The sample/hold circuits are connected in parallel to an output terminal to the gamma meal voltage generator, wherein the sample/hold circuit described above includes at least a conversion register for transferring the sampling initial signal to an adjacent sampling / 39 1301960 holding circuit; the switch is for controlling the on/off of the gamma reference voltage corresponding to the initial signal; the first and second capacitors, The gamma reference voltage is stored; an output switch is coupled to the switch, and the gamma reference voltage that has passed through the switch is transmitted to the first or second capacitor corresponding to an externally mounted selection signal ' a buffer 'for outputting a gamma reference voltage stored in the first or second capacitor; and, /. An output switch coupled to the first and second capacitors & and transmitting a gamma reference lightning surge stored in the first or the second capacitor to the buffer. t 26.-A liquid crystal display driving device, the driving output voltage is used to display an image of the liquid crystal display, the driving device comprises at least a digital gamma storage device for storing from an external device Digital decay, 1, 1, 1. Dual-bit gamma data; voltage, the gamma-gamma reference voltage generator for generating gamma reference voltage ~ mA reference voltage generator for individual conversion, anamorphic, analog voltage The analog voltage system is composed of the scallops; the digital gamma worms and cockroaches of the cockroach; and the Bellows-digital-analog converter for converting the R, G and B national image assets into analogies respectively. The voltage is also output, and the analog voltage is composed of the gamma reference voltage of the material. ! Generating 40 1301960 27. A driving device for a liquid crystal display, the driving device is configured to output a data voltage to display an image of the liquid crystal display, the driving device at least comprising: a sampling/holding unit for performing at an external end a generated gamma reference voltage for outputting the sampled gamma reference voltage; and a digital-to-analog converter for converting each of the R, G, and B image data into an analog voltage and outputting the analog voltage system It consists of a sampled gamma reference voltage. 4141
TW91117090A 2002-05-06 2002-07-30 Liquid crystal display and driving apparatus thereof TWI301960B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020020024781A KR100859520B1 (en) 2001-11-05 2002-05-06 Liquid crystal display and data driver thereof

Publications (1)

Publication Number Publication Date
TWI301960B true TWI301960B (en) 2008-10-11

Family

ID=45090903

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91117090A TWI301960B (en) 2002-05-06 2002-07-30 Liquid crystal display and driving apparatus thereof

Country Status (1)

Country Link
TW (1) TWI301960B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8547405B2 (en) 2010-01-19 2013-10-01 Himax Technologies Limited Gamma voltage generation circuit
TWI415107B (en) * 2009-12-31 2013-11-11 Himax Tech Ltd Gamma voltage generation circuit
US8593389B2 (en) 2009-09-23 2013-11-26 Novatek Microelectronics Corp. Gamma-voltage generator
TWI417857B (en) * 2009-09-23 2013-12-01 Novatek Microelectronics Corp Driving circuit of liquid crystal display
TWI511113B (en) * 2012-10-19 2015-12-01 Japan Display Inc Display device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8593389B2 (en) 2009-09-23 2013-11-26 Novatek Microelectronics Corp. Gamma-voltage generator
TWI417857B (en) * 2009-09-23 2013-12-01 Novatek Microelectronics Corp Driving circuit of liquid crystal display
TWI415107B (en) * 2009-12-31 2013-11-11 Himax Tech Ltd Gamma voltage generation circuit
US8547405B2 (en) 2010-01-19 2013-10-01 Himax Technologies Limited Gamma voltage generation circuit
TWI511113B (en) * 2012-10-19 2015-12-01 Japan Display Inc Display device

Similar Documents

Publication Publication Date Title
US7859524B2 (en) Liquid crystal display and driving device thereof
JP5581279B2 (en) Driving device for liquid crystal display device
JP3495960B2 (en) Gray scale display reference voltage generating circuit and liquid crystal driving device using the same
TW574679B (en) Liquid crystal display and method for driving the same
KR100840675B1 (en) Mehtod and apparatus for driving data of liquid crystal display
US8139010B2 (en) Gamma voltage generator and control method thereof and liquid crystal display device utilizing the same
US8013769B2 (en) Digital-to-analog converter and method of digital-to-analog conversion
US6750839B1 (en) Grayscale reference generator
KR101127844B1 (en) Apparatus and method for driving image display device
WO2009066882A2 (en) Offset compensation gamma buffer and gray scale voltage generation circuit using the same
KR20060117026A (en) Data driver and liquid crystal display device using the same
CN104821828B (en) Low pressure digital analogue signal conversion circuit, data drive circuit and display system
JP2007072440A (en) Driving circuit of liquid crystal display device and method for driving the same
CN1489375A (en) Signal drive circuit of liquid crystal display device and its driving method
KR101147121B1 (en) Apparatus and method for transmission data, apparatus and method for driving image display device using the same
US7659875B2 (en) Gradation display reference voltage generating circuit and liquid crystal driving device
US6373478B1 (en) Liquid crystal display driver supporting a large number of gray-scale values
TWI301960B (en) Liquid crystal display and driving apparatus thereof
JPH0351887A (en) Liquid crystal display device
KR101388350B1 (en) Source driver integrated circuit and liquid crystal display using the same
JPH05506347A (en) Demultiplexer and 3-state gate used in it
WO1995020209A1 (en) Liquid crystal display
CN102622952A (en) Pixel driver with electronic element sharing structure
CN108461070B (en) Thin film transistor LCD panel and method for realizing self-adaptive source electrode driving of panel
JPH04100089A (en) Gradation display driving circuit for active matrix liquid crystal display

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees