TWI300794B - Color filter - Google Patents

Color filter Download PDF

Info

Publication number
TWI300794B
TWI300794B TW91103912A TW91103912A TWI300794B TW I300794 B TWI300794 B TW I300794B TW 91103912 A TW91103912 A TW 91103912A TW 91103912 A TW91103912 A TW 91103912A TW I300794 B TWI300794 B TW I300794B
Authority
TW
Taiwan
Prior art keywords
pigment
atoms
phthalocyanine
atom
color filter
Prior art date
Application number
TW91103912A
Other languages
Chinese (zh)
Inventor
Funakura Seiji
Yao Iemasa
Kudou Arata
Kiuchi Eiichi
Katsube Hiroshi
Original Assignee
Dainippon Ink & Chemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink & Chemicals filed Critical Dainippon Ink & Chemicals
Application granted granted Critical
Publication of TWI300794B publication Critical patent/TWI300794B/en

Links

Landscapes

  • Optical Filters (AREA)

Description

1300794 五、發明說明(1 ) 【技術領域】 本發明係關於一種具有含鹵化金屬酞菁顏料之濾色材 〇 【背景技術】 可在液晶顯示裝置使用的濾色材,係爲在玻璃等之透 明基板上形成紅色、綠色、藍色之3色的各種畫素區; 爲了形成綠色之畫素區,一般係使用鹵化銅酞菁染料、 或鹵化銅酞菁顏料。 【發明欲解決之課題】 可使用做爲構成濾色材之綠色畫素區之綠色著色劑者 ,係爲具有每1個酞菁分子中8個以上之鹵素原子係鍵 結在酞菁分子之苯環上的鹵化金屬酞菁構造之染料或顏 料。然而,在平版印刷、塗料、成形品著色等廣泛用途 上及不同的濾色材領域中,不僅止於單單對著色要求, 而且會要求比(例如)以下之(1 )〜(2 )更高等的特性: (1 )對僅通過特定波長之光具有高的選擇性; (2)以極高的穿透率通過特定波長之光。 可做爲此種綠色染料著色劑者,如特開昭63- 286801 號公報上所揭示的技術,係可倂用八氯銅酞菁硫酸染料 、八氯鎳酞菁硫酸染料、八氯鋇酞菁硫酸染料等之鹵化 金屬酞菁硫酸料及黃色有機染料。 又,在特開平11- 302283號公報上,則揭示一種倂用 八苯基銅酞菁病酸染料、八苯基鋅酞菁硫酸染料、八苯 1300794 五、 發明說明 ( 2: 基 鋁 酞 菁 硫 酸 染 料等之苯基金屬酞菁硫酸料及 黃 色有 機 染 料之技 術 〇 更 且 在 特 開 平 9- 291 240號公報上,揭示 了 — 種 使 用 具 有 硫 酸 基 和 單偶氮染料殘基之銅酞菁綠色 染 料 及 具 有 硫 酸 基 和 單 偶氮染料殘基之鋅酞菁綠色染 料 等 之 技 術 〇 然 而 此 種 染 料係具有所諝的諸如耐光性等 之 種 種 耐 久性之缺 點 〇 具 有 少 量 如 上 述那種缺點之綠色染料,通常是 :使 用 每 1 個 酞 菁 分 子 之 4 個苯環上總共16個氫原子中的 8 個 以 上 係 爲 溴 氯 等 鹵素原子所取代之鹵化銅酞菁 顏 料 〇 此 種 鹵 化 銅 酞 菁 顏 料,係將氫原子爲溴原子及/或 氯 原 子 所 取代 之 鹵 化 銅 酞 菁顏料以各種比率混合物之混合物 〇 在 濾 色 材 之 綠 色畫素區上,通常會要求比接 近 黃 色 更 強 之 明 売 的 綠 色 顏料。向來,爲了發出接近黃 色 之 明 売 的 綠 色 較 宜 是 在1分子鹵化銅酞菁之苯環上 鍵 結 多 的 鹵 素 原 子 〇 更 且 ’已知每1分子鹵化銅酞菁上 所 鍵 結 的 鹵 素 原 子 中 溴 原 子數多的話,則弩發出帶接近 黃 色 之 綠 色 〇 例如 特 開 平9 - 68607號公報曾提議在濾 色材 之 綠 色 畫 素 區 上 使用 如C. I .顏料綠36那樣含有 多 量 的 鹵 化 銅 酞 菁 顏 料 之 方法,即使用每1分子鹵化銅 酞 菁 之 4 個 苯 環 上 總 計 1 6個氫原子,係高比例地爲溴原 子 所取代 之 局 溴 含有 率 之 鹵化銅酞菁做成之鹵化銅酞菁顏 -4- :料 0 1300794 五、發明說明(3) 又,爲了改良帶有接近巧色之色相位的綠色目的,在 特開平1 0 - 1 60928號公報等亦曾提議在c. I.顏料綠 36寺之綠色顏料上添加C. I.顏料黃150、C. I.顏料 黃185等之黃色顏料來強化黃色之方法。 然而,現在,做爲液晶顯示裝置之背光光源者,多使 用具有約爲545奈米之綠色光主亮線的三波長管;在使 用此種光源的液晶顯示裝置上,當使用依照習用技術所 得到的濾色材之情況下,將具有以下所述之問題點。 也就是說,使用前述特開昭63 - 286801號公報等之代 表性綠色染料之濾色材,係會具有耐光性差、色相因長 期使用而褪色等所謂的根本性缺點。 又,使用特開平9 - 68607號公報上所記載之C. I.顏 料綠3 6之綠色顏料製造而得的濾色材之綠色畫素區,無 法得到如適合組合使用的紅色畫素區與綠色畫素區那樣 之色度和色相。 更且,如以特開平1 0 - 1 60928號公報等所代表的那樣 ,雖然曾提議使用添加有C. I.顏料綠36之黃色顏料 ,意圖使色度及色相近似於綠色畫素區,但是爲了達成 此一目的,結果使得偏向綠色顏料的黃色顏料之添加量 增加,因而在畫素區內必然無法生成所想要的色度和色 相。 爲形成畫素區而使用後述那樣之在貯藏光硬化性組成 物時所倂用的黃色顏料和綠色顏料,將會引起色差。 1300794 五、發明說明(4) 結果’具有這種畫素區之濾色材,不僅在液晶顯示上 明亮度不充分,且具有爲了達到滿意的顯示而不得不使 用大量的光源之缺點,或者在畫素區內無法生成所想要 的色度和色相之缺點。 【發明揭示】 本發明所要解決的課題係在於提供一種濾色材,其係 具有比染料系濾色更優良之耐久性,而且在適合使用具 有約爲545奈米之綠色光主亮線的三波長管做爲光源之 液晶顯示器的情況下,能呈現出強的黃色、明亮的綠色 、且在最少光量之背光源下也可以明亮地液晶顯示。 因此’本發明人等乃合成超越用以形成濾色材之綠色 畫素區的習用之鹵化銅酞菁顏料所具有之特性的各種鹵 化金屬酞菁顏料,並測定其分光透過光譜、以及檢討做 爲綠色畫素區之適當性。 在實際的液晶顯示裝置上使用的三波長管,當形成適 合於各別濾色材之最適化發光波長的情況下,取出該等 並評量之係爲本發繁雜的作業。因而,有鑑於三波長管 之綠色光主亮線係約爲545奈米,因而使用與三波長管 同一種分類之日本工業規格(〗IS) Z 8719所規定之具有 545奈米之主亮線的3波長域發光形態之螢光燈F10光源 ’來代替並做爲在實際的液晶顯示裝置上使用之三波長 管以進行評量’結果發現並提供一種在分光透光光譜中 520〜590奈米顯示出最大穿透率之特定鹵化金屬酞菁顏 ^— 1300794 五、發明說明(5) 料用以形成綠色畫素區之著色劑,並且提供一種可呈現 出強黃色、明亮綠色之明亮的液晶顯示器,至此始完成 本發明。 意即,本發明係提供一種濾色材,其特徵在於:該濾 色材係於透明基板上具有紅色、綠色及藍色之各種畫素 區,前述綠色畫素區係爲(1)含有每一個酞菁分子中之 8〜16個鹵素原子係鍵結在酞菁分子苯環上之鹵化金屬酞 菁顏料;而且(2)在可見光全區之分光透光光譜中520〜 590奈米處顯示出最大穿透率。 【圖式之簡說明】 第1圖係在實施例1所得到的濾色材綠色畫素區之分 光透過光譜。 第2圖係在實施例· 3所得到的濾色材綠色畫素區之分 光透過光譜。 第3圖係在比較例1所得到的濾色材綠色畫素區之分 光透過光譜。 【發明實施之態樣】 以下,詳細地來說明本發明。 本發明係爲滿足前述(1 )與(2)之要件。以下依次來說 明此等要件。 滿足前述(1 )之要件的在本發明所用的顏料,係爲一種 由含有酞菁分子(構造)之化學構造中,每1個酞菁分子( 構造)總計有8〜1 6個鹵素原子鍵結在4個苯環上之物質 1300794 五、發明說明(6) 所之顔料。以下,此等即爲所謂在本發明所用之鹵化金 屬駄菁顏料。 在本發明所用的較適用的鹵化金屬酞菁顏料’舉例來 說,例如是以下2個群之鹵化金屬酞菁顏料。 (第一群) 具有以選自 Al、Si、Sc、Ti、V、Mg、Fe、Co、Ni、Zn 、Ga、Ge、Y、Zr、In、Nb、Sn及Pb組成群類之金屬做 爲中心金屬,每一個酞菁分子中之8〜16個鹵素原子係鍵 結在酞菁分子苯環上之鹵化金屬酞菁顏料;當該中心金 屬爲三價的情況下,該中心金屬係與1個鹵素原子、羥 基或硫酸基中之任一個鍵結;當該中心金屬爲四價的情 況下,該中心金屬係與1個氧原子或者相同或不同也可 以之2個鹵素原子、羥基或硫酸基中之任一個鍵結之鹵 化金屬酞菁。 (第二群) 具有2分子之以自Al、Sc、Ga、Y及In組成之群類中 選出之三價金屬做爲中心金屬,每一個酞菁分子中之 8〜16個鹵素原子係鍵結在酞菁分子苯環上之鹵化金屬酞 菁做爲構成單位;該構成單位之各中心金屬係爲自氧原 子、硫原子、亞磺醯基-S0-及磺醯基-S02-所組成之群類 中選出之二價原子團鍵結的鹵化金屬酞菁二聚物構成之 鹵化金屬酞菁顏料。 在本發明中所用的鹵化金屬酞菁顏料中,鍵結在苯環 1300794 五、發明說明(7) 上之鹵素原子,可以是全部爲同樣,任一個相異也可以 。又,以相異的鹵素原子鍵結在一個苯環上也可以。在 苯環上所鍵結的鹵原子數爲一定的情況下,照碘>溴>氯> 氟之鹵素原子順序,在左側之黃味會變強。 因此,每一個酞菁分子中之8〜16個鹵素原子的9〜15 個鹵素原子鍵結在酞菁分子苯環上之本發明所使用的鹵 化金屬酞菁顏料,係爲一種呈現出帶有黃味之明亮的綠 色,而最適宜使用在濾色材料之綠色畫素區上。 在本發明中所使用的鹵化金屬酞菁顏料,係不溶或難 溶於水及有機溶媒。在本發明中所使用的鹵化金屬駄菁 顏料,係包括不進行下述修整處理之顏料(也稱爲粗顏料) 、進行修整處理之顏料中之任一者。 前述第一群及第二群所屬之鹵化金屬酞菁顏料,係可 以下述通式1來表示。 通式11300794 V. Technical Description [Technical Field] The present invention relates to a color filter material having a halogenated metal phthalocyanine pigment. [Background Art] A color filter material which can be used in a liquid crystal display device is in a glass or the like. Various pixel regions of three colors of red, green, and blue are formed on the transparent substrate; in order to form a green pixel region, a copper halide phthalocyanine dye or a copper halide phthalocyanine pigment is generally used. [Problem to be Solved by the Invention] A green colorant which is a green pixel region constituting a color filter material may be used, and one or more halogen atoms in each phthalocyanine molecule are bonded to a phthalocyanine molecule. A dye or pigment of a halogenated metal phthalocyanine structure on a benzene ring. However, in a wide range of applications such as lithography, paint, and coloring of molded articles, and in the field of different color filter materials, not only the coloring requirements alone but also higher (1) to (2), for example, are required. Characteristics: (1) High selectivity to light passing only a specific wavelength; (2) Light of a specific wavelength at a very high transmittance. It can be used as such a green dye coloring agent, such as the technique disclosed in Japanese Laid-Open Patent Publication No. SHO63-286801, which is an octachloro copper phthalocyanine sulfuric acid dye, an octachloronickel phthalocyanine sulfuric acid dye, or octachloroguanidine. A halogenated metal phthalocyanine sulfuric acid material such as a cyanine sulfate dye and a yellow organic dye. Further, Japanese Laid-Open Patent Publication No. Hei 11-302283 discloses an octaphenyl copper phthalocyanine acid dye, an octaphenyl zinc phthalocyanine sulfuric acid dye, and an octabenzene 1300794. The invention (2: base aluminum phthalocyanine) A phthalic acid phthalocyanine-based sulphuric acid-based phthalic acid phthalocyanine-based phthalic acid phthalocyanine-based phthalocyanine-based phthalocyanine-based phthalocyanine-based phthalocyanine-based phthalocyanine-based phthalocyanine-based phthalocyanine-based phthalocyanine-based phthalocyanine Techniques of dyes and zinc phthalocyanine green dyes having a sulfate group and a monoazo dye residue, etc. However, such dyes have the disadvantages of various durability such as light resistance and the like, and have a small number of disadvantages as described above. The green dye is usually a copper halide phthalocyanine pigment which is substituted with a halogen atom such as bromine chlorine by using a total of 16 hydrogen atoms on each of the four benzene rings of one phthalocyanine molecule. Cyanine pigment, which is replaced by a hydrogen atom and a chlorine atom and/or a chlorine atom. The copper halide phthalocyanine pigment is entangled in a mixture of various ratios on the green pixel region of the color filter material, and usually requires a green pigment which is stronger than the yellow color. It has always been green to emit a bright yellow color. It is preferable that the halogen atom bonded to the benzene ring of one molecule of the copper phthalocyanine phthalocyanine is more and that the number of bromine atoms in the halogen atom bonded to one molecule of the copper phthalocyanine is known to be large. The method of using a large amount of a copper halide phthalocyanine pigment, such as C.I. Pigment Green 36, is proposed in the green pixel region of the color filter material. A total of 16 hydrogen atoms are present on the four benzene rings of the molecular copper halide phthalocyanine, which is a copper halide phthalocyanine phthalocyanine made from a copper phthalocyanine containing a high proportion of the bromine atom. 0 1300794 V. INSTRUCTIONS (3) In addition, in order to improve the green color with a phase close to the color of the color, in the special Kaiping 1 0 - 1 No. 60928 and the like have proposed to add a yellow pigment such as CI Pigment Yellow 150 or CI Pigment Yellow 185 to the green pigment of c. I. Pigment Green 36 Temple to strengthen yellow. However, now, as a liquid crystal display device For the backlight source, a three-wavelength tube having a green light main bright line of about 545 nm is often used; in the case of using a liquid crystal display device using such a light source, when using a color filter material obtained according to a conventional technique, Has the problem points described below. In other words, the use of the color filter material of the representative green dye, such as the above-mentioned Japanese Patent Publication No. 63-286801, has a so-called fundamental disadvantage such as poor light resistance and fading of the hue due to long-term use. Further, the green pixel region of the color filter material produced by using the green pigment of CI Pigment Green 3 6 described in JP-A-9-68607 cannot obtain a red pixel region and a green pixel as suitable for combination use. The color and hue of the district. Further, as represented by the Japanese Patent Publication No. Hei 10-0160, and the like, it has been proposed to use a yellow pigment to which CI Pigment Green 36 is added, and it is intended to approximate the chromaticity and hue to the green pixel region, but in order to achieve For this purpose, the amount of yellow pigment added to the green pigment is increased, so that the desired chromaticity and hue cannot be generated in the pixel region. In order to form a pixel region, a yellow pigment and a green pigment which are used when storing a photocurable composition as described later are used, and chromatic aberration is caused. 1300794 V. INSTRUCTIONS (4) Results 'The color filter material having such a pixel region is not only insufficient in brightness on the liquid crystal display, but also has the disadvantage of having to use a large number of light sources in order to achieve a satisfactory display, or The shortcomings of the desired chromaticity and hue cannot be generated in the pixel area. DISCLOSURE OF THE INVENTION The problem to be solved by the present invention is to provide a color filter material which has durability superior to dye color filter color, and is suitable for use in a green light main line having about 545 nm. In the case of a liquid crystal display having a wavelength tube as a light source, it can exhibit a strong yellow color, a bright green color, and can be displayed in a bright liquid state under a backlight having a minimum amount of light. Therefore, the inventors of the present invention synthesize various halogenated metal phthalocyanine pigments having characteristics superior to those of conventional halogenated copper phthalocyanine pigments for forming a green pixel region of a color filter material, and measuring their spectral transmission spectra and reviewing The appropriateness of the green pixel area. In the case of a three-wavelength tube used in an actual liquid crystal display device, when an optimum light-emitting wavelength suitable for each color filter material is formed, it is a complicated operation to take out and evaluate the light-emitting wavelength. Therefore, in view of the fact that the green light main line of the three-wavelength tube is about 545 nm, the main bright line of 545 nm is specified by the Japanese Industrial Standard (IS) Z 8719, which is the same classification as the three-wavelength tube. The fluorescent light source F10 light source of the 3-wavelength domain illumination form is replaced and used as a three-wavelength tube for evaluation on an actual liquid crystal display device. The result is found and provides a 520-590 nm in the spectral transmission spectrum. The specific halogenated metal phthalocyanine which shows the maximum penetration rate. 1300794 V. Illustrative (5) The coloring agent used to form the green pixel area, and provides a bright yellow, bright green color. The liquid crystal display has heretofore completed the present invention. That is, the present invention provides a color filter material characterized in that the color filter material is on a transparent substrate having various pixel regions of red, green, and blue, and the green pixel region is (1) containing each a halogenated metal phthalocyanine pigment bonded to a benzene ring of a phthalocyanine molecule by 8 to 16 halogen atoms in a phthalocyanine molecule; and (2) displayed at 520 to 590 nm in a spectroscopic light-transmitting spectrum of the entire visible light region Maximum penetration rate. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a light transmission spectrum of the green pixel region of the color filter obtained in Example 1. Fig. 2 is a light transmission spectrum of the green pixel region of the color filter obtained in Example 3. Fig. 3 is a light transmission spectrum of the green pixel region of the color filter obtained in Comparative Example 1. [Embodiment of the Invention] Hereinafter, the present invention will be described in detail. The present invention satisfies the requirements of the foregoing (1) and (2). These requirements are explained in turn below. The pigment used in the present invention which satisfies the requirements of the above (1) is a chemical structure containing a phthalocyanine molecule (structure), and each of the phthalocyanine molecules (structure) has a total of 8 to 16 halogen atom bonds. A substance that is attached to four benzene rings 1300794 5. The pigment of the invention (6). Hereinafter, these are the halogenated metal phthalocyanine pigments used in the present invention. The more suitable halogenated metal phthalocyanine pigment used in the present invention is exemplified by, for example, the following two groups of halogenated metal phthalocyanine pigments. (first group) having a metal group selected from the group consisting of Al, Si, Sc, Ti, V, Mg, Fe, Co, Ni, Zn, Ga, Ge, Y, Zr, In, Nb, Sn, and Pb a central metal, 8 to 16 halogen atoms in each phthalocyanine molecule bonded to a halogenated metal phthalocyanine pigment on a phthalene ring of a phthalocyanine molecule; when the central metal is trivalent, the central metal system One of a halogen atom, a hydroxyl group or a sulfuric acid group; when the central metal is tetravalent, the central metal may be the same or different from one oxygen atom or two halogen atoms, a hydroxyl group or A halogenated metal phthalocyanine bonded to any one of the sulfate groups. (Second group) A trivalent metal selected from the group consisting of Al, Sc, Ga, Y, and In as a central metal, and 8 to 16 halogen atom bonds in each phthalocyanine molecule a halogenated metal phthalocyanine bonded to a benzene ring of a phthalocyanine molecule as a constituent unit; each central metal of the constituent unit is composed of an oxygen atom, a sulfur atom, a sulfinyl-S0-, and a sulfonyl-S02- A halogenated metal phthalocyanine pigment composed of a divalent atomic group-bonded halogenated metal phthalocyanine dimer selected from the group. In the halogenated metal phthalocyanine pigment used in the present invention, the halogen atom bonded to the benzene ring 1300794, and the invention (7) may be all the same, and any one of them may be different. Further, it is also possible to bond a different halogen atom to one benzene ring. When the number of halogen atoms bonded to the benzene ring is constant, the yellow odor on the left side becomes stronger in the order of the halogen atom of iodine > bromine > chlorine & fluorine. Therefore, the halogenated metal phthalocyanine pigment used in the present invention in which 9 to 15 halogen atoms of 8 to 16 halogen atoms in each phthalocyanine molecule are bonded to the benzene ring of the phthalocyanine molecule is a The yellow color is bright green, and it is most suitable for use on the green pixel area of the color filter material. The halogenated metal phthalocyanine pigment used in the present invention is insoluble or poorly soluble in water and an organic solvent. The halogenated metal phthalocyanine pigment used in the present invention includes any one of a pigment (also referred to as a crude pigment) which is not subjected to the following conditioning treatment, and a pigment which is subjected to a trimming treatment. The halogenated metal phthalocyanine pigment to which the first group and the second group belong can be represented by the following formula 1. Formula 1

1300794 五、發明說明(8) 采一群所屬之鹵化金屬駄菁顏料,係如通式1所示,兹 說明如下。 在通式1中,係代表氫原子、氯原子、溴原子、 或碘原子。鍵結在一個苯環上之4個X原子係爲相同, 也可以是相異。鍵結在四4個苯環上之中,係有 8〜16個氫原子、氯原子、溴原子、或碘原子。μ係代表中 心金屬。後述之Υ及其個數m係爲相同鹵化金屬酞菁顏料 之範圍,16個Xi〜X16中之氫原子、氯原子、溴原子、或碘 原子的總數不滿8之顏料係爲藍色,同樣地在16個Xi〜X16 中之氫原子、氯原子、溴原子、或硤原子的總數爲8以上 之顏料,當前述總數値愈大時黃色愈強。鍵結在中心金屬 Μ上之Y,係爲自氟、氯、溴或碘之任一鹵素原子、氧原 子、氫氧基及磺酸基所組成群類中選出之一價原子團;m 係代表鍵結在中心金屬Μ上之Y的數量,其係爲0〜2之整 數。 藉由中心金屬Μ之原子價數,可決定m之値。當中心金 屬Μ係爲如A 1、S c、G a、Y、I η之3價原子價的情況時, 貝[J m=l,自氟、氯、溴、碘、氫氧基及磺酸基所組成群類 中選出之一個基係鍵結在中心金屬上。當中心金屬Μ係爲 如Si、Ti、V、Ge、Zi:、Sn之4價原子價的情況時,則 m = 2,一個氧係鍵結在中心金屬上;或者自氟、氯、溴、 碘、氫氧基及磺酸基所組成群類中選出之二個基係鍵結在 中心金屬上。當中心金屬Μ係爲如Mg、Fe、Co、Ni、Zn、 -10- 1300794 五、發明說明(9) Zr、Sn、Pb之2價原子價的情況時,則Y不存在。 又,第二群所屬之鹵化金屬酞菁顏料,係如通式1所示 ,茲說明如下。 在通式1中,關於Xi〜X16係與前述之定義相同義意。當 中心金屬Μ係爲如Al、Sc、Ga、Y及In之3價原子價的 情況時,則m=l。Y係代表以下之原子團。1300794 V. INSTRUCTIONS (8) A group of halogenated metal phthalocyanine pigments, as shown in Formula 1, are described below. In the formula 1, it represents a hydrogen atom, a chlorine atom, a bromine atom, or an iodine atom. The four X atomic systems bonded to a benzene ring are the same or different. The bond is bonded to four or four benzene rings, and has 8 to 16 hydrogen atoms, chlorine atoms, bromine atoms, or iodine atoms. The μ system represents the center metal. The enthalpy and the number m thereof described later are in the range of the same halogenated metal phthalocyanine pigment, and the total number of hydrogen atoms, chlorine atoms, bromine atoms, or iodine atoms in 16 of Xi to X16 is less than 8, and the pigment is blue. A pigment having a total of 8 or more hydrogen atoms, chlorine atoms, bromine atoms, or ruthenium atoms in 16 Xi to X16 is stronger when the total amount is larger. Y, which is bonded to the central metal ruthenium, is one of a group of halogen atoms, oxygen atoms, hydroxyl groups and sulfonic acid groups selected from fluorine, chlorine, bromine or iodine; The number of Ys bonded to the center metal crucible, which is an integer of 0 to 2. The enthalpy of m can be determined by the atomic valence of the central metal ruthenium. When the central metal lanthanide is a valence of a trivalent atom such as A 1 , S c, G a, Y, I η , shell [J m = 1, from fluorine, chlorine, bromine, iodine, hydroxyl and sulfonate One of the groups selected from the group consisting of acid groups is bonded to the central metal. When the central metal lanthanide is a tetravalent atomic valence such as Si, Ti, V, Ge, Zi:, Sn, then m = 2, an oxygen linkage to the central metal; or from fluorine, chlorine, bromine The two groups selected from the group consisting of iodine, hydroxyl and sulfonic acid groups are bonded to the central metal. When the central metal lanthanide is a valence of two valences such as Mg, Fe, Co, Ni, Zn, -10- 1300794, and (9) Zr, Sn, and Pb, Y does not exist. Further, the halogenated metal phthalocyanine pigment to which the second group belongs is as shown in the general formula 1, and is explained below. In the formula 1, the definitions of Xi to X16 are the same as defined above. When the central metal lanthanum is a trivalent valence such as Al, Sc, Ga, Y, and In, then m = 1. The Y system represents the following atomic groups.

又,在原子團之化學構造中,中心金屬Μ係與前述之定 義相同義意。Χ17〜Χ32係與前述Xi〜X16係之定義相同義意。 A係代表自氧原子、硫原子、亞磺醯基(-S0-)及磺醯基(-S〇2-)所組成群類中選出之二價原子團。通式1中Μ與原 子團Υ之Μ係表示經由二價原子團而鍵結。 亦即,第二群所屬之鹵化金屬酞菁顏料,係爲一種以2 -11- 1300794 五、發明說明(1〇) 分子的鹵化金屬酞菁爲構成單位,並在此經由前述二價原 子團而鍵結之鹵化金屬酞菁二聚物。 可做爲以通式1所代表之鹵化金屬酞菁顏料,舉例來說 ,例如是以下①〜④。 ① 具有如鹵化錫酞菁、鹵化鎳酞菁、鹵化鋅酞菁那樣之以 選自Mg、Fe、Co、Ni、Zn、Zr、Sn、Pb所組成群類中 選出之二價金屬做爲中心金屬,而且8〜16個鹵素原子 係鍵結在每1個酞菁分子之4個苯環上的鹵化金屬酞菁 顏料。 ② 具有如鹵化氯鋁酞菁那樣之以選自Al、Sc、Ga、Y及In 所組成群類中選出之三價金屬做爲中心金屬,在中心金 屬上具有鹵素原子、氫氧基及磺酸基中之任一個,而且 8〜16個鹵素原子係鍵結在每1個酞菁分子之4個苯環上 的鹵化金屬酞菁顏料。 ③ 具有如鹵化氧鈦酞菁、鹵化氧釩酞菁之以選自S i、Ti、 V、Ge、Zr及Sn所組成群類中選出之四價金屬做爲中心 金屬,在中心金屬上具有1個氧原子或者相同或相異也 可可以之2個鹵素原子、氫氧基及磺酸基中之任一者, 而且8〜16個鹵素原子係鍵結在每1個酞菁分子之4個 苯環上的鹵化金屬酞菁顏料。 ④ 以如經鹵化之-氧-鋁酞菁二聚物、經鹵化之// -硫-鋁 酞菁二聚物那樣之以選自A 1、S c、G a、Y及I η所組成 群類中選出之三價金屬做爲中心金屬,且8〜16個鹵素 -12- 1300794 五、發明說明(11) 原子係鍵結在每1個酞菁分子之4個苯環上的2分子做 爲構成單位,該構成單位之各中心金屬係經由選自氧原 子、硫原子、亞磺醯基(-S0-)及磺醯基(-S02-)所組成 群類中之二價原子團而鍵結之鹵化金屬酞菁顏料。 以下,說明由根據本發明所使用之鹵化金屬酞菁顏料, 來製造綠色畫素區及濾色材之方法,以及測定該綠色畫素 區之分光透過光譜之方法。 含有根據本發明所使用之鹵化金屬酞菁顏料的綠色畫素 區,係利用後述之方法來測定在可見光全區( 380〜780奈米) 中之分光透過光譜上表示最大穿透率之波長(以下,稱爲 Tmax)係靠近長波長側之545奈米附近,而且由於在Tmax 中係爲大的穿透率,因而可得到比習用鹵化銅酞菁顏料更 優良黃味之明亮綠色兼具之綠色畫素區。尙且,爲了做成 能更淸晰地液晶顯不之液晶顯不裝置’則目U述T m a X中較 宜是有高的穿透率,其値以在70%以上比較佳。 在本發明所使用之鹵化金屬酞菁顏料中,較宜是鹵化氯 鋁酞菁顏料、經鹵化之// -氧-鋁酞菁二聚物顏料、鹵化鋅 酞菁顏料。含有此等顏料之綠色畫素區係在前述三波長管 之綠色光波長545奈米附近之波長區域上具有Tmax ;由於 該Tmax之穿透率係在85%以上,因而適用於使用該三波長 管之液晶顯示裝置上,並以至少光量之光源即可以淸楚地 顯示。 由第1圖及第3圖可知:含有鹵化氯鋁酞菁顏料或經鹵 -13- 1300794 五、發明說明(1 2 ) 化之-氧-鋁酞菁二聚物顏料之綠色畫素區,與含有鹵化 銅酞菁顏料之綠色畫素區比起來,在可見光全區之分光透 過光譜上係具有更寬廣之高穿透率的波長範圍,因而係非 常適合使用在高亮度化對象等所成之裝置的濾色材上。 又’由第2圖及第3圖可知··含有鹵化鋅酞菁顏料之綠 色畫素區,與含有鹵化銅酞菁顏料之綠色畫素區比起來, 在可見光全區之分光透過光譜上係具有比較狹窄之高穿透 率的波長範圍,因而係非常適合使用在高色域化對象等所 成之裝置的濾色材上。 也就是說,含有鹵化鋅酞菁顏料之綠色畫素區,係可縮 小該顏料之一次粒子的平均粒徑以使得Tmax靠近高波長 ,而且使得在Tm ax上之穿透率也可能變高。此種含有鹵 化鋅酞菁顏料之綠色畫素區,也可以使該顏料之一次粒子 的平均粒徑變大,而得到比含有習用鹵化銅酞菁顏料之綠 色畫素區更接近高波長側之Tmax ;然而當在分光透過光譜 曲線上之Tmax中1/2穿透率處內插穿透率時,曲線上2 點間之距離(幅度半値)係爲90〜110奈米,乃非常陡峭, 高色純度,在與黃色顏料混色的情況下,於綠色區域之光 穿透量會變多而得到淸晰的畫面;映像之對比良好,因而 非常適合地使用在高色純度濾色材上。 尙且,一般來說,在做爲測定對象之複數個濾色材的著 色樹脂薄膜之膜厚度爲一定情況下之對比中,CIE發色系 色度(Y、X、y )之y値係大者可以稱爲「高色純度」之物 -14- 1300794 五、發明說明(13) ;根據X、y値爲一定而決定之複數個測定對象之濾色材 的著色樹脂薄膜之膜厚度情況下之對比中,膜厚度爲薄者 可稱爲「高色濃度」之物,而Y値爲大者可稱爲「高透明 性」之物。 又,相同一次粒子的平均粒徑之對比中,該鹵化鋅酞菁 顏料之特徵在於:其係具有比含有鹵化銅酞菁顏料之綠色 畫素區高1 0%以上對著色力。此即,在相同的著色樹脂薄 膜中得到相同穿透率之濾色材綠色畫素區的情況下,具有 可以降低著色劑含有率之長處。相反地來說,根據本發明 所使用的鹵化鋅酞菁顏料,係可將濾色材之綠色畫素區適 切地予以薄膜化。 又,可做爲濾色材綠色畫素區者,較宜是在650〜700奈 米中分光透過光率爲5%以下之區域更寬廣,最大穿透率比 較大之物。此種波長區域之分光透過光率低時,即意謂著 在綠色畫素區上也具有少量紅色光穿透之優良的濾色材。 可做爲在本發明中所使用的鹵化金屬酞菁顏料,較宜是 使用中心金屬之種類、鍵結在中心金屬上之基的種類及個 數、鍵結在每1分子酞菁之4個苯環上之鹵素原子之種類 及其鍵結個數等爲一定之單一僅有一種之鹵化金屬酞菁顏 料;但也可以量2種以上的前述中心金屬顧爲相異的各 鹵化金屬酞菁顏料之混合物。例如,鹵化氯鋁酞菁顏料係 可推定爲具有與經鹵化之氧-鋁酞菁二聚物顏料同樣效 果之物。當然倂用此等也可以。 -15- 1300794 五、發明說明(彳4) 此種在本發明中所使用的鹵化金屬酞菁顏料,係可以 使用例如於「"酞菁化合物",第二冊,π製造及應用"」 ,(CRC出版公司,1 983年)等所記載之氯磺酸法、鹵化 酞腈法等方法來製造。 可用來做爲氯磺酸法者,舉例來說,例如係將具有自 Al、Si、Sc、Ti、V、Mg、Fe、Co、Ni、Zn、Ga、Ge、Υ 、Zr、Nb、In、Sn及Pb所組成之群類中選出之中心金屬 之酞菁顏料,溶解於氯磺酸等之硫酸化物係溶劑中,將 氯氣、溴、碘等投入其中使鹵化之方法。 可做爲鹵化酞腈法者,係爲如「”酞菁化合物”,第二 冊,π製造及應用”」那樣,舉例來說,例如其係使用以 溴除外之氯、碘等鹵素原子來取代苯環上一部分或全部 的氫原子之酞酸、及酞腈、與自Al、Si、Sc、Ti、V、Mg 、Fe 、 Co 、 Ni 、 Zn 、 Ga 、 Ge 、 Y 、 Zr 、 Nb 、 In 、 Sn 及 Pb 所組成之群類中選出之金屬或金屬鹽來做爲適用之出發 原料,而合成鹵化金屬酞菁顏料之方法。此種情況下, 視情況需要,也可以使用鉬酸銻等之觸媒。此時之反應 之溫度範圍係在100〜300°C,而且係進行1〜30小時。 可做爲熔融法者,係如特開昭5 1 - 64534號公報(美國 專利第4077974號說明書)那樣,舉例來說,例如其係在 將如氯化鋁、溴化鋁等之鹵化鋁,如四氯化鈦等之鹵化 鈦,如氯化鈉、溴化鈉等之鹼金屬鹵化物或鹼土金屬鹵 化物(以下化,稱爲鹼(土)金屬鹵化物),氯化亞硫酸等 •16- 1300794 五、發明說明(15) 所做成的各種鹵化時之溶劑化合物之一種或二種以上的 混合物所形成的10〜170 °C左右之熔融物中,使在鹵化劑 中之自 Al、Si、Sc、Ti、V、Mg、Fe、Co、Ni、Zn、Ga、 Ge、Y、Zr、Nb、In、Sn及Pb所組成之群類中選出金屬 酞菁顏料鹵化之方法。 適合於熔融法中使用之鹵化鋁,係爲氯化鋁。前述方 法中鹵化鋁之添加量,相對於金屬酞菁顏料計,通常是3 倍莫耳數以上,較宜是10〜20倍莫耳數。 在本發明中所使用的鹵化金屬酞菁顏料中之前述二聚 物顏料,例如,係可以儿著由對具有如前述那樣所得到 的中心金屬與鍵結之羥基或硫基,且中心金屬爲三價之 鹵化金屬酞菁顏料,進行脫水反應或脫硫化氫反應而製 造的。 在本發明中所使用的鹵化金屬酞菁顏料,較宜是使用 以1-氯萘溶液做成之具有吸收650〜750奈米之光的金屬 酞菁顏料做爲原料來製造。 本發明之濾色材的綠色畫素區上所使用者,較宜是在 本發明中所使用的鹵化金屬酞菁顏料中,一次粒子之平 均粒徑爲0.01〜0.10微米之鹵化金屬酞菁顏料。 此種平均粒徑之鹵化金屬酞菁顏料,其顏料之凝集係 比較弱的,而容易於後述形成濾色材畫素區之光硬化性 組成物中分散之顏料;於將述形成濾色材畫素區用之光 硬化性組成物予以硬化之際所常使用的3 6 5奈米上,其 -17- 1300794 五、發明說明(16) 遮光性之下降(即穿透性變高)’光硬化性組成物之光硬 化感度也會下降,則於顯像時將難以引起膜彎曲及圖案 走樣;因而較佳。因此之故,將可容易地得到具有近年 來所要求的鮮明度、亮度等任何一種均很高之畫素區的 濾色材。 又,在本發明中一次粒子之平均粒徑,其係以穿透型 電子顯微鏡JEM -2010(日本電子股份有限公司)攝取視區 內粒子之影像,選取在二維畫像上50個構成凝集體顏料 之一次粒子,求得其每一個之長方向直徑(長徑)的平均 値。此時,當做試料之前述顏料,係以超音波而使其分 散在溶劑中,而以顯微鏡攝影。又,也可以使用掃描式 電子顯微鏡來替代穿透型電子顯微鏡。 在本發明中所使用的鹵化金屬酞菁顏料,視情況需要 地,可藉由硏磨機、球磨機、振動粉碎機、振動球磨機 等之粉碎機內予以乾式粉碎,接著,以溶劑鹽析研磨法 或溶劑沸騰法進行修整處理,而得到0.01〜0.10微米之 苠化金屬酞菁顏料。經此種處理之鹵化金屬酞菁顏料, 在進行修整處理前之分散性及著色力均爲優良,而且是 可發出略帶黃味之比較明亮綠色的顏料。 此種修正處理之方法並沒有特別地限定,係可採用公 知慣用的方法,例如將多量的在本發明中所使用的鹵化 金屬酞菁顏料,於有機溶劑中進一步藉由加熱攪拌之溶 劑處理,可以容易地控制結晶成長,並且得到大比表面 -18- 1300794 五、發明說明(17) 積(意即比較細微)之顏料;依照此等觀點來看,較宜是 採用溶劑鹽析硏磨法來處理。 該種所謂之溶劑鹽析硏磨法,係指將在合成直接或之 後進行粉碎、而不經修整處理之鹵化金屬酞菁顏料、及 無機鹽、有機溶劑予以混練磨碎之意。此時,混練手段 ,舉例來說,例如有捏和、及混合法等。 在本發明中所使用的鹵化金屬酞菁顏料中,經進行前 述修整處理而具前述平均粒子徑之物,與向來之鹵化銅 酞菁顏料比起來,其一次粒子之凝集力乃比較弱,而具 有較易解析之性質。藉由電子顯微鏡攝影可觀察到··在 習用之顏料中無法觀察的顏料一次粒子。 在本發明中所使用的鹵化金屬酞菁顏料之一次粒子, 更且縱橫之外觀比係爲1〜30,以及使得在後述之光硬化 性組成物中之粘度特性增加,結果光硬化性組成物之流 動性變得更高,對濾色材用之透明基板之塗布性亦變得 更爲良好。關於求取外觀比方面,首先,與求得一次粒 子之平均粒徑的情形相同,係利用穿透型電子顯微鏡、 或掃描式電子顯微鏡來攝取視區內之影像。之後,選取 在二維畫像上50個構成凝集體顏料之一次粒子,求得每 一個之長方向直徑(長徑)、一短方向直徑(短徑)的平均 値,以該値來計算。 由依照本發明中所使用的鹵化金屬酞菁顏料得到之濾 色材的綠色畫素區,根據其目視評量結果來看,係比習 -19- 1300794 五、發明說明(18) 用的鹵化銅酞菁顏料所製得之綠色畫素區更優良之具黃 味的綠色。 在本發明中所使用的鹵化金屬酞菁顏料,係可以得到 兼具:Tmax係在靠近長波長側之545奈米附近,以及其 最大穿透率亦會變大之比習用的鹵化銅酞菁顏料所製得 之綠色畫素區更優良之具黃味的綠色。 也就是說,依照在本發明中所使用的鹵化金屬酞菁顏 料,將可更簡便地、而且更便宜地首先製得習用的鹵化 銅酞菁顏料所無法達成之濾色材,即具有Tmax爲 520〜590奈米、且在前述Tmax上之穿透率係在70%以上 、以及在波長爲650〜700奈米上之前述分光透過光譜之 穿透率係在20%以下之綠色畫素區的濾色材。 本發明之濾色材係爲具有前述特性之物,但依照前述 之說明比較適當者係爲具有Tmax爲520〜590奈米、且在 前述Tmax上之穿透率係在85%〜99%、以及在波長爲 650〜700奈米上之前述分光透過光譜之穿透率係在〇〜20% 之綠色畫素區的濾色材。 此種較佳之濾色材,其在本發明中所使用的鹵化金屬 酞菁顏料中一次粒子之平均粒徑係爲〇·〇 !〜〇」()微米, 其係可以利用鹵化氯鋁酞菁顏料 '鹵化# -氧-鋁酞菁二 聚物顏料及其混合物,或者是使用鹵化鋅酞菁顏料來製 造。 又’本發明所得到之濾色材,爲了形成濾色材之綠色 -20- 1300794 五、發明說明(19) 畫素區,則在本發明中所使用的鹵化金屬酞菁顏料中, 爲了帶有黃味較宜是倂用各種黃色顏料。意即,藉由此 種倂用法,可使得綠色畫素區之波長400〜500奈米上之 分光透過光譜之穿透率降低,例如可以使得在前述波長 區域上之穿透率在5 0%以下。 可在此倂用之黃色顏料,舉例來說,例如可以使用 C. I .顏料黃83、顏料黃110、顏料黃138、顏料黃139 、顏料黃150、顏料黃180、顏料黃155等黃色有機顏料 〇 在本發明中所使用的鹵化金屬酞菁顏料、與黃色顏料 之倂用比例,例如,每100質量份之在本發明中所使用 的鹵化金屬酞菁顏料,黃色顏料爲10〜65質量份。 又,依照在本發明中所使用的鹵化金屬酞菁顏料所製 造之綠色畫素區’係不需要併用向來調色用之不可欠缺 的黃色顏料之特別手段,或者在本發明中所使用的鹵化 金屬酞菁顏料中倂用黃色顏料也可以,以倂用少量較佳 。在製造具有與習用的濾色材綠色畫素區同色之綠色畫 素區的濾色材之情況下,在鹵化金屬酞菁顏料中所倂用 的完全相同之黃色顏料,係可減少30質量%以上,最大 可減少達50質量%左右。尤其,在由每一個酞菁分子中4 個苯環上係鍵結9個以上之溴原子之鹵化金屬酞菁顏料 ,而得到之濾色材之綠色畫素區的情況下,將可最小限 度地防止其在可見光全區中穿透率之下降。 -21 - 1300794 五、發明說明(2〇) 依照在本發明中所使用的鹵化金屬酞菁顏料,由於在 其中所倂用的黃色顏料爲最少量,和以2種以上不同色 之顏料混色來調色之習用情況比起來,將可以得到因引 起再凝集之混濁會變少,色純度也優良,而且具有明亮 綠色畫素區之濾色材。在前述這種畫素區內,將極端地 難以產生意圖變爲色度與色相之部位,以及形成不是如 此之部位之缺點。 例如,與在如習用C . I .顏料綠3 6這樣之綠色顏料 中倂用前述之黃色顏料的混合顏料情況比起來,在本發 明中所使用的鹵化金屬‘酞菁顏料與黃色顏料倂用之情形 下,做成液晶顯示裝置時之液晶顯示明亮度下降會比較 小,因而綠色區域之光穿透量也變大。 這種效果,當對在本發明中所使用的鹵化金屬酞菁顏 料進行前述修整處理,而且具有一次粒子之平均粒徑係 落在前述範圍之每1個酞菁分子中4個苯環上係鍵結9 個以上之溴原子之鹵化金屬酞菁顏料的情況下,將變得 更爲顯著。 在本發明中所使用的鹵化金屬酞菁顏料,係可以使用 習用公知的方法來形成濾色材之綠色畫素區。在製造本 發明之濾色材時,較宜是採用顏料分散法。 此種方法之代表例係爲光刻法,其係後述之光硬化性 組成物塗布在濾色材用之透明基板之設置有黑色基材之 面上,經加熱乾燥(預烘烤)後,經由光罩照射紫外線來 -22- 1300794 五、發明說明(21) 進行曝光,使對應於畫素區位置上之光硬化性化合物硬 化後’再以顯像液使未曝光部分顯像,而使除去非畫素 區之畫素區固著在透明基板上之方法。利用此種方法, 可使由光硬化性組成物之硬化著色膜所構成之畫素區形 成在透明基板上。 在包含紅色、綠色、藍色在內之各種顏色上,調製後 述之光硬化性組成物後,藉由反復地重複前述操作,將 可以製造出在預定位置上具有紅色、綠色、藍色之各種 顏色的濾色材。依照在本發明中所使用的鹵化金屬酞菁 顏料,將可使形成綠色畫素區。又且,紅色畫素區及藍 色畫素區形成用之光硬化性組成物,係可使用習用公知 的紅色顏料及藍色顏料調製而成。可做爲形成紅色畫素 區用之顏料,舉例來說,例如是C . I .顏料紅177、顏 料紅209、顏料紅254等;可做爲形成藍色畫素區用之顏 料,舉例來說,例如是C. I .顏料藍15、顏料藍60等 。在形成該種紅色畫素區及藍色畫素區時,也可以倂用 黃色及紫色顏料。之後,視情況需要,爲了使末反應之 光硬化性化合物熱硬化,也可以將濾色材全部予以加熱 處理(後烘烤)。 將後述之光硬化性組成物塗布在玻璃等透明基板上之 方法,舉例來說,例如,有旋塗法、輥塗法、噴墨法等 〇 塗布在透明基板上之光硬化性組成物之塗膜的乾燥條 -23 - 1300794 五、發明說明(22) 件,雖然是隨著各成分種類、配合比例等而不同,但通 常是以50〜150°C、1〜15分鐘左右。該加熱處理一般係稱 爲「預烘烤」。又,光硬化性組成物之光硬化上用之光 ,較宜是使用波長爲200〜500奈米範圍之紫外線或可見 光。可使用發出該波長範圍之光的各種光源。 顯像方法,舉例來說,例如是盛液法、浸漬法、噴灑 法等。光硬化性組成物之曝光、顯像後,可以水洗形成 需要色之畫素區的透明基板,再乾燥之。如此所得到的 濾色材係可藉由熱板、烤箱等之加熱裝置,以100〜280°C 依預定時間加熱處理(後烘烤),以除去塗膜中之揮發性 成分,同時使光硬化性組成物之硬化著色膜中所殘存的 未反應之光硬化性化合物熱硬化,而完成濾色材。 形成濾色材之畫素區用之前述光硬化性組成物(稱爲顏 料分散光阻劑),係以在本發明中所使用的鹵化金屬酞菁 顏料、與分散劑、光硬化性化合物、和有機溶劑做爲必 要成分,視情況需要地使用熱可塑性樹脂,將此等予以 混合調製而成。對於形成畫素區之著色膜,於要求具有 可耐濾色材實際生產所進行之烘烤的強靭性之情況下, 當調製前述光硬化性組成物時,將不只光硬化性化合物 ,且不可或缺地倂用該種可塑性樹脂。在倂用熱可塑性 樹脂之情形下,較宜是使用經溶解之物來做爲有機溶劑 〇 前述光硬化性組成物之製造方法,一般係將在本發明 -24- 1300794 五、發明說明(23) 中所使用的鹵化金屬酞菁顏料、與有機溶劑和分散劑等 必要成分,予以均勻地混合並進行攪拌分散,首先調製 形成濾色材晝素區用之顏料分散液(稱爲著色膏糊),然 後將光硬化性化合物、與視情況需要的熱可塑性樹脂或 光聚合起始劑等加入其中,而做成前述光硬化性組成物 之方法。 在此做爲分散劑者,舉例來說,例如是必庫卡明公司 之分散必可130、分散必可161、分散必可162、分散必 可163、分散必可170;艾夫卡公司之艾夫卡46、艾夫卡 47等。又,也可以和調勻劑、偶合劑、陽離子係之界面 活性劑一起倂用來使用。 可做爲有機溶劑者,舉例來說,例如是甲苯、或二甲 苯、甲氧苯等芳香族係溶劑;乙酸乙酯、或丙二醇單甲 醚乙酸酯、丙二醇單乙醚乙酸酯等乙酸酯系溶劑;乙氧 乙基丙酸酯等之丙酸酯系溶劑;甲醇、乙醇等之醇系溶 劑;丁基乙一醇醚、丙二醇單甲醚、二乙二醇乙醚、二 乙二醇甲醚等醚系溶劑;甲乙酮、甲異丁酮、環己酮等 酮系溶劑;己烷等脂肪族羥系溶劑;N,N-二甲基磷化物 、r -丁內酯、N-甲基-2-咯噙烷酮、苯胺、吡啶等氮化 合物系溶劑;r -丁內酯等內酯系溶劑;胺基甲酸甲酯與 胺基甲酸乙酯之48: 52的混合物之胺基甲酸酯系等。可 做爲有機彳谷劑者’特別是以丙酸酯系、醇系、醚系、酮 系、氮化口物系、內酯系等極性溶劑之水可溶物較適當 -25- 1300794 五、發明說明(24) 。在使用水可溶之有機溶劑之情形下,與水一起倂用也 可以。 可做爲使用於調製光硬化性組成物之熱可塑性樹脂者 ,舉例來說,例如聚胺基甲酸酯係樹脂、丙烯酸系樹脂 、聚醯胺系樹脂、聚醯亞胺系樹脂、苯乙烯馬來酸系樹 脂、苯乙烯酐馬來酸系樹脂等。可做爲光硬化性化合物 者,舉例來說,例如,1,6 -己烷二醇二丙烯酸酯、乙二 醇二丙烯酸酯、新戊二醇二丙烯酸酯、三乙二醇二丙烯 酸酯、雙(丙烯酸氧乙氧)聯酚A、3 -甲基戊烷二醇二丙烯 酸酯等之2官能單體;如三甲醇丙烷三丙烯酸酯、季戊 四醇丙烯酸酯、三(2 -氫乙基)異氰酸酯、二季戊四醇六 丙烯酸酯、二季戊四醇五丙烯酸酯等分子量比較小的多 官能單體;如聚酯丙烯酸酯、聚胺基甲酸酯丙烯酸酯、 聚醚丙烯酸酯等之分子量比較大的多官能單體。 可做爲光聚合起始劑者,舉例來說,例如乙醯二苯甲 酮、苯并二苯甲酮、苯并甲基丙酮、苄醯基過氧化物、 2 -氯硫噻噸酮、1,3 -雙(4 | -己二醯亞苄基)-2 -丙烷、 1,3 -雙(4’-己二醯亞苄基)-2 -丙烷2’-硫酸、4,4、二己 二醯苯乙烯基苯-2, 2'-二硫酸等。 利用如前述那樣之各種材料,可以每1 00質量份之將 在本發明中所使用的鹵化金屬酞菁顏料計,與300〜1000 質量份之有機溶劑、和0〜1 〇〇質量份之分散劑,予以均 勻地攪拌而得到前述顏料之分散液。接著在該顏料分散 -26- 1300794 五、發明說明(25) 液中,以每1質量份之在本發明所用的鹵化金屬酞菁顏 料,添加總計爲3〜20質量份之熱可塑性樹脂和光硬化性 化合物,以每1質量份之光硬化性化合物爲0.0 5〜3質量 份之光聚合起始劑,以及視情況需要地添加有機溶劑, 予以均勻地攪拌分散,則可得到濾色材之綠色畫素區用 的光硬化性組成物。 可當做顯像液者,係可以使用公知習用的有機溶劑或 鹼性水溶液。特別是在前述光硬化性組成物中,含有熱 可塑性樹脂或光硬化性化合物者,當在至少一方具有酸 價而呈現鹼可溶性之情形下,將具有可利用鹼性水溶液 予以洗淨而形成畫素區之效果。 關於顏料分散法中藉由光刻法以製造濾色材之方法方 面,詳細地說,本發明之濾色材除此之外,尙可以電解 法、轉印法、電解法、PVED (光電位電析)法等方法來形 成畫素區,用來製造濾色材也可以。 本發明之濾色材,係爲依照前述之方法所得到的濾色 材,在該綠色畫素區中可見光全區之分光透過光譜中, 於52 0〜590奈米處係會顯示出最大的穿透率(Tm ax)。 以下,說明測定本發明分光透過光譜中Tmax、及在 Tmax處之穿透率的方法。在習用的液晶顯示裝置之背光 光源方面,大多係使用可發出具有主亮線爲545奈米之 綠色光的三波長管。該三波長管之一種分類法,係依照 曰本工業規格UIS )Z8719之規定,使用具有粗略相同爲 -27- 1300794 五、發明說明(26) 545奈米之主売線的3波長區發光形態之營光燈F10光源 來做爲評量光源,以進行評量。 在本發明中之分光透過光譜方面,係依照日本工業規 格UIS)Z8722(色之測定方法-反射及透過物體色)的第一 種分光測光器爲準而求得者;以預定波長區域掃描照射 含有在玻璃基板等之透明基板上以預定膜厚製膜之顏料 的樹脂膜,依各波長對各透過率値繪製成圖。在本發明 中,該預定波長係爲可見光。含有顏料之樹脂膜的製膜 ,係可以使用光硬化性化合物或熱可塑性樹脂。進行透 過率測定時,係對所形成的乾燥著色樹脂膜或硬化著色 樹脂膜任一者來進行。因此,簡而言之,可以使用前述 濾色材之畫素區形成用的光硬化性組成物。在光硬化性 組成物上形成含有顏料以外成分之著色樹脂膜時,讚於 在520〜590奈米處不具光吸收性或極少,對於所測定的 透過率之絕對値,該種成分之影響係很小。 因而,從分光透過光譜中,可求得Tmax、及在Tmax處 之穿透率。濾色材之穿透率係可藉由如僅以前述樹脂所 成同一膜厚之膜,同樣地求得分光透過光譜予以補正(基 線補正等),而求得更爲精確良好之結果。 【實施例】 接著’透過實施例之例示來具體地說明本發明。但不 僅限於此;以下,%之意義係指質量% ;而份之意義係指 質量份。 -28- 1300794 五、發明說明(27) [製造例1] 以酞酸酐、尿素、氯化鋁做爲原料,以製造氯化鋁酞 菁。其之1-氯萘溶液係具有6 50〜7 5 0奈米之吸收光。 在40 °C下將3.2份之亞硫醯氯、3.8份之無水氯化鋁 、0 . 5份之氯化鈉予以混合,滴下2 . 7份之溴所成之物來 做爲鹵化劑。在其中加入1份之該氯化鋁酞菁,於90°C 下使反應15小時後;之後再將反應混合物投入水中,以 使析出鹵化氯化鋁酞菁粗顏料。過濾該等水性漿液,以 6 0 °C之湯、1%之硫酸氫氧化鈉水、60 °C之湯的順序予以 洗淨。在90°C下乾燥之,而得到經精製的2 . 7份之鹵化 氯化鋁酞菁粗顏料。 將此1份之鹵化氯化鋁酞菁粗顏料,7份之經粉碎的氯 化鈉、1份之二乙二醇、0.09份之二甲苯投入雙腕型捏 和器中,於l〇〇°C下混練6小時。混練後,以100份之 80°C水取出,攪拌1小時後,予以過濾、湯洗、乾燥粉 碎之,而得到鹵化氯化鋁酞菁①。 藉由燒瓶燃燒離子色層分析來分析該鹵化氯化鋁酞菁 ①中之鹵素含量,其平均組成爲AlClPcBhChH。(又, Pc係表示前述通式1中除去Μ及Y之化學構造式。以下 均相同。從而該平均組成可推定爲係指:在通式1中含 有M = A1、Y = C1,而且m=l、乂广乂“中14個X係爲溴原子 、1個X爲氯原子、以及1個X爲氫原子之鹵化氯化鋁酞 菁顏料;以及在通式1中含有M = A1、m=l、Υ之中心金屬 - 29- 1300794 五、發明說明(28) M = A1,而且Χ17〜Χ32中14個X係爲溴原子、1個X爲氯 原子、以及1個X爲氫原子、Α爲氧原子之鹵化-氧-鋁 酞菁二聚物顏料)。 [製造例2] 以酞酸酐、尿素、五氧化鋇做爲原料,以製造氧化鋇 酞菁。其之1-氯萘溶液係具有650〜750奈米之吸收光。 在40°C下將3 . 1份之亞硫醯氯、3 . 7份之無水氯化鋁 、0 . 5份之氯化鈉予以混合,滴下2 . 6份之溴所成之物來 做爲鹵化劑。在其中加入1份之該氧化鋇酞菁,於90°C 下使反應15小時後;之後再將反應混合物投入水中,以 使析出鹵化氧化鋇酞菁粗顏料。過濾該等水性漿液,以 60°C之湯、1%之硫酸氫氧化鈉水、含7%之甲苯之丙酮、 60°C之湯的順序予以洗淨。在90°C下乾燥之,而得到經 精製的2 . 6份之鹵化氧化鋇酞菁粗顏料。 將此1份之鹵化氧化鋇酞菁粗顏料,7份之經粉碎的氯 化鈉、1份之二乙二醇投入雙腕型捏和器中,於80°C下 混練8小時。混練後,以1〇〇份之80°C水萃取,攪拌1 小時後,予以過濾、湯洗、乾燥粉碎之,而得到鹵化氧 化鋇酞菁②。 藉由燒瓶燃燒離子色層分析來分析該鹵化氯化鋁酞菁 ②中之鹵素含量,其平均組成爲V〇PcBr13Cl2H。(前述通 式1中M = V、Y = 0,而且m=l、13個X係爲溴原 子、2個X爲氯原子、以及1個X爲氫原子)。 -30· 1300794 五、發明說明(29) [製造例3] 以酞二腈、氯化鋅做爲原料,以製造鋅酞菁。其之1-氯萘溶液係具有650〜75 0奈米之吸收光。 在40°C下將3 · 1份之亞硫醯氯、3 . 7份之無水氯化鋁 、0 . 5份之氯化鈉予以混合,滴下2 . 6份之溴所成之物來 做爲鹵化劑。在其中加入1份之該鋅酞菁,於90°C下使 反應1 5小時後;之後再將反應混合物投入水中,以使析 出鹵化鋅酞菁粗顏料。過濾該等水性漿液,以60°C之湯 、1%之硫酸氫氧化鈉水、含7%甲苯之丙酮、60°C之湯的 順序予以洗淨。在90°C下乾燥之,而得到經精製的2· 6 份之鹵化鋅酞菁粗顏料。 將此1份之鹵化鋅酞菁粗顏料,7份之經粉碎的氯化鈉 、1份之二乙二醇、0.09份之二甲苯投入雙腕型捏和器 中,於100°C下混練6小時。混練後,以100份之80°C 水萃取,攪拌1小時後,予以過濾、湯洗、乾燥粉碎之 ,而得到鹵化鋅酞菁③。 藉由燒瓶燃燒離子色層分析來分析該鹵化鋅酞菁③中 之鹵素含量,其平均組成爲ZiiPcBryChH。(前述通式1 中M = Zn 14個X係爲溴原子、1個X爲 氯原子、以及1個X爲氫原子)。 [製造例4] 以酞二腈、4氯化鈦做爲原料,以製造鈦酞菁。其之 1-氯萘溶液係具有650〜7 50奈米之吸收光。 -31 - 1300794 五、發明說明(3〇) 在4 0 °C下將3 · 1份之亞硫醯氯、3 . 7份之無水氯化鋁 、0 · 5份之氯化鈉予以混合,滴下2 . 6份之溴所成之物來 做爲鹵化劑。在其中加入1份之該鈦酞菁,於90t下使 反應1 5小時後;之後再將反應混合物投入水中,以使析 出鹵化鈦酞菁粗顏料。過濾該等水性漿液,以6 0 °C之湯 、1%之硫酸氫氧化鈉水、含7%甲苯之丙酮、60°C之湯的 順序予以洗淨。在9(TC下乾燥之,而得到經精製的2.6 份之鹵化鈦酞菁粗顏料。 將此1份之鹵化鈦酞菁粗顏料,7份之經粉碎的氯化鈉 、1份之二乙二醇、0 . 09份之二甲苯投入雙腕f捏和器 中,於100°C下混練6小時。混練後,以100份之8(TC 水萃取,攪拌1小時後,予以過濾、湯洗、乾燥粉碎之 ,而得到鹵化鈦酞菁④。 藉由燒瓶燃燒離子色層分析來分析該鹵化鋅酞菁④中 之鹵素含量,其平均組成爲TiOPcBr1()Cl5H。(前述通式1 中M = Ti、Y=0、而且m=l、中10個X係爲溴原子 、5個X爲氯原子、以及1個X爲氫原子)。 [製造例5] 以酞二腈、氯化鎳做爲原料,以製造鎳酞菁。其之1 -氯萘溶液係具有650〜750奈米之吸收光。 在40°C下將3 · 1份之亞硫醯氯、3 · 7份之無水氯化鋁 、0 . 5份之氯化鈉予以混合,滴下2 . 6份之溴所成之物來 做爲鹵化劑。在其中加入1份之該鎳酞菁,於90°C下使 -32- 1300794 五、發明說明(31) 反應1 5小時後;之後再將反應混合物投入水中,以使析 出鹵化鎳酞菁粗顏料。過濾該等水性漿液,以60°C之湯 、1%之硫酸氫氧化鈉水、含7%甲苯之丙酮、60°C之湯的 順序予以洗淨。在90°C下乾燥之,而得到經精製的2 · 6 份之鹵化鎳酞菁粗顏料。 將此1份之鹵化鎳酞菁粗顏料,7份之經粉碎的氯化鈉 、1份之二乙二醇、0.09份之二甲苯投入雙腕型捏和器 中,於100°C下混練6小時。混練後,以100份之80°C 水萃取,攪拌1小時後,予以過濾、湯洗、乾燥粉碎之 ,而得到鹵化鎳酞菁⑤。 藉由燒瓶燃燒離子色層分析來分析該鹵化鎳酞菁⑤中 之鹵素含量,其平均組成爲NiPcBr13Cl2H。(前述通式1 中M = Ni、m=l、Xi〜X16中13個X係爲溴原子、2個X爲 氯原子、以及1個X爲氫原子)。 [製造例6] 以酞二腈、氯化錫做爲原料,以製造錫酞菁。其之1-氯萘溶液係具有650〜750奈米之吸收光。 在40°C下將3.1份之亞硫醯氯、3.7份之無水氯化鋁 、0 . 5份之氯化鈉予以混合,滴下2 . 6份之溴所成之物來 做爲鹵化劑。在其中加入1份之該錫酞菁,於90°C下使 反應15小時後;之後再將反應混合物投入水中,以使析 出鹵化鈦酞菁粗顏料。過濾該等水性漿液,以60°C之湯 、1%之硫酸氫氧化鈉水、含7%甲苯之丙酮、6(TC之湯的 -33- 1300794 五、發明說明(32) . 順序予以洗淨。在90°C下乾燥之,而得到經精製的2 · 6 份之鹵化錫酞菁粗顏料。 將此1份之鹵化錫酞菁粗顏料,7份之經粉碎的氯化鈉 、1份之二乙二醇、0.09份之二甲苯投入雙腕型捏和器 中,於100°C下混練6小時。混練後,以100份之80°C 水萃取,攪拌1小時後,予以過濾、湯洗、乾燥粉碎之 ,而得到鹵化錫酞菁⑥。 藉由燒瓶燃燒離子色層分析來分析該鹵化錫酞菁⑥中 之鹵素含量,其平均組成爲SnPcBr1QCl5H。(前述通式1 中M = Sn、m=l、中10個X係爲溴原子、5個X爲 氯原子、以及1個X爲氫原子)。 [製造例7] 除了將製造例3中之條件變更成一次粒子爲0 . 03微米 之平均粒徑以外,均和製造例3同樣的做法,而製得鹵 化鋅酞菁⑦。 [比較製造例1] 以酞酸酐、尿素、氯化銅做爲原料,以製造銅酞菁。 其之1-氯萘溶液係具有650〜750奈米之吸收光。 使用銅酞菁、並且使用和製造例1同樣之鹵化劑,進 行和製造例1同樣的操作使之溴化,而得到溴化銅酞菁 顏料⑧。(前述通式1中M=Cu、m = 0、Xi〜X16中15個X係 爲溴原子、以及1個X爲氫原子)。 [實施例1〜6] •34- 1300794 五、發明說明(33) 使用在前述製造例中所得到的各種顏料①、②、③、 ④、⑤及⑥之綠色顏料,藉由光刻來製造濾色材之綠色 畫素區①、②、③、④、⑤及⑥。 濾色材綠色畫素區之製造方法,係將1 4份之各顏料、 3份之C· I·顏料黃150(調色用黃色有機顏料)、2.5份 之N,^ -二甲基磷酸醯胺(有機溶劑)、1 7 · 0份之分散膠 161(比庫克米公司製分散劑)、63.5份之優卡酯EEP(優 里昂•卡海德公司製有機溶劑)加入0.5毫米0之安全珠 ,以塗料調理機(東洋精機股份有限公司製)予以分散歷1 小時,而製得顏料分散液。將75.00份之該顏料分散液 、與5.50份之阿羅尼庫斯M7100(東亞合成化學工業股份 有限公司製聚酯丙烯酸酯,相當於光硬化性化合物)、 5.00份之KAYARAD DPHA(日本製葯股份有限公司製之二 季四醇酯六丙烯酸酯,相當於光硬化性化合物)、1 . 00份 之KAYACURE BP-100(日本製葯股份有限公司製之二苯甲 酮,相當於光起始劑)、以及1 3 . 5份之優卡酯EEP,以分 散攪拌機予以攪拌,而得到濾色材綠色畫素區形成用之 光硬化性化合物。依照使乾燥膜厚度爲1微米那樣,將 該組成物塗布於1毫米厚之玻璃上。 接著,經由光罩來照射紫外線以進行曝光後,以有機 溶劑洗淨未曝光部分做成濾色材用綠色畫素區。 利用透過型電子顯微鏡:TEM-2010(日本電子股份有限公 司製)來測定各顏料之結果,來求得該各顏料一次粒子的 -35- 1300794 五、發明說明(34) 平均粒徑。 以目視來評量該由顏料①〜⑥所製造的濾色材用綠色畫 素區①、②、③、④、⑤及⑥之色度及明亮度。又,使 用曰本工業規格(JIS) Z8722中所規定的第一種分光測光 器(分光光度計,來測定在可見光全區之分光透過光譜中 最大穿透率之波長(Tmax),前述Tmax處之穿透率、波長 650〜700奈米中之最大穿透率。又,測量在濾色材用綠色 畫素區①及③中分光透過光譜曲線、與相當於最大穿透 率的50%處穿透率之內插線所形成之2個交點間之距離( 圖中――之距離係以奈米單表示。)。將此結果示於表1 中。在實施例1及賨施例3中所得到的濾色材用綠色畫 素區之分光透過光譜,係分別表示於第1圖及第2圖中 〇 除了使用具同樣一次粒子之平均粒徑的C .顏料紅 254(二酮均吡咯系紅色有機顏料)及C. I .顏料藍 15. .64 (ε型銅酞菁系藍色有機顏料)來代替顏料①以外 ,同樣地做成綠色畫素區,以調製紅色和藍色之各別的 蠕組成物,並使分別形成紅色畫素區和藍色畫素區;而 得到設置有RGB各種畫素區之瀘色材。 [比較例1] 在實施例1中,除了使用溴化銅酞菁顏料⑧來代替鹵 化銘酞菁顏料①以外,均和實施例1同樣的做法,而製 得濾色材用綠色畫素區⑧。 -36- 1300794 五、發明說明(35) 又,與實施例1同樣的做法,以目視評量顏料⑧之一 次粒子的平均粒徑、由顏料⑧所製造的濾色材用綠色畫 素區⑧之色度及明亮度。又,使用分光光度計.,來測定 Τιώax,前述Tmax處之穿透率、波長650〜700奈米中之最 大穿透率。更且,測量分光透過光譜曲線、與相當於最 大穿透率的50%處穿透率之內插線所形成之2個交點間之 距離(半幅寬度)。將此結果示於表1中。以泛長爲橫軸 、透過率爲縱軸,將濾色材用綠色畫素區之分光透過光 譜表示於第3圖中。 表1 實施例1 實施例2 實施例3 濾色材用綠色畫素區 ① ② ③ 顏料組成 AlClPcBrnCliH V(0)PcBr13Cl2H ZnPcBr14Cl ιΗ 一次粒: F之平均粒徑 0.03微米 0.03微米 0.06微米 巨 視 色度 〇 〇 〇 評 量 明亮度 Δ Δ Δ Tmax 529奈米 535奈米 521奈米 測 Tmax中之穿透率 92% 78% 89% 定 半幅寬度 136奈米 99奈米 値 650〜700奈米中 之最大穿透率 0.3% 4.4% 1.8% -37- 1300794 五、發明說明(36) 表1 (箱 1 ) 實施例4 實施例5 實施例6 濾色材用綠色畫素區 ④ ⑤ ⑥ 顏料組成 Ti(O)PcBr10Cl5H NiPcBr13Cl2H SnPcBr10Cl5H 一次粒子之平均粒徑 0.01微米 0.01微米 0.01微米 @ 視 色度 〇 〇 〇 評 量 明売度 Δ Δ Δ Tmax 528奈米 526奈米 530奈米 測 Tmax中之穿透率 83% 75% 80% 定 半幅寬度 細 値 650〜700奈米中之 最大穿透率 6.9% 1.0% 1.6% 表1 (續) 比較例1 濾色材用綠色畫素區 ⑧ 顏料組成 C u P c B r ! 5 Η 一次粒子之平均粒徑 0.04微米 巨 視 色度 X 評 量 明亮度 Δ Tmax 51 3奈米 測 Tmax中之穿透率 85% 定 半幅寬度 1 13奈米 値 650〜700奈米中之最大穿 透率 5 . 0% -38- 1300794 五、發明說明(π) 表1中,記號之內容係如下所示。 色度: 〇···帶有相當於黃味之綠色 X· ··帶有黃味之綠色 明亮度: 〇· · ·非常明亮 X · · ·有一點暗 由於表1中可明白:使用以Al、V、Zn、Ti、Ni、Sn 爲中心金屬之鹵化金屬酞菁顏料①、②、③、④、⑤及 ⑥之濾色材用綠色畫素區①、②、③、④、⑤及⑥’其 目視評量結果爲比較帶有黃味之明亮物質。 另一方面,可明白:使用以銅爲中心金屬之鹵化金屬 酞菁顏料⑧之濾色材用綠色畫素區⑧,其目視評量結果 爲黃味不夠充分之綠色,且明亮度稍微暗之物質。 [實施例7] 在實施例3中,除了使用前述鹵化鋅酞菁顏料⑦來代 替鹵化鋅酞菁顏料③以外,均和實施例3同樣的做法, 使形成ί慮色材用綠色畫素區⑦’並進行和前述同樣之測 定。將此實施例7之結果示於表2中。 -39- 1300794 五、發明說明(38) 表2 比較例7 濾色材用綠色書素區 ⑦ 顏料組成____ ZnPcBr14Cl # 一次粒子之平均粒徑 0.03微米 視 色度 〇 評 量 明亮度 〇 Tmax 529奈米 測 Tmax中之穿透率 _ 92% 定 半幅寬度 105奈米 値 650〜700奈米中之最大穿透率 7.3% 由實施例3與實施例7之比較可知:由一次粒子之平 均粒徑比較小的鹵化鋅酞菁顏料⑦所得到的綠色畫素區 ,與鹵化鋅酞菁顏料③比較起來,目視結果其明亮度更 爲優良,同時Tmax更接近545奈米,而且Tmax處穿透 率也變得更高。 使用顏料⑦及⑧,依照JIS k5101-1991(日本工業規格 「顏料試驗方法」)來製造各試驗片,以數據色彩公司製 測色分光器來求得各個L値,以做爲彼等之著色力尺度 。使用比較例1之鹵化銅酞菁顏料⑧測定之[値爲^ 〇 〇 時,該鹵化鋅酞菁顏料⑦之L値相當於99,而著色力約 高 10%。 -40- 1300794 五、發明說明(39) 尙且,在各實施例中所得到的綠色畫素區,以目視觀 察時,則在任何一個畫素區內均無法觀察到無色度或色 相部位之存在。 【產業利用可能性】 本發明提供一種濾色材,其係含有每一個酞菁分子中 之8〜16個鹵素原子係鍵結在酞菁分子苯環上之鹵化金屬 酞菁顏料;以及顯示出在可見光全區之分光透光光譜中 之最大穿透率爲520〜590奈米之綠色畫素區;與習用 之具有使用銅酞菁之綠色畫素區比起來,其更能達成發 出帶有接近黃味之明亮的綠色之格外顯著效果。 又,在同色之畫素區內之色度或度色相部位,也可達成不 會引起形成有無色度或色相部位混雜之缺點的格外顯著效果 -41 -Further, in the chemical structure of the atomic group, the central metal system is the same as defined above. Χ17~Χ32 are the same as the definitions of the aforementioned Xi~X16 series. The A system represents a divalent atomic group selected from the group consisting of an oxygen atom, a sulfur atom, a sulfinyl group (-S0-), and a sulfonyl group (-S〇2-). The oxime of the oxime and the atomic group in the formula 1 means that the bond is bonded via a divalent atomic group. That is, the halogenated metal phthalocyanine pigment to which the second group belongs is a halogenated metal phthalocyanine having a molecular weight of 2-11-1300794, and is a constituent unit via the aforementioned divalent atomic group. Bonded metal halide phthalocyanine dimer. The halogenated metal phthalocyanine pigment represented by the formula 1 can be exemplified by, for example, the following 1 to 4. 1 having a divalent metal selected from the group consisting of Mg, Fe, Co, Ni, Zn, Zr, Sn, and Pb as a center such as a tin halide phthalocyanine, a nickel halide phthalocyanine, or a zinc halide phthalocyanine A metal, and 8 to 16 halogen atoms are a halogenated metal phthalocyanine pigment bonded to each of four benzene rings of one phthalocyanine molecule. 2 having a trivalent metal selected from the group consisting of Al, Sc, Ga, Y, and In as a central metal such as a halogenated chloroaluminum phthalocyanine having a halogen atom, a hydroxyl group, and a sulfonate on the center metal Any one of the acid groups, and 8 to 16 halogen atoms are bonded to the halogenated metal phthalocyanine pigment on each of the 4 benzene rings of one phthalocyanine molecule. 3 having a tetravalent metal selected from the group consisting of S i, Ti, V, Ge, Zr and Sn as a central metal such as a halogenated oxytitanium phthalocyanine or a vanadium oxyhalide phthalocyanine, having a central metal One oxygen atom may be the same or different, and may be any one of two halogen atoms, a hydroxyl group, and a sulfonic acid group, and 8 to 16 halogen atoms are bonded to each of 4 phthalocyanine molecules. A halogenated metal phthalocyanine pigment on a benzene ring. 4 consisting of a halogenated oxy-aluminum phthalocyanine dimer, a halogenated // sulphur-aluminum phthalocyanine dimer, selected from the group consisting of A 1 , S c, G a, Y and I η The trivalent metal selected from the group is used as the central metal, and 8 to 16 halogens-12-1300794. 5. Description of the invention (11) 2 molecules of the atomic system bonded to the 4 benzene rings of each phthalocyanine molecule As a constituent unit, each of the central metals of the constituent unit is via a divalent radical selected from the group consisting of an oxygen atom, a sulfur atom, a sulfinyl group (-S0-), and a sulfonyl group (-S02-). Bonded halogenated metal phthalocyanine pigment. Hereinafter, a method of producing a green pixel region and a color filter material from a halogenated metal phthalocyanine pigment used in accordance with the present invention, and a method of measuring a spectral light transmission spectrum of the green pixel region will be described. The green pixel region containing the halogenated metal phthalocyanine pigment used in accordance with the present invention is a method for determining the wavelength of the maximum transmittance in the spectral transmission spectrum in the entire visible light region (380 to 780 nm) by the method described later ( Hereinafter, it is called Tmax), which is close to 545 nm on the long wavelength side, and because of the large transmittance in Tmax, it is possible to obtain a bright green color which is more yellow than the conventional copper halide phthalocyanine pigment. District. Moreover, in order to make a liquid crystal display device which can be more clearly displayed, it is preferable to have a high transmittance in T m a X, and it is preferable to use it at 70% or more. Among the halogenated metal phthalocyanine pigments used in the present invention, a halogenated chloroaluminum phthalocyanine pigment, a halogenated // oxy-aluminum phthalocyanine dimer pigment, and a zinc halide phthalocyanine pigment are preferred. The green pixel region containing these pigments has Tmax in the wavelength region near the green light wavelength of 545 nm of the aforementioned three-wavelength tube; since the transmittance of the Tmax is more than 85%, it is suitable for use of the three wavelengths. The liquid crystal display device of the tube can be displayed with a light source of at least a light amount. It can be seen from Fig. 1 and Fig. 3 that the green pixel region containing the halogenated chloroaluminum phthalocyanine pigment or the halogen-oxygen-aluminum phthalocyanine dimer pigment, which is halogenated-13-1300794, the invention (1 2 ), Compared with the green pixel region containing a copper halide phthalocyanine pigment, it has a wider range of high transmittance in the spectral transmission spectrum of the entire visible light region, and is therefore highly suitable for use in high-brightness objects. On the filter material of the device. 'It can be seen from Fig. 2 and Fig. 3 that the green pixel region containing the zinc halide phthalocyanine pigment is compared with the green pixel region containing the copper halide phthalocyanine pigment, and is spectrally transmitted through the spectrum of the visible light region. It has a relatively narrow wavelength range of high transmittance, and is therefore very suitable for use in a color filter of a device such as a high color gamut object. That is, the green pixel region containing the zinc halide phthalocyanine pigment can reduce the average particle diameter of the primary particles of the pigment such that Tmax is close to a high wavelength, and the transmittance at Tm ax may also become high. The green pixel region containing the zinc halide phthalocyanine pigment can also increase the average particle diameter of the primary particles of the pigment to be closer to the high wavelength side than the green pixel region containing the conventional copper halide phthalocyanine pigment. Tmax; however, when the penetration rate is interpolated at 1/2 of the Tmax in the spectral spectrum of the spectral transmission, the distance between the two points on the curve (the amplitude is half a 値) is 90 to 110 nm, which is very steep. High color purity, in the case of color mixing with yellow pigments, the amount of light penetration in the green area is increased to obtain a clear picture; the contrast of the image is good, so it is very suitable for use on high color purity filter materials. In addition, in general, in the comparison of the film thickness of the colored resin film of the plurality of color filter materials to be measured, the CIE color system chromaticity (Y, X, y) The larger one can be called "high color purity" -14- 1300794. V. Inventive Note (13); The film thickness of the colored resin film of the color filter material of a plurality of measurement objects determined according to X and y値 is constant In the comparison below, a film having a thin film thickness may be referred to as a "high color density", and a Y" being a large one may be referred to as a "high transparency". Further, in the comparison of the average particle diameters of the same primary particles, the zinc halide phthalocyanine pigment is characterized in that it has a coloring power higher than that of the green pixel region containing the copper halide phthalocyanine pigment by 10% or more. That is, in the case where the green color region of the color filter of the same transmittance is obtained in the same colored resin film, the advantage of the colorant content can be lowered. On the contrary, the zinc halide phthalocyanine pigment used in accordance with the present invention can appropriately thin the green pixel region of the color filter material. Further, it can be used as a green pixel region of a color filter material, and it is preferably a region in which the light transmittance of 650 to 700 nm is wider and the transmittance is larger than 5% or less, and the maximum transmittance ratio is large. When the split light transmission rate in such a wavelength region is low, it means that the color filter material having a small amount of red light penetration on the green pixel region is also excellent. It can be used as the halogenated metal phthalocyanine pigment used in the present invention, and it is preferred to use the kind of the central metal, the kind and number of the groups bonded to the central metal, and the bonding of each of the four molecules of phthalocyanine. The type of the halogen atom on the benzene ring and the number of bonds thereof are a single one of only one type of halogenated metal phthalocyanine pigment; however, it is also possible to measure two or more kinds of the above-mentioned central metal into a different halogenated metal phthalocyanine. a mixture of pigments. For example, a halogenated chloroaluminum phthalocyanine pigment can be presumed to have the same effect as a halogenated oxy-aluminum phthalocyanine dimer pigment. Of course, you can use this. -15- 1300794 V. Description of Invention (彳4) The halogenated metal phthalocyanine pigment used in the present invention can be used, for example, in ""phthalocyanine compound", volume 2, π manufacturing and application" (", CRC Publishing Company, 1 983), etc., produced by methods such as the chlorosulfonic acid method and the hafnium halide method. Can be used as the chlorosulfonic acid method, for example, will have from Al, Si, Sc, Ti, V, Mg, Fe, Co, Ni, Zn, Ga, Ge, Υ, Zr, Nb, In The phthalocyanine pigment of the central metal selected from the group consisting of Sn and Pb is dissolved in a sulphate-based solvent such as chlorosulfonic acid, and chlorine, bromine, iodine or the like is put thereinto to be halogenated. As a halogenated carbonitrile method, for example, ""phthalocyanine compound", the second volume, π manufacturing and application", for example, a halogen atom such as chlorine or iodine other than bromine is used. a tannic acid or a phthalonitrile substituted for a part or all of a hydrogen atom on the benzene ring, and from Al, Si, Sc, Ti, V, Mg, Fe, Co, Ni, Zn, Ga, Ge, Y, Zr, Nb, A method of synthesizing a halogenated metal phthalocyanine pigment by using a metal or a metal salt selected from the group consisting of In, Sn, and Pb as a suitable starting material. In this case, a catalyst such as bismuth molybdate may be used as the case may be. The reaction temperature at this time is in the range of 100 to 300 ° C and is carried out for 1 to 30 hours. For example, it is a method of melting, such as an aluminum halide such as aluminum chloride or aluminum bromide, as in the case of the specification of U.S. Patent No. 5,071,534, the disclosure of which is incorporated herein by reference. For example, titanium halide such as titanium tetrachloride, such as alkali metal halide or alkaline earth metal halide such as sodium chloride or sodium bromide (hereinafter referred to as alkali (earth) metal halide), chlorosulfuric acid, etc. 16-1300794 V. INSTRUCTION OF THE INVENTION (15) A melt of about 10 to 170 ° C formed by one or a mixture of two or more kinds of solvent compounds in the form of halogenation is formed in the halogenating agent from Al. A method of halogenating a metal phthalocyanine pigment is selected from the group consisting of Si, Sc, Ti, V, Mg, Fe, Co, Ni, Zn, Ga, Ge, Y, Zr, Nb, In, Sn, and Pb. Aluminum halide suitable for use in the melt process is aluminum chloride. The amount of the aluminum halide added in the above method is usually 3 times the number of moles or more, more preferably 10 to 20 times the moles, based on the metal phthalocyanine pigment. The dimer pigment in the halogenated metal phthalocyanine pigment used in the present invention may, for example, be a hydroxyl group or a sulfur group having a central metal and a bond obtained as described above, and the center metal is A trivalent halogenated metal phthalocyanine pigment is produced by a dehydration reaction or a dehydrogenation reaction. The halogenated metal phthalocyanine pigment used in the present invention is preferably produced by using a metal phthalocyanine pigment having a light of 650 to 750 nm which is made of a 1-chloronaphthalene solution as a raw material. In the green pixel region of the color filter of the present invention, it is preferred that in the halogenated metal phthalocyanine pigment used in the present invention, the average particle diameter of the primary particles is 0. 01~0. A 10 micron halogenated metal phthalocyanine pigment. The halogenated metal phthalocyanine pigment having such an average particle diameter has a relatively weak agglutination of the pigment, and is easily dispersed in a photocurable composition which forms a color filter element region to be described later; On the 3 6 5 nm that is often used when the photohardenable composition of the pixel region is hardened, its -17-1300794 5, the invention description (16) the decrease in the light-shielding property (that is, the penetration becomes high) The photocuring composition also has a light hardening sensitivity which is less likely to cause film bending and patterning during development; For this reason, it is possible to easily obtain a color filter material having any of the high-resolution pixel regions having the sharpness and brightness required in recent years. Further, in the present invention, the average particle diameter of the primary particles is obtained by taking a picture of particles in the viewing zone by a transmission electron microscope JEM-2010 (Japan Electronics Co., Ltd.), and selecting 50 aggregates on the two-dimensional image. For the primary particles of the pigment, the average enthalpy of the long diameter (long diameter) of each of them is obtained. At this time, the above-mentioned pigment as a sample was dispersed in a solvent by ultrasonic waves, and photographed by a microscope. Alternatively, a scanning electron microscope can be used instead of a transmission electron microscope. The halogenated metal phthalocyanine pigment used in the present invention may be dry-pulverized by a pulverizer such as a honing machine, a ball mill, a vibration pulverizer or a vibratory ball mill as occasion demands, and then subjected to solvent salting-out grinding method. Or solvent boiling method for finishing treatment, and obtained 0. 01~0. 10 micron bismuth metal phthalocyanine pigment. The halogenated metal phthalocyanine pigment thus treated is excellent in dispersibility and coloring power before the trimming treatment, and is a relatively bright green pigment which emits a yellowish taste. The method of the correction treatment is not particularly limited, and a conventionally known method can be employed. For example, a large amount of the halogenated metal phthalocyanine pigment used in the present invention is further treated with a solvent which is heated and stirred in an organic solvent. The crystal growth can be easily controlled, and a large specific surface -18-1300794 is obtained, and the invention (17) is a product (that is, a relatively fine) pigment; according to these viewpoints, it is preferred to use a solvent salting-out honing method. To handle. The so-called solvent salting-out honing method means a halogenated metal phthalocyanine pigment which is pulverized directly or after the synthesis, and is subjected to mixing and grinding with an inorganic salt or an organic solvent. In this case, the kneading means is, for example, a kneading, a mixing method, or the like. In the halogenated metal phthalocyanine pigment used in the present invention, the material having the average particle diameter by the above-described trimming treatment has a weaker aggregation property of the primary particles than the conventional copper halide phthalocyanine pigment. It has a relatively easy to analyze nature. It was observed by electron microscopy that the pigment primary particles could not be observed in the conventional pigment. The primary particles of the halogenated metal phthalocyanine pigment used in the present invention have an aspect ratio of from 1 to 30, and the viscosity characteristics in the photocurable composition described later are increased, resulting in a photocurable composition. The fluidity is higher, and the coating property to the transparent substrate for the color filter material is also improved. Regarding the aspect ratio, first, as in the case of obtaining the average particle diameter of the primary particles, the image in the viewing zone is taken by a transmission electron microscope or a scanning electron microscope. Thereafter, 50 primary particles constituting the aggregate pigment on the two-dimensional image are selected, and the average 値 of the long diameter (long diameter) and the short diameter (short diameter) of each of the long directions is obtained, and the enthalpy is calculated. The green pixel region of the color filter material obtained from the halogenated metal phthalocyanine pigment used in the present invention is based on the results of visual evaluation, and is halogenated for use in -19-1300794, and the invention (18). The green pixel area produced by the copper phthalocyanine pigment is more excellent in yellowish green. The halogenated metal phthalocyanine pigment used in the present invention can be obtained by a combination of a Tmax system near the long wavelength side of 545 nm and a maximum transmittance which is larger than the conventional copper halide phthalocyanine. The green pixel area produced by the pigment is more excellent in yellowish green. That is, according to the halogenated metal phthalocyanine pigment used in the present invention, it is possible to more easily and inexpensively obtain a color filter material which cannot be achieved by a conventional copper halide phthalocyanine pigment, that is, has a Tmax of a green pixel region having a transmittance of 520 to 590 nm and having a transmittance of 70% or more on the aforementioned Tmax and a transmittance of the aforementioned spectral transmission spectrum at a wavelength of 650 to 700 nm of 20% or less Filter material. The color filter material of the present invention is a substance having the above-described characteristics, but according to the above description, it is preferable to have a Tmax of 520 to 590 nm and a transmittance of 85% to 99% on the aforementioned Tmax. And a color filter material having a transmittance of the aforementioned spectral transmission spectrum at a wavelength of 650 to 700 nm in a green pixel region of 〇 20%. In the preferred color filter material, the average particle diameter of the primary particles in the halogenated metal phthalocyanine pigment used in the present invention is 微米·〇!~〇"() micrometer, which can utilize the halogenated chloroaluminum phthalocyanine Pigment 'halogenated #-oxy-aluminum phthalocyanine dimer pigments and mixtures thereof, or are made using a zinc halide phthalocyanine pigment. Further, in the color filter material obtained by the present invention, in order to form a color filter material, green -20-1300794, and the invention (19) pixel region, in the halogenated metal phthalocyanine pigment used in the present invention, It is better to use yellow pigments with yellow flavor. That is to say, by such a usage, the transmittance of the spectral transmission spectrum at a wavelength of 400 to 500 nm in the green pixel region can be lowered, for example, the transmittance in the aforementioned wavelength region can be made 50%. the following. The yellow pigment which can be used here, for example, can be used C.  I. Yellow organic pigments such as Pigment Yellow 83, Pigment Yellow 110, Pigment Yellow 138, Pigment Yellow 139, Pigment Yellow 150, Pigment Yellow 180, Pigment Yellow 155, etc. The halogenated metal phthalocyanine pigment used in the present invention, and the yellow pigment The yellow pigment is used in an amount of, for example, 10 to 65 parts by mass per 100 parts by mass of the halogenated metal phthalocyanine pigment used in the present invention. Further, the green pixel region produced by the halogenated metal phthalocyanine pigment used in the present invention is a special means which does not require the use of a yellow pigment which is indispensable for coloring, or the halogenation used in the present invention. Among the metal phthalocyanine pigments, a yellow pigment may also be used, and a small amount is preferably used. In the case of producing a color filter material having a green pixel region of the same color as the conventional green color region of the color filter material, the same yellow pigment used in the halogenated metal phthalocyanine pigment can be reduced by 30% by mass. Above, the maximum can be reduced by about 50% by mass. In particular, in the case of a green pixel region of a color filter material obtained by bonding a halogenated metal phthalocyanine pigment having 9 or more bromine atoms to four benzene rings in each phthalocyanine molecule, it is possible to minimize It prevents its drop in transmittance in the entire visible region. -21 - 1300794 V. DESCRIPTION OF THE INVENTION (2〇) According to the halogenated metal phthalocyanine pigment used in the present invention, since the yellow pigment used therein is the minimum amount, and the pigment of two or more different colors is mixed In comparison with the conventional use of the coloring, it is possible to obtain a color filter material having a turbidity which causes re-aggregation, an excellent color purity, and a bright green pixel region. In such a pixel region as described above, it is extremely difficult to produce a portion intended to be a chromaticity and a hue, and to form a defect which is not the same. For example, as in the case of C.  I. In the case of the green pigment of the pigment green 3 6 , the mixed pigment of the yellow pigment described above is used as the liquid crystal display device in the case where the halogenated metal 'phthalocyanine pigment and the yellow pigment used in the present invention are used. The brightness of the liquid crystal display will be relatively small, and the amount of light penetration in the green area will also become large. This effect is achieved by subjecting the halogenated metal phthalocyanine pigment used in the present invention to the above-mentioned trimming treatment, and having an average particle diameter of the primary particles falling within the above range of four phenyl ring systems per one phthalocyanine molecule. In the case of a halogenated metal phthalocyanine pigment in which nine or more bromine atoms are bonded, it becomes more remarkable. The halogenated metal phthalocyanine pigment used in the present invention can be formed into a green pixel region of a color filter material by a conventionally known method. In the production of the color filter of the present invention, it is preferred to employ a pigment dispersion method. A representative example of such a method is a photolithography method in which a photocurable composition described later is applied to a surface of a transparent substrate for a color filter material on which a black substrate is provided, and after heating and drying (prebaking), Irradiation of ultraviolet light through a mask -22- 1300794 V. Description of the Invention (21) Exposure is performed to cure the photocurable compound corresponding to the position of the pixel region, and then the unexposed portion is visualized by the developing liquid. A method of removing a pixel region of a non-pixel region and fixing it on a transparent substrate. According to this method, the pixel region composed of the hard colored film of the photocurable composition can be formed on the transparent substrate. After modulating the photocurable composition described later on various colors including red, green, and blue, by repeating the above operations repeatedly, it is possible to manufacture various kinds of red, green, and blue at predetermined positions. Color filter material. According to the halogenated metal phthalocyanine pigment used in the present invention, a green pixel region can be formed. Further, a photocurable composition for forming a red pixel region and a blue pixel region can be prepared by using a conventionally known red pigment and blue pigment. It can be used as a pigment for forming a red pixel region, for example, C.  I. Pigment Red 177, Pigment Red 209, Pigment Red 254, etc.; can be used as a pigment for forming a blue pixel region, for example, C.  I. Pigment Blue 15, Pigment Blue 60, etc. Yellow and purple pigments can also be used in forming the red pixel region and the blue pixel region. Thereafter, all of the color filter materials may be subjected to heat treatment (post-baking) in order to thermally cure the photoreactive compound of the final reaction as occasion demands. A method of applying a photocurable composition to be described later on a transparent substrate such as glass, for example, a photocurable composition coated on a transparent substrate by spin coating, roll coating, or inkjet method, for example. Dry film of the coating film -23 - 1300794 5. The invention (22) is different depending on the type of each component, the mixing ratio, etc., but it is usually about 50 to 150 ° C for about 1 to 15 minutes. This heat treatment is generally referred to as "prebaking". Further, it is preferable to use ultraviolet light or visible light having a wavelength of 200 to 500 nm in the light hardening of the photocurable composition. Various light sources that emit light in this wavelength range can be used. The developing method is, for example, a liquid-filling method, a dipping method, a spraying method, or the like. After exposure and development of the photocurable composition, the transparent substrate forming the pixel region of the desired color can be washed with water and dried. The color filter material thus obtained can be heat-treated (post-baking) at a temperature of 100 to 280 ° C for a predetermined time by a heating device such as a hot plate or an oven to remove volatile components in the coating film while allowing light. The unreacted photocurable compound remaining in the hardened colored film of the curable composition is thermally cured to complete the color filter. The photocurable composition (referred to as a pigment dispersion photoresist) for forming a pixel region of a color filter material is a halogenated metal phthalocyanine pigment used in the present invention, a dispersant, a photocurable compound, An organic solvent is used as an essential component, and a thermoplastic resin is used as needed, and these are mixed and prepared. In the case where the color film forming the pixel region is required to have the toughness to be baked in the actual production of the color filter material, when the photocurable composition is prepared, not only the photocurable compound but also the photocurable compound may not be used. The plastic resin is used in the absence of the ground. In the case of using a thermoplastic resin, it is preferred to use a dissolved material as an organic solvent, and a method for producing the photocurable composition described above, generally in the present invention-24-1300794. The halogenated metal phthalocyanine pigment used in the above, and the essential components such as an organic solvent and a dispersing agent are uniformly mixed and stirred and dispersed, and firstly, a pigment dispersion liquid (referred to as a coloring paste) for forming a color filter material Then, a photocurable compound, a thermoplastic resin or a photopolymerization initiator which is optionally required, and the like are added to form a photocurable composition. As a dispersing agent, for example, it is a dispersed Baker 130 of Bukkanmin, a dispersed Baker 161, a dispersed Baker 162, a dispersed Baker 163, a dispersed Baker 170; and Afka Corporation. Ivka 46, Ivka 47, etc. Further, it may be used together with a conditioning agent, a coupling agent, or a cationic surfactant. The organic solvent may, for example, be an aromatic solvent such as toluene or xylene or methoxybenzene; or acetic acid such as ethyl acetate or propylene glycol monomethyl ether acetate or propylene glycol monoethyl ether acetate. Ester solvent; propionate solvent such as ethoxyethyl propionate; alcohol solvent such as methanol or ethanol; butyl ethyl ether ether, propylene glycol monomethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl An ether solvent such as ether; a ketone solvent such as methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone; an aliphatic hydroxy solvent such as hexane; N,N-dimethylphosphide, r-butyrolactone, N-methyl a solvent of a nitrogen compound such as 2-bromodecanone, aniline or pyridine; a lactone solvent such as r-butyrolactone; an aminocarboxylic acid of a mixture of methyl carbamate and ethyl urethane of 48:52; Ester system, etc. It can be used as an organic glutinous agent. It is especially suitable for water-soluble substances such as propionate, alcohol, ether, ketone, nitridium or lactone. -25-1300794 , invention description (24). In the case of using a water-soluble organic solvent, it may be used together with water. It can be used as a thermoplastic resin for modulating a photocurable composition, and examples thereof include, for example, a polyurethane resin, an acrylic resin, a polyamide resin, a polyimide resin, and styrene. A maleic acid resin, a styrene anhydride maleic acid resin, or the like. It can be used as a photocurable compound, for example, 1,6-hexanediol diacrylate, ethylene glycol diacrylate, neopentyl glycol diacrylate, triethylene glycol diacrylate, a bifunctional monomer such as bis(acrylic acid oxyethoxy)biphenol A or 3-methylpentanediol diacrylate; such as trimethylolpropane triacrylate, pentaerythritol acrylate, tris(2-hydroethyl)isocyanate Polyfunctional monomers having a relatively small molecular weight such as dipentaerythritol hexaacrylate or dipentaerythritol pentaacrylate; and polyfunctional monomers having a relatively large molecular weight such as polyester acrylate, polyurethane acrylate, polyether acrylate, etc. body. It can be used as a photopolymerization initiator, for example, acetonitrile benzophenone, benzobenzophenone, benzomethylacetone, benzhydrin peroxide, 2-chlorothioxanthone, 1,3 -bis(4 |-hexanedibenzylidene)-2-propane, 1,3-bis(4'-hexanedibenzylidene)-2-propane 2'-sulfate, 4,4, Dihexylstilbene styrene-2,2'-disulfate, and the like. With the various materials as described above, it is possible to disperse the metal halide phthalocyanine pigment to be used in the present invention in an amount of 300 to 1000 parts by mass of the organic solvent and 0 to 1 part by mass per 100 parts by mass. The agent was uniformly stirred to obtain a dispersion of the above pigment. Then, in the pigment dispersion -26-1300794, the liquid of the invention (25), a total of 3 to 20 parts by mass of the thermoplastic resin and photohardening are added per 1 part by mass of the halogenated metal phthalocyanine pigment used in the present invention. The compound is 0 per 1 part by mass of the photocurable compound. 0 to 3 parts by mass of the photopolymerization initiator, and if necessary, an organic solvent is added, and the mixture is uniformly stirred and dispersed to obtain a photocurable composition for the green pixel region of the color filter. As the developer, a known organic solvent or an aqueous alkaline solution can be used. In particular, when the photocurable composition contains a thermoplastic resin or a photocurable compound, when at least one of them has an acid value and exhibits alkali solubility, it can be washed with an alkaline aqueous solution to form a picture. The effect of the prime area. Regarding the method of producing a color filter material by photolithography in the pigment dispersion method, in detail, in addition to the color filter material of the present invention, the crucible may be an electrolysis method, a transfer method, an electrolysis method, or a PVED (photopotential). A method such as electrolysis) is used to form a pixel region, and it is also possible to manufacture a color filter material. The color filter material of the present invention is a color filter material obtained by the above method, and in the green light pixel region, the light-transmitting spectrum of the entire visible light region shows the largest at 52 0 to 590 nm. Transmittance (Tm ax). Hereinafter, a method of measuring the Tmax in the spectral transmission spectrum of the present invention and the transmittance at Tmax will be described. In the backlight source of a conventional liquid crystal display device, a three-wavelength tube which emits green light having a main bright line of 545 nm is often used. The classification method of the three-wavelength tube is in accordance with the specification of the industrial specification UIS) Z8719, using a three-wavelength light-emitting form having a main line of the same as the main line of -27-1300794, and the invention (26) 545 nm. The camping light F10 light source is used as a measuring light source for evaluation. In the spectroscopic transmission spectrum of the present invention, it is determined according to the first spectrophotometer of Japanese Industrial Standards UIS) Z8722 (method of color measurement - reflection and transmission of object color); scanning with a predetermined wavelength region A resin film containing a pigment which is formed into a film having a predetermined thickness on a transparent substrate such as a glass substrate is patterned for each transmittance 各 according to each wavelength. In the present invention, the predetermined wavelength is visible light. For the film formation of the resin film containing a pigment, a photocurable compound or a thermoplastic resin can be used. When the transmittance measurement is carried out, it is carried out by any of the dried colored resin film or the cured colored resin film formed. Therefore, in short, a photocurable composition for forming a pixel region of the above-described color filter material can be used. When a colored resin film containing a component other than a pigment is formed on a photocurable composition, it is preferred that it does not have light absorbance at 520 to 590 nm or is extremely small, and the influence of the component on the measured absolute transmittance of the composition is Very small. Therefore, from the spectral transmission spectrum, Tmax and the transmittance at Tmax can be obtained. The transmittance of the color filter material can be corrected by correcting the spectral light transmission spectrum (base correction, etc.) by a film having the same film thickness only by the above-mentioned resin, thereby obtaining a more accurate and good result. [Examples] Next, the present invention will be specifically described by way of examples of the examples. However, it is not limited to this; in the following, the meaning of % means mass%; and the meaning of parts means mass parts. -28- 1300794 V. INSTRUCTION DESCRIPTION (27) [Production Example 1] Anthraquinone anhydride, urea, and aluminum chloride were used as raw materials to produce aluminum chloride phthalocyanine. The 1-chloronaphthalene solution has an absorption light of 6 50 to 75 nm. At 40 °C will be 3. 2 parts of sulfite chlorine, 3. 8 parts of anhydrous aluminum chloride, 0.  Mix 5 parts of sodium chloride and drop 2 .  7 parts of bromine is used as a halogenating agent. One part of the aluminum chloride phthalocyanine was added thereto, and the reaction was allowed to proceed at 90 ° C for 15 hours; thereafter, the reaction mixture was poured into water to precipitate a halogenated aluminum chloride phthalocyanine crude pigment. The aqueous slurry was filtered and washed in the order of 60 ° C soup, 1% sodium hydroxide water, and 60 ° C soup. Dry at 90 ° C to obtain refined 2 .  7 parts of halogenated aluminum chloride phthalocyanine crude pigment. 1 part of the halogenated aluminum chloride phthalocyanine crude pigment, 7 parts of the pulverized sodium chloride, 1 part of diethylene glycol, 0. 09 parts of xylene was placed in a double wrist type kneader and kneaded at l ° ° C for 6 hours. After the kneading, 100 parts of water at 80 ° C was taken out, stirred for 1 hour, and then filtered, washed, and dried to obtain an aluminum halide phthalocyanine 1 . The halogen content of the aluminum halide phthalocyanine 1 was analyzed by a flask combustion ion chromatography analysis, and the average composition thereof was AlClPcBhChH. Further, Pc represents a chemical structural formula in which yttrium and Y are removed in the above formula 1. The following are the same. Thus, the average composition can be presumed to mean that M = A1, Y = C1, and m are contained in Formula 1. =l, 乂 乂 "" 14 X series are bromine atoms, 1 X is a chlorine atom, and 1 X is a hydrogen atom of a halogenated aluminum chloride phthalocyanine pigment; and in the formula 1 contains M = A1 m=l, center metal of bismuth - 29- 1300794 V. Description of invention (28) M = A1, and 14 X systems in Χ17~Χ32 are bromine atoms, one X is a chlorine atom, and one X is a hydrogen atom Α is a halogenated-oxy-aluminum phthalocyanine dimer pigment of an oxygen atom. [Production Example 2] An oxidized phthalocyanine is produced by using phthalic anhydride, urea, and ruthenium pentoxide as a raw material. The solution has an absorption light of 650 to 750 nm. It will be 3 at 40 °C.  1 part of sulfite chlorine, 3 .  7 parts of anhydrous aluminum chloride, 0.  Mix 5 parts of sodium chloride and drop 2 .  6 parts of bromine is used as a halogenating agent. One part of the oxidized phthalocyanine was added thereto, and the reaction was allowed to proceed at 90 ° C for 15 hours; thereafter, the reaction mixture was poured into water to precipitate a halogenated oxidized phthalocyanine crude pigment. The aqueous slurry was filtered and washed in the order of 60 ° C soup, 1% sodium hydroxide water, acetone containing 7% toluene, and 60 ° C soup. Dry at 90 ° C to obtain refined 2 .  6 parts of halogenated phthalocyanine crude pigment. One part of the halogenated oxidized phthalocyanine crude pigment, 7 parts of the pulverized sodium chloride and one part of diethylene glycol were placed in a double wrist type kneader, and kneaded at 80 ° C for 8 hours. After kneading, it was extracted with 1 part of water at 80 ° C, stirred for 1 hour, and then filtered, washed, dried and pulverized to obtain a halogenated oxidized phthalocyanine 2 . The halogen content of the aluminum halide phthalocyanine 2 was analyzed by a flask combustion ion chromatography analysis, and the average composition thereof was V〇PcBr13Cl2H. (In the above formula 1, M = V, Y = 0, and m = 1, 13 X systems are bromine atoms, 2 X are chlorine atoms, and 1 X is a hydrogen atom). -30· 1300794 V. Inventive Note (29) [Production Example 3] Zinc phthalocyanine was produced by using sebaconitrile and zinc chloride as raw materials. The 1-chloronaphthalene solution has an absorption light of 650 to 75 nm. 3 · 1 part of sulfinium chloride at 40 ° C, 3 .  7 parts of anhydrous aluminum chloride, 0.  Mix 5 parts of sodium chloride and drop 2 .  6 parts of bromine is used as a halogenating agent. One part of the zinc phthalocyanine was added thereto, and the reaction was allowed to proceed at 90 ° C for 15 hours; thereafter, the reaction mixture was poured into water to precipitate a crude zinc halide phthalocyanine pigment. The aqueous slurry was filtered and washed in the order of 60 ° C soup, 1% sodium hydroxide water, acetone containing 7% toluene, and 60 ° C soup. It was dried at 90 ° C to obtain a purified 2·6 parts of a crude zinc halide phthalocyanine pigment. 1 part of the crude zinc halide phthalocyanine pigment, 7 parts of the pulverized sodium chloride, 1 part of diethylene glycol, 0. 09 parts of xylene was placed in a double wrist type kneader and kneaded at 100 ° C for 6 hours. After kneading, it was extracted with 100 parts of water at 80 ° C, stirred for 1 hour, and then filtered, washed, dried and pulverized to obtain a zinc halide phthalocyanine 3. The halogen content in the zinc halide phthalocyanine 3 was analyzed by a flask combustion ion chromatography analysis, and the average composition thereof was ZiiPcBryChH. (In the above formula 1, M = Zn, 14 X systems are bromine atoms, 1 X is a chlorine atom, and 1 X is a hydrogen atom). [Production Example 4] Sebacin and 4 titanium chloride were used as raw materials to produce titanium phthalocyanine. The 1-chloronaphthalene solution has an absorption light of 650 to 70 nm. -31 - 1300794 V. INSTRUCTIONS (3〇) 3 · 1 part of sulfite chlorine at 40 ° C, 3 .  7 parts of anhydrous aluminum chloride, 0. 5 parts of sodium chloride are mixed and dropped 2 .  6 parts of bromine is used as a halogenating agent. One part of the titanium phthalocyanine was added thereto, and the reaction was allowed to proceed for 15 hours at 90 t; thereafter, the reaction mixture was poured into water to precipitate a crude titanium halide phthalocyanine pigment. The aqueous slurry was filtered and washed in the order of 60 ° C soup, 1% sodium hydroxide water, acetone containing 7% toluene, and 60 ° C soup. Dry at 9 (TC) and obtain refined 2. 6 parts of titanium halide phthalocyanine crude pigment. 1 part of the titanium halide phthalocyanine crude pigment, 7 parts of the pulverized sodium chloride, 1 part of diethylene glycol, 0.  09 parts of xylene was placed in a double wrist f-kneader and kneaded at 100 ° C for 6 hours. After kneading, extracting with 100 parts of 8 (TC water, stirring for 1 hour, filtering, rinsing, drying and pulverizing to obtain titanium halide phthalocyanine 4. The zinc halide bismuth was analyzed by a flask combustion ion chromatography analysis. The halogen content in the cyanine 4 has an average composition of TiOPcBr1()Cl5H. (In the above formula 1, M = Ti, Y = 0, and m = 1, 10 X systems are bromine atoms, and 5 X are chlorine atoms. And one X is a hydrogen atom. [Production Example 5] Niobium nitrile and nickel chloride are used as raw materials to produce nickel phthalocyanine, and the 1-chloronaphthalene solution has absorption light of 650 to 750 nm. 3 · 1 part of sulfinium chloride, 3 · 7 parts of anhydrous aluminum chloride, 0 at 40 ° C.  Mix 5 parts of sodium chloride and drop 2 .  6 parts of bromine is used as a halogenating agent. One part of the nickel phthalocyanine was added thereto at -90-1300794 at 90 ° C, and the reaction (31) was reacted for 15 hours; then the reaction mixture was poured into water to precipitate a crude nickel halide phthalocyanine. pigment. The aqueous slurry was filtered and washed in the order of 60 ° C soup, 1% sodium hydroxide water, acetone containing 7% toluene, and 60 ° C soup. It was dried at 90 ° C to obtain a purified 2 · 6 parts of a crude nickel halide phthalocyanine pigment. 1 part of the crude nickel halide phthalocyanine pigment, 7 parts of the pulverized sodium chloride, 1 part of diethylene glycol, 0. 09 parts of xylene was placed in a double wrist type kneader and kneaded at 100 ° C for 6 hours. After kneading, it was extracted with 100 parts of water at 80 ° C, stirred for 1 hour, and then filtered, washed, dried and pulverized to obtain a nickel halide phthalocyanine 5. The halogen content in the nickel halide phthalocyanine 5 was analyzed by a flask combustion ion chromatography analysis, and the average composition thereof was NiPcBr13Cl2H. (In the above formula 1, M = Ni, m = 1, and X X to X16 are 13 bromine atoms, 2 X are chlorine atoms, and 1 X is a hydrogen atom). [Production Example 6] Sebacin was produced by using sebaconitrile and tin chloride as raw materials. The 1-chloronaphthalene solution has an absorption light of 650 to 750 nm. At 40 ° C will be 3. 1 part of sulfite chlorine, 3. 7 parts of anhydrous aluminum chloride, 0.  Mix 5 parts of sodium chloride and drop 2 .  6 parts of bromine is used as a halogenating agent. One part of the tin phthalocyanine was added thereto, and the reaction was allowed to proceed at 90 ° C for 15 hours; thereafter, the reaction mixture was poured into water to precipitate a crude titanium halide phthalocyanine pigment. The aqueous slurry was filtered to obtain a soup at 60 ° C, 1% sodium hydroxide water, acetone containing 7% toluene, 6 (-33-1300794 of TC soup, invention description (32).  Wash in order. It was dried at 90 ° C to obtain a purified 2 · 6 parts of a crude tin halide phthalocyanine pigment. 1 part of the crude tin halide phthalocyanine pigment, 7 parts of the pulverized sodium chloride, 1 part of diethylene glycol, 0. 09 parts of xylene was placed in a double wrist type kneader and kneaded at 100 ° C for 6 hours. After kneading, it was extracted with 100 parts of water at 80 ° C, stirred for 1 hour, and then filtered, washed, dried and pulverized to obtain a tin halide phthalocyanine 6. The halogen content in the tin halide phthalocyanine 6 was analyzed by a flask combustion ion chromatography analysis, and the average composition thereof was SnPcBr1QCl5H. (In the above formula 1, M = Sn, m = 1, 10 X-forms are bromine atoms, 5 X are chlorine atoms, and 1 X is a hydrogen atom). [Production Example 7] The conditions in Production Example 3 were changed to 0 in the primary particles.  The zinc halide phthalocyanine 7 was obtained in the same manner as in Production Example 3 except for the average particle diameter of 03 μm. [Comparative Production Example 1] Phthalic anhydride, urea, and copper chloride were used as raw materials to produce copper phthalocyanine. The 1-chloronaphthalene solution has an absorption light of 650 to 750 nm. The copper bromide phthalocyanine pigment 8 was obtained by the same operation as in Production Example 1 using copper phthalocyanine and the same halogenating agent as in Production Example 1. (In the above formula 1, M = Cu, m = 0, and 15 X systems in Xi to X16 are bromine atoms, and one X is a hydrogen atom). [Examples 1 to 6] • 34-1300794 V. Description of the Invention (33) The green pigments of the various pigments 1, 2, 3, 4, 5 and 6 obtained in the above production examples were produced by photolithography. The green pixel areas 1, 2, 3, 4, 5 and 6 of the color filter. The method for producing the green color region of the color filter material is to use 14 parts of each pigment, 3 parts of C·I·Pigment Yellow 150 (yellow organic pigment for coloring), 2. 5 parts of N,^-dimethylammonium phosphate (organic solvent), 17.0 parts of dispersion rubber 161 (dispersant made by Cookmi), 63. 5 parts of Eugenate EEP (organic solvent made by Eucalyptus) is added to 0. A 5 mm 0 safety bead was dispersed by a paint conditioner (manufactured by Toyo Seiki Co., Ltd.) for 1 hour to prepare a pigment dispersion. Will be 75. 00 parts of the pigment dispersion, and 5. 50 copies of Alonicus M7100 (polyester acrylate made by East Asia Synthetic Chemical Industry Co., Ltd., equivalent to photocurable compound), 5. 00 parts of KAYARAD DPHA (diuretic tetraol ester hexaacrylate manufactured by Nippon Pharmaceutical Co., Ltd., equivalent to photocurable compound), 1 .  00 parts of KAYACURE BP-100 (benzophenone manufactured by Nippon Pharmaceutical Co., Ltd., equivalent to a photoinitiator), and 13.  Five parts of the superior chelate EEP were stirred with a dispersing mixer to obtain a photocurable compound for forming a green pixel region of the color filter. The composition was applied to a glass having a thickness of 1 mm in accordance with a dry film thickness of 1 μm. Next, the ultraviolet ray was irradiated through a photomask to expose it, and the unexposed portion was washed with an organic solvent to form a green pixel region for the color filter. The results of the respective pigments were measured by a transmission electron microscope: TEM-2010 (manufactured by Nippon Denshi Co., Ltd.) to obtain the average particle diameter of the primary particles of the respective pigments of -35-1300794. The chromaticity and brightness of the green pixel regions 1, 2, 3, 4, 5 and 6 of the color filter materials produced by the pigments 1 to 6 were visually evaluated. Further, the first type of spectrophotometer (spectrophotometer specified in the Industrial Standard (JIS) Z8722 is used to measure the wavelength (Tmax) of the maximum transmittance in the spectral transmission spectrum of the entire visible light region, at the aforementioned Tmax The penetration rate, the maximum transmittance in the wavelength range of 650 to 700 nm, and the measurement of the spectral transmission spectrum in the green pixel regions 1 and 3 of the color filter, and the equivalent of 50% of the maximum transmittance The distance between the two intersections formed by the interpolated line within the penetration rate (the distance in the figure is expressed in nanometers). The results are shown in Table 1. In Example 1 and Example 3 The color transmission spectrum of the green pixel region obtained by the color filter material is shown in Fig. 1 and Fig. 2, respectively, except that C having the average particle diameter of the same primary particle is used. Pigment Red 254 (diketopyrrole red organic pigment) and C.  I. Pigment Blue 15.  . In place of the pigment 1, 64 (the ε-type copper phthalocyanine-based blue organic pigment) is similarly formed into a green pixel region to modulate the respective creep compositions of red and blue, and to form a red pixel region, respectively. And the blue pixel area; and the color material set with various RGB pixel regions is obtained. [Comparative Example 1] In the same manner as in Example 1 except that the copper bromide pigment 8 was used instead of the halogenated phthalocyanine pigment 1, the green pixel region for the color filter material was obtained. 8. -36- 1300794 V. Inventive Note (35) In the same manner as in the first embodiment, the average particle diameter of the primary particles of the pigment 8 and the green pixel region 8 for the color filter material produced by the pigment 8 were visually evaluated. Chromaticity and brightness. Also, use a spectrophotometer. To determine Τιώax, the penetration rate at the aforementioned Tmax, and the maximum transmittance in the wavelength range of 650 to 700 nm. Further, the distance between the two intersections formed by the interpolated lines corresponding to the transmittance at 50% of the maximum transmittance (half width) was measured. This result is shown in Table 1. The broad axis is the horizontal axis and the transmittance is the vertical axis, and the color filter material is shown in Fig. 3 by the spectral transmission spectrum of the green pixel region. Table 1 Example 1 Example 2 Example 3 Green pixel area for color filter material 1 2 3 Pigment composition AlClPcBrnCliH V(0)PcBr13Cl2H ZnPcBr14Cl ιΗ Primary particle: Average particle diameter of F. 03 micron 0. 03 micron 0. 06 micron macroscopic chromaticity 〇〇〇 evaluation brightness Δ Δ Δ Tmax 529 nm 535 nm 521 nanometer measured Tmax penetration rate 92% 78% 89% fixed half width 136 nm 99 nm 値 650 ~ The maximum penetration rate of 700 nm is 0. 3% 4. 4% 1. 8% -37- 1300794 V. INSTRUCTIONS (36) Table 1 (Box 1) Example 4 Example 5 Example 6 Green pixel area for color filter material 4 5 6 Pigment composition Ti(O)PcBr10Cl5H NiPcBr13Cl2H SnPcBr10Cl5H Primary particle The average particle size is 0. 01 micron 0. 01 micron 0. 01 micron @ 视色〇〇〇 〇〇〇 売 Δ Δ Δ Tmax 528 nm 526 nm 530 nm measured penetration rate in Tmax 83% 75% 80% fixed half width 値 650~700 nm The maximum penetration rate of 6. 9% 1. 0% 1. 6% Table 1 (continued) Comparative Example 1 Green pixel area for color filter material 8 Pigment composition C u P c B r ! 5 平均 Average particle size of primary particles 0. 04 micron giant color chromaticity X evaluation brightness Δ Tmax 51 3 nanometers measured penetration rate in Tmax 85% fixed half width 1 13 nm 値 650~700 nm maximum penetration rate 5 .  0% -38- 1300794 V. Description of Invention (π) In Table 1, the contents of the symbols are as follows. Chromaticity: 〇···With green color equivalent to yellow scent · · · Green brightness with yellow scent: 〇 · · · Very bright X · · · A little dark due to Table 1 can be understood: use Al, V, Zn, Ti, Ni, Sn are the central metal halide metal phthalocyanine pigments 1, 2, 3, 4, 5 and 6 for the color material green pixels 1, 2, 3, 4, 5 and 6' The result of the evaluation is to compare the bright substances with yellow flavor. On the other hand, it can be understood that the green pixel region 8 of the color filter material using the halogenated metal phthalocyanine pigment 8 which is a copper-centered metal is visually evaluated as yellow with insufficient yellowness, and the brightness is slightly dark. substance. [Example 7] In Example 3, the same procedure as in Example 3 was carried out except that the above-mentioned zinc halide phthalocyanine pigment 7 was used instead of the zinc halide phthalocyanine pigment 3, and the green pixel region for forming a color material was formed. 7' and carry out the same measurement as described above. The results of this Example 7 are shown in Table 2. -39- 1300794 V. INSTRUCTIONS (38) TABLE 2 Comparative Example 7 Green gramin area for color filter material 7 Pigment composition ____ ZnPcBr14Cl # Average particle size of primary particles 0. 03 micron chromaticity 〇 evaluation brightness 〇 Tmax 529 nm measured penetration in Tmax _ 92% fixed half width 105 nm 値 maximum penetration in 650~700 nm 7. 3% From the comparison between Example 3 and Example 7, it is understood that the green pixel region obtained from the zinc halide phthalocyanine pigment 7 having a smaller average particle diameter of the primary particles is compared with the zinc halide phthalocyanine pigment 3, and the visual result is obtained. Its brightness is even better, while Tmax is closer to 545 nm, and the penetration at Tmax is also higher. Using the pigments 7 and 8, the test pieces were produced in accordance with JIS k5101-1991 (Japanese Industrial Standard "Pigment Test Method"), and each of the L-shaped beamsplitters was obtained by the data color company to obtain the color of each of them. Force scale. When the ruthenium was used as the ruthenium phthalocyanine pigment 8 of Comparative Example 1, the L 値 of the zinc halide phthalocyanine pigment 7 was equivalent to 99, and the coloring power was about 10% higher. -40- 1300794 V. Inventive Note (39) Moreover, in the green pixel region obtained in each of the examples, when visually observed, no chroma or hue portion can be observed in any of the pixel regions. presence. [Industrial Applicability] The present invention provides a color filter material comprising a halogenated metal phthalocyanine pigment having 8 to 16 halogen atoms in each phthalocyanine molecule bonded to a phthalene ring of a phthalocyanine molecule; The green pixel region with a maximum transmittance of 520 to 590 nm in the spectral light transmission spectrum of the whole region of visible light; compared with the green pixel region using copper phthalocyanine, it is more capable of achieving The bright green color close to the yellow flavor is particularly effective. Moreover, in the chromaticity or hues of the same color, it is also possible to achieve an exceptionally significant effect that does not cause the formation of chromaticity or hue. -41 -

Claims (1)

p年γ月/日修(P正本 六、申請專利範圍 第9 1 1 0 3 9 1 2號「濾色材」專利案 (93年4月1日修正本) 六申請專利範圍: 1 . 一種濾色材’其特徵在於:該濾色材係於透明基板上具 有紅色、綠色及藍色之各種畫素區,前述綠色畫素區係 (1 )含有以下述通式1所代表之鹵化金屬酞菁顏料; 通式1p year γ month / day repair (P original six, patent application scope 9 1 1 0 3 9 1 2 "filter material" patent case (amendment of April 1, 1993) six application patent scope: 1. The color filter material is characterized in that the color filter material is a plurality of pixel regions having red, green, and blue colors on a transparent substrate, and the green pixel region (1) contains a halogenated metal represented by the following formula 1. Phthalocyanine pigment; formula 1 此處,Xl〜係代表氫原子、氯原子、溴原子、或 碘原子,鍵結在一個苯環上之4個X原子係爲相 同’也可以是相異;鍵結在四個苯環上之χ!〜χι6中 有δ〜16個氫原子、氯原子、溴原子、或碘原子;μ 係代表中心金屬,乃選自Si、Sc、Τι、Mg、Fe、Here, X1~ represents a hydrogen atom, a chlorine atom, a bromine atom, or an iodine atom, and the four X atom atoms bonded to one benzene ring are the same 'may be different; the bond is on four benzene rings χ χ 6 6 contains δ ~ 16 hydrogen atoms, chlorine atoms, bromine atoms, or iodine atoms; μ system represents the central metal, is selected from Si, Sc, Τι, Mg, Fe, 1300794 六、申請專利範圍 Co、Ni、Zn、Ge、Y、Zr、Nb、Sn 及 Pb 所組成群類· 之中,鍵結在中心金屬M上之Y係爲自氟、氯、溴 或碘之任一鹵素原子、氧原子、氫氧基(-0Η)及磺酸 基(-S03H)所組成群類中選出之一價原子團,m係代 表鍵結在中心金屬Μ上之Y的數量,爲0〜2之整數; 當該中心金屬爲三價的情況下,該中心金屬係與1 個上述之鹵素原子、羥基或硫酸基中之任一個鍵 結;當該中心金屬爲四價的情況下,該中心金屬係 與1個氧原子或者相同或不同也可以之2個上述的 鹵素原子、羥基或磺酸基中之任一個鍵結;而且在 可見光全區之分光透光光譜中520〜590奈米處顯 示出最大穿透率。 2 .如申請專利範圍第1項之濾色材,其中之中心金屬Μ爲 Ζη ;而Υ之個數m爲0。 3.—種濾色材’其特徵在於:該爐、色材係於透明基板上具 有紅色、綠色及藍色之各種畫素區’其中前述綠色畫素 區係爲 (1)含有以下述通式1所代表之鹵化金屬酞菁顏料: 通式1 : 1300794 六 申請專利範圍1300794 6. In the group of Co, Ni, Zn, Ge, Y, Zr, Nb, Sn and Pb, the Y system bonded to the central metal M is from fluorine, chlorine, bromine or iodine. One of a group consisting of a halogen atom, an oxygen atom, a hydroxyl group (-0Η), and a sulfonic acid group (-S03H), wherein m represents the number of Y bonded to the central metal ruthenium, An integer of 0 to 2; when the central metal is trivalent, the central metal is bonded to any one of the above halogen atoms, hydroxyl groups or sulfate groups; when the central metal is tetravalent Next, the central metal system may be bonded to any one of the above halogen atoms, hydroxyl groups or sulfonic acid groups by the same or different oxygen atoms; and in the spectroscopic light transmission spectrum of the entire visible light region 520~ The maximum penetration rate is shown at 590 nm. 2. For the color filter material of claim 1, wherein the central metal Μ is Ζη; and the number m of Υ is 0. 3. The color filter material is characterized in that: the furnace and the color material are on a transparent substrate having various pixel regions of red, green and blue, wherein the green pixel region is (1) containing the following Halogenated metal phthalocyanine pigment represented by Formula 1: Formula 1 : 1300794 此處,χ^χ16係代表氫原子、氯原子、溴原子、或碘 原子,鍵結在一個苯環上之4個X原子係爲相同, 也可以是相異;鍵結在四個苯環上之中有 8〜16個氫原子、氯原子、溴原子、或碘:原子;Μ係 代表中心金屬,乃自Sc及Υ組成之群類中選出之三 價金屬,m係代表1,而Y係代表以下之原子團:Here, χ^χ16 represents a hydrogen atom, a chlorine atom, a bromine atom, or an iodine atom, and the four X atom atoms bonded to one benzene ring are the same or different; the bond is in four benzene rings. There are 8 to 16 hydrogen atoms, chlorine atoms, bromine atoms, or iodine: atoms; the lanthanide represents a central metal, which is a trivalent metal selected from the group consisting of Sc and lanthanum, and m represents 1; The Y series represents the following atomic groups: 1300794 六、申請專利範圍 此處,Xl 7〜X32係代表氫原子、氯原子、溴原子、或 碘原子,鍵結在一個苯環上之4個X原子係爲相 同,也可以是相異;鍵結在四個苯環上之X17〜X32中 有8〜16個氫原子、氯原子、溴原子、或碘原子;Μ 係代表中心金屬,乃選自S c、及Υ所組成群類之三 價金屬;Α爲自氧原子、硫原子、亞磺醯基(_ s〇-)及 磺醯基(-S02-)所組成之群類中選出之二價原子團; 通式1中之Μ與原子團Y之Μ係代表經由二價原子團 而鍵結;而且 (2)在可見光全區之分光透光光譜中520〜590奈米處 顯示出最大穿透率。 4 .如申請專利範圍第1至3項中任一項之濾色材,其中鹵 化酞菁金屬顏料之一次粒子的平均粒徑係爲〇 . 〇 1至 0 . 10微米。 5 .如申請專利範圍第1至3項中任一項之濾色材,其在該 酞菁分子之苯環上鍵結的8〜16個鹵素原子中,係有9 個以上爲溴原子。 6 .如申請專利範圍第1至3項中任一項之濾色材,其在顯 示最大穿透率之波長中,該綠色畫素區之穿透率係在 70%以上。 7 .如申請專利範圍第1至3項中任一項之濾色材’其在顯 示最大穿透率之波長中,該綠色畫素區之穿透率係在 85%以上。 -4 -1300794 VI. Patent Application Scope Here, Xl 7~X32 represents a hydrogen atom, a chlorine atom, a bromine atom, or an iodine atom, and the four X atom atoms bonded to one benzene ring are the same or different; The X7 to X32 bonded to the four benzene rings has 8 to 16 hydrogen atoms, chlorine atoms, bromine atoms, or iodine atoms; the lanthanum represents a central metal selected from the group consisting of S c and Υ a trivalent metal; ruthenium is a divalent atomic group selected from the group consisting of an oxygen atom, a sulfur atom, a sulfinyl group (_s〇-), and a sulfonyl group (-S02-); The enthalpy with the atomic group Y represents bonding via a divalent atomic group; and (2) the maximum transmittance is shown at 520 to 590 nm in the spectral light transmission spectrum of the entire visible light region. The color filter material according to any one of claims 1 to 3, wherein the primary particle diameter of the halogenated phthalocyanine metal pigment is 〇 1 to 0.1 μm. The color filter material according to any one of claims 1 to 3, wherein among the 8 to 16 halogen atoms bonded to the benzene ring of the phthalocyanine molecule, 9 or more are bromine atoms. 6. The color filter according to any one of claims 1 to 3, wherein the green pixel region has a transmittance of 70% or more in a wavelength exhibiting a maximum transmittance. 7. The color filter material according to any one of claims 1 to 3, wherein the green pixel region has a transmittance of 85% or more in a wavelength exhibiting a maximum transmittance. -4 -
TW91103912A 2001-09-11 2002-03-04 Color filter TWI300794B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001274939 2001-09-11

Publications (1)

Publication Number Publication Date
TWI300794B true TWI300794B (en) 2008-09-11

Family

ID=45070053

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91103912A TWI300794B (en) 2001-09-11 2002-03-04 Color filter

Country Status (1)

Country Link
TW (1) TWI300794B (en)

Similar Documents

Publication Publication Date Title
KR100839573B1 (en) Color filter
JP4407097B2 (en) Color filter
JP6020701B2 (en) Green pigment for color filter and color filter
JP5141939B2 (en) Polyhalogenated zinc phthalocyanine pigment composition and color filter
JP4882515B2 (en) Polyhalogenated zinc phthalocyanine pigment composition and color filter
JP4752590B2 (en) Polyhalogenated zinc phthalocyanine pigment composition and color filter
JP6041179B1 (en) Green pigment composition for color filter and color filter
CN109642970B (en) Pigment composition for color filter and color filter
JP2007284590A (en) Polyhalogenated metal phthalocyanine crude pigment, the pigment and color filter containing the pigment in green pixel part
JP2009237462A (en) Red pigment for color filter, red color composition using the same, and the color filter
JP4992321B2 (en) Polyhalogenated zinc phthalocyanine, photosensitive composition and color filter
JP2003176424A (en) Green coloring matter composition and color filter
JP2006184427A (en) Method for producing green semi-crude for color filter, green pigment composition and color filter containing the semi-crude and pigment composition in green pixel part
JP4815895B2 (en) ε-type copper phthalocyanine pigment composition and method for producing the same
JP2001342374A (en) Halogenized copper phthalocyanine pigment composition for color filter, and color filter
TWI300794B (en) Color filter
JP2005275052A (en) Blue pigment composition for color filter and color filter
JP2006091649A (en) Method for manufacturing pigment composition for blue-pixel portion of color filter, and the color filter
JP2003176423A (en) Green coloring matter composition and color filter
JP2008185703A (en) Pigment composition for color filter
JP2018036520A (en) Pigment composition for color filter and color filter
JP4403309B2 (en) Color filter
JP2004145078A (en) Color filter
CN110402404A (en) Pigment composition for color filter and colour filter

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent