TWI300162B - Positive-working alkaline developable photosensitive polyimide/clay nanocomposite compositions and preparation thereof - Google Patents

Positive-working alkaline developable photosensitive polyimide/clay nanocomposite compositions and preparation thereof Download PDF

Info

Publication number
TWI300162B
TWI300162B TW92126751A TW92126751A TWI300162B TW I300162 B TWI300162 B TW I300162B TW 92126751 A TW92126751 A TW 92126751A TW 92126751 A TW92126751 A TW 92126751A TW I300162 B TWI300162 B TW I300162B
Authority
TW
Taiwan
Prior art keywords
clay
photosensitive
group
composition
positive
Prior art date
Application number
TW92126751A
Other languages
Chinese (zh)
Other versions
TW200512533A (en
Inventor
Steve Lien Chung Hsu
Jinn Shing King
Ulin Wang
Chih Long Cheng
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW92126751A priority Critical patent/TWI300162B/en
Publication of TW200512533A publication Critical patent/TW200512533A/en
Application granted granted Critical
Publication of TWI300162B publication Critical patent/TWI300162B/en

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Materials For Photolithography (AREA)

Description

1300162 玖、發明說明: 發明所屬之技術領域 本發明係關於一種正型鹼性水溶液顯影之感光型聚醯 亞胺’尤其有關一種低應力正型鹼性水溶液顯影之感光型 聚醯亞胺。 先前技術 聚醯亞胺(聚醯亞胺,pi)由於具有優異的熱安定性及 良好的機械,電氣及化學性質,被廣泛地應用於半導體工 業,例如1C晶片保護膜,金屬層間絕緣材料及晶片級封裝 (chip scale package,CSP)等。應用在IC製程的ρι可分為 傳統的PI和感光型PI (photosensitive PI,以下略稱pspi) 兩種。傳統的PI須配合光阻劑一起使用以得到所要的線路 圖形。然而PSPI可直接曝光顯影,做成圖形。由於使用 PSPI可簡化1C製程、降低成本而且可提高產品良率,目 前愈來愈多的1C廠傾向於使用PSPI。當聚醯亞胺應用於 以上用途時,常以溶液方式塗佈於矽晶圓(silie〇n wafer ) 或其他基材上,經過烘乾及高溫硬化後,形成一層薄膜附 著於基材上。當使用這種薄膜製程時,聚醯亞胺會在基材 上產生内應力。此内應力的主要來源是:丨·溶液的溶劑揮 發2·聚酿亞胺高溫硬化3·聚醯亞胺和基材間的熱膨脹 係數差異過大。當聚醯亞胺形成薄膜時,所產生的内應力 如果過大,將使基材(如矽晶圓)彎曲變形或龜裂,或產 生脫層現象,而使1C元件受損。當IC晶圓尺寸愈來愈大, 1300162 尤其在12吋晶圓的製程時,這種内應力所造成的問題更加 顯著,所以研發低應力的聚醯亞胺材料更顯迫切。 要降低聚醯亞胺薄膜的内應力,可從三個方向著手。 第一種方法是降低聚醯亞胺的硬化溫度。第二種方法是導 入柔軟的基團(如矽氧烷(siloxane))於聚醯亞胺的分子結 構上’以降低其揚氏模數(Y〇ung’s modulus)。第三種方法 是設法降低聚醯亞胺的熱膨脹係數(以下簡稱Cte),使其 接近基材的熱膨脹係數。常見降低聚醯亞胺熱膨脹係數的 方法是經由分子設計,合成線性、硬桿狀(rigid-r〇d)的 分子結構。但是這種方法涉及新單體的合成,是一種費時 且昂貴的方法,且在配製成PSPI時,可能會有無法用鹼性 水溶液顯影的問題。另外也有利用添加填充物(filler )的 方式降低熱膨脹係數,但所添加的量太多不易分散,容易 聚集進而影響其感光性,使其在微細圖案的加工有困難。 利用無機材料來改質聚醯亞胺的相關文獻非常多,但 都僅止於單純PI的研究,鮮少對感光型聚醯亞胺去做研 究’感光型聚醯亞胺最近曾被報導如下表所示,ZhuBACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive-type alkaline aqueous solution-developed photosensitive polyimine, which is particularly related to a low-stress positive-type alkaline aqueous solution-developed photosensitive polyimine. The prior art polyimine (polyimine, pi) is widely used in the semiconductor industry due to its excellent thermal stability and good mechanical, electrical and chemical properties, such as 1C wafer protective film, metal interlayer insulating material and Chip scale package (CSP) and the like. The ρι used in the IC process can be divided into the traditional PI and the photosensitive PI (hereinafter referred to as pspi). Conventional PIs must be used in conjunction with a photoresist to obtain the desired trace pattern. However, PSPI can be directly exposed to development and patterned. Since the use of PSPI simplifies the 1C process, reduces costs, and increases product yield, more and more 1C plants tend to use PSPI. When polyimine is used in the above applications, it is usually applied to a silene wafer or other substrate by a solution, and after drying and high temperature hardening, a film is formed on the substrate. When using this film process, polyimine produces internal stresses on the substrate. The main source of this internal stress is: solvent evaporation of the solution. 2. High temperature hardening of the polyaniline 3. The thermal expansion coefficient between the polyimide and the substrate is too large. When the polyimide is formed into a film, if the internal stress is too large, the substrate (such as a germanium wafer) may be bent or cracked, or delamination may occur, and the 1C element may be damaged. When the IC wafer size is getting larger and larger, 1300162, especially in the 12-inch wafer process, the problem caused by this internal stress is more significant, so it is more urgent to develop low-stress polyimine materials. To reduce the internal stress of the polyimide film, it can be started in three directions. The first method is to lower the hardening temperature of the polyimine. The second method is to introduce a soft group (e.g., siloxane) to the molecular structure of the polyimine to reduce its Y〇ung's modulus. The third method is to reduce the thermal expansion coefficient (hereinafter referred to as Cte) of the polyimine to be close to the thermal expansion coefficient of the substrate. A common method for reducing the thermal expansion coefficient of polyimine is to synthesize a linear, rigid-r〇d molecular structure via molecular design. However, this method involves the synthesis of new monomers, which is a time consuming and expensive method, and when formulated into PSPI, there may be a problem that it cannot be developed with an alkaline aqueous solution. Further, the coefficient of thermal expansion is lowered by the addition of a filler, but the amount added is too small to be easily dispersed, and it is easy to aggregate and affect the photosensitivity, making it difficult to process the fine pattern. There are many related literatures on the use of inorganic materials to modify polyimine, but they are only limited to the study of PI alone. Little research has been done on photosensitive polyimides. Photosensitive polyimine has recently been reported as follows. As shown in the table, Zhu

Zl_Kang等曾發表一系列利用sol_gel方式將二氧化矽(siiica) 加入感光型聚醯亞胺中,以形成感光性聚醯亞胺/二氧化矽 混合物。 1300162 標題 期刊 Preparation and properties of photosensitive polyimide/titania-silica hybrid Materials Science & Engineering, C: Biomimetic and Supramolecular Systems (2002),C22(l),61_65 Preparation and properties of photosensitive polyimide/Si02 hybrid Gongneng Gaofenzi Xuebao (2000), 13(3), 325-328 Photosensitive polyimide/silica hybrids Advanced Materials (Weinheim, Germany) (2000), 12(14), 1055-1057 根據前述論文的實驗結果,二氧化矽含量在ι〇%時 CTE降低了 25%,但會有二氧化矽粒子的聚集,以致曝光 顯影時會產生問題。 發明内容 本發明利用奈米分散黏土於高分子材料的技術來開發 低應力的感光型聚醯亞胺/黏土奈米複合材料,此技術不涉 及新聚合體及單體之合成,由於黏土在PI中是呈奈米分 散,故不影響其感光性,因此是一種經濟且簡便的方法。 由於奈米分散的黏土有很高的表面積對體積比(surface to volume ratio ),限制高分子的熱膨脹及收縮,可以有效地 降低高分子材料的熱膨脹係數。本發明利用奈米分散黏土 於高分子材料的技術所開發的低應力的感光型聚醯亞胺/ 黏土奈米複合材料,在黏土添加量為5%時,CTE降低了 1300162 23%,且在微影製程沒有問題。 本發明所揭示的一種正型光敏感性聚醯亞胺/黏土奈 米複合材料组成物,包括·· a) 驗丨生水,谷液可溶的聚醢胺酸(polyamic acid); b) —感光性溶解抑制劑,用以抑制聚醯胺酸的鹼性水 /令液/合解度,並且該感光性溶解抑制劑於照光後分解,而 可溶於一驗性水溶液; c) 改質有機黏土;及 d) 溶劑,其中該感光性溶解抑制劑b)為該聚醯胺酸勾 的重里的5 6G/。’及該改質有機黏土為該聚醯胺酸&)的重量 的 1-30%。 較佳的,該聚醯胺酸a)具有下列結構:Zl_Kang et al. have published a series of siiica additions to photosensitive polyimides using the sol_gel method to form a photosensitive polyimide/cerium oxide mixture. 1300162 Title and properties of photosensitive polyimide/titania-silica hybrid Materials Science & Engineering, C: Biomimetic and Supramolecular Systems (2002), C22(l), 61_65 Preparation and properties of photosensitive polyimide/Si02 hybrid Gongneng Gaofenzi Xuebao (2000 ), 13(3), 325-328 Photosensitive polyimide/silica hybrids Advanced Materials (Weinheim, Germany) (2000), 12(14), 1055-1057 According to the experimental results of the aforementioned paper, the content of cerium oxide is 〇% The CTE is reduced by 25%, but there is agglomeration of the cerium oxide particles, which causes problems in exposure and development. SUMMARY OF THE INVENTION The present invention utilizes the technique of dispersing clay in a polymer material to develop a low-stress photosensitive polyimide/clay nano composite, which does not involve the synthesis of new polymers and monomers, due to clay in PI The medium is dispersed in nanometer, so it does not affect its sensitivity, so it is an economical and simple method. Since the nano-dispersed clay has a high surface to volume ratio, which limits the thermal expansion and contraction of the polymer, the thermal expansion coefficient of the polymer material can be effectively reduced. The low-stress photosensitive polyimide/clay nano composite material developed by the technology of nano-dispersed clay in polymer materials has a CTE reduced by 1300162 23% when the clay is added at 5%, and There is no problem with the lithography process. A positive-type photosensitive polyimide/clay nano composite composition disclosed by the present invention, comprising: a) testing raw water, valley liquid soluble polyamic acid; b) - a photosensitive dissolution inhibitor for inhibiting the alkaline water/liquid solution/complexity of polylysine, and the photosensitive dissolution inhibitor is decomposed after illumination, and is soluble in an aqueous test solution; c) An organic clay; and d) a solvent, wherein the photosensitive dissolution inhibitor b) is 5 6 G/ of the polyglycolic acid hook. And the modified organic clay is 1-30% by weight of the polyamic acid & Preferably, the polyamic acid a) has the following structure:

其中η的範圍為ΐ〇_6〇〇 ; 為_hWhere η is in the range ΐ〇_6〇〇; is _h

;X〇為-Η或-OH基; 讀埃鮮 四價芳香族基團, 所組成: !300162; X〇 is -Η or -OH group; Read ei fresh four-valent aromatic group, composed of: !300162

—0—,_s—,一 C(CF3)2— —C(CH2)2—,一CH2—,一 S〇2—,叫sJHC〇——0—, _s—, a C(CF3)2—C(CH2)2—, a CH2—, a S〇2—called sJHC〇—

Z 一 J一,一或 a 1Z a J, one or a 1

Z Z 其中z為H或C1_C4烷基,m= l_2〇 ;Z Z wherein z is H or C1_C4 alkyl, m = l_2〇;

Ah為選自下列族群的一種或多種四價芳香族基團,或 者為一脂肪族基團、一雜環基團或其與該四價芳香族基團 之混成,該族群係由具下列結構的四價芳香族基團所組成··Ah is one or more tetravalent aromatic groups selected from the group consisting of an aliphatic group, a heterocyclic group or a mixture thereof with the tetravalent aromatic group, the group having the following structure Composition of tetravalent aromatic groups··

彳3彳3

9 1300162 較佳的,該感光性溶解抑制劑b)為一具有下列結構式 之重氮(diazoquinone)化合物:9 1300162 Preferably, the photosensitive dissolution inhibitor b) is a diazoquinone compound having the following structural formula:

其中D可為氳原子(H)或下列任一化合物:Wherein D can be a halogen atom (H) or any of the following compounds:

較佳的,該感光性溶解抑制劑b)為該聚醯胺酸a)的重 量的 20%·40%。 較佳的,該改質黏土 c)係將一具有陽離子交換能力 (CEC)介於50至300 meq/100g的層狀結構礦物與一含有胺 基的化合物進行陽離子交換而製備。更佳的,該層狀結構 礦物為具有陽離子交換能力介於80至120 meq/100g的黏 土。該黏土 可為蒙脫納土( montmorillonite )、saponite、貝 德石(beidellite)、或雲母(mica);及該含有胺基的化合物可 為具有一或二個胺基酸或胺基的C6-C18烷,其中以該黏土 1300162 為Na+_蒙脫納土及該含有胺基的化合物為十二胺 (dodecylamine)為最佳。 較佳的’該溶劑d)為N-甲基-2·σ比洛烧嗣 (N-methyl-2-pyrrolidone; ΝΜΡ),Ν,Ν-二甲基乙醯胺 (N,N-dimethylacetamide; DMAc),二甲基甲醢胺 (dimethylformamide; DMF),γ-經基丁酸内酉旨 (Y_butyrolactone; GBL),或是其等的混合溶劑。 本發明亦提供一種正型光敏感性聚醯亞胺/黏土奈米 複合材料組合物的製備方法,包含於該溶劑句中混合該聚 醯胺酸a)、該感光性溶解抑制劑b)及該改質有機黏土 c)。 本發明亦提供一種正型光敏感性聚醯亞胺/黏土奈米 複合材料組合物的製備方法,包含將該改質有機黏土 〇)分 散於該溶劑d)中;將一或多種二胺化合物與一或多種二叛 酸酐於該分散液中反應形成該聚醯胺酸a);及將該感光性 溶解抑制劑b)與含有該改質有機黏土 c)及聚醯胺酸a)的反 應混合物混合。 實施方式 本發明正型鹼性水溶液顯影之感光型聚醯亞胺/黏土 奈米複合材料組成物包含感光型聚醯亞胺前驅體及有機黏 土之改質。感光型聚醯亞胺前驅體的組成為添加感光性溶 解抑制劑的聚醯胺酸(polyamic acid)。黏土為一親水性;5夕酸 鹽層狀結構,而大部分的高分子為疏水性,且黏土與高分 門缺乏g此基進行鍵結,因此要達到兩相均勻性的相 11 1300162 容是有困難的,所以需對黏土進行改質,使其成為有機黏 土,以增加其與有機分子之間的親合力,一般常用的黏土 如蒙脫納土(montmorillonite)、雲母石(mica)等,其陽 離子交換能力(CEC)為50-300 meq/100g,如果其CEC大 於300 meq/100g則其層與層之間的離子鍵結太強,不利於 分散,反之若CEC小於50 meq/100g則其層間所吸附的改 質劑不足,與高分子間親合力不佳,亦不好分散,一般黏 土可利用陽離子交換法進行改質,其夾入劑為含胺基之有 機化合物,如胺基酸、脂肪族一級胺(primary aliphatie amines)、四級銨鹽(quaternary ammonium salt)等 〇 改質完後的有機黏土可利用X-ray繞射分析儀掃描, 判斷分析其黏土層與層之間的距離是否有增加。 一般高分子/黏土奈米複合材料的製造方法是將夾入 劑插入黏土層間,使層間距離加大,再將有機單體插入並 進行聚合反應或將已聚合好的高分子插入,使黏土達到奈 米級分散,形成插層型奈米複合材料(interclated nano composites)或脫層型奈米複合材料(exfoliated nanocomposites) ° 本發明將所改質完成的有機黏土,先於溶劑中分散均 勻,其有機黏土的含量為整體固含量的1%-7%,溶劑可為 N-曱基-2-σ比口各烧顚I (N-methyl-2-pyrrolidone,以下簡稱 ΝΜΡ),Ν,Ν-二甲基乙醢胺(N,N-dimethylacetamide,以下簡 稱DMAc),二甲基曱酿胺(dimethylformamide,以下簡稱 DMF),γ_經基丁 酸内醋(γ-butyrolactone,以下簡稱 GBL), 12 l3〇〇l62 或是其等的混合溶劑。再利用即時(in_situ)聚合的方式, 在已分散均勻的有機黏土分散液中進行感光型pi前驅物 (聚醯胺酸)的聚合反應,或是將已聚合完成的感光型聚醯 胺酸加入已分散均勻的有機黏土分散液中混合均勻,藉由 以上方法可得到感光型聚醯亞胺/黏土奈米複合材料組成 物。 感光型聚醯亞胺/黏土奈米複合材料組成物微影製程 如下· a·將感光型聚醯亞胺/黏土奈米複合材料組成物利用 灰轉塗布或其他方式塗布於適當的基材上;b•預烤;c•曝 光,d·顯影;及e·硬烤後所得的圖案為聚醯亞胺/黏土之奈 米複合材料。於上述之步驟(a)中,將此正型感光型聚醯亞 胺/黏土奈米複合材料組成物塗佈於一適當基材上,而上述 基材例如為一矽基材。而上述塗佈的方法如旋轉塗佈法 (spin coating)、滾輪塗佈法(r〇iier coating)、網版塗佈法 (screen coating)、淋幕塗佈法(curtain coating)、浸鍵法 C〇ating)及喷灑塗佈法(spray coating),但並不侷限於上述 塗佈方法。於實施例中,經塗佈所形成之薄膜先於7〇〜12〇 °C下預烤(prebake)數分鐘以蒸除其中之溶劑。接著將上述 經塗佈之基材於一光罩下經由光化射線曝光,上述之光化 射線例如為X光射線、電子束射線、紫外光射線、可見光 射線或其他可作為光化射線之光源等。 曝光後上述經塗佈之基材隨後藉由一鹼性水性顯影劑 顯影,隨後便可得到一光阻圖形。上述之鹼性水性顯影劑 包3 —驗性溶液,例如為無機驗(氫氧化鉀、氳氧化納)、 13 1300162 一級胺(乙胺)、二級胺(二乙胺)、三級胺(三乙胺)、四級銨 鹽(四甲基氫氧化錄;tetramethylammonium hydroxide),其 中較佳為含有四甲基氫氧化銨成份之顯影劑。顯影可藉由 浸泡、喷灑或覆液或使用其他方法之顯影裝置完成。 上述經顯影後之光阻圖形隨後經由去離子水清洗後, 再250〜400°C下執行之硬烤程序(curing)將其中之聚醯胺酸 轉化為耐熱性之聚醯亞胺。 實施例 原料Preferably, the photosensitive dissolution inhibitor b) is 20% to 40% by weight of the polyamic acid a). Preferably, the modified clay c) is prepared by cation exchange of a layered structural mineral having a cation exchange capacity (CEC) of 50 to 300 meq/100 g with an amine group-containing compound. More preferably, the layered structure mineral is a clay having a cation exchange capacity of from 80 to 120 meq/100 g. The clay may be montmorillonite, saponite, beidellite, or mica; and the amine group-containing compound may be C6- having one or two amino acids or amine groups. The C18 alkane, wherein the clay 1300162 is Na+_montena and the amine group-containing compound is dodecylamine is preferred. Preferably, the solvent d is N-methyl-2-pyrrolidone; N,N-dimethylacetamide; DMAc), dimethylformamide (DMF), γ-butyrolactone (GBL), or a mixed solvent thereof. The present invention also provides a method for preparing a positive-type light-sensitive polyimide/clay nano composite composition, comprising mixing the polyamic acid a), the photosensitive dissolution inhibitor b) in the solvent sentence, and The modified organic clay c). The invention also provides a method for preparing a positive-type light-sensitive polyimine/clay nano composite composition, comprising dispersing the modified organic clay in the solvent d); and one or more diamine compounds Reacting with the one or more di- oxalic anhydrides in the dispersion to form the poly-proline acid a); and reacting the photosensitive dissolution inhibitor b) with the modified organic clay c) and polyglycine a) The mixture is mixed. Embodiments The photosensitive polyimine/clay nanocomposite composition developed by the positive alkaline aqueous solution of the present invention comprises a photosensitive polyimide precursor and an organic clay modified. The composition of the photosensitive polyimine precursor is a polyamic acid to which a photosensitive dissolution inhibitor is added. The clay is a hydrophilic; the bismuth salt layer structure, and most of the polymer is hydrophobic, and the clay is bonded to the high-segment gate lacking g, so the phase of the two-phase uniformity is reached 11 1300162 It is difficult, so it is necessary to modify the clay to make it an organic clay to increase its affinity with organic molecules. Commonly used clays such as montmorillonite, mica, etc. The cation exchange capacity (CEC) is 50-300 meq/100g. If the CEC is greater than 300 meq/100g, the ionic bond between the layers is too strong, which is not conducive to dispersion. If CEC is less than 50 meq/100g The modifiers adsorbed between the layers are insufficient, and the affinity between the polymer and the polymer is not good, and the dispersion is not good. Generally, the clay can be modified by a cation exchange method, and the binder is an amine-containing organic compound such as an amine. The 〇-modified organic clay such as primary acid, primary aliphatie amines, and quaternary ammonium salt can be scanned by X-ray diffraction analyzer to judge the clay layer and layer. Is the distance between increase. In general, a polymer/clay nanocomposite is produced by inserting a sandwiching agent into a clay layer to increase the interlayer distance, and then inserting and polymerizing the organic monomer or inserting the polymerized polymer to make the clay reach The nano-scale dispersion forms interclated nano composites or exfoliated nanocomposites. The organic clay modified by the present invention is uniformly dispersed in a solvent. The content of organic clay is 1%-7% of the total solid content, and the solvent can be N-methyl-2-pyrrolidone (hereinafter referred to as ΝΜΡ), Ν, Ν- N, N-dimethylacetamide (DMAc), dimethylformamide (DMF), γ-butyrolactone (GBL), 12 l3〇〇l62 or its mixed solvent. The polymerization of the photosensitive pi precursor (polyproline) is carried out in a dispersed organic clay dispersion by means of in-situ polymerization, or the polymerized polylysine which has been polymerized is added. The uniformly dispersed organic clay dispersion is uniformly mixed, and the photosensitive polyimide/clay nano composite composition can be obtained by the above method. The lithographic process of the photosensitive polyimide/clay nano composite composition is as follows: a. The photosensitive polyimide/clay nano composite composition is coated on a suitable substrate by ash coating or other means. ; b • pre-bake; c • exposure, d · development; and e · hard baked after the pattern is a polyimide / clay nano composite. In the above step (a), the positive-type photosensitive polyimide/clay nano composite composition is applied onto a suitable substrate, for example, a substrate. The above coating method is, for example, spin coating, roller coating, screen coating, curtain coating, dip bonding C〇ating) and spray coating, but are not limited to the above coating method. In the examples, the film formed by coating is prebaked at 7 Torr to 12 ° C for several minutes to evaporate the solvent therein. Then, the coated substrate is exposed to actinic radiation under a mask, such as X-ray, electron beam, ultraviolet, visible, or other sources that can be used as actinic rays. Wait. After the exposure, the coated substrate is subsequently developed by an alkaline aqueous developer, and then a photoresist pattern is obtained. The alkaline aqueous developer package 3 described above is, for example, an inorganic test (potassium hydroxide, sodium hydride), 13 1300162 primary amine (ethylamine), secondary amine (diethylamine), tertiary amine ( Triethylamine), tetramethylammonium hydroxide, preferably a developer containing a tetramethylammonium hydroxide component. Development can be accomplished by soaking, spraying or laminating or using other means of developing means. The developed photoresist pattern is then washed with deionized water and then subjected to a hard baking process at 250 to 400 ° C to convert the polylysine therein into a heat-resistant polyimide. Example

Na+-montmorilloniten (蒙脫納石):CEC=95 meq/100g, 百康陶瓷原料公司,代號PK802,化學組成分析(wt%): Ο: 49.06%,Si: 29.94%,Al: 12%,Na: 3.61%,Κ: 0.02%,Mg: 3.65%,Ca: 1.39%,Fe: 0.07%,Zr: 0.01%,Cr: 0.01%,Μη: 0.01%。夾入劑十二胺(dodecylamine,以下簡稱DOA): 98%,ACROS Organics Co· 苯四甲酸二酸 6f (Pyromellitic dianhydride,以下簡稱 PMDA),氧二苯二甲酸二酸 Sf (Oxydiphthalic anhydride,以 下簡稱ODPA),均購自Chriskev Co·,經150°C下真空乾燥 24小時後使用。4,4’·氧二苯胺(4,4’-Oxydianiline,以下簡 稱ODA)購自Chriskev Co.,及無水NMP均購自Aldrich公 司,且不經純化直接使用。感光性溶解抑制劑2,3,4-三(1-氧-2-重 Su 蔡酿i -5-續基氧)-二笨甲酮 (2,3,4-tris(l - oxo-2-diazonaphthoquinone-5-sulfonyloxy)- 1300162 其他藥 benzophenone)購自 Koyo Chemicals,代號 PIC-3 品購自Aeros Co.不經純化直接使用。Na+-montmorilloniten (Monteigne stone): CEC=95 meq/100g, Baikang Ceramic Materials Co., Ltd., code PK802, chemical composition analysis (wt%): Ο: 49.06%, Si: 29.94%, Al: 12%, Na : 3.61%, Κ: 0.02%, Mg: 3.65%, Ca: 1.39%, Fe: 0.07%, Zr: 0.01%, Cr: 0.01%, Μη: 0.01%. Dodecylamine (DOA): 98%, ACROS Organics Co·Pyromellitic dianhydride (PMDA), Oxydiphthalic anhydride (Sf) ODPA), all purchased from Chriskev Co., was dried under vacuum at 150 ° C for 24 hours. 4,4'-Oxydiphenylamine (hereinafter, ODA) was purchased from Chriskev Co., and anhydrous NMP was purchased from Aldrich Co., and was used without purification. Photosensitive dissolution inhibitor 2,3,4-tris(1-oxo-2-heavy-Ci-I-5-contigyloxy)-dimercapto-ketone (2,3,4-tris(l-oxo-2) -diazonaphthoquinone-5-sulfonyloxy)- 1300162 Other drug benzophenone) was purchased from Koyo Chemicals under the designation PIC-3 from Aeros Co. and used directly without purification.

(PMDA)(PMDA)

黏土改質(改質的步驟如圖卜流程所示) 1 lg 之黏土 PK802 (CEC = 95 meq/l〇〇g)加至適量的去 離子水中攪拌加以分散,此為溶液⑴。 b.將兩倍莫耳數比於黏土之DOA加至適量去離子水中,並 加入鹽酸使其離子化’此為溶液(2)。 15 1300162 c. 將溶液(1)倒入溶液(2)中,以矽油浴間隔加熱至8(rc且劇 烈授拌3小時’使黏土與㈣劑進行離子交換,其反應 式如下·· rnh2 + hci —► rnh3+ crClay modification (the procedure for upgrading is shown in the figure). 1 lg of clay PK802 (CEC = 95 meq/l〇〇g) is added to an appropriate amount of deionized water and stirred to disperse. This is solution (1). b. Add DOA with twice the molar ratio to the clay to an appropriate amount of deionized water, and add hydrochloric acid to ionize 'this is the solution (2). 15 1300162 c. Pour the solution (1) into the solution (2), heat it to 8 (rc and vigorously mix for 3 hours) in an oil bath to ion exchange the clay with the (four) agent. The reaction formula is as follows: rnh2 + Hci —► rnh3+ cr

Na MONT + RNH3+ CT —► RNH3+MONT + NaCl d. 反應後,將上述溶液以去離子水重複過濾清洗,以清除 氯離子,直至以AgNCh溶液滴定該溶液後無白色沉澱物 為止。 e·將上it產物於80C真空烘乾後再以325meshi篩網研磨過 篩後即為有機黏土。 將原始黏土與有機黏土 D0A_clay粉末以粉晶x_ray 繞射分析儀對試片在20=2〜15。間進行XRD分析,xrd 圖譜示於圖2。可由XRD圖譜得到值,再代入2d sin 0 - η λ之公式,可得到d值。即為黏土之矽酸鹽層間距離。 而從XRD分析,原始黏土在20=6·95。有一較寬廣之x_ray 結晶繞射峰出現,此乃蒙脫納土之(〇〇1)結晶面所貢獻的, 其所對應之層間距離為12.7人。有機黏土 D〇A_ciay在 =4.95°有一很強的結晶繞射峰,其所對應之層間距離為 18·〇Α〇 由上述結果可知利用濃鹽酸將夾入劑離子化後與帶有 Na離子之蒙脫納土進行離子交換後,夾入劑確實有進入矽 酸鹽層(silicate layers)間取代矽酸鹽層表面之Na+,而將原 本未改質黏土中不均等的層間距離結構予以撐開,且使其 1300162 層間距離變成較為均勻的矽酸鹽層結構。 合成聚醯亞胺前驅體 將 9.80 g (0.49 mole ) ODA 及 94 ml NMP 放入乾燥的 三頸瓶中,在室溫及氮氣下攪拌至完全溶解。再將872 gNa MONT + RNH3 + CT — ► RNH3 + MONT + NaCl d. After the reaction, the solution was repeatedly filtered and washed with deionized water to remove chloride ions until the solution was titrated with the AgNCh solution without white precipitate. e· The organic product is dried after vacuum drying at 80 C and then pulverized with a 325 meshi sieve. The original clay and the organic clay D0A_clay powder were powdered x_ray diffraction analyzer on the test piece at 20=2~15. XRD analysis was performed, and the xrd map is shown in Fig. 2. The value can be obtained from the XRD pattern and then substituted into the formula of 2d sin 0 - η λ to obtain the d value. It is the distance between the layers of clay. From the XRD analysis, the original clay was at 20=6·95. There is a broad x_ray crystal diffraction peak, which is contributed by the crystal plane of the 脱(Na) soil, and the corresponding interlayer distance is 12.7. The organic clay D〇A_ciay has a strong crystalline diffraction peak at =4.95°, and the corresponding interlayer distance is 18·〇Α〇. From the above results, it is known that the ionized agent is ionized with concentrated hydrochloric acid and with Na ions. After the ion exchange of montmorillonite, the intercalation agent does have Na+ which replaces the surface of the citrate layer between the silicate layers, and the unequal interlayer distance structure of the unmodified clay is opened. And the distance between the layers of 1300162 becomes a relatively uniform tantalate layer structure. Synthetic Polyimine Precursor 9.80 g (0.49 mole) of ODA and 94 ml of NMP were placed in a dry three-necked flask and stirred at room temperature under nitrogen until completely dissolved. 872 g again

(0·40 mole ) PMDA、3.10 g (0.10 mole ) ODPA 與 20 ml NMP 加入,在氮氣、常溫下攪拌6 hr,即得到黏稠的聚醯胺酸 溶液,其固有黏度(Inherent viscosity) (0·5 g/dL)為 1 (dL/g)。 配製正型水溶液顯影感光型聚醯亞胺/黏土奈米複合材料 組成物 將前述所合成的聚醯胺酸溶液(固成份:16重量%) 12·5 g ’ NMP 4.2g,前述所製備的改質有機黏土(D〇A-Clay) 0.06 g (聚醯胺酸重量的3%),及PIC-3感光性溶解抑制劑 0.80 g (聚醯胺酸重量的40%),經強力攪拌均勻後,以5 μηι PTFE過濾膜過濾後,進行微影成像實驗。 微影成像實驗 將上述調配好的感光型聚醯亞胺/黏土奈米複合材料 組成物在黃光室内利用旋轉塗佈器塗佈在石夕晶片上,經烘 箱120°C,5 min軟烤後,利用未濾光水銀燈(unnitered mercury arc lamp)曝光(波長範圍:250-400nm)曝光量為300 mj/cm2,再用0.3% TMAH驗水溶液顯影,最後用去離子水 清洗,在350°C下硬烤1小時,以得到聚醯亞胺圖案。圖3 17 1300162 為其光學顯微鏡放大圖。 上述調配好的感光型聚醯亞胺/黏土奈米複合材料組 成物曝光前後UV_可見光光譜分析被示於圖4。由圖4可看 出本發明組成物經曝光後,35〇〜45〇Ilm之間的吸收峰消 失,可見此感光性溶解抑制劑有漂白作用,以確保底層光 阻也可曝光。從其TEM圖(圖5)可清楚的看到黏土在感光 性聚醯亞胺中呈脫層分散。 圖6及7分別為未添加及有添加改質有機黏土的感光 型聚醯亞胺前驅物的特性曲線,由於改質有機黏土在聚醯 胺酸溶液中呈奈米分散,因此並未對微影過程造成阻礙, 所以兩者的特性曲線相似。未添加改質有機黏土的感光型 聚醢亞胺前驅物其光敏感度為292 mJ/cm2,而對比值為 1.83 (圖6)。添加3%黏土的PI感光配方其光敏感度為3〇1 mJ/cm2而對比值為1.66 (圖7)。 熱膨脹係數(CTE )測試結果如下表所示,在改質有 機黏土添加量為3%時,其CTE已有大幅的下降。 改質有機/聚醯胺酸(重量比) 0/100 3/100 5/100 7/100 PIC-3的%,以聚醯胺酸的重量為基準 58.61 46.34 45.10 42.64 CTE改變% 0% I 21% I 23% \ 27% 因此本發明的感光型聚醯亞胺/黏土奈米複合材料組 成物,可有效地降低PI薄膜的熱應力。 18 1300162 圖式簡單說明 圖1為適用於本發明的改質有機黏土的改質流程的方 塊圖。 圖2為原始黏土與改質有機黏土 D〇A-Clay粉末的 x-ray繞射圖譜,其中曲線(a)為原始黏土,及曲線為改 質有機黏土。 圖3為使用本發明的感光型聚醯亞胺/黏土奈米複合材 料紐成物進行微影成像實驗所得到的聚醯亞胺圖案的光學 顯微鏡放大圖。 圖4為本發明感光型聚醢亞胺/黏土奈米複合材料組成 物曝光前後的UV-可見光光譜圖,其中曲線A為曝光前, 及曲線B為曝光後。 圖5為使用本發明的感光型聚醯亞胺/黏土奈米複合材 料的穿透式電子顯微鏡放大圖(transmission electron microscopy, TEM)〇 圖6為未添加改質有機黏土的感光型聚醯亞胺前驅物 的特性曲線。 圖7為有添加改質有機黏土的感光型聚醯亞胺前驅物 的特性曲線。(0·40 mole ) PMDA, 3.10 g (0.10 mole ) ODPA and 20 ml of NMP were added, and stirred under nitrogen and normal temperature for 6 hr to obtain a viscous poly-proline solution with an inherent viscosity (Inherent viscosity) (0· 5 g/dL) is 1 (dL/g). Preparation of positive aqueous solution developing photosensitive polyimide/clay nano composite composition The above-prepared polylysine solution (solid content: 16% by weight) 12·5 g 'NMP 4.2 g, prepared as described above Modified organic clay (D〇A-Clay) 0.06 g (3% by weight of polyamidamide), and PIC-3 photosensitive dissolution inhibitor 0.80 g (40% by weight of polyamide), evenly stirred evenly After that, it was filtered through a 5 μηι PTFE filter membrane, and subjected to a lithography imaging experiment. The lithography imaging experiment was carried out by coating the above-mentioned prepared photosensitive polyimide/clay nano composite composition in a yellow light chamber on a Shi Xi wafer by a spin coater, and baking it in an oven at 120 ° C for 5 min. Thereafter, exposure with an unnitered mercury arc lamp (wavelength range: 250-400 nm) was 300 mj/cm2, developed with a 0.3% TMAH aqueous solution, and finally washed with deionized water at 350 °C. Bake hard for 1 hour to obtain a polyimine pattern. Figure 3 17 1300162 is an enlarged view of its optical microscope. The UV-visible spectrum analysis of the above-mentioned prepared photosensitive polyimide/clay nanocomposite composition before and after exposure is shown in Fig. 4. It can be seen from Fig. 4 that after absorption of the composition of the present invention, the absorption peak between 35 〇 and 45 〇 Ilm disappears, and it is seen that the photosensitive dissolution inhibitor has a bleaching action to ensure that the underlying photoresist is also exposed. It can be clearly seen from the TEM image (Fig. 5) that the clay is delaminated and dispersed in the photosensitive polyimide. Figures 6 and 7 are the characteristic curves of the photosensitive polyimide precursors without added and added modified organic clay. Since the modified organic clay is dispersed in the polyamic acid solution, it is not micro The shadow process is hindered, so the characteristic curves of the two are similar. The photosensitive polyimine precursor without modified organic clay had a light sensitivity of 292 mJ/cm2 and a contrast of 1.83 (Fig. 6). The PI-sensitized formula with 3% clay added had a light sensitivity of 3〇1 mJ/cm2 and a contrast value of 1.66 (Fig. 7). The results of the coefficient of thermal expansion (CTE) test are shown in the table below. When the amount of modified organic clay added is 3%, the CTE has been greatly reduced. Modified organic/polyglycine (weight ratio) 0/100 3/100 5/100 7/100 % of PIC-3 based on the weight of poly-proline. 58.61 46.34 45.10 42.64 CTE change % 0% I 21 % I 23% \ 27% Therefore, the photosensitive polyimide/clay nano composite composition of the present invention can effectively reduce the thermal stress of the PI film. 18 1300162 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a block diagram of a upgrading process for a modified organic clay suitable for use in the present invention. Figure 2 is an x-ray diffraction pattern of the original clay and the modified organic clay D〇A-Clay powder, wherein the curve (a) is the original clay and the curve is the modified organic clay. Fig. 3 is an optical microscopic enlarged view of a polyimine pattern obtained by performing a lithographic imaging experiment using the photosensitive polyimide/clay nanocomposite composite of the present invention. Fig. 4 is a UV-visible spectrum diagram of a photosensitive polyimide/clay nano composite composition of the present invention before and after exposure, wherein curve A is before exposure and curve B is after exposure. Figure 5 is a transmission electron microscopy (TEM) using the photosensitive polyimide/clay nano composite of the present invention. Figure 6 is a photosensitive polyazide without modified organic clay. Characteristic curve of the amine precursor. Fig. 7 is a characteristic curve of a photosensitive polyimide precursor having an added modified organic clay.

Claims (1)

1300162 % 卜 r. * 二 拾、申請專利範圍: •一種正型光敏感性聚醯亞胺/黏土奈米複合材料組 成物,包括: ) 南双丨生水〉谷液可溶的聚醯胺酸(p〇lyamic acid); b) 一感光性溶解抑制劑,用以抑制聚醯胺酸的鹼性水 、 解度’並且該感光性溶解抑制劑於照光後分解,而 可溶於一鹼性水溶液; c)改質有機黏土;及 b)為該聚醯胺酸a) 聚酸胺酸a)的重量 d) /谷劑,其中該感光性溶解抑制劑 的重里的5-60% ;及該改質有機黏土為該 的 1 - 3 0 %, 其中该聚醯胺酸a)具有下列結構:1300162 % 卜r. * Two picks, patent application scope: • A positive type of light-sensitive polyimide/clay nanocomposite composition, including:) Southern sorghum raw water> gluten-soluble polyamine (p〇lyamic acid); b) a photosensitive dissolution inhibitor for inhibiting the alkaline water solubility of poly-proline, and the photosensitive dissolution inhibitor decomposes after illumination, but is soluble in a base An aqueous solution; c) a modified organic clay; and b) a weight d) of the polyamic acid a) a polyamic acid a) / a granule, wherein the photosensitive dissolution inhibitor is 5-60%; And the modified organic clay is 1 - 30%, wherein the polyamic acid a) has the following structure: 其中11的靶圍為1〇-6〇〇 ; X0為汨或_〇只義· ΑΓι為選自下列族群的一種或多種四價芳土」 係由具下列結構的四價芳香族基團所::成香族基 20 1300162 (2008年3月修正)Wherein the target range of 11 is 1〇-6〇〇; X0 is 汨 or 〇 〇 · · ΑΓι is one or more kinds of tetravalent aromatic earth selected from the following groups" is a tetravalent aromatic group having the following structure :: Cheng Xiangji 20 1300162 (amended in March 2008) —〇—,一 S— ? — C(CF3)2— C(CH2)2—,一CH2—,一S02—,一NHCO- O O U- z z 或 and —(CH2)srSi—O—Si-(CH2)rtr· I I z z 其中Z為H或C1-C4烷基,1-20 ; Ar2為選自下列族群的一種或多種四價芳香族基團,或 者為一脂肪族基團、一雜環基團或其與該四價芳香族基團 之混成,該族群係由具下列結構的四價芳香族基圑所組成: 〇—〇—,一S—?—C(CF3)2—C(CH2)2—, a CH2—, a S02—, an NHCO- OO U- zz or and —(CH2)srSi—O—Si—( CH2)rtr·II zz wherein Z is H or C1-C4 alkyl, 1-20; Ar2 is one or more tetravalent aromatic groups selected from the group consisting of an aliphatic group or a heterocyclic group. a group or a mixture thereof with the tetravalent aromatic group, the group consisting of a tetravalent aromatic group having the following structure: 〇 21 |300162 (2008年3月修正) 該感光性溶解抑制劑b)為一具有下列結構式之重氮 (diazoquinone)化合物··21 |300162 (Amended in March 2008) The photosensitive dissolution inhibitor b) is a diazoquinone compound having the following structural formula·· 其中D可為氫原子(H)或下列任一化合物:Wherein D can be a hydrogen atom (H) or any of the following compounds: :及:and 違改質黏土 c)係將一具有陽離子交換能力(CEC)介於 至300 meq/1 0〇g的層狀結構礦物與一含有胺基的化合物 進行陽離子交換而製備。 2·如申請專利範圍第1項所述之組成物,其中該感光 谷解抑制劑b)為該聚醯胺酸a)的重量的20% -40%。 3·如申睛專利範圍第1項所述之組成物,其中該層狀 …〜為具有陽離子交換能力介於80至120 meq/100g 22 (2008年3月修正) ;1300162 的黏土。 4.如申請專利範圍第1項所述之組成物,其中該黏土 為蒙脫納土( m〇ntmorillonite )、saponite、貝德石 (beidellite)、或雲母(mica);及該含有胺基的化合物為具有 一或二個胺基酸或胺基的C6-C18烷。 5·如申請專利範圍第4項所述之組成物,其中該黏土 為N a -冡脫納土及該含有胺基的化合物為十二胺 鲁 (dodecylamine) 〇 6·如申請專利範圍第1項所述之組成物,其中該溶劑 d)為 N-甲基-2-吡咯烷酮(N-methyl-2-pyrrolidone; NMP), N,N-二甲基乙醯胺(N,N-dimethylacetamide; DMAc),二曱 基甲酿胺(dimethylformamide; DMF),γ'經基丁酸内酯 (γ-bixtyrolactone; GBL),或是其等的混合溶劑。 魯 7·一種如申請專利範圍第丨項所述之正型光敏感性聚 醯亞/黏土奈米複合材料組合物的製備方法,包含於該溶 J d)中此合該該聚醯胺酸a)、該感光性溶解抑制劑及該 改質有機黏土 。 技8.—種如申請專利範圍第1項所述之正型光敏感性聚 西-亞私/黏土奈米複合材料組合物的製備方法,包含將該改 23 • 1300162 (2008年3月修正) 質有機黏土 c)分散於該溶劑d)中;將一或多種二胺化合物 與一或多種二羧酸酐於該分散液中反應形成該聚醯胺酸 a);及將該感光性溶解抑制劑b)與含有該改質有機黏土 c) 及聚醯胺酸a)的反應混合物混合。The modified clay c) is prepared by cation exchange of a layered structural mineral having a cation exchange capacity (CEC) of up to 300 meq/100 g with an amine group-containing compound. 2. The composition of claim 1, wherein the photo-sensitization inhibitor b) is from 20% to 40% by weight of the polyamido acid a). 3. The composition according to claim 1, wherein the layer is a clay having a cation exchange capacity of 80 to 120 meq/100 g 22 (as amended in March 2008); 1300162. 4. The composition of claim 1, wherein the clay is m〇ntmorillonite, saponite, beidellite, or mica; and the amine-containing The compound is a C6-C18 alkane having one or two amino acids or amine groups. 5. The composition of claim 4, wherein the clay is Na-quinone and the amine-containing compound is dodecylamine 〇6. The composition of the above, wherein the solvent d) is N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide; DMAc), dimethylformamide (DMF), gamma primetine (γ-bixtyrolactone; GBL), or a mixed solvent thereof. The method for preparing a positive-type photosensitive polyimide/clay nano composite composition according to the above-mentioned claim, comprising the poly-proline in the solution J d) a) the photosensitive dissolution inhibitor and the modified organic clay. Technique 8. A method for preparing a positive-type light-sensitive poly-West-Asian private/clay nano composite composition as described in claim 1 of the patent application, including the modification 23 • 1300162 (revised March 2008) The organic clay c) is dispersed in the solvent d); reacting one or more diamine compounds with one or more dicarboxylic anhydrides in the dispersion to form the polyamic acid a); and inhibiting the photosensitive dissolution The agent b) is mixed with a reaction mixture containing the modified organic clay c) and polyamic acid a). 24twenty four
TW92126751A 2003-09-26 2003-09-26 Positive-working alkaline developable photosensitive polyimide/clay nanocomposite compositions and preparation thereof TWI300162B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW92126751A TWI300162B (en) 2003-09-26 2003-09-26 Positive-working alkaline developable photosensitive polyimide/clay nanocomposite compositions and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW92126751A TWI300162B (en) 2003-09-26 2003-09-26 Positive-working alkaline developable photosensitive polyimide/clay nanocomposite compositions and preparation thereof

Publications (2)

Publication Number Publication Date
TW200512533A TW200512533A (en) 2005-04-01
TWI300162B true TWI300162B (en) 2008-08-21

Family

ID=45069895

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92126751A TWI300162B (en) 2003-09-26 2003-09-26 Positive-working alkaline developable photosensitive polyimide/clay nanocomposite compositions and preparation thereof

Country Status (1)

Country Link
TW (1) TWI300162B (en)

Also Published As

Publication number Publication date
TW200512533A (en) 2005-04-01

Similar Documents

Publication Publication Date Title
JP6879328B2 (en) Polyimide precursor, photosensitive resin composition containing the polyimide precursor, method for producing a pattern cured film using the polyimide precursor, and a semiconductor device.
TWI716709B (en) Photosensitive resin composition and method for producing hardened relief pattern
WO2014097594A1 (en) Polyimide precursor resin composition
JP3958011B2 (en) Positive photosensitive resin composition, method for producing positive photosensitive resin composition, and semiconductor device
JP2007017959A (en) Positive photosensitive resin composition
KR100913058B1 (en) Composition for positive photosensitive resin, method of forming pattern and semiconductor device
JP6414060B2 (en) Resin composition, pattern forming method using the same, and electronic component
JP7294503B2 (en) Photosensitive resin composition, method for producing cured pattern, cured product, interlayer insulating film, cover coat layer, surface protective film, and electronic component
TWI300162B (en) Positive-working alkaline developable photosensitive polyimide/clay nanocomposite compositions and preparation thereof
JPS62273259A (en) Photosensitive composition
WO2014097595A1 (en) Photosensitive resin composition, and cured-pattern-film manufacturing method and semiconductor device using said photosensitive resin composition
WO2010004849A1 (en) Positive photosensitive resin composition, cured film, protective film, insulation film, and semiconductor device and display device using same
TW202039638A (en) Negative photosensitive resin composition, manufacturing method of polyimide and manufacturing method of cured protruded pattern wherein the negative photosensitive resin composition includes a polyimide precursor, a photopolymerization initiator, a silane coupling agent and an organic solvent
JPH1184645A (en) Photosensitive resin composition
JP4250835B2 (en) Positive photosensitive resin composition and semiconductor device
KR101385183B1 (en) Composition of positive type photosensitive polyimide varnish, positive type polyimide and film containing that
KR100244981B1 (en) Photosensitive polyimide precursor and its composition
JP4165473B2 (en) Negative photosensitive polyimide precursor composition
JP2002341527A (en) Positive type photosensitive resin composition
JP2001092138A (en) Positive type photosensitive resin composition
TWI806161B (en) Manufacturing method of polyimide hardened film
KR101015856B1 (en) Positive photosensitive resin composition
JP4206718B2 (en) Method for producing photosensitive polyamide resin composition
JPH10186658A (en) Positive photosensitive resin composition and manufacture of large scale integrated circuit by using same
JP6390109B2 (en) Resin composition containing polyimide precursor, cured film and method for producing the same

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent