1299417 九、發明說明: 【發明所屬之技術領域】 、 本發明係關於液晶顯示裝置,尤指關於在各書素設置, 反射區域與透過區域兩者的半透過型液晶顯示裝置。 , 【先前技術】 液晶顯示裝置(以下,稱為LCD)具備薄型且低消耗電 力之特徵,目前,被廣泛應用在電腦的監視器、行動電話 等攜帶資訊機器的監視器。LCD中有透過型LCD和反射$型 LCD。透過型LCD係使用透明電極作為供施加電壓於液晶的_ 畫素電極,並在LCD面板的後方配置背光光源,藉LCD面 板控制該背光的透光量,以此構成,即使四周環境變暗, 亦可進行明亮的顯示。然而,因為經常點亮背光光源進行 顯示,所以具有消耗電力較大,而且,在如白天的屋外等 外光較強的環境中,會有無法確保充分的對比之特性。 另方面,反射型LCD係使用太陽光或室内電燈等外 光作為光源,將入射至LCD面板的這些外光,藉由形成於 觀察面側之基板的反射電極加以反射。然後,入射至液晶 層,將藉由反射電極反射且來自LCD面板的射出光量依2 晝素加以控制,以進行顯示。由於該反射型LCD係使用外 光作為光源,故有在沒有外光的環境中無法進行顯示,然 而,與透過型LCD不同的是,反射型LCD沒有因光源所致 的消耗電力,電力消耗低,而且,在外光強的環境中具有 可獲得充分的對比之特性。 近年,開發出一種半透過型LCD,其為兼備透過功能 316374 5 1299417 與反射功能兩者,且不論四周的環境明亮或陰暗皆可容易 觀看的LCD。該半透過型LCD中,為了在一個晝素内實現 透過功能,而使用ITG等透明電極,$ 了實現反射功能, 而使用A1等反射特性優良的反射電極。 第9圖係在各晝素具備薄膜電晶體(TFT : tMn fiim transi stor)之習知主動矩陣型半透過型LCD之一晝素的 構造剖視圖。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a transflective liquid crystal display device in which each of the pixels is provided with a reflective region and a transmissive region. [Prior Art] A liquid crystal display device (hereinafter referred to as an LCD) is characterized by its low profile and low power consumption. Currently, it is widely used in monitors for computer monitors such as computer monitors and mobile phones. The LCD has a transmissive LCD and a reflective $LCD. The transmissive LCD system uses a transparent electrode as a _ pixel electrode for applying a voltage to the liquid crystal, and a backlight source is disposed behind the LCD panel, and the backlight panel controls the amount of light transmitted by the LCD panel, so that even if the surrounding environment becomes dark, Bright display is also possible. However, since the backlight source is often turned on for display, it has a large power consumption, and in an environment where the external light is strong outside the room, there is a possibility that sufficient contrast cannot be ensured. On the other hand, the reflective LCD uses external light such as sunlight or an indoor lamp as a light source, and reflects the external light incident on the LCD panel by the reflective electrode formed on the substrate on the observation surface side. Then, it is incident on the liquid crystal layer, and the amount of light emitted from the LCD panel reflected by the reflective electrode is controlled by 2 pixels for display. Since the reflective LCD uses external light as a light source, display cannot be performed in an environment without external light. However, unlike a transmissive LCD, the reflective LCD has no power consumption due to a light source, and power consumption is low. Moreover, in an environment with strong external light, there is a characteristic that sufficient contrast can be obtained. In recent years, a transflective LCD has been developed which is an LCD that has both the transmission function 316374 5 1299417 and the reflection function, and can be easily viewed regardless of whether the surrounding environment is bright or dark. In the transflective LCD, in order to realize a transmissive function in one element, a transparent electrode such as ITG is used, and a reflection function is realized, and a reflective electrode having excellent reflection characteristics such as A1 is used. Fig. 9 is a cross-sectional view showing the structure of a conventional active matrix type semi-transmissive LCD having a thin film transistor (TFT: tMn fiim transi stor).
在該半透過型LCD中,隔著預定的間隙,貼設形成有 TFT(未圖示)的m玻璃基板100,與具備彩色滤光片23〇 的玻璃基板200,並在這兩個基板之間密封液晶層3〇〇。In the transflective LCD, an m glass substrate 100 on which a TFT (not shown) is formed and a glass substrate 200 including a color filter 23A are attached to each other via a predetermined gap, and the two substrates are The liquid crystal layer 3 密封 is sealed.
在反射區域中,以層間絕緣膜等在TFT侧玻璃基板1〇〇 上形成突起部130,並在該突起部13〇上形成有反射電極 140。藉由設置該突起部13〇,使反射電極14〇與彩色濾光 片侧之玻璃基板200的間隙變小,令反射特性良好。在彩 色濾光片側之玻璃基板200的觀察面側,貼設有偏光板 210而在偏光板210與彩色濾光片側的玻璃基板2 〇 〇之 間,復貼設有由λ/2板220a及λ/4板220b所構成的第 1相位差板220。在此,又/ 2板220a具有可挪移入射光 波長λ之1 / 2波長程度的相位之功能,又/4板22〇b具 有可挪移入射光波長;^之丨/4波長程度的相位之作用。 设置第1相位差板220的理由係,為了在反射區域中, 只現可良好地進行黑色顯示之常白型(n〇rmal ly whik) LCD。亦即,LCD中有:在液晶層300不施加電壓的狀態下 進行白色顯示之常白型;及相反地在該狀態下進行黑色顯 316374 6 1299417 不之常黑型’而-般來說,常白型可施行比較良好的黑色 顯示已為眾所周知。 · 胃然而,沒有第1相位差板2〇〇時,對液晶層3〇〇施加 私左,液晶層300中之液晶分子的液晶分子長轴豎立時, 經由偏光板210、彩色濾光片侧玻璃基板2〇〇及液晶層 300,被反射電極120反射的反射光在沒有相位差的狀態 下,再度以相反的路徑直接朝外部射出,故無法獲得黑色 顯不。因此,設置第丨相位差板22〇,使入射光及反射光 的直線偏光狀態變化成圓偏光狀態,在液晶層3〇〇施加有 電壓的狀態下可進行黑色顯示,且實現常白型顯示。 另一方面,在透過區域,為了獲得常白型的顯示,雖 原本不需要第1相位差板2〇〇,然而,因在反射區域設有 第1相位差板220,而在透過區域也設置第丨相位差板 220。因此,為了在透過區域也可獲得常白型顯示,故在偏 光板110和TFT玻璃基板!00之間,貼設由相位差板又/ 2 板120a及λ/4板12〇b所構成之與第1相位差板220同 樣的第2相位差板12 0 〇In the reflective region, a projection 130 is formed on the TFT-side glass substrate 1A with an interlayer insulating film or the like, and a reflective electrode 140 is formed on the projection 13A. By providing the projections 13A, the gap between the reflective electrode 14A and the glass substrate 200 on the color filter side is made small, and the reflection characteristics are improved. A polarizing plate 210 is attached to the observation surface side of the glass substrate 200 on the color filter side, and a λ/2 plate is placed between the polarizing plate 210 and the glass substrate 2 彩色 on the color filter side. The first phase difference plate 220 formed of 220a and λ/4 plate 220b. Here, the / 2 plate 220a has a function of shifting the phase of the wavelength λ of the incident light wavelength λ, and the /4 plate 22〇b has a wavelength at which the incident light can be shifted; effect. The reason why the first phase difference plate 220 is provided is that a normally white (n〇rmal ly whik) LCD which can display black well is good in the reflection region. That is, the LCD has a normally white type in which white display is performed in a state where no voltage is applied to the liquid crystal layer 300; and conversely, in this state, black display 316374 6 1299417 is not a normally black type and - in general, It is well known that a normally white type can perform a relatively good black display. · Stomach, when there is no first phase difference plate 2〇〇, the liquid crystal layer 3〇〇 is applied privately, and when the long-axis of liquid crystal molecules of the liquid crystal molecules in the liquid crystal layer 300 is erected, the polarizing plate 210 and the color filter side are passed. In the glass substrate 2 and the liquid crystal layer 300, the reflected light reflected by the reflective electrode 120 is directly emitted to the outside in an opposite path without a phase difference, so that black color cannot be obtained. Therefore, the second phase difference plate 22 is provided, and the linearly polarized state of the incident light and the reflected light is changed to a circularly polarized state, and black display is possible in a state where a voltage is applied to the liquid crystal layer 3, and a normally white display is realized. . On the other hand, in the transmission region, the first phase difference plate 2 is not required in order to obtain the normally white display. However, the first phase difference plate 220 is provided in the reflection region, and is also provided in the transmission region. The second phase difference plate 220. Therefore, in order to obtain a normally white display in the transmission region, the polarizing plate 110 and the TFT glass substrate are also available! Between 00, the second phase difference plate 12 0 which is the same as the first phase difference plate 220 which is composed of the phase difference plate / 2 plate 120a and λ / 4 plate 12 〇 b is attached.
上述半透過型LCD係為常白型,且在ECB (Electrically controlled birefring ence)電性控制型 複折射)模式下動作。 [專利文獻1]日本特開2003-255399號公報 【發明内容】 [發明所欲解決之課題] 然而’上述習知的半透過型LCD中,在透過區域亦設 7 316374 1299417 置第1相位差板220及第2相位差板110,且在ECB模或 下動作’所以會有透過區域之特性(透過率、對比)降低白心 問題。 此外,由於第1相位差板220及第2相位差板11 〇, 分別具有0 · 0 7mm左右的厚度,故2片共形成〇· 14mm的厚 度’ LCD會有對應其厚度而變厚的問題。再者,也會有對 應第1相位差板220及第2相位差板11〇之設置,而使lcd 之成本變高的問題。 [用以解決課題之手段] 本發明係有鑑於上述習知技術之課題而開發者,在反 射區域中,於彩色濾光片側之玻璃基板的液晶層之相對 側或TFT玻璃基板之液晶層的相對侧,塗佈可硬化液晶 層(可藉紫外線硬化的液晶層),並以配向膜令其配向,且 於其上照射UV(紫外線)將其硬化。 藉此構成,由於紫外線可硬化層具有相位差板的作 用,所以不需如習知半透過型LCD那樣在彩色濾光片侧的 =螭基板或TFT玻璃基板上,貼設相位差板。再者,由於 糸卜、、泉可硬化液晶層可容易進行圖案化,所以可 區域選擇性地形成圖案。 [發明之效果] -根據本發明,透過區域及反射區域皆可獲得良好的顯 不。尤其,因為在透過區域沒有相位差板,而且是在tn 作而非ECB模式’所以可獲得與習知透過型lcd同 知優良的透過特性、對比特性。 316374 8 1299417 户此外卩為'又有使用相位差板,所以LCD得以薄型化·。 :、可適用在行動電話等攜帶用資訊機器的監視器。再 【實:^使用相位差板,所以可實現⑽的低成本化。 關;照圖面說明本發明之實施形態。首先,說明 “嫩液晶顯示裝置。们圖係該液晶顯示 二第成圖,第2圖係一晝素之構成的剖視圖。此 號,並省^說:第9圖相同的構成部分係賦予相同的符 J液晶顯示裝置係如第1圖所示,具備配製成。列, ^的複數晝素,各晝素具有晝素選擇用τρτ i 及保持電容Csc。晝素選擇用TFT1Q的閘極係與延 次粗的㈣線2G連接’其汲極則與延伸於行方向的 、广 連接。各列的閘極線20係從垂直驅動電路3〇 ^序供給閘極掃贿號,#此,即可選擇晝素選擇用 f外’貝料線21係依據來自水平驅動電路40的汲極 ▼目田仏號,供給視訊信號’、經由晝素選擇用TFT 10,施加 =晶層_。保持電係用以保持經由晝素選擇用 T 1 〇所供給的視訊信號。 、尚,】、,塵之’残第2圖說明—晝素的構造。該晝素係半透 :型上CD晝素,具有反射區域與透過區域。隔著預定的間 C貼設有:形成有晝素選擇用TFT 1〇( 基板⑽;與具備彩色遽光片層230的玻璃基祕^ 兩者之間密封有液晶層_。在本實施形態中,液晶層_ 316374 9 1299417 係以具有TN(扭轉向列)效果的向列液晶形成為佳。又,就 TFT玻基板100、玻璃基板2〇〇而言,只要是具有可透遍 入射光之特性的透明或半透明絕緣材料所構成的基板即 可,不限於玻璃基板。 在反射區域中,於TFT玻璃基板丨00上形成由層間絕 緣膜等構成的突起部1 30,在該突起部! 3〇上形成由鋁等 反射特性優良之材料所構成的反射電極丨4〇。此外,反射 包極140形成於TFT玻璃基板1〇〇上,而突起部形成 於玻璃基板2 0 0上亦可。 接著,在反射電極14〇的相對處,於彩色濾光片側的 玻璃基板200上,藉著彩色濾光片層23〇及配向膜2〇1, 將施以紫外線硬化的紫外線可硬化液晶層24〇,選擇性地 僅形成於該反射區域。該形成方法係在彩色濾光片層23〇 的整面,塗佈形成液體狀的紫外線可硬化液晶層,並且選 擇性地僅在反射區域照射紫外線,其後,使用藥品,將沒 有照射紫外線之透過區域的紫外線可硬化液晶層加以去 除。 該紫外線可硬化液晶層24〇藉由實施紫外線硬化,而 具有可將入射光的相位僅挪移預定波長之相位差板功能。 邊相位差可藉由改變紫外線可硬化液晶層24〇的厚度來進 仃调整。例如,欲使該紫外線可硬化液晶層24〇具有^ /4 板的功能時,則介由電極在液晶層3〇〇施加電壓而令液晶 分子長軸直立時,可進行黑色顯示。亦即’反射區域具有 常白(normally white)的反射型LCD功能。 316374 10 1299417 另一方面,在透明區域具有在具備透明電極(未圖示) 的玻璃基板200、與具備透明電極(未圖示)的m基板1〇〇 之間,密封有液晶層300的構造,且因沒有設置相位差板, 故具有-般的透過型LCD之構造。因此,透過區域且有盘 一般透過型LCD同樣的透過特性及對比特性。 /、 又 W踝可硬化液晶層24〇的遲相軸,係與貼設於 埚土板200之偏光板21〇的吸收軸及貼設於丁ρτ玻璃基 j 100之偏光板110的吸收轴,形成40。以上、50。以下 =的角度,而使後述之反射奵特性良好,所以是理想的 狀悲。 根據本實施形態,由於透過區域及反射區域皆可獲得 二好的=,同時’亦可不需設置習知例的第"目位差板 弟相位差板21〇,故可使LCD薄型化,且可實現⑽ 的低成本化。 。兒明第2貫施形態的液晶顯示裝置。第3圖係 構成的剖視圖。此外3圖中,與第2圖相同 、、β邛刀,係賦予相同的符號,並省略其說明。再者, 液曰曰_不裝置的整體構成圖係與第1圖相同。 該晝素中,在TFT玻璃基板100上,於反射區域盥透 過區域兩邊的區域,形士丄Trp ,、处 Ά 形成由ΙΤΟ構成的透明電極131,並 且在反射區域中,乂费 以復盍该透明電極上131之方式,形成 由紹等反射特性優^ 良的材料所構成的反射電極132。反射 電極132係鱼去闰—丄 和 ”禾圖不之晝素選擇用TFT10的源極或汲極連 接。再者,用r 人、 々液晶層300配向的配向膜133係以覆蓋 316374 11 1299417 透過透明電極131及反射電極i32的方式形成。. 在該彩二=:二板二 3〇的表面被復配向膜251。在反射區 ㈣㈣ΐ向膜251上,選擇性地形成有施以紫外線硬化 =外、,表可硬化液晶252。紫外線可硬化液晶脱可藉由 =予配向。該紫外線可硬化液晶252的形 、方法係與弟1實施形態相同。於面對透過區域之彩色遽 光片層230及紫外線可硬化液晶咖之液晶層_的表“ 面,第1透明電極253係以覆蓋上述兩者之方式形成。再 者,形成有覆蓋透明電極253的表面,且用以配向液晶層 300的配向膜254。 糸外線可硬化液晶252係與第1實施形態同樣地,具 有相位差板的功能,而其相位差係依存於其膜厚。相位^ 板的複折射率Δη具有波長依存性,例如#人射至反射區 域之入射光的波長為589· 6nm時,△ η為〇· 〇6。當紫外線 可硬化液晶252的厚度為1 · 4 // m時,相位差係以△ η χ紫 外線可硬化液晶252的厚度來表示,此時,係為84nm。” 在此,液晶層300的複折射率Δη為〇· 129,延遲 (retardation) Δικί為258nm(入射至反射區域之入射光的 波長為589· 6nm時)。此外,貼設於玻璃基板2〇0之偏光板 210的吸收轴角度為4 5 ’液晶層3 0 0的配向方向也是該 角度方向。又,貼設於TFT玻璃基板1 〇〇之偏光板1丨〇的 吸收軸角度為135 ° 。又,紫外線可硬化液晶252之配向 方向的角度為90° 〇 316374 12 1299417 di虚透:二液晶層3°〇的厚度所界定之反射區域的間隙 ai,、边過區域的間隙 平衡時m」 田考相反射特性與透過特性的 十衡f如第1貧施形態所示, 使dl<d2為佳。士艿氺认达 稽田》又置大起邛130, 為仏。此乃由於為了在反射區域中進行反 二過:J層_之光的距離是透過區域的2倍之 ==二P使不特別設置突起部13〇,紫外線可硬化液 曰曰252本身亦可作為突起部,所以可自㈣ 的關係。 只凡cii'az 就=隙di、d2的比而言’重要的係考慮透過ντ特性(入, 止、飞、過率對液晶施加電壓的特性)、反射Μ特性(入射 一 率對液晶施加電壓的特性)的平衡,而設成液晶顯 =敢谷易被觀察的條件。在此,液晶施加電Μ係指:經由 千=電極253、133及反射電極132,施加於液3 電壓。 於是,本案發明人以間隙^犯作為參數,對使用 ΤΝ液晶之半透過型LCD,進行此料性的電腦模擬。由結 果得知,tdl:d2=2:3]時,此等特性為最適當。第4 圖係表示當di : d2=2 : 3.4時,透過ντ#|性的電腦模擬 結果圖。第4圖中,縱軸係表示透過率,橫軸係表示施加 於液晶層的電壓。第5圖係表*dl:d2=2:34時,反射 VT特性的模擬結果圖。第5圖中,縱軸係表示反射率,横 軸係表示施加於液晶層的電壓。入射光的波長具有 46〇nm(藍)、550nm(綠)、630nra(紅)等三種類。 第4圖的透過VT特性中,當液晶施加電壓為訐左右 316374 13 1299417 時,三種波長大致一齊產生透過率的變遷。另一方面,·第 5圖的VT特性中,雖然各種波長多少會參差不一,然而, 同樣地當液晶施加電壓為2V左右時,會產生反射率的變 遷。此外’紫外線可硬化液晶層252的遲相軸,係與貼設 於玻璃基板200之偏光板210的吸收軸及貼設於tft玻璃 基板100之偏光板110的吸收軸,形成4〇。以上、5〇。以 下範圍的角度’而在可獲得良好的反射ντ特性上較為理 想。 一圭繼之’說明第3實施形態的液晶顯示裝置。第6圖係 -旦素之構成剖視圖。此外’第6圖中,與第3圖相同的 構,部分’係賦予相同的符號’並省略其說明。又,該液 晶顯示裝置的整體構成圖係與第1圖相同。 該晝素係如第6圖所示,紫外媸 所 系外線可硬化液晶層143係 ”弟2貫施形態相反地形成於m玻璃基板_上 或中,於TFT玻璃基板1〇〇 ± ’選擇性地形成有由鋁 專反射特性佳的材料所構成的反射電極141。反射電極⑷ 係與未圖示之晝素選擇用τ簡的源極或祕連接。缺 在反射電極141上’介由配向膜“2,形成施以紫外 =硬化的紫外線硬化液晶層143。紫外線可硬化液晶143 、二142配向。紫外線可硬化液晶143的形成方 法係兵弟1貫施形態相同。 於面對透過區域之TFT玻璃基板⑽的表面及紫外線 可硬化液晶14 3之液晶層3 0 0的矣而 ^ 、 举 層·的表面,透明電極144係以 復盖上述兩者之方式形成。再者,形成有覆蓋透明電極!44 316374 14 1299417 的表面,且用以配向液晶層300的配向膜145。另一方面·, 在另一個玻璃基板2 0 0的表面,貼設彩色濾光片層2 3 〇,· 且在該彩色濾光片層2 3 0的表面,被覆透明電極2 61、配 向膜262。 备、外線可硬化液晶層143的遲相軸,係與貼設於玻璃 基板200之偏光板210的吸收軸及貼設於tft玻璃基板1 〇〇 之偏光板110的吸收軸,形成40。以上、5〇。以下範衝的 角度,而在可獲得良好的反射VT特性上較為理想。 繼之,說明第4實施形態的液晶顯示裝置。第7圖係 一晝素之構成剖視圖。此外,第7圖中,與第2圖相同的 構成部分,係賦予相同的符號,並省略其說明。又,該液 晶顯示裝置的整體構成圖係與第丨圖相同。 該晝素係如第7圖所示,將經紫外線硬化的紫外線可 硬化液晶層形成兩層構造,在玻璃基板2〇〇侧於彩色濾光 片層2 3 0上,藉由配向2 51,依序積層經紫外線硬化的第1 紫夕^卜線可硬化液晶層27卜配向膜272、經紫外線硬化的第 糸外線了硬化液晶層2 7 3。與習知例對照時,第1紫外線 可硬化液曰θ層2 71具有又/ 4板的功能,第2紫外線可硬 化液晶層273具有又/2板的功能,然而,因為各相位差 係依據其各厚度來設定,所以不限定於;1/4板或;t/2 板。 相位差板的複折射率Δη具有波長依存性,例如當入 反=區域的入射光波長為589.6mn時,Δη為0.265。 當第1紫外線可硬化液晶層271的厚度為0 30 #m、第2 316374 15 1299417 紫外線可硬化液晶層273的厚度為1· 20//m時,相位差係 以△ nx紫外線可硬化液晶的厚度來表示,所以第1紫外婊 可硬化液晶271和第2紫外線可硬化液晶273的相位差分 別為 81nm、318nm。 在此,液晶層300的複折射率Δη為〇·丨29,延遲 (retardation) △ nd為258nm(入射至反射區域的入射光波 長為589· 6mn時)。此外,貼設於玻璃基板2〇〇之偏光板 210的吸收軸角度為45。,液晶層300的配向方向也是該 角度方向。再者,貼設於TFT玻璃基板1〇〇之偏光板11〇 的吸收軸角度為135。。又,第」紫外線可硬化液晶層271 的配向方向角度為90 ,第2紫外線可硬化液晶層273的 配向方向角度為142。。 如上所述,將經紫外線硬化的紫外線可硬化液晶層形 成兩層的優點,係可使反射VT特性比第2實施形態之反射 VT特性更良好。第8圖係表示在間隙dl、d2的比為dl : d2=l· 9 : 3· 4的條件下,將紫外線可硬化液晶層兩層化 時,反射VT特性的電腦模擬結果圖。如該圖清楚地顯示, 480nm、550nm、63〇nm等三個波長之反射ντ特性的偏差不 均變少。 本實施形態中’表示將經紫外線硬化的紫外線可硬化 液晶層形成兩層化的構造,然而並不限定於此,亦可藉由 配向膜形成三層以上的紫外線可硬化液晶層。此外,第1、 第2、第3、第4實施形態中,雖使用施以紫外線硬化的紫 外線可硬化液晶層,然而^是具有光學性相位差的層時, 316374 1299417 亦可將其他層例如延伸 — 施以紫外線硬化的紫^分子賴加以圖案化,來取代 【圖式簡單說明】線可硬化液晶層。 · 第1圖係本發明塗〜 構成圖。 貫施形態之液晶顯示裝置的整體 第2圖係本發明楚 素構成之剖視圖。 實施形態之液晶顯示裝置的-晝 第3圖係本發明第 素構成之剖視圖。 弟4圖係本發明第 VT特性之電腦模擬結果 弟5圖係本發明第 VT特性之模擬結果圖。 弟6圖係本發明第 素構成之剖視圖。 第7圖係本發明第 素構成之剖視圖。 2貫施形悲之液晶顯示裝置的一書 2實施形態之液晶顯示裝置的透過 圖。 2實施形態之液晶顯示裳置的反射 3實施形態之液晶顯示裝置的一書 4實施形態之液晶顯示裝置的一書 實施形態之液晶顯示裝置的反射 弟8圖係本發明第 VT特性之模擬結果圖。 弟9圖係習知例之液晶顯示裝置的一晝素構成之剖視 閘極線 垂直驅動電路 20 【主要元件符號說明】The semi-transmissive LCD is of a normally white type and operates in an ECB (Electrically Controlled Birefringence) mode. [Patent Document 1] JP-A-2003-255399 SUMMARY OF INVENTION [Problems to be Solved by the Invention] However, in the above-described conventional transflective LCD, the first phase difference is also set in the transmission region by 7 316374 1299417. The plate 220 and the second retardation plate 110 operate in the ECB mode or the lower portion, so that the characteristics of the transmission region (transmittance, contrast) are lowered to reduce the white matter problem. In addition, since the first retardation film 220 and the second retardation film 11 are each having a thickness of about 0. 7 7 mm, the two sheets are formed to have a thickness of 〇 14 mm. The LCD may have a thickness corresponding to the thickness thereof. . Further, there is a problem in that the cost of the lcd is increased because the first phase difference plate 220 and the second phase difference plate 11 are disposed. [Means for Solving the Problems] The present invention has been made in view of the above-described problems of the prior art, in the reflective region, on the opposite side of the liquid crystal layer of the glass substrate on the color filter side or the liquid crystal layer of the TFT glass substrate. On the opposite side, a hardenable liquid crystal layer (a liquid crystal layer which can be cured by ultraviolet rays) is applied, and it is aligned by an alignment film, and is irradiated with UV (ultraviolet rays) to harden it. According to this configuration, since the ultraviolet curable layer has the function of the phase difference plate, it is not necessary to attach the phase difference plate to the 螭 substrate or the TFT glass substrate on the color filter side as in the conventional transflective LCD. Further, since the hardened liquid crystal layer can be easily patterned, the pattern can be selectively formed. [Effect of the Invention] According to the present invention, both the transmission region and the reflection region can be satisfactorily displayed. In particular, since there is no phase difference plate in the transmission region, and it is in the tn instead of the ECB mode, it is possible to obtain excellent transmission characteristics and contrast characteristics similar to those of the conventional transmission type lcd. 316374 8 1299417 The user also said that 'there is a phase difference plate, so the LCD can be thinned. : It can be applied to monitors for portable information devices such as mobile phones. [Effective: ^ Using a phase difference plate, the cost of (10) can be reduced. The embodiment of the present invention will be described with reference to the drawings. First, the description will be given to "a liquid crystal display device. The figure is a two-figure view of the liquid crystal display, and the second figure is a cross-sectional view of the structure of a single element. This number is omitted, and the same components of the same figure are given the same. As shown in Fig. 1, the liquid crystal display device of the symbol J has a plurality of elements, which are arranged in columns, ^, each of which has a zircoid selection τρτ i and a holding capacitor Csc. The gate of the TFT1Q for halogen selection The connection with the extended (four) line 2G's its pole is connected to the wide direction extending in the row direction. The gate line 20 of each column is supplied to the gate from the vertical drive circuit 3, # this In the case of the pixel selection, the TFT signal is supplied to the video signal ', and the TFT 10 is applied via the pixel selection TFT. The electric system is used to maintain the video signal supplied by T 1 〇 through the element selection. 尚, 、,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The halogen has a reflective area and a transmissive area. It is attached to the predetermined space C: a T-selection T is formed. The FT 1 〇 (substrate (10); and the glass substrate having the color grading sheet layer 230 are sealed with a liquid crystal layer _. In the present embodiment, the liquid crystal layer _ 316374 9 1299417 has TN (twisted nematic) It is preferable that the TFT liquid crystal substrate 100 and the glass substrate 2 are formed of a transparent or translucent insulating material having a property of transmitting light incidently. In the reflective region, a protrusion 130 composed of an interlayer insulating film or the like is formed on the TFT glass substrate 丨00, and a material having excellent reflection characteristics such as aluminum is formed on the protrusion portion 3〇. The reflective electrode 140 is formed on the TFT glass substrate 1 and the protrusion is formed on the glass substrate 2000. Next, at the opposite side of the reflective electrode 14〇, in the color filter On the glass substrate 200 on the light sheet side, the ultraviolet curable liquid crystal layer 24 is cured by ultraviolet light by the color filter layer 23 and the alignment film 2〇1, and is selectively formed only in the reflection region. Formation method in color filter The entire surface of the layer 23 is coated to form a liquid ultraviolet ray-hardenable liquid crystal layer, and selectively irradiates ultraviolet rays only in the reflection region, and thereafter, using a medicine, the ultraviolet ray hardenable liquid crystal layer which is not irradiated with the ultraviolet ray is applied. The ultraviolet curable liquid crystal layer 24 has a phase difference plate function capable of shifting the phase of the incident light only by a predetermined wavelength by performing ultraviolet curing. The phase difference can be changed by changing the thickness of the ultraviolet curable liquid crystal layer 24 For example, when the ultraviolet curable liquid crystal layer 24 has a function of a ^ 4 plate, the black can be applied when the liquid crystal molecules are vertically erected by the electrodes in the liquid crystal layer 3 . display. That is, the reflective region has a normally white reflective LCD function. 316374 10 1299417 On the other hand, the transparent region has a structure in which a liquid crystal layer 300 is sealed between a glass substrate 200 having a transparent electrode (not shown) and an m substrate 1 having a transparent electrode (not shown). Since the phase difference plate is not provided, it has a structure of a general transmission type LCD. Therefore, the transmission area and the disk have the same transmission characteristics and contrast characteristics as those of the LCD. /, and the slow phase axis of the hardenable liquid crystal layer 24 , is the absorption axis attached to the polarizing plate 21 of the alumina board 200 and the absorption axis of the polarizing plate 110 attached to the Djτ glass substrate j 100 Form 40. Above, 50. The following angle = is good for the reflection 后 characteristics described later, so it is an ideal sorrow. According to the present embodiment, both the transmission region and the reflection region can obtain two good =, and at the same time, the LCD can be made thinner without the need to provide a conventional phase difference plate. And the cost reduction of (10) can be achieved. . A liquid crystal display device of a second embodiment is described. Fig. 3 is a cross-sectional view showing the configuration. In the drawings, the same reference numerals are given to the same as in Fig. 2, and the description thereof will be omitted. Furthermore, the overall configuration of the liquid helium-non-device is the same as in the first figure. In the halogen element, on the TFT glass substrate 100, in the region on both sides of the reflection region 盥 transmission region, the shape of the girth Trp is formed, and the transparent electrode 131 composed of ruthenium is formed at the surface, and in the reflection region, the ruthenium is recovered. On the transparent electrode 131, a reflective electrode 132 composed of a material having excellent reflection characteristics is formed. The reflective electrode 132 is connected to the source or the drain of the TFT 10, and the alignment film 133 of the liquid crystal layer 300 is covered with 316374 11 1299417. The transparent electrode 131 and the reflective electrode i32 are formed through the transparent electrode 131 and the reflective electrode i32. The surface of the color two = two plates is compounded to the film 251. On the reflective region (four) (four) the film 251 is selectively formed with ultraviolet curing. = outside, the surface can be hardened liquid crystal 252. The ultraviolet ray hardenable liquid crystal can be de-aligned by the = pre-alignment. The shape and method of the ultraviolet-curable liquid crystal 252 are the same as those of the first embodiment. The surface of the liquid crystal layer _ of the layer 230 and the ultraviolet ray curable liquid crystal _ is formed so that the first transparent electrode 253 is covered. Further, an alignment film 254 for covering the surface of the transparent electrode 253 and for aligning the liquid crystal layer 300 is formed. Similarly to the first embodiment, the outer-line curable liquid crystal 252 has a function of a phase difference plate, and the phase difference depends on the film thickness. The complex refractive index Δη of the phase plate has wavelength dependence. For example, when the wavelength of the incident light that is incident on the reflection region is 589·6 nm, Δη is 〇·〇6. When the thickness of the ultraviolet curable liquid crystal 252 is 1 · 4 // m, the phase difference is expressed by the thickness of the Δη χ ultraviolet curable liquid crystal 252, and in this case, it is 84 nm. Here, the complex refractive index Δη of the liquid crystal layer 300 is 〇·129, and the retardation Δικί is 258 nm (when the incident light incident on the reflection region has a wavelength of 589·6 nm). Further, it is attached to the glass substrate 2〇. The absorption axis angle of the polarizing plate 210 of 0 is 4 5 'the alignment direction of the liquid crystal layer 300 is also the angular direction. Further, the absorption axis angle of the polarizing plate 1 贴 attached to the TFT glass substrate 1 is 135 ° Further, the angle of the alignment direction of the ultraviolet curable liquid crystal 252 is 90° 〇 316374 12 1299417 di imaginary: the gap ai of the reflective region defined by the thickness of the two liquid crystal layers 3° ,, and the gap of the edge over region is balanced m The ten-balanced f of the reflectance characteristics and the transmission characteristics of the field test is as shown in the first lean form, and dl < d2 is preferable. The gentry and the recognition of the "Tian Tian" set a big 邛 130, why. This is because the distance between the light of the J layer and the light of the J layer is twice as large as that of the transmission area == two P, so that the protrusion 13 is not particularly provided, and the ultraviolet curable liquid 252 itself can also be As a protrusion, it can be derived from (4). Only the ratio of cii'az = gap di and d2 is considered to be important by considering the characteristics of ντ (input, fly, fly, and rate applied to the liquid crystal) and the reflection Μ characteristics (incident rate is applied to the liquid crystal) The balance of the characteristics of the voltage is set to the condition that the liquid crystal is displayed. Here, the liquid crystal application means that the voltage of the liquid 3 is applied via the thousand=electrodes 253 and 133 and the reflective electrode 132. Therefore, the inventor of the present invention conducted a computer simulation of this material for a semi-transmissive LCD using a liquid crystal using a gap as a parameter. It is known from the results that these characteristics are most appropriate when tdl:d2=2:3]. Figure 4 shows the computer simulation results through ντ#| when di : d2 = 2 : 3.4. In Fig. 4, the vertical axis indicates the transmittance, and the horizontal axis indicates the voltage applied to the liquid crystal layer. Figure 5 is a simulation result of the reflected VT characteristic when the table *dl:d2=2:34. In Fig. 5, the vertical axis indicates the reflectance, and the horizontal axis indicates the voltage applied to the liquid crystal layer. The wavelength of the incident light has three types such as 46 〇 nm (blue), 550 nm (green), and 630 nra (red). In the transmission VT characteristic of Fig. 4, when the liquid crystal application voltage is about 316374 13 1299417, the three wavelengths are substantially uniform to cause a change in transmittance. On the other hand, in the VT characteristics of Fig. 5, although the various wavelengths are somewhat different, similarly, when the liquid crystal application voltage is about 2 V, the reflectance changes. Further, the slow phase axis of the ultraviolet curable liquid crystal layer 252 is formed by an absorption axis attached to the polarizing plate 210 of the glass substrate 200 and an absorption axis of the polarizing plate 110 attached to the tft glass substrate 100. Above, 5〇. It is preferable to obtain a good reflection ντ characteristic at the angle ' of the following range'. The following is a description of a liquid crystal display device according to a third embodiment. Fig. 6 is a cross-sectional view showing the constitution of the element. In the sixth embodiment, the same components as those in the third embodiment are denoted by the same reference numerals, and the description thereof will be omitted. Further, the overall configuration of the liquid crystal display device is the same as that of Fig. 1. The halogen element is as shown in Fig. 6, and the outer layer of the ultraviolet curable liquid crystal layer 143 is formed on the m glass substrate _ on or in the opposite manner, and is selected on the TFT glass substrate. A reflective electrode 141 made of a material having excellent aluminum reflection characteristics is formed, and the reflective electrode (4) is connected to a source of a halogen-selective τ which is not shown, and is connected to the reflective electrode 141. The alignment film "2" forms an ultraviolet-ray hardened liquid crystal layer 143 to which ultraviolet light is applied. UV-curable liquid crystal 143, two 142 alignment. The formation method of the ultraviolet curable liquid crystal 143 is the same as that of the bristles. The transparent electrode 144 is formed so as to cover the surface of the TFT glass substrate (10) in the transmission region and the surface of the liquid crystal layer 300 of the ultraviolet curable liquid crystal 134, and the surface of the layer. Furthermore, a transparent electrode is formed! The surface of 44 316374 14 1299417 is used to align the alignment film 145 of the liquid crystal layer 300. On the other hand, a color filter layer 2 3 贴 is attached to the surface of the other glass substrate 200, and a transparent electrode 2 61 and an alignment film are coated on the surface of the color filter layer 203. 262. The late-phase axis of the outer and outer-line curable liquid crystal layer 143 is formed by an absorption axis attached to the polarizing plate 210 of the glass substrate 200 and an absorption axis of the polarizing plate 110 attached to the tft glass substrate 1 to form 40. Above, 5〇. The following angles are ideal for obtaining good reflected VT characteristics. Next, a liquid crystal display device of a fourth embodiment will be described. Figure 7 is a cross-sectional view of the structure of a single element. In the seventh embodiment, the same components as those in the second embodiment are denoted by the same reference numerals, and their description will be omitted. Further, the overall configuration of the liquid crystal display device is the same as that of the first embodiment. As shown in FIG. 7 , the ultraviolet light-curable ultraviolet light-curable liquid crystal layer is formed into a two-layer structure on the side of the glass substrate 2 on the color filter layer 230, by alignment 2 51 . The first ultraviolet ray-curable first ultraviolet ray-curable liquid crystal layer 27 is aligned with the alignment film 272, and the ultraviolet ray-curable second outer layer is used to harden the liquid crystal layer 273. In contrast to the conventional example, the first ultraviolet curable liquid 曰 θ layer 2 71 has a function of a / 4 plate, and the second ultraviolet scleable liquid crystal layer 273 has a function of /2 plates, however, since each phase difference is based on Since each thickness is set, it is not limited to a 1/4 plate or a t/2 plate. The complex refractive index Δη of the phase difference plate has a wavelength dependency. For example, when the incident light wavelength in the reverse region is 589.6 nm, Δη is 0.265. When the thickness of the first ultraviolet curable liquid crystal layer 271 is 0 30 #m, the second 316374 15 1299417, the thickness of the ultraviolet curable liquid crystal layer 273 is 1·20//m, the phase difference is Δ nx ultraviolet ray hardenable liquid crystal. Since the thickness is expressed, the phase difference between the first ultraviolet ray hardenable liquid crystal 271 and the second ultraviolet ray hardenable liquid crystal 273 is 81 nm and 318 nm, respectively. Here, the complex refractive index Δη of the liquid crystal layer 300 is 〇·丨29, and the retardation Δ nd is 258 nm (when the incident light wavelength incident on the reflection region is 589·6 nm). Further, the absorption axis angle of the polarizing plate 210 attached to the glass substrate 2 is 45. The alignment direction of the liquid crystal layer 300 is also the angular direction. Further, the absorption axis angle of the polarizing plate 11A attached to the TFT glass substrate 1 was 135. . Further, the direction of the alignment direction of the first ultraviolet curable liquid crystal layer 271 is 90, and the angle of the alignment direction of the second ultraviolet curable liquid crystal layer 273 is 142. . As described above, the ultraviolet-curable ultraviolet curable liquid crystal layer has the advantage of forming two layers, and the reflection VT characteristics can be made better than the reflection VT characteristics of the second embodiment. Fig. 8 is a graph showing a computer simulation result of the reflected VT characteristics when the ultraviolet curable liquid crystal layer is formed into two layers under the condition that the ratio of the gaps d1 and d2 is dl: d2 = 1·9: 3·4. As clearly shown in the figure, the variation in the variation of the reflection ντ characteristics at three wavelengths of 480 nm, 550 nm, and 63 〇 nm is small. In the present embodiment, 'the structure in which the ultraviolet curable ultraviolet curable liquid crystal layer is formed into two layers is formed. However, the present invention is not limited thereto, and three or more layers of the ultraviolet curable liquid crystal layer may be formed by the alignment film. Further, in the first, second, third, and fourth embodiments, the ultraviolet curable liquid crystal layer which is cured by ultraviolet rays is used, but when it is a layer having an optical retardation, 316374 1299417 may also have other layers such as Extension - The UV-hardened violet molecule is patterned to replace the line-hardenable liquid crystal layer. • Fig. 1 is a view of the present invention. The entire liquid crystal display device of the present invention is a cross-sectional view showing the constitution of the present invention. The liquid crystal display device of the embodiment - Fig. 3 is a cross-sectional view showing the constitution of the first embodiment of the present invention. Fig. 4 is a computer simulation result of the VT characteristic of the present invention. Fig. 5 is a simulation result diagram of the VT characteristic of the present invention. Figure 6 is a cross-sectional view showing the constitution of the first embodiment of the present invention. Figure 7 is a cross-sectional view showing the constitution of the first embodiment of the present invention. 2. A perforation diagram of a liquid crystal display device according to an embodiment of the present invention. 2 reflection of the liquid crystal display of the embodiment 3 of the liquid crystal display device of the embodiment of the present invention, the reflection of the liquid crystal display device of the embodiment of the present invention, the simulation result of the VT characteristic of the present invention Figure. Figure 9 is a cross-sectional view of a liquid crystal display device of a conventional example. Gate line Vertical drive circuit 20 [Description of main component symbols]
0 晝素選擇用TFT :1 資料線 316374 17 30 1299417 水平驅動電路 100 、 200 TFT玻璃基板 21 0偏光板 130 突起部 144 、 253 、 261 透明電極 140 、 141 反射電極 40 110 131 132 133 143 230 271 273 300 Csc 142、145、201、251、254、262、272 配向膜 240、252紫外線可硬化液晶層 彩色濾光片層 第一紫外線可硬化液晶層 第二紫外線可硬化液晶層 液晶層 保持電容0 TFT for selection of halogen: 1 data line 316374 17 30 1299417 horizontal drive circuit 100, 200 TFT glass substrate 21 0 polarizing plate 130 protrusion 144, 253, 261 transparent electrode 140, 141 reflective electrode 40 110 131 132 133 143 230 271 273 300 Csc 142, 145, 201, 251, 254, 262, 272 alignment film 240, 252 UV curable liquid crystal layer color filter layer first ultraviolet hardenable liquid crystal layer second ultraviolet hardenable liquid crystal layer liquid crystal layer retention capacitor
18 31637418 316374