TWI297979B - Brushless motor drive device - Google Patents

Brushless motor drive device Download PDF

Info

Publication number
TWI297979B
TWI297979B TW94108150A TW94108150A TWI297979B TW I297979 B TWI297979 B TW I297979B TW 94108150 A TW94108150 A TW 94108150A TW 94108150 A TW94108150 A TW 94108150A TW I297979 B TWI297979 B TW I297979B
Authority
TW
Taiwan
Prior art keywords
signal
circuit
brushless motor
input
comparator
Prior art date
Application number
TW94108150A
Other languages
Chinese (zh)
Other versions
TW200635202A (en
Inventor
Guang Nan Tzeng
Feng Rurng Juang
Chi Yang Chen
Original Assignee
Aimtron Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aimtron Technology Corp filed Critical Aimtron Technology Corp
Priority to TW94108150A priority Critical patent/TWI297979B/en
Publication of TW200635202A publication Critical patent/TW200635202A/en
Application granted granted Critical
Publication of TWI297979B publication Critical patent/TWI297979B/en

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

1297979 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種馬達驅動裝置,尤其關於一種用於 驅動無刷馬達之馬達驅動裝置。 【先前技術】 圖1 (a)顯示習知的無刷馬達驅動裝置之電路區塊圖。 鲁' 參照圖1 (a),馬達Μ為具有三相線圈u、V、與W之三相 直流無刷馬達。霍爾感測電路11設置於馬達Μ周圍,用 以偵測馬達Μ之轉子位置,藉而產生三個位置偵測信號 HU、HV、與HW。回應於位置偵測信號hu、HV、與HW,1297979 IX. Description of the Invention: The present invention relates to a motor driving device, and more particularly to a motor driving device for driving a brushless motor. [Prior Art] Fig. 1 (a) shows a circuit block diagram of a conventional brushless motor driving device. Lu' Referring to Figure 1 (a), the motor is a three-phase DC brushless motor with three-phase coils u, V, and W. The Hall sensing circuit 11 is disposed around the motor , to detect the rotor position of the motor ,, thereby generating three position detecting signals HU, HV, and HW. In response to the position detection signals hu, HV, and HW,

Ik 信號合成電路12產生三個驅動弦波信號su、SV、與SW。 隨後’驅動弦波信號SU、S V、與S W輸入脈衝寬度調變 (Pulse Width Modulation,PWM)比較電路 13,用以個別獨 立地對於振盪電路14所產生的高頻三角波信號τ進行比 Φ較。基於驅動弦波信號SU、SV、與s W及高頻三角波信 號T間之比較,p WM比較電路1 3產生三個脈衝信號pu、 P V與p W ’为別供應至三個預先驅動電路(pre_driver)N 1、 N2、與N3。回應於脈衝信號PU,預先驅動電路N1產生 切換信號UH與UL。回應於脈衝信號p v,預先驅動電路 N2產生切換信號VH與VL。回應於脈衝信號p w,預先驅 動電路N3產生切換信號WH與WL。 二相切換電路15具有開關si與S2、開關S3與S4、 6 1297979 以及開關S5.與S6,分別受到切換信號UH與UL、VH與 VL、以及WH與WL所控制。當開關S1形成短路時,馬 達驅動電流Im可從驅動電壓源Vdd流入線圈u,而當開 關S2形成短路時,馬達驅動電流Im可從線圈u流向地面 電位。當_ S3%成短路時,馬達驅動電流1〇1可從驅動 電壓源Vdd流入線圈v,而當開關S4形成短路時,馬達 驅動電流Im可從線圈v流向地面電位。當開關S5形成短 路% ’馬達驅動電流Im可從驅動電壓源vdd流入線圈W, 而當開關S6形成短路時’馬達驅動電流Im可從線圈w 流向地面電位。 為了偵測馬達驅動電流Im,串聯電阻Rs設置於開關 S2、S4、與S6之共同連接點與地面電位間。馬達驅動電 流出流經串聯電阻Rs所造成之電位差提供至誤差放大電 路EA之反相輸入端,作為負回授。誤差放大電路ea比 較代表馬達驅動電流Im的電位差與電流命令信號一 而產生電机誤差尨號Ierr。信號合成電路i2依據電流誤差 信號1err而調整驅動弦波信號SU、SV、與SW2振幅。 圖1(b)顯不習知的無刷馬達驅動裝置之操作之波形時 序圖。由於馬達Μ之—士 6 咬1之二相線圈U、ν、與w之每一相係以 類似的波形進行择你,H 4 # 丁探作,故為簡化說明起見,圖1(b)僅顯示 關聯於馬達Μ之線願ττ # π ^丄 、、圈u於操作時的波形時序圖。參照圖 1(b)’驅動弦波㈣su與高頻三角波信號τ經過比 較電路13後產生脈输於4 ^ 衝虎PU。具體而言,脈衝信號pu 1297979 之高位準係對應於驅動弦波信號su大於高頻三角波信號 τ之情況,而脈衝信號PU之低位準則對應於驅動弦波信 號SU小於高頻三角波信號τ之情況。回應於脈衝信號 pu,預驅動電路N1產生切換信號1;11與ul,用以分別控u 制開關S1與S2。 為了使馬達驅動電流Im被調節成等於電流命令信號 誤差放大電路EA輪出電流誤差信號至信號: 成電路12,用以調整驅動弦波信號su之振幅。舉例而言, 當馬達驅動電流Im小於電流命令信號Ic〇m時,電流誤1差 L唬Ierr控制信號合成電路12,使得驅動弦波信號之 振幅變大成為驅動弦波信號su,。從圖1(b)可清楚看出, 振幅較大的驅動弦波信號su,使得pWM比較電路Η產生 工作比較大的脈衝信號PU,。回應於工作比較大的脈衝, 號pu’,三相切換電路15使馬達驅動電流以增加,以 接近電流命令信號Ic〇m。 然而’在馬達驅動電流Im與電流命令信號^兩者 差距太大之情況下,例如馬達M_始啟動時馬達驅 流Im幾乎為零,信號合成電路12為了回應極大的電流誤 :信號1err甚至可能產生振幅超過高頻三角波信號T之驅 f號:『。結果,屬比較電路13產生頻率低: 之脈衝信號pu,,。此種低頻率脈衝信號 &成馬達轉矩連波過女 、去 及過大,以及馬達運轉不流暢之缺 ··»再者,低頻率脈衝信號PU,,以相 高位準狀態或低位準狀離,㈣M mi處於 狀恕,V致二相切換電路丨5長時間 8 1297979 維持於供應氣不供應馬達驅動電流Im之操作狀態。長時 =供應馬達驅動電流Im可能燒毁馬達M與三相切換電= ,或因溫度過高而觸發保護機制強制關閉電路之操作。 【發明内容】 有鑑於前述問題,本發明之一目的在於提 ㈠ 馬達驅動裝置,可限制脈衝信號之工作比。 “ # 本發明之另一目的在於提供一種無刷馬達驅動華 置’防止低頻率之脈衝信號產生。、 本發明二一目的在於提供一種無刷馬達驅㈣ '態。 #間持續處於南位準狀態或低位準相 :據本毛明之您'樣,提供一種無刷馬達驅動裝置, -比較電路與一工作比限制電路。比較 用 較-驅動信號與-參考信號而產生—㈣以吐 制電路具有:一第一電路、_ 。號。工作比师 與一第鑓雷踗笛 乐—電路、一第一邏輯電路 信號。第二電路產生一第二半週^ +週工作比限制 輯電路使該脈衝信號之工作比 k限制信號。第一過 #比文到該篦_坐、田 ^ 制信號之限制,而產生一輸出信號 ^工比限 限制信號之限制。 乍比-到該第二半週工作比 依據本發明之另一態樣,提 置,設有-比較電路與-工作比:「種無刷馬達驅動裝 作比限制電路。比較電路由至 1297979 "少一個三輪入端比較器所實施,,用以比較—& 參考信號、與一第一半週限制位準,而產生動信號、一 使得該脈衝信號之第一半週之工作比受到限:脈衝信號, 制電路設有:一電路以及一邏輯 工作比限 半週工作比限制信號。邏輯電 屋生一第二 之工作比受到該第二半週工作 第一半週 分城丄々 限制仏號之限制。 依據本發明之又―態樣,提供一種 置,設有一比較電路與一工作 馬達驅動裝 少一個第一:幹入滅以乍比限制電路。比較電路由至 個弟一輸入鳊比較器與至少一個第__ 芏 較器所實施。第一=翰入矬罘一二輸入端比 u 輸人w較器m較-驅動作梦The Ik signal synthesizing circuit 12 generates three driving sine wave signals su, SV, and SW. Subsequently, the sine wave signals SU, S V and the S W input pulse width modulation (PWM) comparison circuit 13 are used to individually compare the high frequency triangular wave signal τ generated by the oscillation circuit 14 with Φ. Based on the comparison between the drive sine wave signals SU, SV, and s W and the high frequency triangular wave signal T, the p WM comparison circuit 13 generates three pulse signals pu, PV and p W ' to be supplied to three pre-drive circuits ( Pre_driver) N 1, N2, and N3. In response to the pulse signal PU, the pre-driver circuit N1 generates the switching signals UH and UL. In response to the pulse signal p v , the pre-driver circuit N2 generates switching signals VH and VL. In response to the pulse signal p w , the pre-drive circuit N3 generates switching signals WH and WL. The two-phase switching circuit 15 has switches si and S2, switches S3 and S4, 6 1297979, and switches S5 and S6, which are controlled by switching signals UH and UL, VH and VL, and WH and WL, respectively. When the switch S1 forms a short circuit, the motor drive current Im can flow from the drive voltage source Vdd to the coil u, and when the switch S2 forms a short circuit, the motor drive current Im can flow from the coil u to the ground potential. When _S3% is short-circuited, the motor drive current 1〇1 can flow from the drive voltage source Vdd to the coil v, and when the switch S4 forms a short circuit, the motor drive current Im can flow from the coil v to the ground potential. When the switch S5 forms the short circuit %' motor drive current Im, it can flow from the drive voltage source vdd into the coil W, and when the switch S6 forms a short circuit, the motor drive current Im can flow from the coil w to the ground potential. In order to detect the motor drive current Im, the series resistance Rs is set between the common connection point of the switches S2, S4, and S6 and the ground potential. The potential difference caused by the motor drive current flowing through the series resistor Rs is supplied to the inverting input terminal of the error amplifying circuit EA as a negative feedback. The error amplifying circuit ea compares the potential difference representing the motor drive current Im with the current command signal to generate a motor error nickname Ierr. The signal synthesizing circuit i2 adjusts the amplitudes of the driving sine wave signals SU, SV, and SW2 in accordance with the current error signal 1err. Fig. 1(b) shows a waveform timing diagram of the operation of the brushless motor driving device which is not known. Since the motor of the two-phase coil U, ν, and w of each phase of the motor is selected in a similar waveform, H 4 # 丁,, for the sake of simplicity, Figure 1 (b) ) Only the waveform timing chart of the line ττ # π ^丄, and the circle u associated with the motor Μ is displayed. Referring to Fig. 1(b)', the sine wave (four) su and the high-frequency triangular wave signal τ are passed through the comparison circuit 13 to generate a pulse to the 4^ punching PU. Specifically, the high level of the pulse signal pu 1297979 corresponds to the case where the driving sine wave signal su is greater than the high frequency triangular wave signal τ, and the low order criterion of the pulse signal PU corresponds to the case where the driving sine wave signal SU is smaller than the high frequency triangular wave signal τ. . In response to the pulse signal pu, the pre-driver circuit N1 generates switching signals 1; 11 and ul for controlling the switches S1 and S2, respectively. In order to make the motor drive current Im equal to the current command signal, the error amplifying circuit EA takes the current error signal to the signal: into the circuit 12 for adjusting the amplitude of the drive sine wave signal su. For example, when the motor drive current Im is smaller than the current command signal Ic 〇 m, the current error 1 difference L 唬 Ierr controls the signal synthesizing circuit 12 so that the amplitude of the drive sine wave signal becomes large to drive the sine wave signal su. As is clear from Fig. 1(b), the amplitude-driven sine wave signal su causes the pWM comparison circuit Η to generate a relatively large pulse signal PU. In response to the relatively large pulse, pu', the three-phase switching circuit 15 causes the motor drive current to increase to approach the current command signal Ic 〇 m. However, in the case where the motor drive current Im and the current command signal ^ are too far apart, for example, the motor drive current Im is almost zero when the motor M_ is started, and the signal synthesizing circuit 12 responds to a large current error: the signal 1err even It is possible to generate a drive f-number whose amplitude exceeds the high-frequency triangular wave signal T: ". As a result, the comparison circuit 13 generates a low frequency: pulse signal pu,. This kind of low-frequency pulse signal & motor torque is connected to the female, too large, and the motor is not running smoothly. · Again, the low-frequency pulse signal PU, with a high level or low level Off, (4) M mi is in the forgiveness, V-induced two-phase switching circuit 丨 5 long time 8 1297979 is maintained in the operating state in which the supply gas does not supply the motor drive current Im. Long time = supply motor drive current Im may burn motor M and three-phase switching power =, or trigger the protection mechanism to force the circuit to close due to excessive temperature. SUMMARY OF THE INVENTION In view of the foregoing, it is an object of the present invention to provide (1) a motor drive device that limits the duty ratio of a pulse signal. " # Another object of the present invention is to provide a brushless motor driving device to prevent the generation of low frequency pulse signals. The second object of the present invention is to provide a brushless motor drive (4) 'state. State or low-level quasi-phase: According to Ben Maoming, a brushless motor drive device is provided, - a comparison circuit and a duty ratio limit circuit. The comparison is made with a comparison-drive signal and a - reference signal - (4) to spit the circuit Having: a first circuit, a _.. a working division and a Dijon 踗 乐 - circuit, a first logic circuit signal. The second circuit generates a second half cycle ^ + week work ratio limit circuit The operation of the pulse signal is greater than the k-limit signal. The first pass is limited to the limit of the signal, and the output signal is limited to the limit signal. According to another aspect of the present invention, the half-cycle work is provided with a comparison circuit and a work ratio: "a type of brushless motor drive is mounted as a ratio limiting circuit. The comparison circuit is from 1297979 " one less three-wheeled end Comparator implementation , for comparing the -& reference signal with a first half-circle limit level, and generating a motion signal, such that the first half of the pulse signal is limited in operation ratio: the pulse signal, the circuit is provided with: A circuit and a logic operation limit half-week work ratio limit signal. The logic electric house is a second work limit than the first half cycle of the second half week work. In another aspect, a set is provided, and a comparison circuit is provided with a working motor drive device to have a first one: a dry-in and a turn-off limit circuit. The comparison circuit is from a younger input to a comparator and at least one first __ 芏Compared with the implementation of the device. The first = Han into the input and output of the second than the u input is compared to the device m - drive dreaming

一參考信號、與一第一本柄职心 勒H 弟牛週限制位準,而產生一筮晰备 信號,使得該第一脈衝信號之 苐—脈衝 •口功b &lt;乐一平週之工作 制。第二三輸入端比較器用 2义 號、與一第二半週限制位準,而考信 得該第二脈衝信號之第 一第-脈衝信號’使 m^ 弟一 +週之工作比受到限制。工作比 限制電路於該驅動传缺步 .^ L #ϋ處於该弟一半週時供應該第一脈 衝化號至該切換電路,廿 口士 略並且於該驅動信號處於該第二半调 寸供應該第二脈衝信號至該切換電4。 【實施方式】 丁 /文中之說明與附圖將使本發明之前述與其他目 .特徵、與優點更明顯。茲將參照圖式詳細說明依據本 發明之較佳實施例。 圖2顯不依據本發明之無刷馬達驅動裝置之電路區塊 10 1297979 圖。參照圖2,馬達Μ為具有三*相線圈U、V、與w之二 相直流無刷馬達。霍爾感測電路11得包含霍爾感測器與 霍爾放大器。霍爾感測電路丨丨設置於馬達Μ周圍,用以 產生三個位置偵測信號HU、HV、與HW,分別代表馬達 Μ之轉子與三相線圈υ、ν、與W間之位置關係。位置债 測信號HU、HV、與HW之每一個皆為弦波信號,同步於 馬達Μ之運轉,並且彼此間具有相位差ι2〇度。回應於位 置偵測信號HU、HV、與HW,信號合成電路12產生三個 驅動信號SU、SV、與sW。 在本發明之一實施例中,驅動信號su、SV、與sW 得由對應的位置偵測信號HU、HV、與HW經過相位偏移 3〇度而實施,因此波形仍維持於弦波信號。在本發明之另 一實施例中,驅動信號SU、SV、與SW得由對應的位置 债測信號HU、HV、與HW經過相位偏移30度並且疊加 上適當的修正信號用以補償因導通延遲(Turn-〇n Delay)所 造成的端電壓偏移而實施,因此其波形變成弦波信號與修 正^號之疊加。有關此等修正信號之可能形態與使用方式 已經揭露於美國專利第5,811,949號内,該技術文獻亦併 入本說明書中作為參考。 在本發明之一實施例中,高頻參考信號T得由單一個 二角波信號所實施,其中該三角波信號每一週期之振幅平 均值實質上重合於驅動信號su、SV、或SW每一週期之 振幅平均值。在本發明之另一實施例中,高頻參考信號T 付由具有相同頻率的上三角波信號與下三角波信號相互 11 1297979 疊加所實施,其中該上三角波信號之波谷係實質上對應於 該下二角波信號之波峰,並且實質上重合於驅動信號su、 S V、或SW每一週期之振幅平均值。有關上三角波信號與 下二角波信號之疊加使用已經揭露於美國專利第 3,585,5 17號内’該技術文獻亦併入本說明書中作為參考。 基於驅動弦波信號SU、SV、與SW及高頻三角波信 號τ間之比較,PWM比較電路2〇與工作比限制電路A reference signal, and a first handle, the H-brain limit level, and a clear signal, so that the first pulse signal 苐-pulse • mouth work b &lt; Le Yi Ping Zhou work system. The second three-input comparator uses a 2 sense sign and a second half cycle limit level, and the first pulse signal of the second pulse signal is considered to make the work ratio of m^1+week limited. . The working ratio limiting circuit is in the driving missing step. ^ L #ϋ is supplied to the switching circuit at half time of the brother, and the switching signal is in the second half of the driving signal. The second pulse signal should be applied to the switching power 4. The above and other objects and advantages of the present invention will become more apparent from the description and drawings. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The preferred embodiments in accordance with the present invention will be described in detail with reference to the drawings. Figure 2 shows a circuit block 10 1297979 of a brushless motor drive according to the invention. Referring to Fig. 2, the motor Μ is a two-phase DC brushless motor having three* phase coils U, V, and w. The Hall sensing circuit 11 includes a Hall sensor and a Hall amplifier. The Hall sensing circuit is disposed around the motor , to generate three position detecting signals HU, HV, and HW, which respectively represent the positional relationship between the rotor of the motor 与 and the three-phase coil υ, ν, and W. Each of the positional debt measurement signals HU, HV, and HW is a sine wave signal that is synchronized with the operation of the motor , and has a phase difference ι2 彼此. In response to the position detection signals HU, HV, and HW, the signal synthesizing circuit 12 generates three drive signals SU, SV, and sW. In one embodiment of the invention, the drive signals su, SV, and sW are implemented by phase offsets of the corresponding position detection signals HU, HV, and HW, so that the waveform is still maintained at the sine wave signal. In another embodiment of the present invention, the driving signals SU, SV, and SW are phase-shifted by 30 degrees from the corresponding positional debt signal HU, HV, and HW and superimposed with appropriate correction signals to compensate for conduction. The terminal voltage offset caused by the delay (Turn-〇n Delay) is implemented, so the waveform becomes a superposition of the sine wave signal and the correction number. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; In an embodiment of the invention, the high frequency reference signal T is implemented by a single two-angle signal, wherein the amplitude average of each period of the triangular wave signal substantially coincides with the drive signal su, SV, or SW. The average amplitude of the period. In another embodiment of the present invention, the high frequency reference signal T is implemented by superposing an upper triangular wave signal having the same frequency and a lower triangular wave signal 11 11297979, wherein the valley of the upper triangular wave signal substantially corresponds to the lower two The peak of the angular wave signal, and substantially coincides with the amplitude average of each period of the drive signal su, SV, or SW. The use of the superimposition of the upper triangular wave signal and the lower two-dimensional wave signal is disclosed in U.S. Patent No. 3,585,5, the disclosure of which is incorporated herein by reference. Based on the comparison between the driving sine wave signals SU, SV, and the SW and the high frequency triangular wave signal τ, the PWM comparison circuit 2 〇 and the duty ratio limiting circuit

相互配合用以產生工作比有限脈衝信號 —_ _ PWd。(下文將參照圖示詳細說明依據本發明之比輕 電路20與工作比限制電路21之各種實施例之詳細電路婆 操作波形。)回應於脈衝信號pUd,預先驅動電路ni產当 切換^號UHd與ULd。回應於脈衝信號p%,預先驅動, 路N2產生切換信號%與%。回應於脈衝信號⑽d, 預先驅動電路N3i生切換信號WHd與U先驅動臂 路Nl、N2、與N3不僅得增強脈衝信號之驅動能力,此夕 並得包含時間延遲電路,使得所產生的切換信?虎UHd# ULd、VH^ VLd、以及^與ι之每一對皆具有 疊波形特徵。 、三相切換電路15具有開關S1與S2、開關83與^ ^及開關、S5與S6,分別受到切換信號UHd與ULd、V] 二二二以及^與WLd所控制。具體而言,開關S1: 合於驅動電懕、;盾v h ^ ,、 與線圈U間,而開關S2則耦合於 圈U與地面電仿門 .,.^ w 號UHd輸入至端點U1,以. 幵# ,而切換信號ULd則輸入至端點U2,以控制 12 1297979 關S2。因此,當開關S1形成短路 格f 馬達驅動電流Im 可從驅動電壓源Vdd流入線圈U,而卷„明0 士 句田開關S2形成短路Interacting to produce a work ratio finite pulse signal —_ _ PWd. (The detailed circuit operation waveforms of the various embodiments of the lighter circuit 20 and the duty ratio limiting circuit 21 according to the present invention will be described in detail below with reference to the drawings.) In response to the pulse signal pUd, the pre-drive circuit ni is switched to the UHd. With ULd. In response to the pulse signal p%, pre-drive, path N2 produces switching signals % and %. In response to the pulse signal (10)d, the pre-driver circuit N3i generates the switching signals WHd and U to drive the arm paths N1, N2, and N3 to not only enhance the driving capability of the pulse signal, but also includes a time delay circuit to cause the generated switching signal. ? Tiger UHd# ULd, VH^ VLd, and each of ^ and ι have a stacked waveform feature. The three-phase switching circuit 15 has switches S1 and S2, switches 83 and ^^, and switches, S5 and S6, which are controlled by switching signals UHd and ULd, V] 22 and ^ and WLd, respectively. Specifically, the switch S1: is combined with the driving electric 懕, the shield vh ^ , and the coil U, and the switch S2 is coupled to the ring U and the ground electric imitation gate., the .^ w number UHd is input to the end point U1, With . 幵# , the switching signal ULd is input to the endpoint U2 to control 12 1297979 off S2. Therefore, when the switch S1 forms a short circuit, the motor drive current Im can flow from the drive voltage source Vdd into the coil U, and the volume _ _ _ _ sentence switch S2 forms a short circuit

控制開關S5,而切換信號WLd則輸入至端點W2,以控制 開關S6。因此,當開關S5形成短路時,馬達驅動電流匕 :從驅動電壓源Vdd流入線圈w,而當開關%形成短路 時,馬達驅動電流Im可從線圈w流向地面電位。 ¥,馬達驅動電流Im可從線圈U流向地面電位。開關S3 麵合於驅動電壓源Vdd與線圈v間,而開關S4㈣合於 線圈V與地面電位間。切換信號VHd輸入至端點νι,以 控制開關S3,而切換信號VLd則輸入至端點V2,以控制 開關S4。因此,當開關S3形成短路時,馬達驅動電流h 可從驅動電壓源Vdd流人線圈v,而當開M s4形成短路 時,馬達驅動電流&amp;可從線圈v流向地面電位。開關S5 耦合於驅動電壓源Vdd與線圈貿間,而開關^則耦合於 線圈W與地面電位間。切換信號WHd輸入至端點W1,以 在本發明之一實施例中,開關S1、S3、S5之每一個 得由PM〇S電晶體所實施’而開關S2、S4、S6之每一個 得由NMOS電晶體所實施。在本發明之另—實施例中,開 關S1至S6之每—個得由NM〇s電晶體所實施。The switch S5 is controlled, and the switching signal WLd is input to the terminal W2 to control the switch S6. Therefore, when the switch S5 forms a short circuit, the motor drive current 匕: flows into the coil w from the drive voltage source Vdd, and when the switch % forms a short circuit, the motor drive current Im can flow from the coil w to the ground potential. ¥, the motor drive current Im can flow from the coil U to the ground potential. Switch S3 is coupled between drive voltage source Vdd and coil v, and switch S4 (4) is coupled between coil V and ground potential. The switching signal VHd is input to the terminal νι to control the switch S3, and the switching signal VLd is input to the terminal V2 to control the switch S4. Therefore, when the switch S3 forms a short circuit, the motor drive current h can flow from the drive voltage source Vdd to the coil v, and when the open Ms4 forms a short circuit, the motor drive current &amp; can flow from the coil v to the ground potential. The switch S5 is coupled between the driving voltage source Vdd and the coil, and the switch is coupled between the coil W and the ground potential. The switching signal WHd is input to the terminal W1, in an embodiment of the invention, each of the switches S1, S3, S5 is implemented by a PM〇S transistor and each of the switches S2, S4, S6 is derived Implemented by an NMOS transistor. In another embodiment of the invention, each of the switches S1 through S6 is implemented by a NM 〇s transistor.

在本發明之—實施例中,每對開關S1與S2、開關S3 以及開關S5與S6係對應地由每對切換信號UHd 與ULd、VHd與VLd、以及WHd與WLd以硬式斬取(Hard Chopping)方式進行調變操作。硬式斬取之調變操作係指在 上側開關(亦即開關S1、S3、與S5)進行on與〇FF之pwM 13 1297979 切換時’下侧開關(亦即開_ S2、S4、與S6)在同一時間則 相反地進行0FF與⑽之PWM切換。在本發明之另一實 施例中’每對開關s!與S2、開關”與S4、以及開關Μ ” S6係對應地由每對切換信號口〜與ULd、VHd與VL^、 、 d '、WLd以軟式斬取(Soft Chopping)方式進行調變 操乍It式斬取之5周變操作係指在驅動信&amp;叩、s v、與 SW之正半週期間中,上側開關Sb S3、與S5進行〇N與 、之PWM切換而下側開關S2、S4、與%則維持於 狀〜時並且在驅動k號SU、SV、與SW之負半週期間 中’上侧開關S1、S3、與S5維持於OFF狀態而下側開關 S2、S4、與S6則進行〇N與0FF之pWM切換。有關硬式 斬取與軟式斬取之操作方法已經揭露於美國專利第 6,710,572號内,該技術文獻亦併入本說明書中作為參考。 為了偵測馬達驅動電流lm,串聯電阻rs設置於下側 開關S2、S4、與S6之共同連接點與地面電位間。請注意 在本發明之另一實施例中,串聯電阻Rs亦得設置於上側 開關S1、S3、與S5之共同連接點與驅動電壓源vdd間。 馬達驅動電流Im流經串聯電阻Rs所造成之電位差提供至 誤差放大電路EA之反相輸入端,作為負回授。誤差放大 電路EA比較代表馬達驅動電流im的電位差與電流命令信 號Icom ’而產生電流誤差信號Ierr。信號合成電路I]依 據電流誤差信號Ierr而調整驅動信號SU、SV、與SW之 振幅。 雖然在圖2中電流誤差信號Ieir係供應至信號合成電 1297979 路12、用以回授調整藤動信號su、sv、與sW2振輻, 仁本t明不限於此。如前所述,PWM比較電路2〇係基於 驅動信號SU、SV、與SW之振幅與參考信號τ之振幅間 之相對關係而決定脈衝信號1&gt;11、]?¥、與pw之脈衝寬度。 因此,在另一實施例中,電流誤差信號Ierr得供應至振盪 — 用以回授5周整參考#號τ之振幅,藉而達成調整In the embodiment of the present invention, each pair of switches S1 and S2, switch S3, and switches S5 and S6 are hardly extracted by each pair of switching signals UHd and ULd, VHd and VLd, and WHd and WLd (Hard Chopping) ) The way to perform the modulation operation. The hard-switching modulation operation refers to the lower-side switch (ie, open_S2, S4, and S6) when the upper switch (ie, switches S1, S3, and S5) is switched between pwM 13 1297979 on and FF. At the same time, the PWM switching of 0FF and (10) is reversed. In another embodiment of the present invention, 'each pair of switches s! and S2, switches' and S4, and switch ”' S6 are correspondingly switched by each pair of signal ports ~ and ULd, VHd and VL^, d', WLd is modulated by Soft Chopping. The 5-week operation of It is the upper switch Sb S3 during the positive half cycle of the drive letter &amp; s, sv, and SW. S5 performs PWM switching of 〇N and , and the lower switches S2, S4, and % are maintained at the time of ~ and during the negative half cycle of driving k, SU, SV, and SW, the upper switches S1 and S3, The S5 is maintained in the OFF state, and the lower switches S2, S4, and S6 perform the pWM switching of 〇N and 0FF. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; In order to detect the motor drive current lm, the series resistance rs is set between the common connection point of the lower switches S2, S4, and S6 and the ground potential. Please note that in another embodiment of the present invention, the series resistor Rs is also disposed between the common connection point of the upper switches S1, S3, and S5 and the driving voltage source vdd. The potential difference caused by the motor drive current Im flowing through the series resistor Rs is supplied to the inverting input terminal of the error amplifying circuit EA as a negative feedback. The error amplifying circuit EA generates a current error signal Ierr by comparing the potential difference representing the motor drive current im with the current command signal Icom'. The signal synthesizing circuit I] adjusts the amplitudes of the drive signals SU, SV, and SW in accordance with the current error signal Ierr. Although the current error signal Ieir is supplied to the signal synthesizing circuit 1297979 12 in FIG. 2 for feedback adjustment of the vine motion signals su, sv, and sW2, Ren Ben is not limited thereto. As described above, the PWM comparison circuit 2 determines the pulse widths of the pulse signals 1 &gt; 11, ??, and pw based on the relative relationship between the amplitudes of the drive signals SU, SV, and SW and the amplitude of the reference signal τ. Therefore, in another embodiment, the current error signal Ierr is supplied to the oscillation - to feedback the amplitude of the 5 week integer reference # τ, thereby achieving an adjustment

振幅相對關係之效果。在又另一實施例中,電流誤差信號 得供應至霍爾感測器u,用以回授調整位置偵測信號 HU ΗV、與HW之振幅,使得信號合成電路丨2所產生之 驅動信號SU、SV、與SW之振幅間接地受到調整,藉而 達成調整振幅相對關係之效果。有關此等調整振幅相對關 係之技術已經揭露於美國專利第6,71G,568號内,該技術 文獻亦併入本說明書中作為參考。 圖3(a)顯示依據本發明第一實施例之pwM比較電路 20-1與工作比限制電路21-1之詳細電路圖。圖顯示 依據本發明第一實施例之PWM比較電路2〇_丨盥工作比把 制電路2H之操作波形時序圖。由於馬達%之三相線圈 U、V、與W之每一相係以類似的波形進行操作,故為簡 化說明起見,目3(b)僅顯示關聯於馬達M之線圈 作時的波形時序圖。 驅動信號SU、SV、與sw鈐λ 士 輸入pWM比較電路2(M, 用以個別獨立地對於高頻參考栌 、乂亏k唬T進行比較。具體而 言,PWM比較電路20-1包括二钿m π —個比車父态CU、cv、與CW, 其中反相輸入端分別用以接收 狀队驅動#號SU、SV、與SW, 15 1297979 而非反相輪入端則用以共同接收高頻參考信號τ。基於驅 動信號SU與高頻參考信號τ間之比較,比較器⑶產生 脈衝U PU-卜基於驅動信號s ν與高頻參考信號Τ間之 比車乂 t匕車又益cV產生脈衝信號pi。基於驅動信號sw 與间頻參考k號T間之比較,比較器cw產生脈衝 PW-1。 工作比限制電路2 1 -1係限制脈衝信號Pu_丨、pv_工、 與PW-1之工作比。比較器CL係用以比較高頻參考信號τ 與預定的負半週限制位準VL,以產生負半週工作比限靜 號,L。負半週限制位準火係設定成實質上等於高_ #唬T之波谷值,且較佳地係設成略大於波谷值。比較器 CH係用以比較高頻參考㈣τ與預定的正半週限制位準 vH,以產生正半週工作比限制信冑ρΗ。正半週限制位準 vH係設定成實質上等於高頻參考信號τ之波峰值,且較佳 地係設成略小於波峰佶。卩左祕 &gt;r 、及嗶值隧後,PWM比較電路2(M所產 生的脈衝信號PU_卜ρν·卜與pw- i之每-個皆分別與正 半週工作比限制信號PH以 夂員牛週工作比限制信號PL· 進行比較’以達成正半週與負半週工作比限制之效果。舉 例而言’脈衝信號削與負半週工作比限制信號pL首先 =NAND邏輯閘NL1進行Nand邏輯運算, =號叫。隨後,信號PUl再經* NAND邏輯閘顧^ +週工作比限制信號PH進行另_次職〇邏輯運算,、如 此即可產生所期望的工作比有限脈衝信號扣山。 因此,正半週工作比限制信號pH有效地限制脈衝信 16 1297979 號PU-ld中對應於驅動信號su之正半週部分之工作比, 而負半週工作比限制信號PL有效地限制脈衝信號PU-1 d 中對應於驅動信號su之負半週部分之工作比。即使在馬 達驅動電/’,L lm與電流命令信號1〇〇111兩者差距太大之情況 下依據本卷明之無刷馬達驅動裝置仍可有效地限制脈衝 L號PU ld Pv_id、與pw_ld之工作比與頻率,因而確保 馬達可靠地運轉。 圖4⑷顯示依據本發明第二實施例之PWM比較電路 20-2與工作比限制電路21_2之詳細電路圖。圖4顯 依據本發明第二實施例之PWM比較電路2〇_2與工作比限 制電路21 _2之操作波形時序圖。由於馬達μ之三相線圈 、一 W之每一相係以類似的波形進行操作,故為簡 化說明起見’目4(b)僅顯示關聯於馬達M之線圈u於操 作時的波形時序圖。 PWM比較電路2G_2包括三個三輸人端比較器clu、 ⑽、與CLW。三輸人端比較器cuj具有兩個非反相輸 入化’分別用以接收驅動信號犯與負半週限制位準I 以及一個反相輸入端’用以接收高頻參考信號T :制位準VL係設定成實質上等於高頻參考信號τ之波谷 圭地係設成略大於波谷值。—旦高頻參考信號Τ 小於驅動信號SU與負半週限制位準Vl中之任—個,三輸 二端比較器CLU即被觸發而輸出高位準的信號。因此三 :::比較器CLU所產生的脈衝信號pu_2已經 週工作比限制之特徵。同理,三輸入端比較器⑽所產生 17 1297979 的脈衝信龍PV_2已經具有負半週工作比~限制之特徵。一., 輸入知比較器CLW所產生的脈衝信號p : 週工作比限制之特徵。 ,,八有負丰 工作比限㈣路21_2係、對於脈衝信號 與PW·2進行正半週工作比限制。比較器CH係用以:二 二::广與預定的正半週限制位準^以產生: ===號。H。正半週限制位準%係設定成實 二&quot;之波峰值,且較佳地係設成略小 於波峰值。隨後,PWM比較 ^ pU_2、pVj 。 KM 2〇·2所產生的脈衝信號 制信號ΡΗ進行比較,以達 作 與w , ?乂以達成正+週工作比限制之效果。 ::而:,脈衝信號PU_2與正半週工作比限制信號pH經 =NAND邏輯閘Nm進行nand邏輯運算,如此即可產 所期望的工作比有限脈衝信號PU-2d。 b正半週工作比限制信號PH有效地限制脈衝信 遽PU-2d中對應於驅動信號如之正半週部分之工作比, I負+週卫作比限制信號PL有效地限制脈衝信號p 、:對:於驅動信號SU之負半週部分之工作比。即使在馬 達驅動電流&amp;與電流命令信號1_兩者差距太大之情況 :依據本發明之無刷馬達驅動裝置仍可有效地限制脈衝 A U 2d PV-2d、與pw_2d之工作比與頻率,因而確保 馬達可靠地運轉。 圖5⑷顯示依據本發明第三實施例之PWM比較電路 2〇-3與工作比限制電路仏3之詳細電路圖。冑抑)顯示 18 1297979 依據本發明.第三實施例之FWM比較電路2 制電路21-3之操作波形時序圖。由於馬μ、工作比限 U、V你π ^建Μ之三相線圈 化說明走、导一相係以類似的波形進行操作,故為簡 化說明起見,圖5(b)僅顯示關聯於 作時的波料序目。 U於操 比較電路2。_3包括三個三輸入端比較器⑽、 端,八別用 輸入端比較器⑽具有兩個反相輸入 =:另用以接收驅動信號su與正半週限制位準VH,以 及一個非反相輸入端,用以接收高頻參 限告,1办、、隹、/ 就T。正半週 限制位準VH係設定成實f上等於高頻參考信號 值’且較佳地係設成略小於波峰值。—日 :/ 入二與正半週限制位準VH中之任-個,三輸 j入=比車父器CHU所產生的脈衝信號Pu_3已經具有正 之工乍比限制之特徵。同理,二 /、 產生的邮I A上 —输入鳊比較器CHV所 生的脈衝“號pV-3已經具有丰 徵。三輪人端比較器C H W所產工作比限制之特 有正半週工作比限制之特徵。的脈衝信號PW·3已經具 限Π路Μ係對於脈衝信號PU+PV-3、 一 r W-3進仃負半週工作 高頻參考信號τ與預定的/週。比二器CL係用以比較 半週工作比PP 4丨π A 貝丰週限制位準vL,以產生負 丁 Q丄作比限制信號PL。倉 質上等於高頻參考信號T之波二^ ^位準1係設定成實 於波谷值。隨後,PWM比:二較佳地係設成略大 蛋路20-3所產生的脈衝信號 19 1297979 .PU-3、Pm PW-3之每一個皆分別與負半週工作比限 制信號PL進行比較,以達成負半週工作比限制之效果。 舉例而言,脈衝信號P U _ 3與負半週工作比限制信號p l經 由NAND邏輯閘NL1進行NAND邏輯運算,如此即可產 生所期望的工作比有限脈衝信號pi%。 因此,正半週工作比限制信號pH有效地限制脈衝信 號PU-3d中對應於驅動信號su之正半週部分之工作比, •而負半週工作比限制信號PL有效地限制脈衝信號PU-3d 中對應於驅動信號su之負半週部分之工作比。即使在馬 達驅動電流Im與電流命令信號Ic〇m兩者差距太大之情況 二依據本發明之無刷馬達驅動裝置仍可有效地限制脈衝 信號PU-3d、PV-3d、與PW_3d之工作比與頻率,因而確保 馬達可靠地運轉。 圖6(a)顯示依據本發明第四實施例之pwM比較電路 20 4與工作比限制電路21_4之詳細電路圖。冑6⑻顯示 鲁依據本發明第四實施例之PWM比較電路2〇_4與工作比限 制電路21-4之操作波形時序圖。由於馬達m之三相線圈 u、=V、與W之每一相係以類似的波形進行操作,故為簡 -說月I見圖6(b)僅顯示關聯於馬達μ之線圈U於操 作時的波形時序圖。 WM比車乂電路2〇·4包括三個三輸入端比較器cLu、 CLV與CLW,以及三個三輸入端比較器CHu、chv、與 換。之,PWM比較電路20_4實質上係由圖4(a) 之PWM比較電路2〇_2與圖5⑷之pWM比較電路2〇_3共 20 1297979 同組合而形成n —方面,分別由三個三輸入端比較 器CLU、CLV、與CLW所產生的脈衝信號PU-4a、PV-4a、 與PW-4a已經具有負半週工作比限制之特徵。另一方面, 分別由三個三輪入端比較器CHU、CHV、與CHW所產生 的脈衝信號pu_4b、PV_4b、肖Pw_4b則已經具有正半週 工作比限制之特徵。 工作比限制電路21_4設有三個反相器π、ΐ2、與Η, 用以產生反相的脈衝信號pu_4a,、pv_4a,、與pw_4a,。此 外,工作比限制電路21_4更設有三個多工器(_响叫 Ml、M2、與M3。多工器M1具有兩個來源輸入端,用以 分別接收反相的脈衝信號Pu_4a,與脈衝信號pu-仆。多工 器M1更具有一選擇輸入端’用以接收極性選擇信號 刚。具體而言,極性選擇信號psu係用以指示驅動信號 SU之極性、亦即正半週狀態或負半週狀態。當驅動传號 su處於正半週狀態時,極性選擇信號psu控制多工哭⑷ 輸出反相的脈衝錢PU_4a,作為工作比有限脈衝信號 藉以達成所期望的工作比之限制。當驅動信號su 處於負半週狀態時,極性選擇信號psu控制多工哭⑷輸 出脈衝信號PU_4b作為工作比有限脈衝信號ρυ、,藉以 達成所期望的工作比之限制。 曰 同理’多工器M2具有兩個來源輸入端,用以分別接 收反相的脈衝信號PV_4a,與脈衡信號pv_4b。多工哭Μ] 更具有—選擇輸人端’用以接收極性選擇信號PSVf且體 而言,極性選擇信E psv係用以指示驅動信冑sv之極 21 1297979 i·生一亦即正半週狀態或負半週狀態。當驅動信號sv處於 正半週狀態時,極性選擇信號psv控制多工器M2輸出反 相的脈衝信號PV_4a,作為工作比有限脈衝信號ρν_~,藉 以達成所期望的工作比之限制。當驅動信號sv處於負半 週狀恶B守,極性選擇信號Psv控制多工器M2輸出脈衝信 唬PV-4b作為工作比有限脈衝信號pv_4d,藉以達成所期 望的工作比之限制。 ’ 同理,夕工益M3具有兩個來源輸入端,用以分別接 收反相的脈衝信號PW-4a,與脈衝信號pw_4b。多工器Μ) 更具有一選擇輸入端,用以接收極性選擇信號pSwf°且體 而言,極性選擇信號PSW係用以指示驅動信號sw之極 f生亦即正半週狀悲或負半週狀態。當驅動信號請處於 正半週狀態時,極性選擇信號psw控制多工器M3輸出反 相的脈衝信號PW-4a,作為工作比有限脈衝信號pw乂,藉 以達成所期望的工作比之限制。當驅動㈣sw處於負半 週狀態時’極性選擇信號PSW控制多工器⑽輸出脈衝信 號PW肩作為工作比有限脈衝们虎隊4d,藉以達成所期 望的工作比之限制。 雖然本發明業已藉由較佳實施例作為例示加以說 明,應瞭解者為:本發明不限於此被揭露的實施例。相反 地’本發明意欲涵蓋對於熟習此項技藝之人士而言係明領 二=改與相似配置。因&amp;,申請專利範圍之範圍應根 據取廣的&amp;釋,以包容所有此類修改與相似配置。 22 1297979 【圖式簡單說明】 刷馬達驅動裝置之電路區塊圖。 刷馬達驅動裝置之操作之波形時 圖Ha)顯示習知的無 圖1(b)顯示習知的無 序圖。 圖 2顯示依據本發明 之無刷馬達驅動裝置之電路區塊 圖3(a)顯示依據本發明第 又月第貝施例之PWM比較電路The effect of the relative relationship of amplitudes. In still another embodiment, the current error signal is supplied to the Hall sensor u for feedbacking the amplitudes of the position detection signals HU ΗV and HW such that the signal synthesis circuit 丨2 generates the drive signal SU. The amplitudes of SV and SW are indirectly adjusted, thereby achieving the effect of adjusting the relative relationship of amplitudes. A technique for the relative relationship of such amplitude adjustments is disclosed in U.S. Patent No. 6,71, 568, the disclosure of which is incorporated herein by reference. Fig. 3 (a) shows a detailed circuit diagram of the pwM comparison circuit 20-1 and the duty ratio limiting circuit 21-1 according to the first embodiment of the present invention. The figure shows a timing chart of the operation waveforms of the PWM comparison circuit 2 〇_丨盥 operation ratio control circuit 2H according to the first embodiment of the present invention. Since the phase of each of the three-phase coils U, V, and W of the motor % is operated in a similar waveform, for the sake of simplicity of explanation, the object 3(b) only shows the waveform timing when the coil associated with the motor M is made. Figure. The drive signals SU, SV, and the SW 钤 士 input pWM comparison circuit 2 (M, for individually and independently comparing the high frequency reference 栌, 乂 唬 k 唬 T. Specifically, the PWM comparison circuit 20-1 includes two钿m π — a ratio of the parent states CU, cv, and CW, where the inverting input is used to receive the team drive #SU, SV, and SW, 15 1297979 instead of the reverse wheel input. Receiving the high frequency reference signal τ. Based on the comparison between the driving signal SU and the high frequency reference signal τ, the comparator (3) generates a pulse U PU-b based on the ratio between the driving signal s ν and the high frequency reference signal 乂The benefit cV generates a pulse signal pi. Based on the comparison between the drive signal sw and the inter-frequency reference k number T, the comparator cw generates a pulse PW-1. The duty ratio limiting circuit 2 1 -1 limits the pulse signals Pu_丨, pv_ Comparing with the operation of PW-1, the comparator CL is used to compare the high frequency reference signal τ with a predetermined negative half cycle limit level VL to generate a negative half cycle duty ratio static number, L. negative half cycle limit bit The quasi-fire system is set to be substantially equal to the trough of high _ #唬T, and is preferably set to be slightly larger than the trough value. The CH system is used to compare the high frequency reference (4) τ with a predetermined positive half cycle limit level vH to generate a positive half cycle duty ratio limit signal Η Η. The positive half cycle limit level vH is set to be substantially equal to the high frequency reference signal τ The peak value of the wave is preferably set to be slightly smaller than the peak 佶. 卩 left secret &gt; r , and 哔 value tunneling, PWM comparison circuit 2 (M pulse signal PU_ ρν·b and pw-i Each of them is compared with the positive half-week work ratio limit signal PH by the employee's work week to limit the signal PL· to achieve the effect of the positive half cycle and the negative half cycle work ratio limit. For example, the pulse signal The cutting and negative half-cycle work ratio limit signal pL first = NAND logic gate NL1 performs Nand logic operation, = number is called. Subsequently, the signal PU1 is further subjected to * NAND logic gate ^ + week work ratio limit signal PH for another job Logical operation, thus, can produce the desired work than the finite pulse signal. Therefore, the positive half cycle works more effectively than the limit signal pH to limit the pulse letter 16 1297979 in the PU-ld corresponding to the positive half of the drive signal su Partial work ratio, and negative half-week work ratio limit letter The number PL effectively limits the duty ratio of the pulse signal PU-1 d corresponding to the negative half cycle portion of the drive signal su. Even at the motor drive power / ', L lm and the current command signal 1 〇〇 111 are too large In this case, the brushless motor driving device according to the present invention can effectively limit the duty ratio and frequency of the pulse L number PU ld Pv_id and pw_ld, thereby ensuring reliable operation of the motor. Fig. 4 (4) shows the PWM according to the second embodiment of the present invention. A detailed circuit diagram of the comparison circuit 20-2 and the duty ratio limiting circuit 21_2. Fig. 4 is a timing chart showing the operation waveforms of the PWM comparison circuit 2?_2 and the duty ratio limiting circuit 21_2 according to the second embodiment of the present invention. Since the three-phase coil of the motor μ and each phase of the W operate in a similar waveform, for the sake of simplicity of explanation, the head 4(b) only displays the waveform timing diagram of the coil u associated with the motor M during operation. . The PWM comparison circuit 2G_2 includes three three-input comparators clu, (10), and CLW. The three-input comparator comparator cj has two non-inverting inputs 'respectively for receiving the drive signal and the negative half cycle limit level I and one inverting input terminal' for receiving the high frequency reference signal T: the standard position The VL system is set to be substantially equal to the high frequency reference signal τ, which is set to be slightly larger than the valley value. Once the high frequency reference signal Τ is less than any of the drive signal SU and the negative half cycle limit level V1, the three-transistor two-terminal comparator CLU is triggered to output a high level signal. Therefore, the pulse signal pu_2 generated by the third ::: comparator CLU has been characterized by the weekly duty ratio limit. Similarly, the pulsed signal PV_2 of 17 1297979 generated by the three-input comparator (10) has the characteristics of negative half cycle work ratio ~ limit. 1. Input the pulse signal p generated by the comparator CLW: the characteristic of the weekly duty ratio limit. , eight have a negative working limit (4) Road 21_2, for the pulse signal and PW · 2 for the positive half cycle work ratio limit. The comparator CH is used to: 2:: wide and the predetermined positive half cycle limit level to generate: === number. H. The positive half cycle limit level % is set to the peak value of the real two &quot; and is preferably set to be slightly smaller than the wave peak. Subsequently, the PWM compares ^ pU_2, pVj . The pulse signal generated by KM 2〇·2 is compared with the signal ΡΗ to achieve the effect of the positive + weekly duty ratio limit with w , 乂 . :: and:, the pulse signal PU_2 and the positive half cycle work ratio limit signal pH = NAND logic gate Nm for nand logic operation, so that the desired work ratio finite pulse signal PU-2d can be produced. b positive half cycle work than the limit signal PH effectively limits the duty ratio of the pulse signal PU-2d corresponding to the positive half cycle portion of the drive signal, I negative + weekly guard ratio limit signal PL effectively limits the pulse signal p, : Pair: The working ratio of the negative half-cycle portion of the drive signal SU. Even in the case where the motor drive current &amp; and the current command signal 1_ are too far apart: the brushless motor drive device according to the present invention can effectively limit the duty ratio and frequency of the pulses AU 2d PV-2d and pw_2d, This ensures that the motor operates reliably. Fig. 5 (4) shows a detailed circuit diagram of the PWM comparison circuit 2〇-3 and the duty ratio limiting circuit 仏3 according to the third embodiment of the present invention.胄 ) 显示 显示 18 1297979 According to the present invention, the FWM comparison circuit 2 of the third embodiment operates on a waveform diagram of the operation waveform 21-3. Since the horse μ, the working ratio U, V, and the three-phase coiling of the π Μ Μ 说明 说明 说明 说明 导 导 导 导 导 导 导 导 导 导 导 导 导 导 导 导 导 导 导 导 导 导 导 导 导 导 导 导 导 导 导The order of the wave during the work. U is operating in comparison circuit 2. _3 includes three three-input comparators (10), terminals, and eight-input comparators (10) with two inverting inputs =: another to receive the drive signal su and the positive half-cycle limit level VH, and a non-inverting The input terminal is used to receive high frequency participation, and 1 is, 隹, and / is T. The positive half cycle limit level VH is set to be equal to the high frequency reference signal value &apos; and is preferably set to be slightly smaller than the wave peak. - Day: / Into the second and positive half-week limit level VH, the three-input j-in = the pulse signal Pu_3 generated by the parent-child CHU already has the characteristic of the work-to-work ratio limit. Similarly, the second /, the generated mail IA - input pulse 鳊 comparator CHV pulse "No. pV-3 already has abundance. Three-wheeled human comparator CHW production work than the limit of the specific positive half-week work ratio limit The pulse signal PW·3 has been limited to the pulse signal PU+PV-3, a r W-3 input negative half cycle working high frequency reference signal τ and predetermined / week. The CL system is used to compare the half-week work ratio PP 4丨π A Bayan weekly limit level vL to produce a negative D-Q ratio ratio limit signal PL. The warehouse quality is equal to the high-frequency reference signal T wave ^ ^ level The 1 system is set to the real valley value. Subsequently, the PWM ratio: 2 is preferably set to a pulse signal 19 1297979 generated by the slightly larger egg path 20-3. Each of PU-3 and Pm PW-3 is respectively The negative half cycle operation is compared with the limit signal PL to achieve the effect of the negative half cycle duty ratio limit. For example, the pulse signal PU _ 3 and the negative half cycle duty ratio limit signal pl perform NAND logic operations via the NAND logic gate NL1, This produces the desired working ratio finite pulse signal pi%. Therefore, the positive half cycle duty ratio limit signal The pH effectively limits the duty ratio of the pulse signal PU-3d corresponding to the positive half cycle portion of the drive signal su, and the negative half cycle duty ratio limit signal PL effectively limits the negative of the pulse signal PU-3d corresponding to the drive signal su The working ratio of the half-cycle portion. Even in the case where the difference between the motor drive current Im and the current command signal Ic〇m is too large, the brushless motor driving device according to the present invention can effectively limit the pulse signals PU-3d, PV- 3d, working ratio and frequency with PW_3d, thus ensuring reliable operation of the motor. Fig. 6(a) shows a detailed circuit diagram of the pwM comparison circuit 214 and the duty ratio limiting circuit 21_4 according to the fourth embodiment of the present invention. 胄6(8) shows Lu The operation waveform timing chart of the PWM comparison circuit 2〇_4 and the duty ratio limiting circuit 21-4 according to the fourth embodiment of the present invention. Since the three-phase coils u, =V, and W of the motor m are similar to each other The waveform is operated, so it is shown in Fig. 6(b) only the waveform timing diagram of the coil U associated with the motor μ during operation. The WM ratio ruling circuit 2〇·4 includes three three-input terminals. Comparators cLu, CLV and CLW, and three three losers The input comparators CHu, chv, and the PWM comparator circuit 20_4 are substantially combined by the PWM comparison circuit 2〇_2 of FIG. 4(a) and the pWM comparison circuit 2〇_3 of FIG. 5(4). On the other hand, the pulse signals PU-4a, PV-4a, and PW-4a generated by the three three-input comparators CLU, CLV, and CLW, respectively, have a negative half-cycle duty ratio limitation. On the one hand, the pulse signals pu_4b, PV_4b, and Xiao Pw_4b generated by the three three-wheeled-end comparators CHU, CHV, and CHW, respectively, have the characteristics of a positive half-cycle duty ratio limitation. The duty ratio limiting circuit 21_4 is provided with three inverters π, ΐ2, and Η for generating inverted pulse signals pu_4a, pv_4a, and pw_4a. In addition, the working ratio limiting circuit 21_4 is further provided with three multiplexers (_ screaming M1, M2, and M3. The multiplexer M1 has two source inputs for respectively receiving the inverted pulse signal Pu_4a, and the pulse signal The multiplexer M1 has a selective input terminal 'for receiving the polarity selection signal. Specifically, the polarity selection signal psu is used to indicate the polarity of the driving signal SU, that is, the positive half cycle state or the negative half. Week state. When the drive flag su is in the positive half cycle state, the polarity selection signal psu controls the multiplexed cry (4) to output the inverted pulse money PU_4a as a work to achieve the desired duty ratio limit than the finite pulse signal. When the signal su is in the negative half cycle state, the polarity selection signal psu controls the multiplexed crying (4) output pulse signal PU_4b as the working ratio finite pulse signal ρυ, thereby achieving the desired working ratio limit. The same principle 'multiplexer M2 has Two source inputs for respectively receiving the inverted pulse signal PV_4a and the pulse balance signal pv_4b. The multiplexed crying] has a selection input terminal for receiving the polarity selection signal PSVf and In other words, the polarity selection signal E psv is used to indicate the polarity of the driving signal sv 21 1297979 i. that is, the positive half cycle state or the negative half cycle state. When the driving signal sv is in the positive half cycle state, the polarity selection signal The psv control multiplexer M2 outputs the inverted pulse signal PV_4a as the working ratio finite pulse signal ρν_~ to achieve the desired duty ratio. When the drive signal sv is in the negative half cycle, the polarity selection signal Psv The control multiplexer M2 outputs the pulse signal PV-4b as the working ratio finite pulse signal pv_4d, thereby achieving the desired working ratio limit. 'Similarly, Xigongyi M3 has two source inputs for respectively receiving the opposite The phase pulse signal PW-4a has a selection input terminal for receiving the polarity selection signal pSwf° and the polarity selection signal PSW is used to indicate the driving signal sw. The extreme f is also a positive or negative half-week state. When the drive signal is in the positive half cycle state, the polarity selection signal psw controls the multiplexer M3 to output the inverted phase pulse signal PW-4a as the duty ratio finite pulse signal pw乂 to achieve the desired duty ratio. When the drive (four) sw is in the negative half cycle state, the polarity selection signal PSW controls the multiplexer (10) to output the pulse signal PW shoulder as the work ratio finite pulse of the tiger team 4d, thereby achieving the desired work ratio limit. Although the present invention has been described by way of illustration of preferred embodiments, it is understood that the invention is not limited to the disclosed embodiments. Rather, the invention is intended to cover such modifications as the subject matter of those skilled in the art. Due to &amp;, the scope of the patent application scope should be based on the extensive &amp; release to accommodate all such modifications and similar configurations. 22 1297979 [Simple diagram of the diagram] Circuit block diagram of the brush motor drive unit. The waveform of the operation of the brush motor driving device Fig. Ha) shows the conventional no. Fig. 1(b) shows a conventional disorder diagram. 2 shows a circuit block of a brushless motor driving device according to the present invention. FIG. 3(a) shows a PWM comparison circuit according to a second embodiment of the present invention.

與工作比限制電路之詳細電路圖。 圖3(b)顯不依據本發明莖 佩+ %明弟一實施例之pwM比較電路 與工作比限制電路之操作波形時序圖。 圖4(a)顯示依據本發明筮-每 5弟一貝施例之PWM比較電路 與工作比限制電路之詳細電路圖。 圖4(b)顯示依據本發明第二實施例之比較電路 與工作比限制電路之操作波形時序圖。 圖5(a)顯不依據本發明第三實施例之比較電路 與工作比限制電路之詳細電路圖。 圖5(b)顯示依據本發明第三實施例之比較電路 與工作比限制電路之操作波形時序圖。 圖6(a)顯示依據本發明第四實施例之卩冒%比較電路 與工作比限制電路之詳細電路圖。 圖6(b)顯示依據本發明第四實施例之pwM比較電路 與工作比限制電路之操作波形時序圖。 【主要元件符號說明】 23 1297979 11 霍爾感測電路 12 信號合成電路 13 PWM比較電路 14 振蘯電路 15 三相切換電路 20 PWM比較電路 21 工作比限制電路Detailed circuit diagram of the circuit with the limit of work. Fig. 3(b) is a timing chart showing the operation waveforms of the pwM comparison circuit and the duty ratio limiting circuit of the embodiment of the present invention. Fig. 4(a) is a detailed circuit diagram showing a PWM comparison circuit and a duty ratio limiting circuit in accordance with the present invention. Fig. 4 (b) is a timing chart showing the operation waveforms of the comparison circuit and the duty ratio limiting circuit in accordance with the second embodiment of the present invention. Fig. 5 (a) shows a detailed circuit diagram of a comparison circuit and a duty ratio limiting circuit in accordance with a third embodiment of the present invention. Fig. 5 (b) is a timing chart showing the operation waveforms of the comparison circuit and the duty ratio limiting circuit in accordance with the third embodiment of the present invention. Fig. 6 (a) is a detailed circuit diagram showing a % comparison circuit and a duty ratio limiting circuit in accordance with a fourth embodiment of the present invention. Fig. 6 (b) is a timing chart showing the operation waveforms of the pwM comparison circuit and the duty ratio limiting circuit in accordance with the fourth embodiment of the present invention. [Main component symbol description] 23 1297979 11 Hall sensing circuit 12 Signal synthesis circuit 13 PWM comparison circuit 14 Vibrating circuit 15 Three-phase switching circuit 20 PWM comparison circuit 21 Operation ratio limiting circuit

NL1 〜NL3, NH1 〜NH3 NAND 邏輯閘 CU,CV, CW,CH,CL 比較器 CLU,CLV, CLW,CHU,CHV,CHW 三輸入端比較器 D1〜D6 二極體 EA 誤差放大器 Μ 無刷馬達 Ν1〜Ν3 預先驅動電路NL1 ~ NL3, NH1 ~ NH3 NAND logic gate CU, CV, CW, CH, CL Comparator CLU, CLV, CLW, CHU, CHV, CHW Three-input comparator D1 ~ D6 Diode EA error amplifier Μ Brushless motor Ν1~Ν3 pre-driver circuit

Rs 串聯電阻 S1〜S6 開關 U,V,W 三相線圈Rs series resistor S1 ~ S6 switch U, V, W three-phase coil

Ul,U2, VI,V2, Wl,W2 開關控制端 II〜13 反相器Ul, U2, VI, V2, Wl, W2 Switch Control Terminal II~13 Inverter

Ml〜M3 多工器 HU,HV,HW 位置偵測信號 PH 正半週工作比限制信號 PL 負半週工作比限制信號 PU, PV, PW,PU,,PU” 脈衝信號 24 1297979 PUd, PVd,PWd i作比有限脈衝信號 su,sv,sw,su’,su” 合成信號 T 高頻參考信號 UH,UL,VH,VL,WH,WL 切換信號 UHd5 ULd9 VHd5 VLd? WHd? WLd 工作比有限切換信號Ml~M3 multiplexer HU, HV, HW position detection signal PH positive half cycle work ratio limit signal PL negative half cycle work ratio limit signal PU, PV, PW, PU,, PU" pulse signal 24 1297979 PUd, PVd, PWd i is a finite pulse signal su, sv, sw, su', su" Synthetic signal T High frequency reference signal UH, UL, VH, VL, WH, WL switching signal UHd5 ULd9 VHd5 VLd? WHd? WLd Working ratio limited switching signal

Ierr 電流誤差信號Ierr current error signal

Icom 電流命令信號Icom current command signal

Im 馬達驅動電流Im motor drive current

Vdd 驅動電壓源 VH 正半週限制位準 VL 負半週限制位準 V〇 振幅平均值Vdd drive voltage source VH positive half cycle limit level VL negative half cycle limit level V〇 amplitude average

2525

Claims (1)

1297979 申請專利範圍·· 1. 一種無刷馬達驅動裝置,包含·· -比較電路’用以比較一驅動信號鱼— 生一脈衝信號,其中該驅動信號係關聯於二唬而產 轉且該參考信號之頻率係大於該驅 &gt;·“、刷馬達之運 一切換電路,耦合於一 σ、之頻率; W 口 A 動電壓源枭社A 由該脈衝信號所控制以驅動該無刷馬達/·、b…、刷馬達間, -调整電路,用以依據一電流誤差 信號之振幅與該參考信號之振幅間之調整該驅動 差信號係代表一電流命令信號與’、、亥電流誤 異;以及 馬達驅動電流間之差 一工作比限制電路,具有·· 第—電路,用以產生一第一主^ 弟 +週工作比限制信 第二電路,用以產生一箆— 弟一半週工作比限制信 _ _邏輯電路,用以使該脈衝信號之工作比受 到該第半週工作比限制信號之限制,而產生 號;以及 ^ 邏輯電路’用以使該第一邏輯閘之該輸出 信號之工作比受f丨f姑雄 t 〗該弟二半週工作比限制信號之限制。 號 號; 如申請專利範圍第 該第一電路係由一 項之無刷馬達驅動裝置,其中: 比較器所實施,該比較器具有一第 26 2. 1297979 一類型輸入端,田 入端,用以接收:ΓΓ參考信號;以及一第二類型輸 制位準係大㈣參考信號::準,”該第-半週限 如,申:專利範圍第1項之無刷馬達驅動裝置,其中: -類=r::接一 rr實施,該比較器具η 二類型輸以半週限制位準,以及一第 Μ 1鸲,用以接收該參考信號,1中爷第-半週限 制位準係小於該參考信號之最大值。㈣限 4·如/請專利範圍第1項之無刷馬達驅動裝置,其中: 忒第-邏輯電路係由一 NAND邏輯閘所實施。 5·如申請專利範圍第1項之無刷馬達驅動裝置,其中: 該第二邏輯電路係由—财肋邏輯閘所實施。 6 · —種無刷馬達驅動裝置,包含: 比車又電路,由至少一個三輸入端比較器所實施,用 、、比車乂 ·驅動^ 5虎、一參考信號、與_第一半週限制位 準,而產生一脈衝信號,使得該脈衝信號之第一半週之工 作比受到限制,其中該驅動信號係關聯於一無刷馬達之運 轉且該參考信號之頻率係大於該驅動信號之頻率; 一切換電路,耦合於一驅動電壓源與該無刷馬達間, 由該脈衝信號所控制以驅動該無刷馬達; 27 1297979 一調整電路,用以依據一電流誤差信號而調整該驅動 信號之振幅與該參考信號之振幅間之相對關係,該電流誤 差信號係代表一電流命令信號與一馬達驅動電流間之差 異;以及 一工作比限制電路,具有: 一電路,用以產生一第二半週工作比限制信號, 以及 邏輯電路,用以使該脈衝信號之第二半週之工 作比受到該第二半週工作比限制信號之限制。 7·如申請專利範圍第6項之無刷馬達驅動裝置,其中: 該三輸入端比較器具有兩#第一類型輸入^,用以分 別接收該驅動信號與該第一半週限制位準,以及一第二類 型輸入端,用以接收該參考信號。 8·如申請專利範圍第7項之無刷馬達驅動裝置,其中: 該第-類型輸入端係由一非反相輸入端所實施,並且 該第二類型輸入端係由一反相輸入端所實施。 9·如申請專利範圍第7項之無刷馬達驅動裝置,其中: 該第一類型輸入端係由一反相輸入端所實施,並且 該第二類型輸入端係由一非反相輸入端所實施。 1 〇·如申請專利範圍第6項之無刷馬達驅動裝置,其中· 28 1297979 ^ 該第一半週限制位準係大於該參考信號之最小值。 U•如申請專利範圍第6項之無刷馬達驅動裝置,其中· -該第一半週限制位準係小於該參考信號之最大值。· I1 2·如申請專利範圍第6項之無刷馬達驅動裝置,其中· 一用以產生該第二半週工作比限制信號之該電路係 • 比較器所實施,該比較器具有一第一類型輸入端,用由 收-第二半週限制μ,以及一第二類型輸入端 从 接收該參考信號’其中該第二半週限制 :从 信號之最大值。 於邊參考 13.如申請專利範圍第6項之無刷馬達驅動裝置,其 用以產生該第二半週工作比限制信號之該電 -比較器所實施’㈣較器具有一第一類型輪入端,1297979 Patent Application Range·· 1. A brushless motor driving device comprising: a comparison circuit for comparing a driving signal fish-generated pulse signal, wherein the driving signal is associated with a second turn and the reference is generated The frequency of the signal is greater than the drive&gt;·, the switching circuit of the brush motor is coupled to a frequency of σ; the W port A dynamic voltage source is controlled by the pulse signal to drive the brushless motor/ -, b..., between the brush motor, - an adjustment circuit for adjusting between the amplitude of a current error signal and the amplitude of the reference signal, the drive difference signal representing a current command signal and the ',, current error; And the difference between the motor drive current and the work ratio limiting circuit, having a first circuit for generating a first main brother + weekly work ratio limit signal second circuit for generating a 箆 - brother half-week work ratio Limiting the signal _ _ logic circuit for causing the working ratio of the pulse signal to be limited by the first half of the working ratio limiting signal, and generating a number; and ^ logic circuit 'for the first logic gate The working ratio of the output signal is limited by the limit signal of the second half of the working period of the younger brother. The number of the first circuit is a brushless motor driving device, wherein : The comparator is implemented, the comparator has a 26th, 1297979 type input, a field input terminal for receiving: a reference signal; and a second type of transmission level system (4) a reference signal: The first-half-week limit is as follows: Shen: Patent No. 1 of the brushless motor drive device, wherein: - class = r:: followed by a rr implementation, the comparator η two types are input with a half-cycle limit level, And a first 鸲1鸲, for receiving the reference signal, wherein the first-half-week limit level is less than the maximum value of the reference signal. (4) Limits 4. The brushless motor drive device of the first paragraph of the patent scope, wherein: 忒 The first logic circuit is implemented by a NAND logic gate. 5. The brushless motor driving device of claim 1, wherein: the second logic circuit is implemented by a financial gate. 6 · A brushless motor drive device, including: than the car and the circuit, implemented by at least one three-input comparator, with, than the rut · drive ^ 5 tiger, a reference signal, and _ first half Limiting the level, and generating a pulse signal, such that the working ratio of the first half of the pulse signal is limited, wherein the driving signal is associated with the operation of a brushless motor and the frequency of the reference signal is greater than the driving signal a switching circuit coupled between a driving voltage source and the brushless motor, controlled by the pulse signal to drive the brushless motor; 27 1297979 an adjusting circuit for adjusting the driving signal according to a current error signal a relationship between the amplitude and the amplitude of the reference signal, the current error signal representing a difference between a current command signal and a motor drive current; and a duty ratio limiting circuit having: a circuit for generating a second a half cycle duty ratio limiting signal, and a logic circuit for operating the second half of the pulse signal to be subjected to the second half cycle ratio That the regulating signals. 7. The brushless motor driving device of claim 6, wherein: the three-input comparator has two #1 type inputs ^ for respectively receiving the driving signal and the first half-circle limit level, And a second type of input for receiving the reference signal. 8. The brushless motor driving device of claim 7, wherein: the first type input is implemented by a non-inverting input, and the second type input is provided by an inverting input terminal. Implementation. 9. The brushless motor driving device of claim 7, wherein: the first type of input is implemented by an inverting input, and the second type of input is provided by a non-inverting input. Implementation. 1 〇 · The brushless motor drive device of claim 6 of the patent scope, wherein 28 1297979 ^ The first half cycle limit level is greater than the minimum value of the reference signal. U• The brushless motor driving device of claim 6 wherein the first half cycle limit level is less than the maximum value of the reference signal. · I1 2 · A brushless motor driving device according to claim 6 wherein a circuit type comparator is used to generate the second half cycle duty ratio limit signal, the comparator having a first type The input terminal is limited by the receive-second half cycle μ, and a second type of input terminal receives the reference signal 'where the second half cycle limits: the maximum value of the slave signal. In the brushless motor driving device of claim 6, the electric-comparator for generating the second half-cycle duty ratio limiting signal is implemented by the (four) comparator having a first type of wheel-in. end, 接收該參考信號,以及一第二類型輸入端,用, 二半週限制位準,其中該第-车; 信號之最小值。 +週限制位準係大於該, 14.如申請專利範圍第6項 w w逐驅勃裝置 該邏輯電路係由一 NAND邏輯閘所實施 29 1 5· 一種無刷馬達驅動裝置,包含: 2 一比較電路,由至少—個第-三輸人端比較器與 I297979 個第一二輸入端比較器所實施,該第一三輸入端比較器 以比較一驅動信號、一參考信號、與一第一半週限制位 準 ’而產生一第一脈衝信號,使得該第一脈衝信號之第一 半、R 題之工作比受到限制,該第二三輸入端比較器用以比較 Μ驅動信號、該參考信號、與一第二半週限制位準,而產 生〜第二脈衝信號,使得該第二脈衝信號之第二半週之工 作 、&lt; tb受到限制’其中該驅動信號係關聯於一無刷馬達之運 鲁轉且該參考信號之頻率係大於該驅動信號之頻率; 一切換電路,耦合於一驅動電壓源與該無刷馬達間, 由上 讀第一脈衝信號與該第二脈衝信號所控制以驅動該無 刷馬達; ^ 一調整電路’用以依據一電流誤差信號而調整該驅動 ^镜之振幅與該參考信號之振幅間之相對關係,該電流誤 差产T7 y * S 5虎係代表一電流命令信號與一馬達驅動電流間之差 異;以及 ^ 、 一工作比限制電路,用以於該驅動信號處於該第一半 ^時供應該第一脈衝信號至該切換電路,並且於該驅動信 號處於該第二半週時供應該第二脈衝信號至該切換電路。 1 6·如申凊專利範圍第丨5項之無刷馬達驅動裝置,其中: 滅第半週限制位準係大於該參考信號之最小值,並 且 該第一半週限制位準係小於該參考信號之最大值。 30 1297979 17.如申請專利範圍第ι5 該第一半週限制位準係小於該 且 〃可彳5唬之最大值,並 該弟一·半週限制位 準係大於該參考信 號之最小值 18. ζ申請專利範圍第15項之無刷馬達驅動裝置,立中, 該弟一三輸入端比較器具有兩個第— 二 以分別接收該驅動信號與該第_ ^ |輸入鈿, 二類型輸入端,用以接收該參考=制位準’以及-第 19.如中請專職㈣15項之無刷馬達驅㈣置,其中·· 該第一二輸入端比較器具有一一 χ 接收該參考信號,以及兩個第 C入端,用以 、 輪入端,用以分別接 收該驅動信號與該第二半週限制位準。Receiving the reference signal, and a second type of input terminal, using a two-half cycle limit level, wherein the first car; the minimum value of the signal. + Week limit level is greater than this, 14. As claimed in the sixth paragraph of the patent application, the logic circuit is implemented by a NAND logic gate. 29 1 5 · A brushless motor drive device, comprising: 2 The circuit is implemented by at least a third-to-three input comparator and an I297979 first two-input comparator, the first three-input comparator comparing a driving signal, a reference signal, and a first half The first limit pulse signal is generated to generate a first pulse signal, so that the first half of the first pulse signal and the working ratio of the R problem are limited. The second three-input comparator is used to compare the Μ drive signal, the reference signal, Restricting the level with a second half cycle to generate a second pulse signal such that the second half of the second pulse signal operates, &lt; tb is limited 'where the drive signal is associated with a brushless motor The frequency of the reference signal is greater than the frequency of the driving signal; a switching circuit is coupled between a driving voltage source and the brushless motor, and reads the first pulse signal and the second pulse The number is controlled to drive the brushless motor; ^ an adjustment circuit for adjusting the relative relationship between the amplitude of the driving mirror and the amplitude of the reference signal according to a current error signal, the current error is generated T7 y * S 5 The tiger system represents a difference between a current command signal and a motor drive current; and a duty ratio limiting circuit for supplying the first pulse signal to the switching circuit when the driving signal is at the first half, and The second pulse signal is supplied to the switching circuit when the driving signal is in the second half cycle. 1 6 . The brushless motor driving device of claim 5, wherein: the first half of the limit level is greater than the minimum value of the reference signal, and the first half cycle limit level is less than the reference The maximum value of the signal. 30 1297979 17. As claimed in the patent application, the first half-circle limit level is less than the maximum value of the 〃5彳, and the first-half-week limit level is greater than the minimum value of the reference signal. ζApplicant's patent range No. 15 brushless motor drive device, Lizhong, the brother one or three input comparator has two first two to receive the drive signal and the first _ ^ | input 钿, two types of input End, for receiving the reference = the standard position and - 19. In the full-time (four) 15 items of the brushless motor drive (four), wherein the first two-input comparator has one-to-one receiving the reference signal And two C-th inlets for the wheel-in terminal to receive the driving signal and the second half-circle limit level respectively. 3131
TW94108150A 2005-03-17 2005-03-17 Brushless motor drive device TWI297979B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94108150A TWI297979B (en) 2005-03-17 2005-03-17 Brushless motor drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94108150A TWI297979B (en) 2005-03-17 2005-03-17 Brushless motor drive device

Publications (2)

Publication Number Publication Date
TW200635202A TW200635202A (en) 2006-10-01
TWI297979B true TWI297979B (en) 2008-06-11

Family

ID=45069261

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94108150A TWI297979B (en) 2005-03-17 2005-03-17 Brushless motor drive device

Country Status (1)

Country Link
TW (1) TWI297979B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI399031B (en) 2009-08-19 2013-06-11 Delta Electronics Inc Motor control apparatus and method thereof
TWI399030B (en) * 2009-08-19 2013-06-11 Delta Electronics Inc Motor controlling apparatus
TWI643442B (en) 2017-09-25 2018-12-01 祥誠科技股份有限公司 Multi-phase brushless dc motor drivng circuit

Also Published As

Publication number Publication date
TW200635202A (en) 2006-10-01

Similar Documents

Publication Publication Date Title
US7015663B1 (en) Brushless motor drive device
CN101796716B (en) Motor drive circuit, method, and cooling device using the same
CN110611419A (en) Virtual resistance gate driver
US9912260B2 (en) Drive control circuit for linear vibration motor and method
JP6937678B2 (en) Semiconductor devices and motor drive systems
CN102136819A (en) Motor drive circuit
JP2008206392A (en) Method and arrangement for reducing pulse width modulation voltage distortion in electrical driving unit
TWI699961B (en) Motor driving circuit and method thereof
TWI221700B (en) Motor driving circuit
TWI297979B (en) Brushless motor drive device
JP2015198510A (en) switching regulator
JP3744735B2 (en) Motor drive device
US10298159B2 (en) Zero crossing detection circuit for motor controller and method therefor
JP2013059233A (en) Inverter control device, inverter device and air conditioner
JP6510594B2 (en) Motor drive device, drive method, and cooling device, electronic device
US6924611B1 (en) Brushless motor drive device
CN103109452A (en) Motor current phase detecting device and motor drive device having same
US10615723B2 (en) Multi-phase brushless DC motor driving circuit
JP2002165462A (en) Semiconductor power converter
US9584052B2 (en) Driving system, apparatus and method for spindle motor
CN100370688C (en) Brushless motor driving device
JP5091618B2 (en) Motor drive circuit, method and cooling device using the same
TWI270247B (en) Brushless motor drive device
JPH0984388A (en) Ac motor controller
JP2012046075A (en) Electric power steering system