TWI270247B - Brushless motor drive device - Google Patents
Brushless motor drive device Download PDFInfo
- Publication number
- TWI270247B TWI270247B TW93125503A TW93125503A TWI270247B TW I270247 B TWI270247 B TW I270247B TW 93125503 A TW93125503 A TW 93125503A TW 93125503 A TW93125503 A TW 93125503A TW I270247 B TWI270247 B TW I270247B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- brushless motor
- circuit
- amplitude
- driving
- Prior art date
Links
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
Description
1270247 九、發明說明: 【發明所屬之技術領域】 尤其關於一種用於 本發明係關於一種馬達驅動裝置 驅動無刷馬達之馬達驅動裝置。t 【先前技術】 圖1(a)顯示習知的1刷民、去s # “、心馬達驅動裝置之電路區塊圖。 參照圖1 (a),馬達Μ為具有二知細门 、有一相線圈U、V、與W之三相 直流無刷馬達。霍爾咸測雷Μ ,, 、 隹_ Α劂電路11設置於馬達Μ周圍,用 、偵測馬it Μ之轉子位置’藉而產生三個位置偵測信號 、HV、與ηW。回應於位置债測信號肪、π、與hw, L號。成電路12產生二個驅動弦波信號su、sv、與sw。1270247 IX. Description of the Invention: [Technical Field] The present invention relates to a motor driving device for driving a brushless motor of a motor driving device. t [Prior Art] Fig. 1(a) shows a circuit block diagram of a conventional brush driver, s #", and a heart motor driving device. Referring to Fig. 1 (a), the motor Μ has a second door and has a Three-phase DC brushless motor with phase coils U, V, and W. The Hall-Sensor Thunder, , , 隹 _ Α劂 circuit 11 is placed around the motor , to detect and detect the rotor position of the horse ' Three position detection signals, HV, and ηW are generated. In response to the position signal measurement signal, π, and hw, L. The circuit 12 generates two driving sine wave signals su, sv, and sw.
隨後’驅動弦波信號SU s V、與SW輸入脈衝寬度調變 (Pulse Width Modulation,PWM)比較電路 13,用以個別獨 立地對於振盪電路14所產生的高頻三角波信號τ進行比 較。基於驅動弦波信號SU、SV、與sW及高頻三角波信 號Τ間之比較,PWm比較電路13產生三個脈衝信號ρυ、 pv、與pw,分別供應至三個預先驅動電路(Pre_driver)N卜 N2、與N3。回應於脈衝信號PU,預先驅動電路N1產生 切換信號UH與UL。回應於脈衝信號pv,預先驅動電路 N2產生切換信號VH與VL。回應於脈衝信號p w,預先驅 動電路N3產生切換信號WH與WL。 三相切換電路15具有開關S1與S2、開關S3與S4、 6 1270247 x及開關S5與S6,分別受到切換信號UH與UL、VH與 VL、以及WH與WL所控制。當開關§丨形成短路時,馬 達驅動電流Im可從驅動電壓源vdd流入線圈u,而當開 關S2形成短路時,馬達驅動電流Im可從線圈口流向地面 $位。當開關S3形成短路時,馬達驅動電流以可從驅動 私壓源vdd流入線圈v,而當開關S4形成短路時,馬達 ^動電概Im可從線圈v流向地面電位。當開關s5形成短 路日寸,馬達驅動.電流Im可從驅動電壓源Vdd流入線圈w, 田開關S6形成短路時,馬達驅動電流可從線圈… 流向地面電位。 為了偵測馬達驅動電流Im,串聯電阻Rs設置於開關 S2、S4、與S6之共同連接點與地面電位間。馬達驅動電 流1瓜流經串聯電阻Rs所造成之電位差提供至誤差放大電 路EA之反相輸入端,作為負回授。誤差放大電路ea比 較代表馬達驅動電流Im的電位差與電流命令信號匕㈣, 而產生電流誤差信號Ierr。信號合成電路12依據電流誤差 信號^而調整驅動弦波信號犯、sv、與請之振幅。 圖1 (bU、員不1白矣口的無刷馬達驅動|置之操作之波形時 序圖。由於馬達Μ之三相線圈U、v、與w之每—相係以 類似的波形進行操作,故為簡化說明起見,圖1(b)僅顯示 關聯於馬達Μ之線圈u於操作時的波形時序圖。參昭圖 1(b),驅動弦波信號su與高頻三角波信號τ經過刚比 較電路13後產生脈衝信號ρυ。具體而言,脈衝信號ρυ 1270247 之高2準係對應於驅動弦波信號su大於高頻三角波信號 。之U况,而脈衝信號pu之低位準則對應於驅動弦波信 號SU小於尚頻二角波信號τ之情況。回應於脈衝信號 PU,預驅動電路N1產生切換信號1111與UL,用以分別控 制開關S 1與s 2。 為了使馬達驅動電流Im被調節成等於電流命令信號 Icom,誤差放大電路EA輸出電流誤差信號⑹至信號合 j電路12 ’用以調整驅動弦波信號su之振幅。舉例而言, 當馬達驅動電流Im小於電流命令信號I⑶m時,電流誤差 信號控制信號合成電路12,使得驅動弦波信號§1;之 振幅k大成為驅動弦波信號su’。從圖i(b)可清楚看出, 振幅較大的驅動弦波信號su,使得PWM比較電路13產生 ,作比較大的脈衝信號pu,。回應於卫作比較大的脈衝信 唬PU,二相切換電路丨5使馬達驅動電流&增加,以更 接近電流命令信號IC0m。 Λ、、、而,在馬達驅動電流1m與電流命令信號Icom兩者 2距太大之情況下,例如馬達M剛開始啟動時馬達驅動電 流幾乎為零,信號合成電路12為了回應極大的電流誤 差信號Ierr甚至可能產生振幅超過高頻三角波信號T之驅 =弦波信號SU”。結果,PWM比較電路13產生頻率低於 二二Γ Γ:號τ之脈衝信號PU”。此種低頻率脈衝信號 k成馬達轉矩漣波過大,以及馬達運轉不流暢之缺 點。再者’低頻率脈衝信號pu,,以相當長的時間持續處於 -位準狀態或低位準狀態,導致三相切換電路15長時間 Ϊ270247 維持於供應或不供 間供應馬達驅動電 15,或因溫度過高 j馬達驅動電流im之操作狀態。長時 流Im可能燒毀馬達Μ與三相切換電路 而觸發保護機制強制關閉電路之操作。 [發明内容】 有鑑於前述問題,本發明之一目 馬達驅翻坡里 π J隹於徒供一種無刷 %動裝置,可限制脈衝信號之工作比。 置f發明之另一目的在於提供-種無刷馬達驅” 置’防止低頻率之脈衝信號產生。 運1動裝 置,:::月之又一目的在於提供一種無刷馬達驅動装 能 脈衝信號長時間持續處於高位準狀態或低位準狀 依據本發明之一離揭短 許女 ^ 〜、樣,獒供一種無刷馬達驅動裝置, 口又有工作比限制電路, 用限制脈衝信號之工作比。霍爾 1 m ^ ^ t位置㈣信號’代表馬達之轉子與線圈間之 , 係。“虎合成電路使位置偵測信號轉換成驅動作 =° 土於驅動信號與高頻參考信號之比較而產生脈衝作 :二以控制切換電路而驅動馬達。電流誤差信號回授調 7動仏號之振幅與高頻參考信號之振幅間之相對關 係’猎而改變脈衝信號之工作比。 在驅動信號之振幅因極大的電流誤差信號而變成 過高頻參考信號之振幅的情況下,由於工作比限制電路^ 制作肖,所產生的脈衝信號仍然具有足夠的頻率與適當 的工作比。因此’卫作比限制電路確保馬達可靠地運轉: 1270247 有效地防止習知技術所引起之缺點。 較佳地,工作比限制電路得 #5¾十 行包合弟一比較器與第一 半又态。弟一比較器基於高頻參考 弟〜比 位準之比較而產生正半週工作 义限制 位準時間係限制成小於或等於 彳。唬之高 古, 、止牛週工作比限制衿% 巧位準時間。第二比較器基於高 4諕之 调阳… 门茨參考仏號與預定的备坐 旒之低位準時間係限制成小 衝^ ^ ^ 乂寺於負+週工作比P艮生丨丨 化旎之低位準時間。 限制 較佳地,預定的正半週限制位準得設定於略小 多考信號之最大值。較佳地,* r 了只疋的負半週限制位準得Μ 疋於略大於高頻參考信號之最小值。 、叹 【實施方式】 下文中之,兒明與附圖將使本發明之前述與其他目 的、特徵、與優點更明顯。茲將參照圖式詳細說明依據本 發明之較佳實施例。 圖2(a)顯示依據本發明之無刷馬達驅動裝置之電路區 塊圖。參知圖2(a) ’馬達Μ為具有三相線圈υ、ν、與w 之二相直流無刷馬達。霍爾感測電路u得包含霍爾感測 為與霍爾放大器。霍爾感測電路11設置於馬達Μ周、圍, 用以產生三個位置偵测信號HU、HV、與HW,分別代表 馬達Μ之轉子與三相線圈υ、ν、與w間之位置關係。位 置偵測信號HU、HV、與Hw之每一個皆為弦波信號,同 !27〇247 步於馬達M之運轉,並且彼此間具有相位差120度。回應 於位置债測信號HU、HV、與HW,信號合成電路12產生 一個驅動信號SU、SV、與SW。 在本發明之一實施例中,驅動信號SU、SV、與SW ^由對應的位置偵測信號HU、HV、與HW經過相位偏移 3〇度而實施,因此波形仍維持於弦波信號。在本發明之另 具施例中’驅動信號SU、sv、與SW得由對應的位置 偵測信號HU、HV、與HW經過相位偏移3Q度並且疊加 ^ ¥的修正化號用以補償因導通延遲(Turn-On Delay)所 ^成的碥電壓偏移而實施,因此其波形變成弦波信號與修 正信號之疊加。有關此等修正信號之可能形態與使用方式 已經揭露於美國專利第5,811,949號内,該技術文獻亦併 入本說明書中作為參考。 在本發明之一實施例中,高頻參考信號τ得由單一個 三角f信號所實施,其中該三角波信號每一週期之振幅平 均值貫質上重合於驅動信號su、sv、或sw每一週期之 振幅平均值。在本發明之另_實施例中,高頻參考信號T ,由具:相同頻率的上三角波信號與下三角波信號:互 cc加所“fe ’其中該上三角波信號之波谷係實質上對應於 該下三角波信號之波峰,並且實似重合於驅動信號I sv:或sw每一週期之振幅平均值。有關上三角波信號與 下二角波信號之疊加使用已經揭露於美國專利第 ,,7唬内,該技術文獻亦併入本說明書中作為參考。 11 1270247 參照圖2(a)與2(b),驅動信號su、sv、與sw輸入 PWM比較電路13,用以個別獨立地對於振盪電路14所產 生的尚頻參考信號τ進行比較。具體而言,pwM比較電 路13包括二個比較器CU、CV、與cW,其中非反相輸入 端分別用以接收驅動信號SU、SV、與SW,而反相輸入端 則用以共同接收高頻參考信號τ。基於驅動信號su與高 頻參考信號· τ間之比較,比車交$⑶產生脈衝信號pu。基 於驅動信號su與高頻參考信號τ間之比較,比較器cv 產生脈衝信號PV。基於驅動信號請與高頻參考信號τ 間之比較,比較器CW產生脈衝信號pw。 依據本發明之無刷馬達驅動裝置設有卫作比限制電 路16’用以限制脈衝信號pu、pv、與帽之工作比。比 較器CH係用以比較高頻參考信號τ與預定的正半週限制 位準νΗ以產生正半週卫作比限制信^ ΡΗ。比較哭 係用以比較高頻參考信號T與預定的負半週限制位準 以產生負半週工作比限制信號pL。隨後,顺比較 電路13所產生的脈衝信號pu、pv、與p ^進仃比較,以達成卫作比限制之效果。在一方面, 為了防止脈衝,信號PU、PV、盥 長的時門n V與PW之馬位準狀態持續太 週工作比限制㈣PH提供—最長可能時 ’應用於向位準狀態。在另一 PU、PV、鱼Pw . 為了防止脈衝信號 -、之低位準狀恶持續太長的時間,負半週工 12 1270247 作比限制信號p L k供一最長可能時間應用於低位準狀 態。藉著工作J^座丨 、 匕限制電路1 6,即使在馬達驅動電流Im與 電流命令传τ C〇m兩者差距太大之情況下,依據本發明 之無刷馬達驅動裝置仍可有效地限制脈衝信號PU、PV、 與PW之工作 下比與頻率,因而確保馬達可靠地運轉。 、/、體而δ,and邏輯閘A1對於脈衝信號pu與正半 週作比限制信號PH進行AND邏輯運算,使得脈衝 士 丰寸間叉到正半週工作比限制信號PH之高位準 才]斤限制。0R邏輯閘01對於脈衝信號PU與負半週工 ?制L諕PL進行〇R邏輯運算,使得脈衝信號pu的 低位準時間党到負半週工作比限制信1 &之低位準時間 所限制。取後,0R邏輯閘04將AND邏輯閘A1之輸出信 號與0R邏輯閘01之輸出信號組合於-起,即可獲得所 期望的工作比有限脈衝信號pud。因A,正半週工作比限 制仏#u PH有效地限制脈衝信號PUd中對應於驅動信號su '半週邛分之工作比,而負半週工作比限制信號PL有 效地限制脈衝信號PUd中對應於驅動信號SU之負半週部 分之工作比。 、口 AND邏輯閘A2對於脈衝信號pv與正半週工作比限 制信號PH進行AND邏輯運算,使得脈衝信號pv的高: 準時間受到正半週卫作比限制信號pH之高位準時間所限 制。OR邏輯閘〇2對於脈衝信號pv與負半週工作比限制 信號PL進行〇R邏輯運算,使得脈衝信號Pv的低位準時 13 Ϊ270247 間受到負半週工作比限制信卢 印% 說PL之低位準時間所限制。 =,⑽邏輯閘〇5將AND邏輯閘心輸出信號與⑽ 邏輯閘02之輸出信號組合 =比有限脈衝信號PVd。因此’正半週工作比限制信號叫 有效地限制脈衝信號PVd中對應於驅動信號sv 部分之工作比,而查京;用丁^^ ^ 作比限制信號PL有效地限制 =Ή PVd中對應於驅動信號sv之負半週部分之工作 AND邏輯閘A3對於脈衝信號pw與正半週工 ^號PH進行AND邏輯運算,使得脈衝信號PW的高位( %間文到正半週工作比限制信號pH之高位準時間所限 二?L 1輯閘〇 3對於脈衝信號P W與負半週工作比限制 WPL進行0R邏輯運算,使得脈衝信號蹲的低位準日士 =到負半週工作比限制信號凡之低位準時間所限制。 ”’〇R邏輯閘06將AND邏輯閘A3之輸出信號 邏輯閘03之輪七 >[古赛έ曰人认 i 翰出 < 虎Β於一起,即可獲得所期望的工 作比有限脈衝信號PWd。因此,正半週工作比限制信號印 有效地限制脈衝信號PWd中對應於驅動信號sw之正 部分之工作比,而負半週工作比限制信號pL有效地限制 脈衝信號PWd中對應於驅動信號請之負半週部分之 比。 1下 口頭> ,¾圖2(a) ’ :!!作比有限脈衝信號pUd、pVd、與 Wd刀別供應至二個預先驅動電路N丄、N2、與N3。回鹿 14 1270247Subsequently, the sine wave signal SU s V and the SW input pulse width modulation (PWM) comparison circuit 13 are used to individually compare the high frequency triangular wave signal τ generated by the oscillation circuit 14 independently. Based on the comparison between the driving sine wave signals SU, SV, and sW and the high frequency triangular wave signal, the PWm comparison circuit 13 generates three pulse signals ρ υ , pv , and pw , which are respectively supplied to three pre-driver circuits (Pre_driver) Nb. N2, and N3. In response to the pulse signal PU, the pre-driver circuit N1 generates the switching signals UH and UL. In response to the pulse signal pv, the pre-driver circuit N2 generates switching signals VH and VL. In response to the pulse signal p w , the pre-drive circuit N3 generates switching signals WH and WL. The three-phase switching circuit 15 has switches S1 and S2, switches S3 and S4, 6 1270247 x and switches S5 and S6, which are controlled by switching signals UH and UL, VH and VL, and WH and WL, respectively. When the switch § 丨 forms a short circuit, the motor drive current Im can flow from the drive voltage source vdd into the coil u, and when the switch S2 forms a short circuit, the motor drive current Im can flow from the coil port to the ground $ bit. When the switch S3 forms a short circuit, the motor drives current to flow from the drive private voltage source vdd to the coil v, and when the switch S4 forms a short circuit, the motor motor current Im can flow from the coil v to the ground potential. When the switch s5 forms a short circuit, the motor is driven. The current Im can flow from the driving voltage source Vdd into the coil w. When the field switch S6 forms a short circuit, the motor driving current can flow from the coil to the ground potential. In order to detect the motor drive current Im, the series resistance Rs is set between the common connection point of the switches S2, S4, and S6 and the ground potential. The potential difference caused by the motor drive current 1 flowing through the series resistor Rs is supplied to the inverting input terminal of the error amplifying circuit EA as a negative feedback. The error amplifying circuit ea compares the potential difference of the motor drive current Im with the current command signal 匕 (4) to generate a current error signal Ierr. The signal synthesizing circuit 12 adjusts the amplitude of the sine wave signal, sv, and amplitude according to the current error signal. Figure 1 (bU, the brushless motor drive of the white port; the timing diagram of the operation of the operation. Since the three-phase coils U, v, and w of the motor are operated in a similar waveform, Therefore, in order to simplify the explanation, FIG. 1(b) only shows the waveform timing chart of the coil u associated with the motor 于 during operation. Referring to FIG. 1(b), the sine wave signal su and the high frequency triangular wave signal τ are passed. The pulse signal ρ 产生 is generated after the comparison circuit 13. Specifically, the high level 2 of the pulse signal ρ υ 1270247 corresponds to the driving sine wave signal su is greater than the high frequency triangular wave signal. The lower condition of the pulse signal pu corresponds to the driving chord. The wave signal SU is smaller than the frequency double-wave signal τ. In response to the pulse signal PU, the pre-drive circuit N1 generates switching signals 1111 and UL for respectively controlling the switches S 1 and s 2. In order to adjust the motor drive current Im Equal to the current command signal Icom, the error amplifying circuit EA outputs a current error signal (6) to the signal j circuit 12' for adjusting the amplitude of the driving sine wave signal su. For example, when the motor driving current Im is smaller than the current command signal I(3)m, Current The error signal control signal synthesizing circuit 12 is such that the amplitude k of the drive sine wave signal §1 is large to drive the sine wave signal su'. It can be clearly seen from the figure i(b) that the amplitude-driven sine wave signal su is such that The PWM comparison circuit 13 generates a relatively large pulse signal pu. In response to the relatively large pulse signal PU, the two-phase switching circuit 丨5 increases the motor drive current & to be closer to the current command signal IC0m. In the case where the motor drive current 1m and the current command signal Icom are too large, for example, the motor drive current is almost zero when the motor M is just started, and the signal synthesizing circuit 12 responds to the extremely large current error signal. The Ierr may even generate a drive sine wave signal SU" whose amplitude exceeds the high frequency triangular wave signal T. As a result, the PWM comparison circuit 13 generates a pulse signal PU" having a frequency lower than the 2nd Γ Γ: τ. This low frequency pulse signal k The motor torque is too large, and the motor is not smooth. The low-frequency pulse signal pu, for a long time, continues to be in the -level state or the low level state, resulting in three The switching circuit 15 is maintained for a long time Ϊ 270247 to maintain or not supply the motor drive power 15 , or because the temperature is too high j motor drive current im operation state. Long-time flow Im may burn the motor Μ and the three-phase switching circuit and trigger the protection mechanism to force The operation of the circuit is closed. [Invention] In view of the foregoing problems, the motor drive of the present invention is provided with a brushless %-moving device, which can limit the working ratio of the pulse signal. The purpose is to provide a kind of brushless motor drive to prevent 'low frequency pulse signal generation. One of the purposes of::: Month is to provide a brushless motor to drive the installed energy pulse signal for a long time at a high level According to one aspect of the present invention, the state or the low level is used for a brushless motor driving device, and the port has a working ratio limiting circuit for limiting the working ratio of the pulse signal. Hall 1 m ^ ^ t position (four) signal ' represents the motor between the rotor and the coil. "The tiger synthesis circuit converts the position detection signal into a drive =°. The pulse is generated by comparing the drive signal with the high-frequency reference signal. The second is to control the switching circuit to drive the motor. The current error signal is feedback. The relative relationship between the amplitude and the amplitude of the high-frequency reference signal 'hunting changes the duty ratio of the pulse signal. In the case where the amplitude of the drive signal becomes the amplitude of the over-high-frequency reference signal due to the extremely large current error signal, The limiting circuit ^ is fabricated, and the generated pulse signal still has sufficient frequency and proper working ratio. Therefore, the 'serving ratio limiting circuit ensures that the motor operates reliably: 1270247 effectively prevents the disadvantages caused by the prior art. The work ratio limit circuit has #53⁄4十行包合弟一 comparator and the first half of the state. The brother-one comparator is based on the high-frequency reference brother ~ than the level comparison to produce a positive half-week work limit limit level time system Limit to less than or equal to 彳. 高 高 高 高 唬 唬 唬 高 高 工作 工作 工作 工作 工作 工作 工作 周 周 周 周 周 周 周 周 周 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二 第二The low reference time of the reference nickname and the predetermined squatting is limited to the small punctuality of ^^^ 乂 于 in the negative + week work ratio P 艮 丨丨 。 。 。 。 。 。 较佳 较佳 较佳 较佳 较佳 较佳 较佳 较佳The weekly limit level is set to the maximum value of the slightly smaller multi-test signal. Preferably, *r has only the negative half-cycle limit level of 疋 疋 略 slightly larger than the minimum value of the high-frequency reference signal. The above and other objects, features, and advantages of the present invention will become more apparent from the embodiments of the invention. Circuit block diagram of a brushless motor driving device according to the present invention. See Fig. 2(a) 'Motor Μ is a two-phase DC brushless motor with three-phase coil υ, ν, and w. Hall sensing circuit u The Hall sensing circuit is included as a Hall amplifier. The Hall sensing circuit 11 is disposed on the circumference of the motor to generate three position detecting signals HU, HV, and HW, respectively representing the rotor of the motor and the three Positional relationship between phase coils υ, ν, and w. Position detection signals HU, HV, and Hw Each of them is a sine wave signal, and the same step 27 247 runs on the motor M, and has a phase difference of 120 degrees from each other. In response to the position debt measurement signals HU, HV, and HW, the signal synthesizing circuit 12 generates a drive signal SU. SV, and SW. In one embodiment of the present invention, the driving signals SU, SV, and SW ^ are implemented by phase offsets of the corresponding position detection signals HU, HV, and HW by 3 degrees, so the waveform remains Maintained in the sine wave signal. In another embodiment of the present invention, the 'drive signals SU, sv, and SW are corrected by the corresponding position detection signals HU, HV, and HW by a phase offset of 3Q degrees and superimposed. The chemical number is used to compensate for the 碥 voltage offset caused by the Turn-On Delay, so the waveform becomes a superposition of the sine wave signal and the correction signal. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; In an embodiment of the present invention, the high frequency reference signal τ is implemented by a single triangular f signal, wherein the amplitude average of each period of the triangular wave signal is consistently coincident with the driving signals su, sv, or sw. The average amplitude of the period. In another embodiment of the present invention, the high frequency reference signal T has: an upper triangular wave signal and a lower triangular wave signal of the same frequency: mutual cc plus "fe', wherein the valley of the upper triangular wave signal substantially corresponds to the The peak of the lower triangular wave signal, and it seems to coincide with the amplitude average of the driving signal I sv: or sw. The superposition of the upper triangular wave signal and the lower two-dimensional wave signal has been disclosed in the US Patent No. 7, 7 This technical document is also incorporated herein by reference. 11 1270247 Referring to Figures 2(a) and 2(b), the drive signals su, sv, and sw are input to the PWM comparison circuit 13 for individually independent of the oscillating circuit 14 The generated frequency reference signal τ is compared. Specifically, the pwM comparison circuit 13 includes two comparators CU, CV, and cW, wherein the non-inverting input terminals are respectively used to receive the driving signals SU, SV, and SW, The inverting input terminal is used to receive the high frequency reference signal τ. Based on the comparison between the driving signal su and the high frequency reference signal τ, the pulse signal pu is generated by the vehicle paying $(3). Based on the driving signal su and the high frequency reference signal. In comparison, the comparator cv generates a pulse signal PV. Based on the comparison between the drive signal and the high frequency reference signal τ, the comparator CW generates a pulse signal pw. The brushless motor drive device according to the present invention is provided with a guard ratio limiting circuit. 16' is used to limit the working ratio of the pulse signals pu, pv, and the cap. The comparator CH is used to compare the high frequency reference signal τ with a predetermined positive half cycle limit level ν Η to generate a positive half cycle guard ratio limit signal ^ The comparison is used to compare the high frequency reference signal T with a predetermined negative half cycle limit level to generate a negative half cycle duty ratio limit signal pL. Subsequently, the pulse signals pu, pv, and p generated by the comparison circuit 13 are generated. ^Into the comparison, to achieve the effect of the ratio of the guard. In one aspect, in order to prevent the pulse, the signal PU, PV, 盥 long time gate n V and PW horse level state continues to be too week work ratio limit (four) PH provides - The longest possible time 'applies to the leveling state. In another PU, PV, fish Pw. In order to prevent the pulse signal -, the low level of the evil lasts too long, the negative half cycle 12 1270247 is the ratio limiting signal p L k for a longest possible time For the low level state. By means of the work 丨, 匕 limit circuit 16, even in the case where the difference between the motor drive current Im and the current command pass τ C〇m is too large, the brushless motor according to the present invention The driving device can still effectively limit the working ratio and frequency of the pulse signals PU, PV, and PW, thus ensuring that the motor operates reliably. , /, body and δ, and logic gate A1 is compared with the pulse signal pu and the positive half cycle. The limit signal PH is AND logic operation, so that the pulse between the fork and the positive half cycle is higher than the limit signal PH. The 0R logic gate 01 is for the pulse signal PU and the negative half cycle system L諕PL The 〇R logic operation is performed such that the low-level time of the pulse signal pu is limited to the negative half-cycle operation of the limit letter 1 & After taking the 0R logic gate 04, the output signal of the AND logic gate A1 and the output signal of the 0R logic gate 01 are combined to obtain the desired working ratio finite pulse signal pud. Because A, the positive half cycle work ratio limit u#u PH effectively limits the duty ratio corresponding to the drive signal su 'half cycle in the pulse signal PUd, and the negative half cycle duty ratio limit signal PL effectively limits the pulse signal PUd Corresponds to the duty ratio of the negative half cycle portion of the drive signal SU. The AND AND logic gate A2 performs an AND logic operation on the pulse signal pv and the positive half cycle duty ratio limit signal PH such that the high pulse timing pv is limited by the positive half cycle guard time than the limit signal pH high level time. The OR logic gate 2 performs a 〇R logic operation on the pulse signal pv and the negative half cycle duty ratio limit signal PL, so that the low level of the pulse signal Pv is between 13 Ϊ 270247 and the negative half cycle is operated. Time is limited. =, (10) Logic Gate 5 combines the AND logic gate output signal with the output signal of (10) Logic Gate 02 = finite pulse signal PVd. Therefore, the 'positive half-cycle work ratio limit signal is called to effectively limit the duty ratio of the pulse signal PVd corresponding to the portion of the drive signal sv, and the checksum is used to limit the signal PL effectively = Ή PVd corresponds to The operation of the negative half-cycle portion of the drive signal sv AND logic gate A3 performs an AND logic operation on the pulse signal pw and the positive half-cycle work PH, so that the high level of the pulse signal PW (% to the positive half cycle work ratio limit signal pH The high level time limit is limited to two? L 1 gate 〇 3 for the pulse signal PW and the negative half cycle work ratio limit WPL 0R logic operation, so that the pulse signal 蹲 low level 日 士 = to negative half cycle work ratio limit signal The low level time limit is limited. "'〇R logic gate 06 will AND logic gate A3 output signal logic gate 03 wheel seven> [古赛έ曰人 recognition i 翰出< The desired duty ratio is the finite pulse signal PWd. Therefore, the positive half cycle duty ratio limit signal print effectively limits the duty ratio of the pulse signal PWd corresponding to the positive portion of the drive signal sw, while the negative half cycle duty ratio limit signal pL is effectively Limit pulse signal P Wd corresponds to the ratio of the negative half-cycle of the drive signal. 1 verbally >, 3⁄4 Figure 2(a) ' :!! is supplied to the two pre-drivers than the finite pulse signals pUd, pVd, and Wd Circuits N丄, N2, and N3. Back to deer 14 1270247
於脈衝信號pud,褡本版么;A 預先驅動電路N1產生切換信號UHd與 ULd。回應於脈衝信號pVd,預先驅動電路Μ產生切換信 3虎 VHd 與 VLd。问 /¾ t 口應於脈衝#號PWd,預先驅動電路N3 產生切換U虎WHd與WLd。預先驅動電路N1、N2、與n3 不僅侍、強脈衝化號之驅動能力,此外並得包含時間延遲 私路’使付所產生的切換信號叫與队、叫與%、 以及㈣與WLd之每一對皆具有非重疊波形特徵。 一相切換電路15具有開關S1與S2、開關S3盥S4、 以及開關85與86,分別受到切換信號叫與队、、% 圈υ愈地電£源Vdd與線圈U間,而開關S2則耦合於線 U與地面電位間。切換信號UHd輸入至端點m,以控 制開關Si,而切換信號ULd則輸入至端點U2,以控制開 關S2。因此,當開關S1形成短路時,馬達驅 汗 可從驅動電壓源Vdd流入線 " 眛,民、杳疏^ 而田開關S2形成短路 輕人於驅動電广1〇1可從線圈〇流向地面電位。開關S3 =:=源與線圈”,而開關S4_於 圈V與地面電位間。切換信號VHd輸入至端" 控制開關S3’而切換信號%則輸入至端 開關善因此,當開關_成短料,料 \控制 可從驅動電壓源Vdd流入線圈v,而當 ,机m 時,馬達驅動電流Im可從線圈v流向地面電:开少广路 輕合於驅動電壓源Vdd與線圈w間,而開關S 6則::= 15 1270247 以 制 Im 線圈W與地面電位間。切施# 換4说WHd輸入至端點W1, 控制開關S 5,而切換作铁? 供L就WLd則輸入至端點W2,以控 開關S6。因此,當開關游a 田珣關形成短路時,馬達驅動電流 可從驅動電壓源Vdd η, ^上 入線圈w,而當開關S6形成短路 時,馬達驅動電流Im可從線圈w流向地面電位。 在本發明之一實施例中,開關s丨、S3、s5之每一個 得由PMOS電晶體所實施,而開關S2、S4、%之每一個 得由NMOS電晶體所實施。在本發明之另—實施例中,開 關S1至S6之每一個得由NM〇s電晶體所實施。In the pulse signal pud, the present version; A pre-drive circuit N1 generates switching signals UHd and ULd. In response to the pulse signal pVd, the pre-driver circuit generates a switching signal 3 Tiger VHd and VLd. Q /3⁄4 t port should be in pulse ##PWd, pre-drive circuit N3 produces switching U Tiger WHd and WLd. The pre-drive circuits N1, N2, and n3 not only have the ability to drive the strong pulse number, but also include the time delay private path. The switching signals generated by the call are called the team, called and %, and (4) and WLd. Both pairs have non-overlapping waveform features. The one-phase switching circuit 15 has switches S1 and S2, switches S3 盥 S4, and switches 85 and 86, which are respectively switched between the switching signal and the team, the % coil, and the source Vdd and the coil U, and the switch S2 is coupled. Between line U and ground potential. The switching signal UHd is input to the terminal m to control the switch Si, and the switching signal ULd is input to the terminal U2 to control the switch S2. Therefore, when the switch S1 forms a short circuit, the motor sweat can flow from the driving voltage source Vdd into the line " 眛, 杳, 杳, and the switch S2 forms a short circuit, and the driver can flow from the coil to the ground. Potential. The switch S3 =:=source and coil", and the switch S4_ is between the loop V and the ground potential. The switching signal VHd is input to the end " control switch S3' and the switching signal % is input to the end switch good, therefore, when the switch _ Short material, material\control can flow from the driving voltage source Vdd into the coil v, and when the machine m, the motor driving current Im can flow from the coil v to the ground electricity: the opening and the wide road are lightly coupled to the driving voltage source Vdd and the coil w And switch S 6::= 15 1270247 to make Im coil W and ground potential. Cut Shi # 4 said WHd input to the end point W1, control switch S 5, and switch to iron? For L on WLd input To the end point W2, to control the switch S6. Therefore, when the switch swims a field to form a short circuit, the motor drive current can be input from the drive voltage source Vdd η, ^ into the coil w, and when the switch S6 forms a short circuit, the motor is driven The current Im can flow from the coil w to the ground potential. In one embodiment of the invention, each of the switches s丨, S3, s5 is implemented by a PMOS transistor, and each of the switches S2, S4, % is derived from an NMOS. The transistor is implemented. In another embodiment of the invention, each of the switches S1 to S6 has Implemented by NM〇s transistors.
在本發明之一實施例中,每對開關S1與S2、開關S3 S4以及開關S5與S6係對應地由每對切換信號UHd 與ULd、VHd與、VLd、以及…札與以硬式斬取(η — Chopping)方式進行調變操作。硬式斬取之調變操作係指在 上側開關(亦即開關S1、S3、與S5)進行on與0FF之PWM 切換時,下側開關(亦即開關S2、S4、與S6)在同一時間則 相反地進行〇FF與〇N之p WM切換。在本發明之另一實 施例中’每對開關S1與S2、開關S3與S4、以及開關S5 與S6係對應地由每對切換信號UHd與ULd、VHd與VLd、 以及WHd與WLd以軟式斬取(s〇ft Chopping)方式進行調變 才呆作。軟式斬取之調變操作係指。在驅動信號SU、SV、與 SW之正半週期間中,上側開關S1、S3、與S5進行0N與 OFF之PWM切換而下側開關s2、s4、與S6則維持於〇FF 狀態時,並且在驅動信號SU、SV、與SW之負半週期間 16 1270247In an embodiment of the present invention, each pair of switches S1 and S2, switch S3 S4, and switches S5 and S6 are correspondingly extracted by each pair of switching signals UHd and ULd, VHd and VLd, and ... The η — Chopping) method performs the modulation operation. The hard-switching modulation operation means that when the upper switch (ie, switches S1, S3, and S5) performs PWM switching between on and 0FF, the lower switch (ie, switches S2, S4, and S6) is at the same time. Conversely, the p WM switching of 〇FF and 〇N is performed. In another embodiment of the present invention, 'each pair of switches S1 and S2, switches S3 and S4, and switches S5 and S6 are soft-ended by each pair of switching signals UHd and ULd, VHd and VLd, and WHd and WLd. Take the (s〇ft Chopping) method to make changes. Soft-tuning modulation operation means. During the positive half cycle of the drive signals SU, SV, and SW, the upper switches S1, S3, and S5 perform PWM switching of 0N and OFF, while the lower switches s2, s4, and S6 are maintained in the 〇FF state, and During the negative half cycle of the drive signals SU, SV, and SW 16 1270247
中,上側開關 SI n i % ^ ηΐ717 & A S2、S4、與S6則i隹广心t 卜側開關 ά 、進 N與〇FF之PWM切換。有關石f彳 斬取盥敕或鉍〜 、巧關硬式 〃、 之操作方法已經揭露於美國專利^ 6,710,572號内,該括十今虹士 、函寻利弟 μ技術文獻亦併入本說明書中作為參考。 為了彳貞測馬逵無垂、、六 ’動電hL Im ’串聯電阻Rs設置於 開關S2、S4、盥u + u 又置於下側 ,、6之共同連接點與地面電位間。 在本發明之另-實施例中,串聯電阻Rs亦得設置於上:Medium, upper switch SI n i % ^ ηΐ717 & A S2, S4, and S6 are the PWM switching of the 隹, N, and 〇FF. The operation method of the stone 彳斩 盥敕 铋 or 铋 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , Reference. In order to detect the horse's sag, the six-th power hL Im ’ series resistor Rs is placed on the lower side of the switch S2, S4, 盥u + u, and the common connection point of 6 and the ground potential. In another embodiment of the invention, the series resistor Rs is also placed on top:
開關S1、S3、盥4门土 1J 、 一 5之共同連接點與驅動電壓源Vdd間。 =達《電流Im流經串聯電阻Rs所造成之電位差提供至 " 大電路EA之反相輸入端,作為負回授。誤差放大 電路EA比較获矣ι、去 弋表馬達驅動電流Im的電位差與電流命令信 ' 而產生電流誤差信號Ierr。信號合成電路12依 據電w誤差彳§號Ierr而調整驅動信號su、Μ、與請之 振幅。 雖然在圖2(a)所示之實施例中電流誤差信號Ierr係供 應至L旒合成電路i2,用以回授調整驅動信號su、sV、 /、 之振幅’但本發明不限於此。如前所述,PWM比較 電路13係基於驅動信號^υ、sv、與SW之振幅與參考信 ^虎T之振幅間之相對關係而決定脈衝信號pu、p V、與p w 之脈衝寬度一。〜因此,在另一實施例中,電流誤差信號Ierr 知供應至振盈電路14,用以回授調整參考信號T之振幅, 藉而達成調整振幅相對關係之效果。在又另一實施例中, 電/4誤差信號Ierr得供應至霍爾感測器n,用以回授調整 17 1270247 位置债測信號HU、HV、與HW之振幅,使得信號合成電 路;12所產生之驅動信?虎su、sv、與請之振幅間接地受 到调整’藉而達成調整振幅相對關係之 整振幅相對關係之技術已經揭露於美國專利第有=^调8 號内,該技術文獻亦併入本說明書中作為參考。 圖2(c)顯示依據本發明之無刷馬達驅動裝置之操作 之波形時序圖。由於馬達M之三相線圈u、v、與%之每 一相係以類似的波形進行操作’故為簡化說明起見,圖抑) 僅顯示關聯於馬達M之線圈U於操作時的波形時序圖。 參照圖2(c),正半週限制位準^係設定成實質上等於高 頻參考信號T之波峰值,且較佳地係設成略小於波峰值^ 用,供應至圖2(b)之比較器CH以產生正半週工作比限制 信號即。負半週限制位準%係設定成實質上等於高頻參 考U T之波奋值’且較佳地係設成略大於波谷值,用以 供應至圖2(b)之比較器^以產生負半週工作比限制信號 PL 〇 當驅動信號SU之振幅小於高頻參考信號τ之振幅 時’工作比限制電路16並無實際作用,亦即所產生的工 作比有限脈衝信號Pud實質上等同於原始的脈衝传號 pu。然而,當驅動信號su之振幅隨著電流誤差信號〜: 之回授調整而變大,以致形成振幅超過高頻參考信號T之 驅動信號SU”時,PWM比較電路13產生一低頻率^脈衝 信號PU,,,其長時間持續處於高位準狀態或低位準狀能。 18 1270247 藉由工作比限制電路1 6,低頻率脈衝信號 u u I鬲位準時 間受到正半週工作比限制信號PH之高位準時間所限制(例 如由圖2(b)之AND邏輯閘A1所達成),且其低位準時間 則受到負半週卫作比限制信號PL之低位準時間所限制(例 =由圖2⑻之OR邏輯閑01所達成)。結果,低頻率脈衝 ^號PU”被調整轉換成工作比有限脈衝信號pUd”,具有相 同於高頻參考信號T之頻率與適當的工作比,藉d而確保: 達可靠地運轉。 … 雖然本發明業已藉由較佳實施例作為例示加以說 明,應瞭解者為:本發明不限於此被揭露的實施例。相反 地’本發明意欲涵蓋對於熟f此項技藝之人士而言係明顯 的各種修改與相似配置。因此,申請 W " A τ月專利乾圍之範圍應根 據取廣的洤釋,以包容所有此類修改與相似配置。 【圖式簡單說明】 圖i⑷顯示習知的無刷馬達驅動裝置之電路 序圖 圖1⑻顯示習知的無刷馬達θ 。 切表置之知作之波形時 圖2⑷顯示依據本發明之無刷馬達驅動裝置之電路區 塊圖。 圖2(b)顯示依據本發 詳細電路圖。 明之工作比限制電路之一例子 ·_動裝置之操作 圖2(C)顯示依據本發明之無刷馬達 19 1270247 之波形時序圖。 【主要元件符號說明】 11 霍 爾 感測電路 12 信 號 合成電路 13 PWM比較電路 14 振 盪 電路 15 二 相 切換電路 16 工 作 比限制電路 A1 ^ -A3 AND邏輯閘 01产 -06 OR邏輯閘 CU,CV,CW,CH,CL 比較器 D1〜D6 二極體 EA 誤差放大器 Μ 無刷馬達 Ν1〜Ν3 預先驅動電路The common connection point of the switches S1, S3, 盥4 gate soil 1J, and 5 is between the driving voltage source Vdd. = The potential difference caused by the current Im flowing through the series resistor Rs is supplied to the inverting input of the large circuit EA as a negative feedback. The error amplifying circuit EA compares the potential difference between the motor driving current Im and the current command signal to generate a current error signal Ierr. The signal synthesizing circuit 12 adjusts the amplitudes of the drive signals su, Μ, and 依 according to the electric w error 彳 § Ierr. Although the current error signal Ierr is supplied to the L旒 synthesis circuit i2 in the embodiment shown in Fig. 2(a) for feedback adjustment of the amplitudes of the drive signals su, sV, /, the present invention is not limited thereto. As described above, the PWM comparison circuit 13 determines the pulse widths of the pulse signals pu, p V and p w based on the relative relationship between the amplitudes of the drive signals υ, sv, and SW and the amplitude of the reference signal T. Therefore, in another embodiment, the current error signal Ierr is supplied to the oscillating circuit 14 for feedbacking the amplitude of the adjustment reference signal T, thereby achieving the effect of adjusting the amplitude relative relationship. In still another embodiment, the electrical/4 error signal Ierr is supplied to the Hall sensor n for feedback adjustment of the amplitude of the 17 1270247 position debt measurement signals HU, HV, and HW to cause the signal synthesis circuit; The drive letter generated? The technology of tiger su, sv, and the amplitude of the request is indirectly adjusted. The technique for achieving the relative amplitude relative relationship of the amplitude-adjusted relationship has been disclosed in U.S. Patent No. No. 8, which is also incorporated in the specification. Used as a reference. Fig. 2(c) is a waveform timing chart showing the operation of the brushless motor driving apparatus according to the present invention. Since the three-phase coils u, v, and % of the motor M are operated in a similar waveform, "for the sake of simplicity of explanation, only the waveform timing of the coil U associated with the motor M is displayed. Figure. Referring to FIG. 2(c), the positive half cycle limit level is set to be substantially equal to the peak value of the high frequency reference signal T, and is preferably set to be slightly smaller than the peak value, and is supplied to FIG. 2(b). The comparator CH is used to generate a positive half cycle duty ratio limit signal. The negative half cycle limit level % is set to be substantially equal to the wave value of the high frequency reference UT' and is preferably set to be slightly larger than the valley value for supply to the comparator of FIG. 2(b) to generate a negative The half cycle duty ratio limit signal PL 〇 When the amplitude of the drive signal SU is less than the amplitude of the high frequency reference signal τ, the 'operation ratio limit circuit 16 has no practical effect, that is, the generated work is substantially identical to the finite pulse signal Pud. Pulse mark pu. However, when the amplitude of the drive signal su becomes larger as the feedback of the current error signal 〜: becomes larger, so that the drive signal SU" whose amplitude exceeds the high-frequency reference signal T is formed, the PWM comparison circuit 13 generates a low-frequency pulse signal. PU,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, The quasi-time limit (for example, is achieved by the AND logic gate A1 of Fig. 2(b)), and its low level time is limited by the negative half cycle of the lower limit level than the limit signal PL (example = by Fig. 2 (8) OR logic idle 01 is achieved. As a result, the low frequency pulse ^PU" is adjusted to be converted into the working ratio finite pulse signal pUd", having the same frequency as the high frequency reference signal T and the appropriate working ratio, by d to ensure: The present invention has been described with reference to the preferred embodiments. It should be understood that the invention is not limited to the disclosed embodiments. Instead, the invention is intended to cover For those skilled in the art, there are obvious modifications and similar configurations. Therefore, the scope of the patent application for W " A τ month should be based on the interpretation of the wide-ranging to accommodate all such modifications and similar configurations. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1(4) shows a circuit diagram of a conventional brushless motor driving device. FIG. 1(8) shows a conventional brushless motor θ. When the waveform is known, FIG. 2(4) shows a brushless motor driving device according to the present invention. Figure 2(b) shows a detailed circuit diagram according to the present invention. An example of the operation ratio limiting circuit is shown in Figure 2. (C) shows the waveform timing of the brushless motor 19 1270247 according to the present invention. Fig. [Description of main component symbols] 11 Hall sensing circuit 12 Signal synthesizing circuit 13 PWM comparison circuit 14 Oscillation circuit 15 Two-phase switching circuit 16 Operation ratio limiting circuit A1 ^ -A3 AND Logic gate 01 -06 OR logic gate CU , CV, CW, CH, CL Comparator D1~D6 Diode EA Error Amplifier Μ Brushless Motor Ν1~Ν3 Pre-Driver Circuit
Rs 串聯電阻 S1〜S6 開關 U,V,W 三相線圈Rs series resistor S1 ~ S6 switch U, V, W three-phase coil
Ul,U2, VI,V2, Wl,W2 開關控制端 HU,HV,HW 位置偵測信號 PH 正半週工作比限制信號 PL 負半週工作比限制信號 PU,PV,PW,PU,,PU” 脈衝信號 20 1270247 PUd? PVd? PWd 工作比有限脈衝信號 su,sv,sw, su,,su” 合成信號 T 高頻參考信號 UH, UL,VH,VL,WH,WL 切換信號 UHd? ULd? VHd? VLd5 WHd? WLd 工作比有限切換信號Ul, U2, VI, V2, Wl, W2 Switch control terminal HU, HV, HW Position detection signal PH Positive half cycle work ratio limit signal PL Negative half cycle work ratio limit signal PU, PV, PW, PU, PU Pulse signal 20 1270247 PUd? PVd? PWd Working ratio finite pulse signal su, sv, sw, su,, su" Synthetic signal T High frequency reference signal UH, UL, VH, VL, WH, WL Switching signal UHd? ULd? VHd ? VLd5 WHd? WLd work ratio limited switching signal
Ierr 電流誤差信號Ierr current error signal
Icom 電流命令信號Icom current command signal
Im 馬達驅動電流Im motor drive current
Vdd 驅動電壓源 VH 正半週限制位準 VL 負半週限制位準Vdd drive voltage source VH positive half cycle limit level VL negative half cycle limit level
Vo 振幅平均值Vo amplitude average
21twenty one
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW93125503A TWI270247B (en) | 2004-08-26 | 2004-08-26 | Brushless motor drive device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW93125503A TWI270247B (en) | 2004-08-26 | 2004-08-26 | Brushless motor drive device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200608695A TW200608695A (en) | 2006-03-01 |
TWI270247B true TWI270247B (en) | 2007-01-01 |
Family
ID=38318592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW93125503A TWI270247B (en) | 2004-08-26 | 2004-08-26 | Brushless motor drive device |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI270247B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011176918A (en) * | 2010-02-23 | 2011-09-08 | On Semiconductor Trading Ltd | Motor driver circuit |
-
2004
- 2004-08-26 TW TW93125503A patent/TWI270247B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW200608695A (en) | 2006-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7015663B1 (en) | Brushless motor drive device | |
US7164245B1 (en) | Brushless motor drive device | |
JPWO2005071827A1 (en) | Motor drive control circuit and motor device using the same | |
US6924611B1 (en) | Brushless motor drive device | |
KR20060136414A (en) | Motor drive control circuit, and motor apparatus using the same | |
TWI400874B (en) | Bi-power motor controlling system and motor controlling apparatus thereof | |
JP3744735B2 (en) | Motor drive device | |
US20020093304A1 (en) | Motor drive device | |
CN113454904B (en) | Motor controller with power feedback loop | |
US10862443B2 (en) | Offset addition circuits for sense transistors | |
JPWO2012035719A1 (en) | Motor current phase detection device and motor drive device using the same | |
JP4062074B2 (en) | Control method of three-phase brushless DC motor | |
TWI270247B (en) | Brushless motor drive device | |
JP4641751B2 (en) | Peak hold circuit, motor drive control circuit including the same, and motor device including the same | |
JP2013094042A (en) | Motor drive device | |
TWI297979B (en) | Brushless motor drive device | |
JP4524592B2 (en) | Motor control device | |
JP4307004B2 (en) | Image forming apparatus and DC motor drive control circuit | |
KR101186160B1 (en) | Universal motor control apparatus | |
KR101367678B1 (en) | Driving apparatus for motor | |
US11196378B2 (en) | Motor control device | |
JP2020058110A (en) | Method for controlling current detection circuit | |
JP4628051B2 (en) | Motor drive device | |
JP2005218261A (en) | Motor drive | |
JP2005204403A (en) | Motor drive |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |