TWI297729B - A flame retardant composition using carbon nanocapsules - Google Patents

A flame retardant composition using carbon nanocapsules Download PDF

Info

Publication number
TWI297729B
TWI297729B TW93141375A TW93141375A TWI297729B TW I297729 B TWI297729 B TW I297729B TW 93141375 A TW93141375 A TW 93141375A TW 93141375 A TW93141375 A TW 93141375A TW I297729 B TWI297729 B TW I297729B
Authority
TW
Taiwan
Prior art keywords
rubber
polymer
flame retardant
retardant composition
copolymer
Prior art date
Application number
TW93141375A
Other languages
Chinese (zh)
Other versions
TW200621954A (en
Inventor
Gan Lin Hwang
Chao Kang Chang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW93141375A priority Critical patent/TWI297729B/en
Priority to DE200510063121 priority patent/DE102005063121A1/en
Publication of TW200621954A publication Critical patent/TW200621954A/en
Application granted granted Critical
Publication of TWI297729B publication Critical patent/TWI297729B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/14Macromolecular materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

1297729 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種難燃組合物,尤指一種含奈米碳球 之難燃組合物。 5 【先前技術】 傳統高分子複材常用之難燃添加劑多使用溴化物,以 -FR_4銅箱基板所用之環氧樹脂為例,常需添加有30%〜40% 的漠化物,才能防火材料達^JUL91_V0制定之難燃規格。 10然而,漠化物雖具有甚佳之難燃特性,但是其卻對環境造 成重大威脅;如以焚化爐回收此類溴化聯苯,不僅會產生 腐蝕性極強之溴自由基與氫化溴(溴酸),更會產生^高毒 性之致癌物質··多漠吱。南(polybrominedibenz〇fur㈣及多 漠戴奥辛⑽ybromine dibenz〇di〇xins)。有鑑於此,歐盟於 15 2004年推動「無幽法案」,因此在防火難燃材料上即開始 出現無齒之難燃添加劑的開發。 難燃添加劑防火的機制主要有三··一是掃除自由基(如 ,素),二4阻氣(如毒占土插層),三則為結晶水的利用(如氫 氧化鋁),然而,無_難燃添加劑必須要再另外使用大量粉 20體’才能達到⑽},制定之難燃規格,但是填充大量粉 體,往往限制了複材的加工與製程成本,而不利 的開發。 呆 奈米碳球是由多層石墨層以球中球的結構所組成的 少面體反蔟,其直徑為介於3〜1〇〇腿,外層具有與多層 1297729 ’、米火I相同的石墨層結構,其可為中空奈米碳球,或内 部填充有金屬、金屬氧化物、金屬碳化物或合金材料的金 U &球。奈米碳球外殼石墨層之中央部分為六圓 衣、、。構ffii在邊角或轉折部分則有五元環組成,每一個碳 5原子皆為SP構造,這種特殊多層石墨結構是造成奈米碳球 具有熱傳導性,導電性,強度佳,化學性穩定等優點的主 因,而奈米碳球石墨殼層表面可進行化學修飾改質,使其 易分散於溶劑中,枝使用,且增加親和力。 由於奈米碳球之另一優點是具有掃除自由基之功 1〇能,與鹵素之防火機制相同,可捕捉火焰燃燒時所產生之 自由基鉍疋同分子基材而達到阻燃之目的,奈米碳球不 但無齒素添加物之環保問題,同時亦具有導電,導熱,電 磁屏蔽且可與高分子材料相容的優點,因此利用奈米碳球 作為難燃添加之劑開發極具市場潛力。 15 【發明内容】 本赉明一種含奈米碳球之難燃組合物,係至少包括: 一奈米碳球;以及一高分子聚合物。 本發明難燃組合物中,奈米碳球係佔該組合物重量百 20分比之比例無限制,較佳為山丨〜川;本發明中適用之奈米 碳球係中空奈米碳球、填充金屬奈米碳球、摻雜異原子的 奈米碳球或官能基化的奈米碳球。 本^明兩分子聚合物可為分子量介於〜1⑼⑹⑼ 之有機咼分子聚合物,如熱塑性高分子聚合物、導電性高 25分子聚合物、液晶高分子聚合物、或橡膠高分子聚合物等。 1297729 上述熱塑性高分子聚合物可為聚二氯亞乙烯 (PVDC)、聚二氯乙烯(PVD)、聚乙烯醋酸(polyvinyl acetate,PVAc)、聚苯乙烯(PS)、丙烯睛一丁二烯一苯乙 烯共聚物(ABS)、聚乙烯(PE)、乙烯一醋酸乙烯酯共聚物 5 (EVA)、聚丙烯(PP)、聚鏈烯烴系列(TPX)、聚曱基丙烯酸 曱酯(PMMA)、乙酸纖維素(Cellulose acetate,CA)、聚四 II 乙稀(polytetrafluoroethylene,PTFE)、聚三氟氯乙稀 (Polychlorotrifluorethylene,PCTFE)、聚醯胺(PA)、聚縮駿 (POM)、聚碳酸月旨(PC)、?武氨酉旨(PU)、聚對苯二曱酸乙二 10 醇酉旨(PETP)、克維拉纖維(Kevlar)或其共聚合物。 上述導電性高分子聚合物可為聚苯胺(Polyaniline, PAN)、聚嘻(Polypyrrole,PPy)、聚σ塞吩衍生物 (Polythiophenes)、聚乙炔(Polyacetylene,PAc)、聚對苯 (Poly(para-phenylene)) 、 聚苯基 乙烯基 15 (Poly(para-phenylene-vinylene)? PPv)或其共聚合物。 上述液晶高分子聚合物之分子結構可含有不對稱中 心,為長棒狀或平版狀;較佳之液晶高分子聚合物為有機 鹽類、脂肪縮酸衍生物、芳香族縮酸及其衍生物、醚類及 酮類分子之衍生物、多環碳化氫及其衍生物、甲亞胺化合 20 物(azomethine化合物)、°比 σ定(C5H5N)及乙二酸(glyoxal)衍 生物、偶氮(azo)化合物、雙甲亞胺化合物(bisazomethine 化合物)、甲亞胺偶氮化合物(azomethin-azo)、氧化偶氮化 合物 (azoxy compound)、甲亞胺氧化偶氮化合物 (azomethin-azoxy)、二硫醚(disulphide)、固醇(sterol)或類 1297729 固醇(steroid)衍生物。 上述橡膠高分子聚合物可為聚異戊二烯橡膠(NR)、異 戊二烯橡膠(Isoprene rubber,IR)、苯乙烯一丁二烯橡膠 (Styrene-butadiene rubber,SBR)、聚丁二烯橡膠(BR)、異 5 丁烯·異戊二烯(丁基)橡膠(IIR)、乙烯丙烯非共輛二烯橡膠 (Ethylene-propylene-non-conjugated diene rubber, EPDM)、丁睛橡膠(NBR)、?炎氯丁二烯橡膠(CR)、丙烯酸 酯橡膠(ACM)、氯醚橡膠(CO)、共聚型氯醚橡膠(ECO)、 氟素橡膠(FKM)、聚氨甲酸乙酯橡膠(PU)、氯磺化聚乙烯 10 橡膠(CSM)、硫磺系橡膠等高分子聚合物或其共聚物。 【實施方式】 實施例1 將稀硝酸滴入硝酸鈉中,所產生之no2自由基氣體導 15 入含有奈米碳球之曱苯溶液中,以製備出HCNC-(N02)n的 產物,再以NaOH溶液進行水解,所產生 性產物溶解度為260mg/L。 以UV進一步鑑定產物,可發現在264nm處有弱的吸收 峰,而以IR鑑定,則發現在約3400cm·1處有-OH之吸收, 20 在約1385cm·1及1030CHT1處則有C=C雙鍵之吸收。 奈米碳球掃除自由基的反應式如下:1297729 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a flame retardant composition, and more particularly to a flame retardant composition comprising nanocarbon spheres. 5 [Prior Art] Most of the flame retardant additives commonly used in traditional polymer composites use bromide. For the epoxy resin used in the -FR_4 copper box substrate, it is often necessary to add 30% to 40% of desertification to fireproof materials. The flame retardant specifications set by ^JUL91_V0. 10 However, although deserts have excellent flame retardant properties, they pose a major threat to the environment; for example, the recovery of such brominated biphenyls by incinerators will not only produce highly corrosive bromine radicals and hydrogenated bromine (bromine). Acid), it will produce high-toxic carcinogens · · more desert. South (polybrominedibenz〇fur (four) and multi-dioxin (10) ybromine dibenz〇di〇xins). In view of this, the EU promoted the “No Quiet Act” in 15 2004, so the development of toothless and flame retardant additives began to appear on fire-resistant and flame-retardant materials. There are three main mechanisms for fire prevention of flame retardant additives: one is to remove free radicals (such as sulphate), the second is to block gas (such as poisonous soil intercalation), and the third is to use crystallization water (such as aluminum hydroxide), however, No _flammable additives must be used in addition to a large number of powders 20 to achieve (10)}, the development of flame retardant specifications, but filled with a large number of powders, often limit the processing and process costs of composite materials, unfavorable development. The nanocarbon sphere is a louver ruthenium consisting of a multi-layered graphite layer with a spherical ball structure. The diameter is between 3 and 1 leg, and the outer layer has the same graphite as the multilayer 1297729' and the rice fire I. A layer structure, which may be a hollow nanocarbon sphere, or a gold U & ball filled with a metal, metal oxide, metal carbide or alloy material. The central part of the graphite layer of the carbon sphere shell is a six-round garment. The structure ffii has a five-membered ring at the corner or the turning part, and each carbon 5 atom is an SP structure. This special multilayer graphite structure causes the carbon sphere to have thermal conductivity, conductivity, strength, and chemical stability. The main reason for the advantages, and the surface of the nanocarbon carbon graphite shell can be chemically modified to make it easy to disperse in the solvent, use it, and increase the affinity. Another advantage of the nano carbon sphere is that it has the function of sweeping away free radicals. It has the same fire-preventing mechanism as halogen, and can capture the free radicals generated by the flame combustion to achieve the purpose of flame retardant. Nano carbon ball not only has the environmental protection problem of dentate additives, but also has the advantages of conduction, heat conduction, electromagnetic shielding and compatibility with polymer materials. Therefore, the use of nano carbon spheres as a hard-to-burn additive has developed a market. potential. [Explanation] A non-flammable composition containing nano carbon spheres includes at least: a nano carbon sphere; and a high molecular polymer. In the flame retardant composition of the present invention, the ratio of the nanocarbon spheres to the weight ratio of the composition is not limited, and is preferably hawthorn~chuan; the nano carbon sphere hollow nanocarbon spheres suitable for use in the present invention Filled with metal nanocarbon spheres, heteroatom-doped nanocarbon spheres or functionalized nanocarbon spheres. The two molecules of the polymer may be an organic germanium molecular polymer having a molecular weight of ~1(9)(6)(9), such as a thermoplastic polymer, a highly conductive 25 molecule polymer, a liquid crystal polymer, or a rubber polymer. 1297729 The above thermoplastic polymer may be polyvinylidene chloride (PVDC), polyvinyl dichloride (PVD), polyvinyl acetate (PVAc), polystyrene (PS), acrylonitrile butadiene. Styrene copolymer (ABS), polyethylene (PE), ethylene-vinyl acetate copolymer 5 (EVA), polypropylene (PP), polyalkenyl series (TPX), polydecyl methacrylate (PMMA), Cellulose acetate (CA), polytetrafluoroethylene (PTFE), polychlorotrifluorethylene (PCTFE), polydecylamine (PA), polycondensation (POM), polycarbonate Purpose (PC),? Ammonia (PU), polyethylene terephthalate (PETP), Kevlar (Kevlar) or a copolymer thereof. The conductive polymer may be polyaniline (PAN), polypyrrole (PPy), poly thiophene derivative, polyacetylene (PAc), poly(p-phenylene) (Poly(para). -phenylene)), Poly(para-phenylene-vinylene) PPv or a copolymer thereof. The molecular structure of the liquid crystal polymer may contain an asymmetric center and is a long rod or a flat plate; preferably, the liquid crystal polymer is an organic salt, a fatty acid derivative, an aromatic acid and a derivative thereof, Derivatives of ethers and ketone molecules, polycyclic hydrocarbons and their derivatives, carbamide compounds (azomethine compounds), σ sigma (C5H5N) and glyoxal derivatives, azo ( Azo) compound, bisazomethine compound, azomethin-azo, azoxy compound, azomethin-azoxy, disulfide An ether (disulphide), sterol or a steroid derivative such as 1297729. The rubber polymer may be polyisoprene rubber (NR), isoprene rubber (IR), Styrene-butadiene rubber (SBR), polybutadiene. Rubber (BR), iso-5-butene-isoprene (butyl) rubber (IIR), ethylene-propylene-non-conjugated diene rubber (EPDM), butadiene rubber (NBR) ),? Inflammatory chloroprene rubber (CR), acrylate rubber (ACM), chloroether rubber (CO), copolymerized chloroether rubber (ECO), fluorocarbon rubber (FKM), polyurethane rubber (PU), High molecular weight polymer such as chlorosulfonated polyethylene 10 rubber (CSM) or sulfur rubber or a copolymer thereof. [Embodiment] Example 1 Diluted nitric acid was dropped into sodium nitrate, and the generated no2 radical gas was introduced into a toluene solution containing nanocarbon spheres to prepare a product of HCNC-(N02)n. Hydrolysis was carried out with a NaOH solution, and the solubility of the resulting product was 260 mg/L. Further identification of the product by UV revealed a weak absorption peak at 264 nm, while IR identification showed absorption of -OH at about 3400 cm·1, and 20 at C. Absorption of double bonds. The reaction formula of the carbon sphere sweeping free radicals is as follows:

利用電子自旋光譜(ESR)研究水溶性奈米碳球對-0H 1297729 以及過氧化物自由基的掃除效果分析,-OH自由基是以亞 鐵離子與雙氧水反應而產生,並利用常見的DMPO藥物以 及C3C60做比較,由於DMPO之標準量為習知,因此可藉此 比較求出水溶性奈米碳球掃除自由基之速率。結果請參考 5圖1電子自旋光譜圖以及表1。 表1、水溶性奈米碳球與DMPO及C3C6〇掃除自由基效果比 較表 掃除自由基速率(g/iyV1 -OH自由基 過氧化物自由基 DMPO 1.6xl07 8.8Χ10'1 C3C60 6·3±0·9χ107 6.0±0.Ίχ\0'{ 水溶性奈米碳球 1·16χ108 0.3 實施例2 10 取帶有-OH官能基之中空奈米碳球(HCNC-OH)50g,加 入盛有1000ml異丙醇(IPA)溶液的圓底瓶中,經過60分鐘的 超音波震盪後,再加入lml之HC1 ;接著以水浴加熱上述反 應液至90°C恆溫,在磁石攪拌下,將10g之VTMOS逐滴滴 加入反應液中,反應於2小時後完成。 15 將反應完成之溶液以5000rpm離心20分鐘,除去上清 液,並將沈澱物刮下置於盛盤中,以80°C烘乾。 取產物100g,以1%、5%、10%、15%與20%添加量, 以三滾筒混合矽橡膠製成填充奈米碳球/矽橡膠複合材 料。依照UL94V0規範之自燃性實驗分析試片點火後之火焰 20 熄滅時間,十秒内熄滅為合格之防火要求。結果請見下表2: 表2、自燃性實驗分析 1297729 石夕橡膠填充 奈米奴球含 量 燃燒秒數(五重複) 平均秒數 第一次試驗 第二次試驗 第一次試驗 第二次試驗 0% CNC 燒光、燒光、 燒光、燒光、 燒光 - >90 - 5% CNC 13、26、15、 14、18 4、0、0、8、 16 17.2 5.6 10% CNC 23、12、9、 17、14 0、0、19、0、 0 15 3.8 15% CNC 3、4、3、4、 2 0、10、0、0、 0 3.2 2 20% CNC 1、10、13、 12、5 5、3、0、0、 0 8.1 1.6 上述實施例僅係為了方便說明而舉例而已,本發明所 主張之權利範圍自應以申請專利範圍所述為準,而非僅限 於上述實施例。 【圖式簡單說明】 圖1係本發明實施例1之電子自旋光譜圖。 【主要元件符號說明】 10無Electron spin spectroscopy (ESR) was used to study the sweeping effect of water-soluble nanocarbon spheres on -0H 1297729 and peroxide radicals. The -OH radicals were produced by reacting ferrous ions with hydrogen peroxide and using common DMPO. Comparing the drug with C3C60, since the standard amount of DMPO is conventional, the rate at which the water-soluble nanocarbon balloon sweeps away free radicals can be obtained by comparison. For the results, please refer to Figure 5 for the electron spin spectrum and Table 1. Table 1. Comparison of free radical scavenging effects of water-soluble nanocarbon spheres with DMPO and C3C6 表 sweeping free radical rate (g/iyV1 -OH radical peroxide radical DMPO 1.6xl07 8.8Χ10'1 C3C60 6·3±0 ·9χ107 6.0±0.Ίχ\0'{ Water-soluble nanocarbon spheres 1.16χ108 0.3 Example 2 10 Take 50g of hollow nanocarbon spheres (HCNC-OH) with -OH functional group, add 1000ml In a round bottom bottle of propanol (IPA) solution, after 60 minutes of ultrasonic vibration, add 1 ml of HC1; then heat the reaction solution to a constant temperature of 90 °C in a water bath, and 10 g of VTMOS under magnet stirring. The dropwise addition was added to the reaction solution, and the reaction was completed after 2 hours. 15 The reaction-completed solution was centrifuged at 5000 rpm for 20 minutes, the supernatant was removed, and the precipitate was scraped off and placed in a tray, and dried at 80 °C. Take 100g of the product, and fill the nano carbon ball/ruthenium rubber composite material with the addition of 1%, 5%, 10%, 15% and 20% with three drums. The pyrophoric test analysis according to UL94V0 specification After the piece is ignited, the flame 20 is extinguished and extinguished within 10 seconds as a qualified fire protection requirement. The results are shown in Table 2 below: Table 2 Self-ignitability test analysis 1297729 Shi Xi rubber filled nanosphere content burning seconds (five repetitions) average seconds first test second test first test second test 0% CNC burned, burned, burned Light, burnt, burnt - >90 - 5% CNC 13,26,15,14,18 4,0,0,8,16 17.2 5.6 10% CNC 23,12,9,17,14 0,0 , 19, 0, 0 15 3.8 15% CNC 3, 4, 3, 4, 2 0, 10, 0, 0, 0 3.2 2 20% CNC 1, 10, 13, 12, 5 5, 3, 0, 0 0 8.1 1.6 The above embodiments are merely examples for convenience of description, and the scope of the claims should be based on the scope of the patent application, and is not limited to the above embodiments. [Simplified illustration] FIG. The electron spin spectrum of the embodiment 1 of the present invention. [Description of main component symbols] 10 None

Claims (1)

1297729 十、申請專利範圍: !· 一種含奈米碳球之難燃組合物,係至少包括: 一奈米碳球;以及 一南分子聚合物。 5 2·如申請專利範圍第1項所述之難燃組合物,其中該 奈米碳球係佔該組合物重量百分比之〇.丨〜7〇。 3·如申請專利範圍第1項所述之難燃組合物,其中該 奈米碳球係中空奈米碳球、填充金屬奈米碳球、換雜異原 子的奈米碳球或官能基化的奈米碳球。 H ίο 4·如申請專利範圍第1項所述之難燃組合物,其中該 高分子聚合物係熱塑性高分子、導電性高分子、液晶高分 子或橡膠高分子。 5.如申請專利範圍第4項所述之難燃組合物,其中該 熱塑性高分子為聚二氯亞乙烯、聚二氯乙烯、聚乙烯醋酸、 15聚苯乙烯、丙烯睛丁二烯苯乙烯共聚物、聚乙烯、乙烯一 醋酸乙稀醋共聚物、聚丙稀、聚鏈稀煙系列、聚甲基丙烯 酸曱醋、乙酸纖維素、聚四I乙稀、聚三免氯乙稀、㈣ ^ 胺、聚縮醛、聚碳酸脂、聚氨酯、聚對苯二曱酸乙二醇酯、 克維拉纖維或其共聚合物。 20 6·如申請專利範圍第4項戶斤述之難燃組合物,其中該 導電性咼分子係聚笨胺、聚咯、聚噻吩衍生物、聚乙炔、 聚對笨、聚笨基乙稀基或其共聚合物。 7·如申請專利範圍第4項所述之難燃組合物,其中該 液晶鬲分子之分子結構為含有不對稱中心之長棒狀或平版 11 1297729 狀0 8·如申請專利範圍第7項所述之難燃組合物,其中該 液晶高分子為有機鹽類、脂肪縮酸衍生物、芳香族縮酸及 其衍生物、醚類及酮類分子鏈之衍生物、多環碳化氫及其 5衍生物、曱亞胺化合物、吡啶及乙二醛衍生物、偶氮化合 物、雙甲亞胺化合物、甲亞胺偶氮化合物、氧化偶氮化合 物、亞胺氧化偶氮化合物、二硫醚、固醇或類固醇衍生物。 9 ·如申睛專利範圍第4項所述之難燃組合物,其中該 橡膠高分子可為聚異戊二烯橡膠、異戊二烯橡膠、苯乙烯 10 —丁二烯橡膠、聚丁二烯橡膠、異丁烯-異戊二烯(丁基)橡 膠、乙烯丙烯非共輛二烯橡膠、丁睛橡膠、聚氯丁二烯橡 膠、丙烯酸酯橡膠、氯醚橡膠、共聚型氯鱗橡膠、氟素橡 膠、聚氨甲酸乙酯橡膠、氯磺化聚乙烯橡膠、硫磺系橡膠 等高分子或其共聚合物。 151297729 X. Patent application scope: !· A flame retardant composition containing nano carbon spheres, comprising at least: one nano carbon sphere; and a south molecular polymer. The flame retardant composition of claim 1, wherein the nanocarbon spheres comprise 重量. 7丨 of the weight percent of the composition. 3. The flame retardant composition of claim 1, wherein the nanocarbon sphere hollow nanocarbon spheres, filled metal nanocarbon spheres, heteroatom-doped nanocarbon spheres or functionalized Nano carbon ball. The flammable composition according to claim 1, wherein the polymer is a thermoplastic polymer, a conductive polymer, a liquid crystal polymer or a rubber polymer. 5. The flame retardant composition according to claim 4, wherein the thermoplastic polymer is polydivinylidene chloride, polydichloroethylene, polyvinyl acetate, 15 polystyrene, acrylonitrile butadiene styrene Copolymer, polyethylene, ethylene-vinyl acetate copolymer, polypropylene, poly-chain smoke series, poly-methacrylic acid vinegar, cellulose acetate, polytetraethylene, polytrimethylene chloride, (4) ^ Amine, polyacetal, polycarbonate, polyurethane, polyethylene terephthalate, ke vera fiber or a copolymer thereof. 20 6·If the fire-retardant composition of the fourth item of the patent application scope, the conductive ruthenium molecule is polyphenylamine, poly-butroxene, polythiophene derivative, polyacetylene, poly-p-stack, polystyrene Base or its copolymer. 7. The flame retardant composition according to claim 4, wherein the molecular structure of the liquid crystal germanium molecule is a long rod or lithographic plate having an asymmetric center. 11 1297729 is in the form of a seventh item. The flame retardant composition, wherein the liquid crystal polymer is an organic salt, a fatty acid derivative, an aromatic acid and a derivative thereof, a derivative of an ether and a ketone molecular chain, a polycyclic hydrocarbon and 5 thereof Derivatives, quinone imine compounds, pyridine and glyoxal derivatives, azo compounds, bis-imine compounds, methylimine azo compounds, oxidized azo compounds, imine azo compounds, disulfides, solids Alcohol or steroid derivatives. 9. The flame retardant composition according to claim 4, wherein the rubber polymer is polyisoprene rubber, isoprene rubber, styrene 10-butadiene rubber, polybutylene Ethylene rubber, isobutylene-isoprene (butyl) rubber, ethylene propylene non-coal diene rubber, butadiene rubber, polychloroprene rubber, acrylate rubber, chloroether rubber, copolymerized chloroscale rubber, fluorine A polymer such as a rubber, a polyurethane rubber, a chlorosulfonated polyethylene rubber or a sulfur rubber or a copolymer thereof. 15 1212
TW93141375A 2004-12-30 2004-12-30 A flame retardant composition using carbon nanocapsules TWI297729B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW93141375A TWI297729B (en) 2004-12-30 2004-12-30 A flame retardant composition using carbon nanocapsules
DE200510063121 DE102005063121A1 (en) 2004-12-30 2005-12-30 Flame protection composition from a carbon nano-capsule comprises a carbon nano-capsule and a polymer matrix

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93141375A TWI297729B (en) 2004-12-30 2004-12-30 A flame retardant composition using carbon nanocapsules

Publications (2)

Publication Number Publication Date
TW200621954A TW200621954A (en) 2006-07-01
TWI297729B true TWI297729B (en) 2008-06-11

Family

ID=36709871

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93141375A TWI297729B (en) 2004-12-30 2004-12-30 A flame retardant composition using carbon nanocapsules

Country Status (2)

Country Link
DE (1) DE102005063121A1 (en)
TW (1) TWI297729B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871339B2 (en) 2008-06-24 2014-10-28 Chung Yuan Christian University Modified clay and clay-polymer composite

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2607408A1 (en) * 2011-12-21 2013-06-26 Rhein Chemie Rheinau GmbH Method for dust-free manufacture of master batches containing nano-particles (CNT) in high viscosity rubbers by means of a three roll device
CN103059345B (en) * 2013-01-18 2014-03-19 太原理工大学 Composite flame retardant based on carbon microspheres and preparation method thereof
CN105801949B (en) * 2016-04-06 2017-10-27 北京化工大学 A kind of preparation method of the modified styrene butadiene rubber with wide damping temperature domain

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871339B2 (en) 2008-06-24 2014-10-28 Chung Yuan Christian University Modified clay and clay-polymer composite

Also Published As

Publication number Publication date
DE102005063121A1 (en) 2006-08-10
TW200621954A (en) 2006-07-01

Similar Documents

Publication Publication Date Title
Khan et al. A durable, flexible, large‐area, flame‐retardant, early fire warning sensor with built‐in patterned electrodes
Liang et al. Intumescent fire-retardant coatings for ancient wooden architectures with ideal electromagnetic interference shielding
He et al. Smart fire alarm systems for rapid early fire warning: Advances and challenges
Xie et al. A highly efficient flame retardant nacre-inspired nanocoating with ultrasensitive fire-warning and self-healing capabilities
Ghanbari et al. Preparation of flower-like magnesium hydroxide nanostructure and its influence on the thermal stability of poly vinyl acetate and poly vinyl alcohol
Yao et al. Graphene-containing flexible polyurethane porous composites with improved electromagnetic shielding and flame retardancy
Cao et al. Temperature-induced resistance transition behaviors of melamine sponge composites wrapped with different graphene oxide derivatives
Hu et al. Intelligent cyclic fire warning sensor based on hybrid PBO nanofiber and montmorillonite nanocomposite papers decorated with phenyltriethoxysilane
CN114250005B (en) Wear-resistant and stable flame-retardant super-hydrophobic/super-oleophobic coating and preparation and application thereof
Attia Organic nanoparticles as promising flame retardant materials for thermoplastic polymers
Tsioptsias et al. Thermal stability and hydrophobicity enhancement of wood through impregnation with aqueous solutions and supercritical carbon dioxide
Beheshti et al. Is MWCNT a good synergistic candidate in APP–PER–MEL intumescent coating for steel structure?
Wu et al. Flammability of EVA/IFR (APP/PER/ZB system) and EVA/IFR/synergist (CaCO3, NG, and EG) composites
Yang et al. Graphene oxide/chitosan nano‐coating with ultrafast fire‐alarm response and flame‐retardant property
Hussain et al. Polyaniline/silver decorated‐MWCNT composites with enhanced electrical and thermal properties
Ding et al. The combination of expandable graphite, organic montmorillonite, and magnesium hydrate as fire‐retardant additives for ethylene–propylene–diene monomer/chloroprene rubber foams
TW200904909A (en) Modified expansible graphite by silane modifying agent and producing method thereof
Zhu et al. Magnesium hydroxide coated hollow glass microspheres/chitosan composite aerogels with excellent thermal insulation and flame retardancy
Huang et al. Green, tough and highly efficient flame-retardant rigid polyurethane foam enabled by double network hydrogel coatings
TWI297729B (en) A flame retardant composition using carbon nanocapsules
Li et al. Enhancing the Corrosion Resistance of Epoxy Coatings by Impregnation with a Reduced Graphene Oxide‐Hydrophobic Ionic Liquid Composite
CN108281216A (en) A kind of watersoluble plumbago alkene heat-resistant fireproof electrocondution slurry and its preparation method and application
Chen et al. Facile fabrication of superhydrophobic, flame-retardant and conductive polyurethane sponge via dip-coating
Lu et al. Cleaner production to a multifunctional polyurethane sponge with high fire safety and low toxicity release
Kong et al. Multifunctional flame-retardant cotton fabric with hydrophobicity and electrical conductivity for wearable smart textile and self-powered fire-alarm system