1297729 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種難燃組合物,尤指一種含奈米碳球 之難燃組合物。 5 【先前技術】 傳統高分子複材常用之難燃添加劑多使用溴化物,以 -FR_4銅箱基板所用之環氧樹脂為例,常需添加有30%〜40% 的漠化物,才能防火材料達^JUL91_V0制定之難燃規格。 10然而,漠化物雖具有甚佳之難燃特性,但是其卻對環境造 成重大威脅;如以焚化爐回收此類溴化聯苯,不僅會產生 腐蝕性極強之溴自由基與氫化溴(溴酸),更會產生^高毒 性之致癌物質··多漠吱。南(polybrominedibenz〇fur㈣及多 漠戴奥辛⑽ybromine dibenz〇di〇xins)。有鑑於此,歐盟於 15 2004年推動「無幽法案」,因此在防火難燃材料上即開始 出現無齒之難燃添加劑的開發。 難燃添加劑防火的機制主要有三··一是掃除自由基(如 ,素),二4阻氣(如毒占土插層),三則為結晶水的利用(如氫 氧化鋁),然而,無_難燃添加劑必須要再另外使用大量粉 20體’才能達到⑽},制定之難燃規格,但是填充大量粉 體,往往限制了複材的加工與製程成本,而不利 的開發。 呆 奈米碳球是由多層石墨層以球中球的結構所組成的 少面體反蔟,其直徑為介於3〜1〇〇腿,外層具有與多層 1297729 ’、米火I相同的石墨層結構,其可為中空奈米碳球,或内 部填充有金屬、金屬氧化物、金屬碳化物或合金材料的金 U &球。奈米碳球外殼石墨層之中央部分為六圓 衣、、。構ffii在邊角或轉折部分則有五元環組成,每一個碳 5原子皆為SP構造,這種特殊多層石墨結構是造成奈米碳球 具有熱傳導性,導電性,強度佳,化學性穩定等優點的主 因,而奈米碳球石墨殼層表面可進行化學修飾改質,使其 易分散於溶劑中,枝使用,且增加親和力。 由於奈米碳球之另一優點是具有掃除自由基之功 1〇能,與鹵素之防火機制相同,可捕捉火焰燃燒時所產生之 自由基鉍疋同分子基材而達到阻燃之目的,奈米碳球不 但無齒素添加物之環保問題,同時亦具有導電,導熱,電 磁屏蔽且可與高分子材料相容的優點,因此利用奈米碳球 作為難燃添加之劑開發極具市場潛力。 15 【發明内容】 本赉明一種含奈米碳球之難燃組合物,係至少包括: 一奈米碳球;以及一高分子聚合物。 本發明難燃組合物中,奈米碳球係佔該組合物重量百 20分比之比例無限制,較佳為山丨〜川;本發明中適用之奈米 碳球係中空奈米碳球、填充金屬奈米碳球、摻雜異原子的 奈米碳球或官能基化的奈米碳球。 本^明兩分子聚合物可為分子量介於〜1⑼⑹⑼ 之有機咼分子聚合物,如熱塑性高分子聚合物、導電性高 25分子聚合物、液晶高分子聚合物、或橡膠高分子聚合物等。 1297729 上述熱塑性高分子聚合物可為聚二氯亞乙烯 (PVDC)、聚二氯乙烯(PVD)、聚乙烯醋酸(polyvinyl acetate,PVAc)、聚苯乙烯(PS)、丙烯睛一丁二烯一苯乙 烯共聚物(ABS)、聚乙烯(PE)、乙烯一醋酸乙烯酯共聚物 5 (EVA)、聚丙烯(PP)、聚鏈烯烴系列(TPX)、聚曱基丙烯酸 曱酯(PMMA)、乙酸纖維素(Cellulose acetate,CA)、聚四 II 乙稀(polytetrafluoroethylene,PTFE)、聚三氟氯乙稀 (Polychlorotrifluorethylene,PCTFE)、聚醯胺(PA)、聚縮駿 (POM)、聚碳酸月旨(PC)、?武氨酉旨(PU)、聚對苯二曱酸乙二 10 醇酉旨(PETP)、克維拉纖維(Kevlar)或其共聚合物。 上述導電性高分子聚合物可為聚苯胺(Polyaniline, PAN)、聚嘻(Polypyrrole,PPy)、聚σ塞吩衍生物 (Polythiophenes)、聚乙炔(Polyacetylene,PAc)、聚對苯 (Poly(para-phenylene)) 、 聚苯基 乙烯基 15 (Poly(para-phenylene-vinylene)? PPv)或其共聚合物。 上述液晶高分子聚合物之分子結構可含有不對稱中 心,為長棒狀或平版狀;較佳之液晶高分子聚合物為有機 鹽類、脂肪縮酸衍生物、芳香族縮酸及其衍生物、醚類及 酮類分子之衍生物、多環碳化氫及其衍生物、甲亞胺化合 20 物(azomethine化合物)、°比 σ定(C5H5N)及乙二酸(glyoxal)衍 生物、偶氮(azo)化合物、雙甲亞胺化合物(bisazomethine 化合物)、甲亞胺偶氮化合物(azomethin-azo)、氧化偶氮化 合物 (azoxy compound)、甲亞胺氧化偶氮化合物 (azomethin-azoxy)、二硫醚(disulphide)、固醇(sterol)或類 1297729 固醇(steroid)衍生物。 上述橡膠高分子聚合物可為聚異戊二烯橡膠(NR)、異 戊二烯橡膠(Isoprene rubber,IR)、苯乙烯一丁二烯橡膠 (Styrene-butadiene rubber,SBR)、聚丁二烯橡膠(BR)、異 5 丁烯·異戊二烯(丁基)橡膠(IIR)、乙烯丙烯非共輛二烯橡膠 (Ethylene-propylene-non-conjugated diene rubber, EPDM)、丁睛橡膠(NBR)、?炎氯丁二烯橡膠(CR)、丙烯酸 酯橡膠(ACM)、氯醚橡膠(CO)、共聚型氯醚橡膠(ECO)、 氟素橡膠(FKM)、聚氨甲酸乙酯橡膠(PU)、氯磺化聚乙烯 10 橡膠(CSM)、硫磺系橡膠等高分子聚合物或其共聚物。 【實施方式】 實施例1 將稀硝酸滴入硝酸鈉中,所產生之no2自由基氣體導 15 入含有奈米碳球之曱苯溶液中,以製備出HCNC-(N02)n的 產物,再以NaOH溶液進行水解,所產生 性產物溶解度為260mg/L。 以UV進一步鑑定產物,可發現在264nm處有弱的吸收 峰,而以IR鑑定,則發現在約3400cm·1處有-OH之吸收, 20 在約1385cm·1及1030CHT1處則有C=C雙鍵之吸收。 奈米碳球掃除自由基的反應式如下:1297729 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a flame retardant composition, and more particularly to a flame retardant composition comprising nanocarbon spheres. 5 [Prior Art] Most of the flame retardant additives commonly used in traditional polymer composites use bromide. For the epoxy resin used in the -FR_4 copper box substrate, it is often necessary to add 30% to 40% of desertification to fireproof materials. The flame retardant specifications set by ^JUL91_V0. 10 However, although deserts have excellent flame retardant properties, they pose a major threat to the environment; for example, the recovery of such brominated biphenyls by incinerators will not only produce highly corrosive bromine radicals and hydrogenated bromine (bromine). Acid), it will produce high-toxic carcinogens · · more desert. South (polybrominedibenz〇fur (four) and multi-dioxin (10) ybromine dibenz〇di〇xins). In view of this, the EU promoted the “No Quiet Act” in 15 2004, so the development of toothless and flame retardant additives began to appear on fire-resistant and flame-retardant materials. There are three main mechanisms for fire prevention of flame retardant additives: one is to remove free radicals (such as sulphate), the second is to block gas (such as poisonous soil intercalation), and the third is to use crystallization water (such as aluminum hydroxide), however, No _flammable additives must be used in addition to a large number of powders 20 to achieve (10)}, the development of flame retardant specifications, but filled with a large number of powders, often limit the processing and process costs of composite materials, unfavorable development. The nanocarbon sphere is a louver ruthenium consisting of a multi-layered graphite layer with a spherical ball structure. The diameter is between 3 and 1 leg, and the outer layer has the same graphite as the multilayer 1297729' and the rice fire I. A layer structure, which may be a hollow nanocarbon sphere, or a gold U & ball filled with a metal, metal oxide, metal carbide or alloy material. The central part of the graphite layer of the carbon sphere shell is a six-round garment. The structure ffii has a five-membered ring at the corner or the turning part, and each carbon 5 atom is an SP structure. This special multilayer graphite structure causes the carbon sphere to have thermal conductivity, conductivity, strength, and chemical stability. The main reason for the advantages, and the surface of the nanocarbon carbon graphite shell can be chemically modified to make it easy to disperse in the solvent, use it, and increase the affinity. Another advantage of the nano carbon sphere is that it has the function of sweeping away free radicals. It has the same fire-preventing mechanism as halogen, and can capture the free radicals generated by the flame combustion to achieve the purpose of flame retardant. Nano carbon ball not only has the environmental protection problem of dentate additives, but also has the advantages of conduction, heat conduction, electromagnetic shielding and compatibility with polymer materials. Therefore, the use of nano carbon spheres as a hard-to-burn additive has developed a market. potential. [Explanation] A non-flammable composition containing nano carbon spheres includes at least: a nano carbon sphere; and a high molecular polymer. In the flame retardant composition of the present invention, the ratio of the nanocarbon spheres to the weight ratio of the composition is not limited, and is preferably hawthorn~chuan; the nano carbon sphere hollow nanocarbon spheres suitable for use in the present invention Filled with metal nanocarbon spheres, heteroatom-doped nanocarbon spheres or functionalized nanocarbon spheres. The two molecules of the polymer may be an organic germanium molecular polymer having a molecular weight of ~1(9)(6)(9), such as a thermoplastic polymer, a highly conductive 25 molecule polymer, a liquid crystal polymer, or a rubber polymer. 1297729 The above thermoplastic polymer may be polyvinylidene chloride (PVDC), polyvinyl dichloride (PVD), polyvinyl acetate (PVAc), polystyrene (PS), acrylonitrile butadiene. Styrene copolymer (ABS), polyethylene (PE), ethylene-vinyl acetate copolymer 5 (EVA), polypropylene (PP), polyalkenyl series (TPX), polydecyl methacrylate (PMMA), Cellulose acetate (CA), polytetrafluoroethylene (PTFE), polychlorotrifluorethylene (PCTFE), polydecylamine (PA), polycondensation (POM), polycarbonate Purpose (PC),? Ammonia (PU), polyethylene terephthalate (PETP), Kevlar (Kevlar) or a copolymer thereof. The conductive polymer may be polyaniline (PAN), polypyrrole (PPy), poly thiophene derivative, polyacetylene (PAc), poly(p-phenylene) (Poly(para). -phenylene)), Poly(para-phenylene-vinylene) PPv or a copolymer thereof. The molecular structure of the liquid crystal polymer may contain an asymmetric center and is a long rod or a flat plate; preferably, the liquid crystal polymer is an organic salt, a fatty acid derivative, an aromatic acid and a derivative thereof, Derivatives of ethers and ketone molecules, polycyclic hydrocarbons and their derivatives, carbamide compounds (azomethine compounds), σ sigma (C5H5N) and glyoxal derivatives, azo ( Azo) compound, bisazomethine compound, azomethin-azo, azoxy compound, azomethin-azoxy, disulfide An ether (disulphide), sterol or a steroid derivative such as 1297729. The rubber polymer may be polyisoprene rubber (NR), isoprene rubber (IR), Styrene-butadiene rubber (SBR), polybutadiene. Rubber (BR), iso-5-butene-isoprene (butyl) rubber (IIR), ethylene-propylene-non-conjugated diene rubber (EPDM), butadiene rubber (NBR) ),? Inflammatory chloroprene rubber (CR), acrylate rubber (ACM), chloroether rubber (CO), copolymerized chloroether rubber (ECO), fluorocarbon rubber (FKM), polyurethane rubber (PU), High molecular weight polymer such as chlorosulfonated polyethylene 10 rubber (CSM) or sulfur rubber or a copolymer thereof. [Embodiment] Example 1 Diluted nitric acid was dropped into sodium nitrate, and the generated no2 radical gas was introduced into a toluene solution containing nanocarbon spheres to prepare a product of HCNC-(N02)n. Hydrolysis was carried out with a NaOH solution, and the solubility of the resulting product was 260 mg/L. Further identification of the product by UV revealed a weak absorption peak at 264 nm, while IR identification showed absorption of -OH at about 3400 cm·1, and 20 at C. Absorption of double bonds. The reaction formula of the carbon sphere sweeping free radicals is as follows:
利用電子自旋光譜(ESR)研究水溶性奈米碳球對-0H 1297729 以及過氧化物自由基的掃除效果分析,-OH自由基是以亞 鐵離子與雙氧水反應而產生,並利用常見的DMPO藥物以 及C3C60做比較,由於DMPO之標準量為習知,因此可藉此 比較求出水溶性奈米碳球掃除自由基之速率。結果請參考 5圖1電子自旋光譜圖以及表1。 表1、水溶性奈米碳球與DMPO及C3C6〇掃除自由基效果比 較表 掃除自由基速率(g/iyV1 -OH自由基 過氧化物自由基 DMPO 1.6xl07 8.8Χ10'1 C3C60 6·3±0·9χ107 6.0±0.Ίχ\0'{ 水溶性奈米碳球 1·16χ108 0.3 實施例2 10 取帶有-OH官能基之中空奈米碳球(HCNC-OH)50g,加 入盛有1000ml異丙醇(IPA)溶液的圓底瓶中,經過60分鐘的 超音波震盪後,再加入lml之HC1 ;接著以水浴加熱上述反 應液至90°C恆溫,在磁石攪拌下,將10g之VTMOS逐滴滴 加入反應液中,反應於2小時後完成。 15 將反應完成之溶液以5000rpm離心20分鐘,除去上清 液,並將沈澱物刮下置於盛盤中,以80°C烘乾。 取產物100g,以1%、5%、10%、15%與20%添加量, 以三滾筒混合矽橡膠製成填充奈米碳球/矽橡膠複合材 料。依照UL94V0規範之自燃性實驗分析試片點火後之火焰 20 熄滅時間,十秒内熄滅為合格之防火要求。結果請見下表2: 表2、自燃性實驗分析 1297729 石夕橡膠填充 奈米奴球含 量 燃燒秒數(五重複) 平均秒數 第一次試驗 第二次試驗 第一次試驗 第二次試驗 0% CNC 燒光、燒光、 燒光、燒光、 燒光 - >90 - 5% CNC 13、26、15、 14、18 4、0、0、8、 16 17.2 5.6 10% CNC 23、12、9、 17、14 0、0、19、0、 0 15 3.8 15% CNC 3、4、3、4、 2 0、10、0、0、 0 3.2 2 20% CNC 1、10、13、 12、5 5、3、0、0、 0 8.1 1.6 上述實施例僅係為了方便說明而舉例而已,本發明所 主張之權利範圍自應以申請專利範圍所述為準,而非僅限 於上述實施例。 【圖式簡單說明】 圖1係本發明實施例1之電子自旋光譜圖。 【主要元件符號說明】 10無Electron spin spectroscopy (ESR) was used to study the sweeping effect of water-soluble nanocarbon spheres on -0H 1297729 and peroxide radicals. The -OH radicals were produced by reacting ferrous ions with hydrogen peroxide and using common DMPO. Comparing the drug with C3C60, since the standard amount of DMPO is conventional, the rate at which the water-soluble nanocarbon balloon sweeps away free radicals can be obtained by comparison. For the results, please refer to Figure 5 for the electron spin spectrum and Table 1. Table 1. Comparison of free radical scavenging effects of water-soluble nanocarbon spheres with DMPO and C3C6 表 sweeping free radical rate (g/iyV1 -OH radical peroxide radical DMPO 1.6xl07 8.8Χ10'1 C3C60 6·3±0 ·9χ107 6.0±0.Ίχ\0'{ Water-soluble nanocarbon spheres 1.16χ108 0.3 Example 2 10 Take 50g of hollow nanocarbon spheres (HCNC-OH) with -OH functional group, add 1000ml In a round bottom bottle of propanol (IPA) solution, after 60 minutes of ultrasonic vibration, add 1 ml of HC1; then heat the reaction solution to a constant temperature of 90 °C in a water bath, and 10 g of VTMOS under magnet stirring. The dropwise addition was added to the reaction solution, and the reaction was completed after 2 hours. 15 The reaction-completed solution was centrifuged at 5000 rpm for 20 minutes, the supernatant was removed, and the precipitate was scraped off and placed in a tray, and dried at 80 °C. Take 100g of the product, and fill the nano carbon ball/ruthenium rubber composite material with the addition of 1%, 5%, 10%, 15% and 20% with three drums. The pyrophoric test analysis according to UL94V0 specification After the piece is ignited, the flame 20 is extinguished and extinguished within 10 seconds as a qualified fire protection requirement. The results are shown in Table 2 below: Table 2 Self-ignitability test analysis 1297729 Shi Xi rubber filled nanosphere content burning seconds (five repetitions) average seconds first test second test first test second test 0% CNC burned, burned, burned Light, burnt, burnt - >90 - 5% CNC 13,26,15,14,18 4,0,0,8,16 17.2 5.6 10% CNC 23,12,9,17,14 0,0 , 19, 0, 0 15 3.8 15% CNC 3, 4, 3, 4, 2 0, 10, 0, 0, 0 3.2 2 20% CNC 1, 10, 13, 12, 5 5, 3, 0, 0 0 8.1 1.6 The above embodiments are merely examples for convenience of description, and the scope of the claims should be based on the scope of the patent application, and is not limited to the above embodiments. [Simplified illustration] FIG. The electron spin spectrum of the embodiment 1 of the present invention. [Description of main component symbols] 10 None