1297211 九、發明說明: 【發明所屬之技術領域】 本發明關於一種包含電激發光裝置之影像顯示系統 及其製造方法,特別關於一種具有彩色濾光片之包含電 激發光裝置之影像顯示系統及其製造方法。 > 【先前技術】 目前有機電激發光元件的全彩化方式有許多種,一 φ 般而言,由以三色發光層(RGB emitting layers)法及色彩 轉換(color changing)法為主要之趨勢。其中,所謂的色彩 轉換層法,係利用一白色有機電激發光二極體陣列搭配 紅色、藍色及綠色的彩色濾光片,再以一電壓驅動該有 機電激發光二極體陣列後,即產生全彩的效果。 在傳統全彩主動式有機電激發光元件中,紅色、藍 色及綠色的彩色濾光片一般係以色料分散製程(pigment dispersion process)的方式形成。所謂的色料分散製程, • 即是藉由旋轉塗佈法形成一具有色料均勻分散於其中之 光敏性樹脂層於一基板上,接著藉由微影製程圖形化該 光敏性樹脂層以形成具有色彩之光阻圖形。而如果需要 形成紅色、藍色及綠色的彩色濾光片於同一基板上,則 必需重覆上述之方法三次。因此,傳統藉由色料分散製 程來形成紅藍綠彩色濾光片的方法具有複雜的步驟,且 非常粍費時間。此外,藉由色料分散製程來形成彩色濾 光片,幾乎有超過90%光敏性樹脂在進行旋轉塗佈時被 浪費。 0773-A31773TWF;P2005041;phoelip 5 ^ 1297211 1再者,自從作為彩色濾光層的光敏性樹脂通常為一 負里光阻,因此不需要曝光(未被遮蔽)的光敏性樹脂可能 ί因外界光源而進行網狀交鏈反應,並殘留在接觸窗 裏’造成開路電路(open circui⑻或是斷路。 、為解決以上問題,新的形成彩色濾光片的方法例如 電沈積或染料印刷法被進—步的研究出來、然而,上述 之方法並不適合應用在有機電激發光二極體元件的製程 中將電沈積方法應用在彩色濾光製程的限制在於,電 沈積不利$成圖形化的彩色濾光層。而在染料印刷法中, 由於較低的解析度及較大的表面粗糙度,使得染料印刷 法無法形成具有精細圖形化的彩色濾光層。 因此,發展出具有較簡化的製程及高效能之具有彩 色濾光片的主動式電激發光裝置結構與製程,是目前有 機電激發光裝置製程技術上亟需研究之重點。 【發明内容】 有鑑於此,本發明的目的係提供一種包含電激發光 裝置之影像顯示系統及其製造方法,其具有簡化彩色遽 光片製程,符合平面顯示器市場的需求。 為達成本發明之目的,該影像顯示系統包含一電激 發光裝置,其中該電激發光裝置包含一複數之晝素區 域,此外於每一晝素區域内,具有一喷墨印刷彩色濾光 層;一圍堤,環繞該噴墨印刷彩色濾光層;一平坦層, 形成於該喷墨印刷彩色濾光層及該圍堤之上,以及一有 0773-A31773TWF;P2005041 ;phoelip 6 1297211 n • 機發光二極體,形成於該平坦層之上,其該有機發光二 極體係位於該喷墨印刷彩色濾光層的正上方。 本發明另一目的係提供一種包含電激發光裝置之影 像顯示系統的製造方法,以完成本發明所述之影像顯示 系統。該方法係包含以下之步驟。首先,提供一薄膜電 晶體陣列基板,該薄膜電晶體陣列基板具有複數之晝素 • 區域。接著,形成一絕緣層於每一晝素區域内,其中該 • 絕緣層之部份表面係定義為一彩色濾光層預定區。接 鲁者’形成一圍丨疋繞母一彩色濾、光層預定區。接著,利 用喷墨製程形成一彩色濾、光層於該彩色濾光層預定區 内。接著,坦覆性形成一平坦層於該基板之上。最後, 形成一有機發光二極體於該平坦層之上,其中該有機發 光二極體係位於該彩色濾光層之正上方 為使本發明之上述目的、特徵能更明顯易懂,下文 特舉較佳實施例,並配合所附圖式,作詳細說明如下·· • 【實施方式】 在本發明所述之影像顯示系統,該電激發光裝置係 具有利用喷墨製程所形成之紅藍綠彩色濾光層,以及一 圍堤結構定義出每一紅藍綠彩色濾光層之位置。 以下,請配合圖示,係顯示符合本發明所 電激發光裝置之影像顯示系統之製造方法。 第1圖係為一上視不意圖,顯示一本發明一較佳 把例所述之電激發光裝置1〇〇之一晝素區域。該電激發 0773.A31773TWF;P2005041,pI1〇e]ip ? 1297211 巧置1GG係包含複數之晝素區域以—矩陣方式排列。 母-晝素區域包含一薄膜電晶體1〇1電性連結至一延 I方向的資料線102、一延著χ方向的掃瞄線1〇4、—電 容M3、一有機發光二極體之透明陰極1〇5、一盥該降= ,度連結之薄膜電晶體1〇7、以及一電源線;:其 二喷墨製程所形成之彩色濾、光層1G9係形成於該有 ‘枝舍光二極體之透明陰極1〇5之正下方,其中該彩 光層109係被一圍堤11〇所環繞。第。至%圖為—^ 列對應於第1 W A_A,切線的晝素區㈣面結構示意圖, 係用來說0林發明所狀包含電激發域置之影像顯示 糸統的一較佳實施例之製造流程。 首先,請參照第2a圖,提供一具有一晝素區域113 之基板120 H膜電晶體1Q7形成於該晝素區域in 内’此外-閘極絕緣層114及一絕緣㉟115係位於該晝 素區域113内。該薄膜電晶體107係包含一半導體層 124、-閘極電極12Γ、一介電層123、一源極區丄〜 及-沒極區126。本發明對於該薄膜電晶體1〇7之選用 上,無限制,可例如為一非晶石夕薄膜電晶體、低溫多晶 石夕薄膜電晶體、或是有機薄膜電晶體。然而,圖中所示 之薄膜電晶體結構僅為本發明之一例,本發明所述之薄 膜電晶體結構亦可為其他結構。此外,該薄膜電晶體1〇7 可以更包含-源極電極125,以及—&極電極126,,其 中該源極125,以及該汲極126,係分別與該源極區125以 及没極區126電性連結。該閘極電極121與該掃目苗線ι〇4 0773-Α31773TWF ;Ρ2005041 ;phoelip 8 1297211 % _ 之影像顯示系統400)。一般來說,該影像顯示系統400 包含顯示面板200及一輸入單元300,與該顯示面板耦 接,其中該輸入單元300係傳輸訊號至該顯示面板,以 使該顯示面板200顯示影像。該影像顯示系統400可例 如為行動電話、數位相機、PDA (個人資料助理)、筆記型 電腦、桌上型電腦、電視、車用顯示器、或是可攜式DVD . 放映機。 Λ 雖然本發明已以較佳實施例揭露如上,然其並非用 # 以限定本發明,任何熟習此技囈者,在不脫離本發明之 精神和範圍内,當可作各種之更動與潤飾,因此本發明 之保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖係為一上視示意圖,顯示本發明一較佳實施 例所述之電激發光裝置之一晝素區域。 第2a至2g圖係顯示本發明一較隹實施例所述之包 籲含電激發光裝置之影像顯示系統其製造流程。 第3圖係為一上視示意圖,顯示本發明另一較佳實 施例所述之電激發光裝置之一晝素區域。 第4圖係顯示本發明一較佳實施例所述之電激發光 裝置之上視示意圖。 第5圖係顯示本發明所述之包含電激發光裝置之影 像顯示系統之配置示意圖。 【主要元件符號說明】 0773-A31773TWF;P2005041;phoelip 12 1297211 電激發光裝置〜100 ; 資料線〜102 ; 掃瞄線〜104 ; 電容〜103 ; 透明陰極〜105 ; 薄膜電晶體〜107 ; 電源線〜10 8 ; 彩色濾光層〜109 ; 圍堤〜110 ; 晝素區域〜113 ; 閘極絕緣層〜114 ; 絕緣層〜115 ; 基板〜12 0 ; 閘極電極〜121 ; 介電層〜123 ; 半導體層〜124 ; 源極區〜12 5, 汲極區126 ; 源極電極〜12 5 ’ ; 汲極電極〜126’ ; 彩色濾光層預定區〜131 ; 平坦層〜14 0 ; 貫孔〜145 ; 晝素定義層〜147 ; 陽極表面〜148 ; 電激發光層〜160 ; 陰極〜162 ; 機發光二極體〜170 網格狀結構〜18 0 ; 顯示面板〜200 ; 輸入單元〜300 ; 影像顯示系統〜400 0773-A31773TWF;P2005041;phoelip 13BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image display system including an electroluminescent device and a method of fabricating the same, and more particularly to an image display system including an electroluminescent device having a color filter and Its manufacturing method. > [Prior Art] At present, there are many types of full-colorization of organic electroluminescence devices. In general, the RGB emission layer method and the color changing method are mainly used. trend. Wherein, the so-called color conversion layer method uses a white organic electroluminescent diode array with red, blue and green color filters, and then drives the organic electroluminescent diode array with a voltage to generate Full color effect. In conventional full color active organic electroluminescent devices, red, blue, and green color filters are typically formed in a pigment dispersion process. The so-called color material dispersion process, that is, a photosensitive resin layer having a colorant uniformly dispersed therein is formed on a substrate by spin coating, and then the photosensitive resin layer is patterned by a lithography process to form A photoresist pattern with color. If it is desired to form red, blue, and green color filters on the same substrate, it is necessary to repeat the above method three times. Therefore, the conventional method of forming a red, blue, and green color filter by a toner dispersion process has complicated steps and is very time consuming. Further, by forming a color filter by a toner dispersion process, almost 90% of the photosensitive resin is wasted in spin coating. 0773-A31773TWF;P2005041;phoelip 5 ^ 1297211 1 Furthermore, since the photosensitive resin as a color filter layer is usually a negative-lith resist, it is not necessary to expose (unmasked) photosensitive resin. The mesh cross-linking reaction is carried out and remains in the contact window, causing an open circuit (open circui (8) or open circuit. To solve the above problem, a new method of forming a color filter such as electrodeposition or dye printing is carried out - Step study, however, the above method is not suitable for application in the process of organic electroluminescent diode components. The limitation of applying the electrodeposition method to the color filter process is that the electrodeposition is unfavorable to form a patterned color filter layer. In the dye printing method, due to the lower resolution and larger surface roughness, the dye printing method cannot form a color filter layer with fine pattern. Therefore, a relatively simplified process and high performance have been developed. The structure and process of active electroluminescent device with color filter are urgently needed in the process technology of organic electroluminescent device. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an image display system including an electroluminescent device and a method of fabricating the same that has a simplified color lithography process that meets the needs of the flat panel display market. For an object of the invention, the image display system comprises an electroluminescent device, wherein the electroluminescent device comprises a plurality of halogen regions, and further comprises an inkjet printing color filter layer in each of the halogen regions; a bank surrounding the inkjet printing color filter layer; a flat layer formed on the inkjet printing color filter layer and the embankment, and a 0773-A31773TWF; P2005041; phoelip 6 1297211 n • machine illumination 2 a polar body formed on the planar layer, the organic light emitting diode system being directly above the inkjet printed color filter layer. Another object of the present invention is to provide an image display system including an electroluminescent device a method for completing the image display system of the present invention. The method comprises the following steps. First, a thin film transistor array substrate is provided, The film transistor array substrate has a plurality of halogen regions. Then, an insulating layer is formed in each of the halogen regions, wherein a portion of the surface of the insulating layer is defined as a predetermined region of the color filter layer. 'Forming a circle around the mother color filter, the predetermined area of the optical layer. Then, an ink jet process is used to form a color filter, a light layer in the predetermined region of the color filter layer. Then, a flat layer is formed in a flat layer. Finally, an organic light emitting diode is formed on the flat layer, wherein the organic light emitting diode system is directly above the color filter layer to make the above object and feature of the present invention more obvious. It is to be noted that the preferred embodiments are described below in detail with reference to the accompanying drawings, and the following description of the embodiments of the present invention, in the image display system of the present invention, the electroluminescent device has an inkjet process The red, blue, and green color filter layers are formed, and a dam structure defines the position of each of the red, blue, and green color filter layers. Hereinafter, a method of manufacturing an image display system in accordance with the electroluminescent device of the present invention will be described with reference to the drawings. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a top view, showing a region of a substrate of an electroluminescent device according to a preferred embodiment of the invention. The electrical excitation is 0773.A31773TWF; P2005041, pI1〇e]ip ? 1297211 The 1GG system contains a plurality of halogen regions arranged in a matrix manner. The mother-halogen region includes a thin film transistor 1〇1 electrically connected to a data line 102 extending in the I direction, a scanning line 1〇4 extending in the x direction, a capacitor M3, and an organic light emitting diode. a transparent cathode 1〇5, a 降=== degree-connected thin film transistor 1〇7, and a power line; the color filter formed by the two inkjet processes, the optical layer 1G9 is formed in the Directly below the transparent cathode 1〇5 of the photodiode, the color layer 109 is surrounded by a bank 11〇. First. The figure to the % map corresponds to the first W A_A, and the tangential line region of the pixel region (four) is a schematic diagram of a preferred embodiment of the image display system including the electrically excited domain. Manufacturing process. First, referring to FIG. 2a, a substrate 120 having a halogen region 113 is provided. The H-channel transistor 1Q7 is formed in the halogen region in. The additional-gate insulating layer 114 and an insulating 35115 are located in the halogen region. 113 inside. The thin film transistor 107 includes a semiconductor layer 124, a gate electrode 12A, a dielectric layer 123, a source region 丄 and a non-polar region 126. The invention is not limited to the selection of the thin film transistor 1〇7, and may be, for example, an amorphous thin film transistor, a low temperature polycrystalline thin film transistor, or an organic thin film transistor. However, the thin film transistor structure shown in the drawing is only an example of the present invention, and the thin film transistor structure of the present invention may be other structures. In addition, the thin film transistor 1〇7 may further include a source electrode 125, and a-pole electrode 126, wherein the source electrode 125 and the drain electrode 126 are respectively associated with the source region 125 and the gate electrode Area 126 is electrically connected. The gate electrode 121 and the scanning line ι〇4 0773-Α31773TWF; Ρ2005041; phoelip 8 1297211% _ image display system 400). In general, the image display system 400 includes a display panel 200 and an input unit 300 coupled to the display panel, wherein the input unit 300 transmits a signal to the display panel to cause the display panel 200 to display an image. The image display system 400 can be, for example, a mobile phone, a digital camera, a PDA (Personal Data Assistant), a notebook computer, a desktop computer, a television, a car display, or a portable DVD. A projector. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and various modifications and changes may be made without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a top plan view showing a halogen region of an electroluminescent device according to a preferred embodiment of the present invention. 2a to 2g are diagrams showing the manufacturing process of an image display system including an electric excitation device according to a comparative embodiment of the present invention. Figure 3 is a top plan view showing a halogen region of an electroluminescent device according to another preferred embodiment of the present invention. Figure 4 is a top plan view showing an electroluminescent device according to a preferred embodiment of the present invention. Fig. 5 is a view showing the configuration of an image display system including an electroluminescent device according to the present invention. [Main component symbol description] 0773-A31773TWF; P2005041; phoelip 12 1297211 electro-optic device ~100; data line ~102; scan line ~104; capacitance ~103; transparent cathode ~105; thin film transistor ~107; ~10 8 ; color filter layer ~ 109; dike ~ 110; halogen region ~ 113; gate insulating layer ~ 114; insulating layer ~ 115; substrate ~ 12 0; gate electrode ~ 121; dielectric layer ~ 123 ; semiconductor layer ~ 124; source region ~ 12 5, bungee region 126; source electrode ~ 12 5 '; buck electrode ~ 126'; color filter layer predetermined area ~ 131; flat layer ~ 14 0 ; ~145; 昼素 definition layer ~147; anode surface ~148; electroluminescent layer ~160; cathode ~162; machine LEDs ~170 grid-like structure ~18 0; display panel ~200; input unit ~300 Image display system ~400 0773-A31773TWF;P2005041;phoelip 13