Ί294716 九、發明說明: 【發明所屬之技術領域】 -般來說,本發明係屬於功率電子(power Electr〇nics)學,尤指一具 有自行驅動能力(SdfDriven)之同步整流電路系統。 【先前技術】 同步整流廣為應用於-低電壓高電流直流對直流轉換器,由於低電壓 . 場效應晶體管(M0SFET)的導通態壓降低於肖特基二極體(Sch〇ttky diode) 的導通祕降甚多’因此將功率MqSFET作為同步整流關關來使用以 • 達到改善整體轉換齡。然而,此翻步整流侧的性能並非永遠優於傳 Φ 、统宵特基一極體整流作用,特別是遇到同步整流器組的驅動電壓位準設計 不當時,更是如此。 目前有關同步整流器的控制有兩種主要方法:自行驅動法以及控制器 驅動法(Controller Driven),在隔離式線路架構(Is〇lated T〇p〇1〇gy) 中,控制器驅動法通常要比相對應的自行驅動法更複雜,造價更昂貴,因 此並不宜取。 至於自行驅動法則有兩種類型,電壓驅動法⑽如# Driven Meth〇d:) 與電流驅動法(Current Driven Method),電流驅動同步整流器使用電流感 應(Current Sense)以控制切換時機(Switching time),電流驅動整流器必 萬要另增電k感應元件’如電流感應變壓器(Current sense transformer)或 電流感應MOSFET ’因此會增加電路複雜性,電壓驅動同步整流以其簡單 性而較具吸引力,電壓驅動同步整流器使用的驅動訊號可衍生自主要變壓 器繞組線圈或輸出電感(Output Inductor)上的耦合繞組線圈(coupled winding) 〇 在各種隔離式線路架構(Topology)技術當中,前向式線路架構 (Forward Topology)是最適合用於低電壓電力轉換線路架構之一,因為這 線路是從降壓線路中最簡單的推導架構;然而,前向式線路架構在使用同 步整流器開關時會出現一些缺點,如第一圖(A)所示一既存技術(pri〇r Art) 利用同步整流器之前向式轉換器(Forward converter)係使用了主變壓器的 二次繞組線圈以驅動該同步整流器,其中前向整流器開關S1與飛輪 5 1294716 (Freewheding)整流器_ S2的閑極(Gate)係連接到主變壓器二次繞組線 圈SEC㈤兩個接頭,該二丸繞組線ffl SEC所產生之交流電壓與該轉換器 主開關S同〆驅動蚋向整流器開關Μ與飛輪(Freewheeiing)整流器開關 S2 ’在第-圖(A)中,當轉換器主開關s導通時,該二次繞組線圈sEC所 產生之電壓V(SEC)相對於前向整流器開關S1的汲級伽叫而言,係為正 值,一如此將可使前向整流器開關S1導通,在此同時段,輸出魏Lf電流 • ’流經前向整流器開關S卜—般將此段期間稱為“工作(Duty),,時間,在- 個完整切換周期(Switching Cycle)中簡稱為D時段,因為就是在此時段 . Θ ’轉換$主開關S正在執行工作並將-次側電力傳送到轉換器的二次 • 側。 關掉轉換社關s,細糕(Magnetizing CuiTent)會流過磁重置 (MR: Magnetic Reset)電路,變壓器二次繞組線圈SEC之電壓v(sec)會變 更極性(Polarity),因此關掉前向整流器開關s卜飛輪(Fr_heding)整流 器開關s2同時導通,輸出電感Lf電流會流經飛輪(Freewheding)整流器開 關S2,此-時段通常稱為飛輪期間(Freewheding peri〇d 〇ftime),由於該 飛輪(Freewheeling)整流器開關S2正在執行工作,因此所有的電感Lf電流 正通過此一飛輪(Freewheeling)整流器開關S2。 此線路木構的主要缺點係在激磁電流(Magnetizing current)經重置 • (Reset)為零時,該飛輪(Freewheding)整流器開關幻内的本體二極體 (Body diode)會導通,當發生這種情況時,如第一圖(B)所示,該變壓器二 次側的電壓V(SEC)變成零,發生這種現象的時段一般稱為靜定時間(福 time),於該-靜定__,紐正流經此―飛輪整流器關s2的本體 二極體’與一般快速恢復二極體(Fast Rec〇very Di〇de)相較之下,此本體 二極體具有較高的壓降以及較差的反向恢復特性(Reverse Rec〇vejy Characteristics) 〇 因此在此靜定時間(dead time)内,同步整流器的損失要比傳統肖特基 二極體(Schottky diode)整流器高出甚多,由於該等靜定時間的本體二極體 導通使得同步整流器的優點大幅折損,下列兩種補救方式可以避免該靜定 時間内的本體二極體導通的現象。 6 1294716 第一種方式見於美國第6377477號專利既存技術(Prior μ)。第二圖(A) 與第二圖(B)顯示等效簡圖與相關波形時間圖。其主要概念為藉著利用一外 加二極體D1限制飛輪(Freewheeling)整流器開關S5閘極電荷在該靜定時間 (dead time)内變更,使得該飛輪整流器開關S5可以在該時段内保持導通 (Turn On)以避免本體二極體被導通。這種情況可見於第二圖(b),其中將一 時段標示為“靜定時間(dead time),,,此時Vgs(S5)(飛輪整流器開關S5之 • 閘極電壓)維持高位,因此避免飛輪整流器開關S5的本體二極體被導通。 第二種補救方式涉及將一 DC偏壓串連插入飛輪(Freewheeling)整流器 , 開關閘極,藉此可獲得能夠使該飛輪整流器開關於此靜定時間(dead time) I 内保持導通的效果。此種方式可見於美國第6822882號專利,其等效簡圖 如第三圖⑷所示,於此方式中,必須使用一個單獨第三、繞組線圈舰]以 提供飛輪整流器開關S7閘極驅動訊號Vsec3,以在一次主開關S6導通期 間内關掉該飛輪整流器開關S7 ;若無該個別的三次繞組線圈SEC3,=此 第二種補救方式不可能成功實施,由於該三次繞組線圈SEC3只需負載 (carty)非常微量的閘極充電電流,只要一條非常細微規號㈣ 的電線即可發生作用,使得在主變壓器製造期間,此一新增三次繞組 SE^3線圈的製造成本實際上幾等於零。而第三圖⑻係為其中一種具體線 ,實現(embodiment)方式,其中需要稽納二極體2;〇〇1,電阻與電 | 容jzd才能構成DC補償(v〇ffset)的硬體部分,同時,在此例中,將二充 分高的輸出賴源+Vout (若電壓剛好夠高,也是罕見,因為在此我們所 討論=是低輸出電壓與高電流輸出的情况)被當作主電源,並且係透過偏壓 電阻器(bias resistorms來實施充電,此所需%補償功能⑽㈣是可以 ,的’而其作用係在於保持飛輪(Freewhedin幻整流器開關W閘極在靜 =時_ead time)内維持高位。若輸出電壓+ν_若無法高到足以透過該偏 錢組器Rbs將該稽納二極體ZD〇1偏壓,則將需要用到一個具有充分高 電壓的個別外部正偏壓源(extemal p〇sMve bias _㈣才能使此第二種捕救 方式生效,如此則需耍更多的成本。 【發明内容】 本發明之主要目的在於克服本體二極體在靜定時間(dead time)飛輪 7 1294716 (Freewheeling)整流器開關中導通的問題,僅利用單一稽納二極體 小型電阻器控制極就足以達成將該飛輪整流器開關在靜定 = 的主要目標。 h供付等逋 本發明之另-目的為使用元件數量與列示於帛637w 繼2882號專利先有技術中所使用的數量相比之下為最少數量,此係由於 操作原則基本上是不同於前述兩種先有技術,而此一操作原則之差異使得 此一簡單閘極驅動電路與前述兩種先有技術實際電路相比,成為最具成: • 效益者。 a 【實施方式】 • 為能使貴審查委員清楚本發明之電路架構組成,以及整體運作方 式,茲配合圖式說明如下: 第四圖(八)顯示應用本發明的第一個實際電路為前向轉換器自行驅動同 步整流器電路。第四圖(B)為第四圖(A)電路圖中波形時間圖。如第四圖⑺^ 所示,該變壓器τ包括-次繞組線圈Pri、二次繞組SEC4線圈以及驅動繞 組SEC5線圈,該驅動繞組線圈SEC5僅驅動該飛輪(Freewheding)整流器 開關S10的閘極,可使用一極細規號電線(等同低成本),該一次繞組線圈 Pri具有一正極端線接到電源Vin正極接頭,及一負極端線接到一主開關 S8汲極(Drain)接頭,該主開關S8的源極(Source)接頭則係接到該電源 痛 Vin的負極,^一次繞組線圈SEC4與驅動繞組線圈|§EC5的正極端線具有與 一次繞組線圈Pri正極端相同的極性,前向整流器開關S9與飛輪整流器開 關S10為同步整流器M0SFET晶體管,而兩個晶體管的源極接頭彼此互 連並接到該驅動繞組線圈SEC5的正極接頭,前向整流器開關S9的汲極接 頭則接到二次繞組線圈SEC4的負極端,而前向整流器開關S9的閘極接頭 接到該二次繞組線圈SEC4的正極端線(對於該等熟悉本技術領域者應知本 貫加例中所顯不自行驅動方式的實施較偏重於概念展示,實際實施可能涉 及需另新增電壓分壓器與驅動電路以促成此一概念的實現)。飛輪 (Freewheeling)整流器開關S10的汲極接頭係接到該二次繞組線圈SEC4的 正極端線,而該飛輪整流器開關S10的閘極接頭則接到電阻器R,且該電 阻器R的另一端係接到稽納二極體Zener的負極(Cathode),該稽納二極 8 :1294716 體Zener的正極(Anode)接頭係接到驅動繞組線圈SEC5的負極接頭,另 外電感L3與電容C3構成輸出濾波器並依簡圖所示連接,其中電阻汜代 表外部荷載。 實際運作時,請同時參閱第四圖(B)所示,從t=tO至t=tl,主開關S8 係導通,該二次繞組線圈VSEC4的電壓為正電壓,驅動繞組線圈SEC5負 極接頭會產生負電壓使稽納二極體Zener出現崩潰(Avalanche),因此飛輪 整流器開關S10的閘極電壓Vgs(10)會到達負電位準,而關掉飛輪整流器 開關s 1 〇。(此一由導通態到非導通狀態的過渡時間(transiti〇n time)長短 . 可由電阻器R所控制,這個控制能力具有減少通過該飛輪(Freewheeling)整 • 流器開關S10峰值反向電麗(Spiking Reverse Voltage)現象的好處,並一定 %度上幫助降低譜振電壓(Ringing V〇ltage)。此時輸出電感L3的電流流經 前向整流器開關S9。 主開關S8於t=tl處開始關掉,因此激磁電流(Magnetizing Current)流 經磁性重置(MR)電路。施加到該前向整流器開關S9閘極接頭的電壓係為 反向’該正向整流器開關S9則被關掉。驅動繞組線圈SEC5負極端線的電 >£麦成正值,通過該稽納二極體Zener將飛輪(Freewheeling)整流器開關 sio的閘極接頭充電到Vsec5的電壓,因此使該飛輪整流器開關sl〇導 通’而使輸出電感L3電流流經飛輪整流器開關si〇。 變壓器T重置(reset)於t=t2時完成,該驅動繞組線圈SEC5的電壓變 成零。由於該稽納二極體Z1係被飛輪整流器開關sl〇閘極 中剩餘電何反向偏壓。此時雖然有漏電流(leakage current)從該稽納二極 體Zener負極流到正極,該漏電流的大小幅度,與所使用的切換週期相比, 係屬可忽略不計者。因此該飛輪整流器開關sl〇中的閘極電荷幾乎維持常 數也因此遠飛輪整流器開關Si〇在此靜定時間((jeacj time)内持續導通。 於此需要指出本發明和先有技術第三圖(B)所列示之間的差異,本發明的電 路中,该飛輪整流器開關S10的電壓Vgs(SlO)在此飛輪時段時間中,將維 持在大約VSEC5的位準,而在第三圖(B)中,該飛輪整流器開關S7的電 壓Vgs(S7)的電壓位準在相對應的時段内,會維持在大約Vsec3 + v〇ffs过。 在t==t0’時,主開關S8再度被關掉。該驅動繞組SEC5線圈的負極接 9 1294716 頭的負電壓經由良好的設計足以引起該稽納二極體Zener產生崩潰,而 g (1〇)將再度停在-個負電壓位準,因此將飛輪(Freewheeiing)整流器開 關S10關掉’接著,開始重複一個新的切換周期。在此亦需要指出本發明 中,掉铺輪整流__使用的機構係藉著獅二極麵崩潰特性,而 在第二圖(B)當中,其係藉由一比DC補償更高的負偏壓使該飛輪整流器開 關的閘極處於-叫通門檻值更低電壓辦的方式作為關掉飛輪整流器開 關的機構。 -本發明由於可以使用於許多種線路架構,可多方面顧,如第五圖顯 • 不於一雙開關(Two Switch),主開關S8、S1卜前向轉換器中實施時,相 • 對第四®中所示電路操作原理而湘本發_另-種自行驅動同步整流器 線路。 另外,第六圖顯示一具有相位栘轉(Phase Shifted)及電流倍加器 (Current Doublet·)#全橋(pull Bridge)、線路架構在實施時,利用本發明的 t-個自行驅_步整流線路。可在—九九七年版制個融油供電 器叹片研精報告第糾頁至第A3_25頁找到此一具有相位栘轉及電流 倍加器的全橋DC對DC轉換器線路架構的操作原理。 〃本f贿瞒賴先有麟她,具有最鑛價社要效益,本發明 係利用第-種補救方式的主要理念,亦即藉著在靜定時間㈣㈣將稽 •、納二極體Zener係反向偏屢而得以保留閉極電荷,而不需要-個如第二圖 ㈧所示新增昂貴的辅助M〇開關Sal。同時,將該飛輪㈣★咖 整流器開關S10關掉時,與利用一 Dc麵的第二種補救方式相比較,本 發明將稽納二極體Zener產生離子崩潰。本發明根據此一操作原理的差 異’使用的零件數量遠較第二種補救方式更少。本發明不需要新增的外加 具有充分高正向DC偏壓源(可能造價很高)以及如前述第682繼號專利 所使用如第三圖(B)所示的偏壓電阻器Rbs與電容Czd。 如上所述,本發明之自行驅動同步整流閘極驅動電路,克服本體二極 體在靜疋時間(dead time)飛輪整(Freewheeling)流器開關中導诵的η 9§ ' 依法提呈發明專利之申請;惟以上之實施說明及圖式所示,係本發明較佳 實施例之-者’並非以此侷限本發明,是以,舉凡與本發明之構造、又裝 1294716 置、特徵等近似或相雷同者,均應屬本發明之創設目的及申請專利範圍之 内0Ί 294716 IX. Description of the invention: [Technical field to which the invention pertains] In general, the present invention pertains to power electronics (electrical electrons), and more particularly to a synchronous rectification circuit system having self-driving capability (SdfDriven). [Prior Art] Synchronous rectification is widely used in low-voltage, high-current DC-to-DC converters due to low voltage. The on-state voltage of the field effect transistor (M0SFET) is reduced by the Schottky diode (Sch〇ttky diode). There is a lot of turn-by-turns, so the power MqSFET is used as a synchronous rectification to achieve improved overall conversion age. However, the performance of this step-by-step rectification side is not always superior to that of the Φ, 宵 宵 一 一 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , At present, there are two main methods for controlling the synchronous rectifier: the self-driving method and the controller driving method (Controller Driven). In the isolated circuit architecture (Is〇lated T〇p〇1〇gy), the controller driving method usually has It is more complicated than the corresponding self-driving method, and the cost is more expensive, so it is not suitable. There are two types of self-driving laws, voltage-driven (10) such as #Driven Meth〇d:) and Current Driven Method, current-driven synchronous rectifiers use Current Sense to control the switching time. The current-driven rectifier must be additionally energized. k Inductive components such as current sense transformers or current sense MOSFETs will increase circuit complexity. Voltage-driven synchronous rectification is more attractive because of its simplicity. The drive signal used to drive the synchronous rectifier can be derived from the main transformer winding coil or the coupled winding on the output inductor. Among the various Topology technologies, the forward line architecture (Forward) Topology) is one of the best architectures for low-voltage power conversion lines because it is the simplest derivation architecture from buck lines; however, forward-going line architectures have some drawbacks when using synchronous rectifier switches, such as An existing technology (pri〇r Art) shown in Figure (A) uses the same The rectifier forward converter uses a secondary winding of the main transformer to drive the synchronous rectifier, wherein the forward rectifier switch S1 is connected to the idler of the flywheel 5 1294716 (Freewheding) rectifier _ S2 To the main transformer secondary winding coil SEC (five) two joints, the alternating voltage generated by the two pill winding wires ffl SEC and the converter main switch S are driven to the commutator switch Μ and the flywheel (Freewheeiing) rectifier switch S2 'in the - In Figure (A), when the converter main switch s is turned on, the voltage V(SEC) generated by the secondary winding coil sEC is positive with respect to the gradation gamma of the forward rectifier switch S1. In this way, the forward rectifier switch S1 can be turned on, at the same time, the output of the Wei Lf current • 'flow through the forward rectifier switch S Bu-like this period is called "Duty", time, in - The complete switching period (Switching Cycle) is referred to as the D period, because it is during this period. Θ 'Convert $ main switch S is performing work and the - secondary power is transmitted to the secondary side of the converter. Turn off Social s, Magnetizing CuiTent will flow through the magnetic reset (MR: Magnetic Reset) circuit, the voltage of the secondary winding SEC of the transformer v (sec) will change the polarity (Polarity), so turn off the forward rectifier switch The Fr_heding rectifier switch s2 is turned on at the same time, and the output inductor Lf current flows through the flywheel (Freewheding) rectifier switch S2. This period is usually called the flywheel period (Freewheding peri〇d 〇ftime) due to the flywheel (Freewheeling) The rectifier switch S2 is performing its work, so all of the inductance Lf current is passing through this freewheeling rectifier switch S2. The main disadvantage of this line structure is that when the magnetizing current is reset and the reset is zero, the body diode of the Freewheding rectifier switch is turned on. In this case, as shown in the first figure (B), the voltage V(SEC) of the secondary side of the transformer becomes zero, and the period in which this phenomenon occurs is generally called the static time (fu time), and the static time is determined. __, New Zealand is flowing through this - the body diode of the flywheel rectifier off s2' compared with the general fast recovery diode (Fast Rec〇very Di〇de), the body diode has a higher pressure Reduced and poor reverse recovery characteristics (Reverse Rec〇vejy Characteristics) 〇 Therefore, during this dead time, the synchronous rectifier losses are much higher than the traditional Schottky diode rectifiers. Since the advantages of the synchronous rectifier are greatly impaired due to the conduction of the body diodes of the static time, the following two remedies can avoid the phenomenon that the body diode is turned on during the static time. 6 1294716 The first method is found in the prior art of the US Patent No. 6,377,477 (Prior μ). The second diagram (A) and the second diagram (B) show the equivalent diagram and the associated waveform time diagram. The main concept is that the gate charge of the Freewheeling rectifier switch S5 is changed within the dead time by using an external diode D1, so that the flywheel rectifier switch S5 can remain conductive during the period ( Turn On) to prevent the body diode from being turned on. This situation can be seen in the second diagram (b), where a period of time is indicated as "dead time", at which point Vgs (S5) (the gate voltage of the flywheel rectifier switch S5) remains high, so The main body diode of the flywheel rectifier switch S5 is prevented from being turned on. The second remedy involves inserting a DC bias in series into a freewheeling rectifier, switching the gate, thereby enabling the flywheel rectifier to be switched on and off. The effect of maintaining conduction in the dead time I. This method can be found in the US Pat. No. 6,822,882, the equivalent diagram of which is shown in the third figure (4), in which a separate third, winding must be used. The coil ship is provided with a flywheel rectifier switch S7 gate drive signal Vsec3 to turn off the flywheel rectifier switch S7 during the on time of the main switch S6; if there is no such third winding coil SEC3, the second remedy is not It may be successfully implemented, because the tertiary winding coil SEC3 only needs to load a very small amount of gate charging current, as long as a very fine gauge (four) wire can act, making the main transformer During the manufacturing process, the manufacturing cost of the newly added three-coil SE^3 coil is actually equal to zero. The third figure (8) is one of the specific lines, the implementation mode, in which the inductor 2 is required; 1, resistance and electricity | Rong jzd can form the hardware part of DC compensation (v〇ffset), at the same time, in this case, the second full high output source +Vout (if the voltage is just high enough, it is rare, because Here we discuss = low output voltage and high current output) as the main power supply, and through the bias resistors (bias resistorms to implement charging, this required % compensation function (10) (four) is OK' Its function is to maintain the flywheel (Freewhedin switch rectifier W gate in the static = _ead time) to maintain the high position. If the output voltage + ν_ can not be high enough to pass the bias group Rbs to the second pole The body ZD〇1 bias will require an external external positive bias source with sufficient high voltage (extemal p〇sMve bias _ (4) to make this second rescue mode effective, so more cost is required. SUMMARY OF THE INVENTION The present invention The main purpose is to overcome the problem that the body diode is turned on in the dead time flywheel 7 1294716 (Freewheeling) rectifier switch. It is enough to use the single-signal diode small resistor control pole to achieve the flywheel rectifier switch. The main objective of static determination = h issuance, etc. Another object of the present invention is to use the number of components to be the minimum amount compared to the number used in the prior art of the patent application 2882. Since the operating principle is basically different from the two prior art described above, the difference in operating principle makes this simple gate driving circuit the most successful compared to the two prior art actual circuits described above: • Benefits By. a [Embodiment] • In order to enable the reviewing committee to understand the circuit architecture of the present invention and the overall operation mode, the following diagram is described as follows: The fourth figure (8) shows that the first actual circuit to which the present invention is applied is The synchronous rectifier circuit is driven by the converter itself. The fourth diagram (B) is the waveform time diagram in the circuit diagram of the fourth diagram (A). As shown in the fourth figure (7), the transformer τ includes a secondary winding coil Pri, a secondary winding SEC4 coil, and a driving winding SEC5 coil, and the driving winding coil SEC5 drives only the gate of the flywheel (Freewheding) rectifier switch S10. Using a very fine gauge wire (equivalent to low cost), the primary winding coil Pri has a positive terminal wire connected to the power Vin positive terminal, and a negative terminal wire connected to a main switch S8 Drain connector, the main switch The source connector of S8 is connected to the negative pole of the power supply Vin, ^ the primary winding coil SEC4 and the driving winding coil | § EC5 has the same polarity as the positive terminal of the primary winding coil Pri, the forward rectifier The switch S9 and the flywheel rectifier switch S10 are synchronous rectifier MOSFET transistors, and the source terminals of the two transistors are interconnected to each other and to the positive terminal of the drive winding coil SEC5, and the drain connector of the forward rectifier switch S9 is connected twice. The negative terminal of the winding coil SEC4, and the gate terminal of the forward rectifier switch S9 is connected to the positive terminal of the secondary winding coil SEC4 (for those skilled in the art, This embodiment is significant penetration plus embodiment is not driven more emphasis on the concept of self-display embodiment, an actual implementation may involve a voltage divider with a new subject to the drive circuit in order to facilitate achieving this concept). The drain terminal of the Freewheeling rectifier switch S10 is connected to the positive terminal line of the secondary winding coil SEC4, and the gate terminal of the flywheel rectifier switch S10 is connected to the resistor R, and the other end of the resistor R It is connected to the cathode (Cathode) of the Zener diode Zener. The anode of the Zener 8:1294716 body is connected to the negative terminal of the driving winding coil SEC5, and the inductor L3 and the capacitor C3 form an output. The filters are connected as shown in the diagram, where the resistance 汜 represents the external load. In actual operation, please refer to the fourth figure (B). From t=tO to t=tl, the main switch S8 is turned on. The voltage of the secondary winding coil VSEC4 is positive voltage, and the negative winding of the winding coil SEC5 will be driven. The negative voltage is generated to cause the Attenuator Zener to collapse (Avalanche), so the gate voltage Vgs(10) of the flywheel rectifier switch S10 will reach the negative potential and the flywheel rectifier switch s 1 关 will be turned off. (This transition time from the conduction state to the non-conduction state (transiti〇n time) length. Can be controlled by the resistor R, this control ability has reduced the peak reverse polarity of the S10 through the flywheel (Freewheeling) (Spiking Reverse Voltage) The benefits of the phenomenon, and help reduce the spectral voltage (Ringing V〇ltage) by a certain degree. At this time, the current of the output inductor L3 flows through the forward rectifier switch S9. The main switch S8 starts at t=tl Turned off, so the magnetizing current flows through the magnetic reset (MR) circuit. The voltage applied to the gate of the forward rectifier switch S9 is reversed. The forward rectifier switch S9 is turned off. The electric current of the negative end line of the winding coil SEC5 is positive, and the gate of the freewheeling rectifier switch sio is charged to the voltage of Vsec5 through the Zener diode Zener, thus making the flywheel rectifier switch sl Turning on 'and causing the output inductor L3 current to flow through the flywheel rectifier switch si〇. The transformer T reset is completed at t=t2, and the voltage of the drive winding coil SEC5 becomes zero. Because of the Zener diode Z1 The reverse current is reversed in the gate of the flywheel rectifier switch sl. At this time, although the leakage current flows from the Zener diode to the positive pole of the Zener diode, the magnitude and magnitude of the leakage current Compared with the switching period used, it is negligible. Therefore, the gate charge in the flywheel rectifier switch sl〇 is almost constant, so the far-wheel rectifier switch Si〇 is continuously turned on during this static time ((jeacj time) Here, it is necessary to point out the difference between the present invention and the one shown in the third figure (B) of the prior art. In the circuit of the present invention, the voltage Vgs(S10) of the flywheel rectifier switch S10 will be in this flywheel time period. Maintaining a level of approximately VSEC5, and in the third diagram (B), the voltage level of the voltage Vgs (S7) of the flywheel rectifier switch S7 is maintained at approximately Vsec3 + v〇ffs for a corresponding period of time. At t==t0', the main switch S8 is turned off again. The negative voltage of the negative terminal of the drive winding SEC5 is connected to the negative voltage of 9 1294716, which is good enough to cause the Zener diode Zener to collapse, and g ( 1〇) will stop again at a negative voltage Precisely, the flywheel (Freewheeiing) rectifier switch S10 is turned off. Then, a new switching cycle is started. It is also necessary to point out that in the present invention, the mechanism used by the drifting wheel rectification __ is collapsed by the lion's pole surface. Characteristic, and in the second figure (B), the gate of the flywheel rectifier switch is placed at a lower voltage than the DC compensation by a higher negative bias than the DC compensation. The mechanism of the rectifier switch. - The present invention can be used in many kinds of circuit architectures, and can be used in many aspects, such as the fifth picture display; not in a two-switch (Two Switch), when the main switch S8, S1 is forward converter, phase The principle of circuit operation shown in the fourth® is the same as that of the self-driven synchronous rectifier circuit. In addition, the sixth figure shows a phase shift (Phase Shifted) and a current doubler (Current Doublet) # full bridge (pull bridge), the line architecture is implemented, using the t-autonomous self-driving step rectification of the present invention line. The operating principle of a full-bridge DC-to-DC converter circuit architecture with a phase-twisting and current multiplier can be found in the 1997-1987 edition of a fuel-powered power supply sniper research report page to page A3_25. 〃本, f f 瞒 先 有 有 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The reverse polarity is retained to retain the closed-pole charge without the need to add an expensive auxiliary M-switch Sal as shown in the second figure (8). At the same time, when the flywheel (four) ★ coffee rectifier switch S10 is turned off, the present invention will cause ion collapse of the Zener diode to be compared with the second remedy using a Dc surface. The difference in the number of parts used by the present invention in accordance with this principle of operation is much less than that of the second remedy. The present invention does not require the addition of a bias resistor Rbs and a capacitor having a sufficiently high forward DC bias source (possibly costly) and as shown in the aforementioned Figure 682, as shown in the third diagram (B). Czd. As described above, the self-driving synchronous rectification gate driving circuit of the present invention overcomes the η 9§ ' of the body diode in the dead time flywheel (Freewheeling) current switch, and presents the invention patent according to law. The application of the preferred embodiment of the present invention is not limited thereto, and is similar to the structure of the present invention, and is also equipped with 1294716, features, and the like. Or the same as the scope of the invention and the scope of the patent application
11 1294716 【圖式簡單說明】 第一圖(A)域前技術配備自行驅動同步整流器線路前向轉換器。 第一圖(B)為第一圖(A)先前技術正向轉換器的波形時間圖。 第二圖⑷為麻料637期號專利之输猶前轉換器。 第一圖(B)為第二圖(A)先前技術前向轉換器的波形時間圖。 第三圖(A)為浙於第㈣882號專利之先前技術前向轉換器。 第三圖(B)為列示於第6822882號專利先前技術之另一實施例。 第四_)顯示本發明中有關前向轉換器自行驅動同步整流電路系統之等效 貫施圖。 第四圖(B)顯示列示於第四圖(A)轉換器波形時間圖。 第五圖顯示本發明中有關雙開關前向轉換器實施圖。 第六圖顯示本發明中有關具有相位栘轉及電流倍加器全橋轉 【主要元件符號說明】 。王。 換器簡圖。11 1294716 [Simple description of the diagram] The first figure (A) is equipped with a self-driven synchronous rectifier line forward converter. The first figure (B) is a waveform time diagram of the prior art forward converter of the first figure (A). The second picture (4) is the pre-June converter of the 637 patent. The first figure (B) is a waveform time diagram of the prior art forward converter of the second figure (A). The third figure (A) is a prior art forward converter of the Japanese Patent No. 882. The third diagram (B) is another embodiment of the prior art listed in the '682 patent. The fourth _) shows an equivalent diagram of the forward converter self-driving synchronous rectification circuit system of the present invention. The fourth graph (B) shows the waveform time chart of the converter shown in the fourth graph (A). The fifth figure shows a diagram of the implementation of the dual switch forward converter in the present invention. The sixth figure shows the phase transition and current multiplier full bridge in the present invention. [Main component symbol description]. king. Converter diagram.
Co、Cl、C2、Czd、C3.....電容Co, Cl, C2, Czd, C3..... capacitor
Lf、U、L2、L3 · · · · ·電感 Pr.....一次繞組線圈 R、 Rgate、Rgatel、Rgate2、Rgate3、Rgate4 · · · _ _ ••閘極電阻Lf, U, L2, L3 · · · · Inductance Pr..... Primary winding coil R, Rgate, Rgatel, Rgate2, Rgate3, Rgate4 · · · _ _ •• Gate resistor
Rbs.....偏壓電阻Rbs.....bias resistor
Ro、IU、R2、R3.....負載電阻 51、 s4、S9.....前向整流器開關 52、 S5、S7、S10、S14.....飛輪整流器開關 SEC、SEC1、SEC2、SEC.....二次繞組線圈 SEC3、SEC5、SEC6.....驅動繞組線圈 S、 S6、S8、Sll、S12、S13.....主開關Ro, IU, R2, R3.....load resistors 51, s4, S9.....forward rectifier switches 52, S5, S7, S10, S14.....Flywheel rectifier switches SEC, SEC1, SEC2 , SEC.....Secondary winding coil SEC3, SEC5, SEC6.....drive winding coil S, S6, S8, S11, S12, S13..... main switch
Sal.....輔助MOSFET開關 T · · · · ·變壓器 Z1 > Z2 > ZD01 > Zene.....稽納二極體 D.....二極體 D2.....功率二極體(PowerDiode) 12Sal.....Auxiliary MOSFET Switch T · · · · · Transformer Z1 > Z2 > ZD01 > Zene.....Junner Diode D.....Diode D2.... Power Diode 12