TWI293831B - Two stage power conversion circuit - Google Patents
Two stage power conversion circuit Download PDFInfo
- Publication number
- TWI293831B TWI293831B TW92131557A TW92131557A TWI293831B TW I293831 B TWI293831 B TW I293831B TW 92131557 A TW92131557 A TW 92131557A TW 92131557 A TW92131557 A TW 92131557A TW I293831 B TWI293831 B TW I293831B
- Authority
- TW
- Taiwan
- Prior art keywords
- circuit
- power conversion
- mosfets
- conversion circuit
- power
- Prior art date
Links
Landscapes
- Dc-Dc Converters (AREA)
Description
_—丄1——」:ϋ ίίΐ、發明說明: L發明戶斤屬之技術領域】 發明領域 本發明係有關電力轉換電路,例如用於網路應用及通 5 訊應用之二級電力轉換電路。 C关^負才支拂ί 發明背景 於今日資訊時代網路應用及通訊應用逐漸渴求資訊頻 寬。隨著頻寬需求的增加,服務品質(Q〇S)的要求也不斷升 修 10 高,俾便更佳保證資料的完好,以及最大化系統的開機時 間。為了達成此項目的,經常採用智慧型路由管理。例如 於封包配送路由,資料流被重新組織成小型資料封包,各 個資料封包路由通過個別資料路徑之最終目的地,於最終 目的地封包被重新組合成為原先資料流。此種路由唯有透 15 過複雜的深度封包處理才可達成,該項處理要求速度不斷 加快且威力不斷增高的NPUs&ASICs。 對資料處理需求的增高影響内部硬體設計,特別為内 # 建電力分配領域的硬體設計並不出人意外。原因在於通訊 板標準尺寸維持相對恆定,由於未來設計要求更多處理器 20 增加至板上,因此電力分配系統必須於不斷縮小的空間實 作。同時元件數目的增加一成不變地造成電力耗用的增 ' 高。為了將電源供應器嵌合於一個狹小空間且滿足不斷增 加的電源需求,電力分配設計須最佳化來確保電源效率。 設計更有效的電源供應器,減少功率的耗散因而減少熱量 5 的產生。 7日夕種網路及通訊系統採用之電力架構係接收來自 魔大AC/DC整流賴組之48伏特名目輸人。伏特輸入為 名目輸入’但多種系統可接受於名目輸人兩端某種範圍内 之電力輪入。例如通用電信電壓為36Vin至75Vin,以及 ETSI(歐洲電信標準輸入)電壓係於%伏特至⑹伏特之範 圍。其它系、统係於經過調節之48伏特匯流排+/_1〇%範圍操 作。無論採用何種電力分配方法,輸人電壓須以最具有電 效率且最具成本有效方式分配之負載點。 為了符合此等需求,二級電力轉換變成内建式電力輸 送的新仏準。傳統複數個分開電力轉換器105a、…、 105n-l(%作為「積木」)用來供電給板(例如電腦主機板, 如第1圖所示)之多個低電壓負載。較低電流之周邊輸出係 經由透過PQL ιιι.η崎換料「積木」之—產生的中 間電力供電。 然後試圖增加内建式電力分配設計的簡單性及彈性, 完全經調節的轉換器用來產生中間匯流排電壓,然後透過 負載點電力轉換器(P0LS)而被轉成負載點電壓。例如於一 種方案(未顯示),·48νίη名目輸人使料1㈣而被轉成 3.3伏特中_流排電壓。此種中間匯流排電壓直接供給板 上的大部分需要電力之負載,而較非需要電力之負載則透 過個渺沉轉換器接受電力。為了獲得兩種二級方案任一 種之最大產出效率以及最小成本,各個電力轉換級必須審 慎最佳化。但此等方案之產出效率通常較低。 【發明内容】 發明概要 - 本發明之目的係克服習知二級電力分配方案之缺點, 本發明經由提供一種具有成本效益且空間有效之電力分配 5 設計,該設計採用較少元件,同時滿足多種今日應用用途 不斷增加的電力需求而克服習知技術的缺點。為了達成此 項目的,本發明之具體實施例利用下述事實,當使用經過 緊密調節之POL轉換器時,個別轉換器無需精密控制中間 匯流排電壓。反而經由以未經調節之調節方式操作轉換器 修 10 之開放回路’可達成有效效能。 經由使用5 0 %工作週期以未經調節之方式處理個別直 流匯流排轉換器開放回路,控制此種電力轉換需要的控制 之電路設計變成極為簡單且高度有效,原因在於開放回路 設計並不需要傳統緊密調節t力轉換設計的複雜的封閉回 15 路控制電路以及過電壓保護電路。如此此種控制電路可於 狹小空間於單一積體電路實作。使用最小化電壓及電流應 力,可達成電力轉換效能,允許具有較低優值(FOMs)之更 ® 有效率之電力MOSFETs。此外,固定50%工作週期允許經 由使用簡單而高度有效之自我驅動二次同步整流電路改良 20 可靠度,同時最小化輸入濾波及輸出濾波的需求。 為了控制此處介紹之簡單而新穎之開放回路控制方 案。提出兩種範例積體電路控制器,一種用於半橋轉換器, 而另一種用於全橋轉換器。根據本發明之範例半橋轉換器 可用來轉換名目輸入電源供應於規定範圍,例如於60-160 7FIELD OF THE INVENTION The present invention relates to power conversion circuits, such as secondary power conversion circuits for network applications and applications. . C OFF ^ 负 负 拂 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明 发明As bandwidth requirements increase, the quality of service (Q〇S) requirements continue to improve by 10, which makes it better to ensure the integrity of the data and maximize the system's boot time. In order to achieve this project, intelligent routing management is often used. For example, in a packet distribution route, the data stream is reorganized into small data packets, each data packet is routed through the final destination of the individual data path, and the final destination packet is reassembled into the original data stream. This type of routing can only be achieved through complex deep packet processing, which requires NPUs & ASICs that are accelerating and growing in power. The increased demand for data processing affects the internal hardware design, especially for the internal hardware design of the power distribution field is not surprising. The reason is that the standard size of the communication board remains relatively constant, and since future designs require more processors 20 to be added to the board, the power distribution system must be implemented in a shrinking space. At the same time, the increase in the number of components invariably results in an increase in power consumption. In order to fit the power supply into a small space and meet ever-increasing power requirements, the power distribution design must be optimized to ensure power efficiency. Design a more efficient power supply to reduce power dissipation and thus reduce heat generation. The power architecture adopted by the 7th-day network and communication system received 48 volts from the Magic AC/DC rectification group. The volt input is the name input 'but multiple systems can accept a range of power rounds in both the ends of the name input. For example, the universal telecommunications voltage is 36Vin to 75Vin, and the ETSI (European Telecommunications Standard Input) voltage is in the range of % volts to (6) volts. Other systems are operating in the adjusted 48 volt bus +/_1〇% range. Regardless of the power distribution method used, the input voltage must be distributed in the most energy efficient and cost effective way. In order to meet these needs, the secondary power conversion becomes a new standard for built-in power transmission. A plurality of conventional split power converters 105a, ..., 105n-1 (% as "building blocks") are used to supply a plurality of low voltage loads to a board (e.g., a computer motherboard, as shown in Fig. 1). The lower current peripheral output is powered by the intermediate power generated by the PQL ιιι.η refueling "building blocks". It then attempts to increase the simplicity and resiliency of the built-in power distribution design. The fully regulated converter is used to generate the intermediate bus voltage, which is then converted to the point-of-load voltage through the point-of-load power converter (P0LS). For example, in one scheme (not shown), the ·48νίη name is input to the material 1 (four) and is converted into a 3.3 volt medium-flow voltage. This intermediate bus voltage is directly supplied to most of the load on the board that requires power, while the load that does not require power is received by a sink converter. In order to achieve maximum output efficiency and minimum cost for either of the two secondary schemes, each power conversion stage must be carefully optimized. However, the output efficiency of these programs is usually low. SUMMARY OF THE INVENTION - The object of the present invention is to overcome the shortcomings of the conventional secondary power distribution scheme, which provides a cost-effective and space efficient power distribution 5 design that utilizes fewer components while meeting multiple Today's applications use ever-increasing power demands to overcome the shortcomings of conventional technology. In order to achieve this, embodiments of the present invention take advantage of the fact that individual converters do not require precise control of the intermediate bus voltage when using a tightly tuned POL converter. Instead, an effective performance can be achieved by operating the open circuit of the converter 10 in an unregulated manner. By processing the individual DC busbar converter open loops in an unregulated manner using a 50% duty cycle, the circuit design that controls the control required for such power conversion becomes extremely simple and highly efficient because the open loop design does not require tradition A compact closed-loop 15-way control circuit and overvoltage protection circuit that closely adjusts the t-force conversion design. Such a control circuit can be implemented in a small integrated space in a small integrated circuit. Power conversion performance is achieved with minimum voltage and current stress, allowing for more efficient power MOSFETs with lower figure of merit (FOMs). In addition, a fixed 50% duty cycle allows for improved reliability through a simple and highly efficient self-driven secondary synchronous rectification circuit while minimizing the need for input filtering and output filtering. To control the simple and novel open loop control scheme presented here. Two example integrated circuit controllers are proposed, one for a half bridge converter and the other for a full bridge converter. An example half-bridge converter according to the present invention can be used to convert a nominal input power supply to a specified range, for example, 60-160 7
更#¥4日I 瓦之範圍;而根據本發明之全橋轉換器可轉換例如於 120-160瓦範圍之名目電力輸入。因固定50%工作週期故, 輸出電壓係以因數K而與名目輸入電壓成比例。就根據本發 明之半橋轉換器而言,K例如等於1/2除以變壓器匝數比。 5 就根據本發明之全橋轉換器而言,K例如等於1除以變壓器 匝數比。因此全橋拓樸學就輸出電壓的選擇方面而言提供 較高彈性。 圖式簡單說明 第1圖為方塊圖,顯示習知二級電力轉換架構。 10 第2圖為方塊圖,顯示根據本發明之基本二級電力轉換 架構。 第3圖為方塊圖,顯示根據本發明之第一範例電力轉換 架構。 第4圖為根據本發明,安裝於板上之電力模組之範例電 15 力轉換電路。 第5圖為線圖,顯示根據本發明,半橋驅動器1C之空檔 時間。 第6圖為第4圖之半橋驅動器1C之方塊圖。 第7圖為根據本發明,範例電力轉換板之前方及後方之 20 說明圖。 第8圖為線圖,顯示電力轉換效率相對於輸出負載電流。 第9圖為根據本發明,安裝於板上之電力模組之另一範 例電力轉換電路。 第10圖為線圖,顯示打嗝波形圖。 .. -...-.. …“ 1293831 第11 ®u員不兩種方法,用於將第4圖之半橋驅動器【组 配成以自我振盪模或同步化模操作。 【實施方式】 詳細說明 5 於根據本發明之一實施例之-方案,如第2圖所示,名 目-48伏特透過單一轉換器21G而被轉換成12伏特中間匯流 排包壓205然後中間匯流排電壓2〇5透過個別215a、 .............215n而被轉換成各種負載點電壓。 現在參照第3圖,顯示根據本發明之第一範例半橋2級 1〇電力轉換架構3GG。電力轉換架構·包括關放回路操作 之單一分開未經調節之安裝於板之電力模組(BMp)3〇5。 BMP 305可操作而將名目輸入電壓32〇轉成中間匯流排電 壓325。然後中間匯流排電壓325饋至各個負載點(p〇L)轉換 态31〇a、310b、…、31〇n,其將中間匯流排電壓325轉成個 i5別負載點電壓330a、330b、...、33〇n用於供電給板上的各 個負載(圖中未顯示)。 現在參照第4圖,顯示用於第3圖之BMp電力模組3〇5 之範例半橋轉換為電路405。半橋轉換器電路4〇5包括一次 開放回路反相電路410、一次偏壓電路43〇、二次整流及濾 20 波電路425及二次偏壓電路420。 一次開放回路反相電路410包括具有端子(cs)、(CT)、 (G)、(LO)、(Vb)、(HO)、(Vs)及(Vcc)之一次半橋控制器IC 415。二極體D1係連結於Vdd與控制器IC 415之端子(乂13) 間’笔阻器R1係連結於Vdd與控制器1〔415之端子((]丁)間; :Ef3K3T Ί it it/li 2:Ϊ4"Ί ' r,ί i 14 ϊ 5Further, the range of I watts can be converted by the full-bridge converter according to the present invention, for example, in the range of 120-160 watts. Due to the fixed 50% duty cycle, the output voltage is proportional to the nominal input voltage by a factor of K. In the case of the half bridge converter according to the present invention, K is for example equal to 1/2 divided by the transformer turns ratio. 5 In the case of a full bridge converter according to the invention, K is for example equal to 1 divided by the transformer turns ratio. Therefore, full bridge topology provides greater flexibility in terms of choice of output voltage. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a block diagram showing a conventional secondary power conversion architecture. 10 Figure 2 is a block diagram showing the basic secondary power conversion architecture in accordance with the present invention. Figure 3 is a block diagram showing a first example power conversion architecture in accordance with the present invention. Fig. 4 is a diagram showing an exemplary electric power conversion circuit of a power module mounted on a board according to the present invention. Fig. 5 is a line diagram showing the neutral time of the half bridge driver 1C in accordance with the present invention. Fig. 6 is a block diagram of the half bridge driver 1C of Fig. 4. Figure 7 is an illustration of the front and rear of an exemplary power conversion panel in accordance with the present invention. Figure 8 is a line graph showing power conversion efficiency versus output load current. Fig. 9 is a diagram showing another example of a power conversion circuit of a power module mounted on a board according to the present invention. Figure 10 is a line graph showing the snoring waveform. .. -...-.. ..." 1293831 The 11th u-members do not use two methods for assembling the half-bridge driver of Figure 4 to operate in a self-oscillating mode or a synchronous mode. [Embodiment] DETAILED DESCRIPTION OF THE INVENTION In accordance with an embodiment of the present invention, as shown in FIG. 2, a name of -48 volts is converted into a 12 volt intermediate busbar package 205 through a single converter 21G and then the intermediate busbar voltage is 2 〇. 5 is converted into various load point voltages through individual 215a, ..... 215n. Referring now to Figure 3, there is shown a first example of a half bridge 2 stage 1 〇 power conversion according to the present invention. Architecture 3GG. Power Conversion Architecture · Single, unregulated, power-on-board power module (BMp) 3〇5 for shut-off loop operation. BMP 305 can be operated to convert the nominal input voltage to 32 中间 to intermediate bus voltage 325. The intermediate bus voltage 325 is then fed to respective load point (p〇L) switching states 31〇a, 310b, ..., 31〇n, which convert the intermediate bus voltage 325 into i5 other load point voltages 330a, 330b , ..., 33〇n is used to supply power to each load on the board (not shown). Refer to Figure 4 now. The example half bridge shown in the BMp power module 3〇5 for Fig. 3 is converted into a circuit 405. The half bridge converter circuit 4〇5 includes an open loop inverting circuit 410, a primary bias circuit 43〇, two The secondary rectification and filtering 20 wave circuit 425 and the secondary bias circuit 420. The primary open circuit inverting circuit 410 includes terminals (cs), (CT), (G), (LO), (Vb), (HO) , (Vs) and (Vcc) primary half-bridge controller IC 415. Diode D1 is connected between Vdd and controller IC 415 terminal (乂13)' pen resistor R1 is connected to Vdd and controller 1 [415 terminals (() D); :Ef3K3T Ί it it/li 2:Ϊ4"Ί ' r,ί i 14 ϊ 5
電容為Cl係連結於Vdd與控制器IC 415之端子(CS)、(G) 間;電容器C2係連結於控制器1(: 415之端子(CT)與地電位 間’也可連結至控制器]^415之端子(〇8)、(〇);電容器〇3 係連結於控制器1C 415之端子(Vb)、(Vs)間;以及端子(vcc) 係連結於Vdd。一次開放回路反相電路41〇也包括電力 MOSFETS M1、M2(例如二腳6603 30伏特η·通道DirectFETCapacitor is connected between Vdd and terminal (CS) and (G) of controller IC 415; capacitor C2 is connected to controller 1 (: terminal between 415 (CT) and ground potential' can also be connected to controller Terminals (〇8) and (〇) of the ^415; capacitors 〇3 are connected between the terminals (Vb) and (Vs) of the controller 1C 415; and the terminals (vcc) are connected to the Vdd. Circuit 41〇 also includes power MOSFETs M1, M2 (eg, two-legged 6603 30 volt η·channel DirectFET)
黾力MOSFETS ’閘驅動電壓被箝制於偏壓電壓例如7 5伏特) 彼此連結於半橋組配狀態之節點N1,介於48伏特名目輸入 電壓320與地電位間。節點N1也連結至控制器1(:; 415之端子 10 (Vs)。MOSFETS Ml、M2之閘分別連結至端子(H〇)、(L〇)。 串聯連結之電容器C5及C6以及電容器C4係並聯連結半橋 MOSFETS Ml、M2介於48伏特名目輸入電壓320與地電位 間。一次佈線II係連結於節點N2與控制器1C 415之端子(Vs) 間。 15 MOSFET之選擇對滿足電效率及熱效率要求且維持小The MOSFET S' brake drive voltage is clamped to a bias voltage, for example, 75 volts, and is coupled to the node N1 of the half-bridge assembly state, between the 48 volt input voltage 320 and the ground potential. The node N1 is also connected to the terminal 10 (Vs) of the controller 1 (:; 415. The gates of the MOSFETs M1 and M2 are respectively connected to the terminals (H〇) and (L〇). The capacitors C5 and C6 and the capacitor C4 are connected in series. The parallel-connected half-bridge MOSFETs M1, M2 are between the 48 volt nominal input voltage 320 and the ground potential. The primary wiring II is connected between the node N2 and the terminal (Vs) of the controller 1C 415. 15 MOSFET selection is to satisfy the electrical efficiency and Thermal efficiency requirements and maintenance
的整體腳印而言具有關鍵重要性,同時也須維持最少元件 數目。電力MOSFETS Ml、M2包括下一代MOSFET技術, 可組配成半橋組配狀態來使用半橋控制器IC 415工作。 DirectFET封裝也可用來實際上消除封裝電阻,同時允許較 20 低的整體ON態電阻。此外因DirectFET技術係採用塑膠封 裝,故DirectFET MOSFETS於採用頂端冷卻時極為有效。The overall footprint is of critical importance and must be maintained with a minimum number of components. The power MOSFETs Ml, M2 include next-generation MOSFET technology that can be combined into a half-bridge configuration to operate with the half-bridge controller IC 415. The DirectFET package can also be used to virtually eliminate package resistance while allowing a lower overall ON state resistance of 20. In addition, because the DirectFET technology is packaged in plastic, the DirectFET MOSFETS is extremely effective when using top-side cooling.
一次偏壓電路430包括雙重FET封裝體435(例如 IRF7380 η-通道FETs)含有一次偏壓MOSFETS M3、M4 ;電 阻器R2、R3並聯連結於48伏特名目輸入電壓320與MOSFET 10 0 M3間;電阻器R4連結於48伏特名目輸入電壓32〇與 MOSFET M4間;串聯連結之增納二極體D4、D5s連結於 電阻器R4與地電位間;二極體D3係連結於節點N3與Vdd 間’ 一極體D2係連結於MOSFET M4 ;以及一次偏壓佈線12 係連結於二極體D2與地電位間。藉此方式,經由線性調節 器之起動獲得一次端偏壓然後由穩態變壓器獲得一次端偏 壓。 一次整流及濾波電路425包括二次佈線13,其係磁性|馬 合一次開放回路反相電路410之一次佈線n。二次佈線13係 連結於MOSFETS Μ5、Μ6間,其彼此耦合於節點Ν4。電阻 态R5及電容器C7係彼此並聯輕合二極體D6,二極體D6係並 聯連結MOSFETM5之源極端子及汲極端子。同理,電阻器 R6及電容器C8係彼此並聯耦合二極體D7,二極體D7係彼此 並聯耦合MOSFET Μ6之源極端子及汲極端子。Μ5、Μ6之 閘節點個別係經由電阻器R7、R8而連結至節點Ν4。電感器 線圈14係連結至中心分接頭節點Ν5 ;電容器C9、CIO、C11 係彼此並聯連結於電感器線圈14與節點N4間。二次整流及 濾波電路425也設置有兩個二次MOSFETS M7、M8。 MOSFETS M7、M8之閘節點彼此連結。MOSFETS M7、 M8之源節點分別係連結至MOSFETS M5、M6之閘節點,以 及MOSFETS M7、M8之汲節點分別係連結至MOSFETS M5、M6之汲節點。二次端MOSFETS M7、M8例如可使用 IRF6603 DirectFET MOSFETs組配成自我驅動同步整流拓 樸學而實作。 _831 ;"'2.. Oi" ^ 一-人偏壓電路420包括二次偏壓佈線I5,其係磁耦合至 人偏壓電路43〇之一次偏壓佈線12。二極體D8、D9係彼此 串聯連結於節點N4與節點N6間·,電容器C12係連結至節點 N7,偏壓佈線15係連結於電容器c12與節點N4間;電阻器 R8係串聯連結增納器二極體D10,介於節點N6與N4間以及 包各為C13及電阻器R9係並聯連結於節點N4與MOSFETS Μ?、M8之閘間。藉此方式,二次偏壓電路420被設計成允 許二匯流排變換器之輸出端係並聯連結,個別於不同之名 目輸入電壓操作。如此即使當二匯流排轉換器之一故障 10 4,二次偏壓電路42〇允許半橋轉換器電路405繼續操作。 現在參照第7圖,顯示根據本發明之範例電力板7〇5之 前側及背側。電力板於1/8轉換器BMP外廓,可以超過96% 效率輸送150瓦於8伏特輸出電壓。此種效率比習知完全經 调節之安裝於板上的電力轉換器之效率高3_5%,尺寸小 15 50%。為了減少印刷電路板(PCB)的電力耗損,電力板7〇5 由多層PCB板組成,例如8層PCB板組成。頂層及底層例如 包含2盎司銅,内部6層例如包含4盎司銅。電力板7〇5也包 含具有平坦PQ磁心之變壓器,其提供一次開放回路反相電 路410與二次整流及濾波電路425間之電壓轉換器隔離。變 20 壓器之磁心可根據最大輸入電壓及頻率選擇。FR3材料可利 用其於高頻之低耗損。變壓器之極小氣隙可設置用來減少 於光負載期間一次端MOSFETs Μ1、M2之斷路時間。具有 氣PM 1宅米之小型160 ηΗ輸出電感器可用來限制輸出及輪 入電流紋波至低於4安培。 12 半橋控制器IC 415可操作來以50%工作週期、以及最少 量外部元件,而對一次驅動器MOSFETS Ml、M2提供高端 及低端驅動信號。半橋控制器IC 415之閘驅動能力被最佳 化,俾直接驅動新一代電力MOSFETS Ml、M2,而無任何 額外驅動器或緩衝器。即使第4圖之範例電路係使用佔伏特 名目輸入電壓實作,高端名目輸入電壓32〇可高達例如1〇〇 伏特。因此此種架構允許用於電信、網路及運算應用用途 有覓廣之名目輸入電壓範圍,例如24伏特至48伏特。此外, 一次端偏壓可於例如1 (M 5伏特範圍俾進一步最佳化電路 效能。 高端驅動信號與低端驅動信號間之脈波寬度差異須小 於預定臨限值,例如小於25奈秒,以防磁通量的不平衡, 磁通量不平衡於某些應用用途可能成問題。高端驅動信號 與低端驅動信號間之切換頻率及空檔時間對不同應用用 途,可藉由調整電阻器R1值及電容器^值而改變。切換頻 率由下式決定: s 2RjC2 外部電阻器R1及電容器€2也決定高端驅動信號與低端驅 動佗號間之空檔時間。現在參照第5圖,顯示一圖表,其顯 不於指定電容器C2之特定電容值時,電阻器則值與空檔時 間間之關係。空檔時間須比一次端訄〇5]?]£1^]^1、M2之斷 路k間長以防止射穿電流(shoot trough current)。一次電力 M0SFETS斷路時間可由下式估計得知:The primary bias circuit 430 includes a dual FET package 435 (eg, IRF7380 η-channel FETs) including primary bias MOSFETs M3, M4; resistors R2, R3 are coupled in parallel between the 48 volt nominal input voltage 320 and the MOSFET 10 0 M3; The resistor R4 is connected between the input voltage of 32 volts and the MOSFET M4; the Zener diodes D4 and D5s connected in series are connected between the resistor R4 and the ground potential; and the diode D3 is connected between the nodes N3 and Vdd. The one-pole D2 is connected to the MOSFET M4, and the primary bias wiring 12 is connected between the diode D2 and the ground potential. In this way, the primary end bias is obtained via the start of the linear regulator and then the primary end bias is obtained from the steady state transformer. The primary rectification and filtering circuit 425 includes a secondary wiring 13 which is magnetically coupled to the primary wiring n of the open loop inverting circuit 410. The secondary wiring 13 is connected between the MOSFETs Μ5 and Μ6, and is coupled to the node Ν4. The resistive state R5 and the capacitor C7 are connected in parallel with each other to lighten the diode D6, and the diode D6 is connected in parallel to the source terminal and the drain terminal of the MOSFET M5. Similarly, the resistor R6 and the capacitor C8 are coupled in parallel with the diode D7, and the diode D7 is coupled in parallel with the source terminal and the 汲 terminal of the MOSFET Μ6. The gate nodes of Μ5 and Μ6 are individually connected to the node Ν4 via resistors R7 and R8. The inductor coil 14 is coupled to the center tap node Ν5; the capacitors C9, CIO, and C11 are connected in parallel between the inductor coil 14 and the node N4. The secondary rectification and filtering circuit 425 is also provided with two secondary MOSFETs S M7, M8. The gates of the MOSFETs M7 and M8 are connected to each other. The source nodes of MOSFETS M7 and M8 are respectively connected to the gate nodes of MOSFETS M5 and M6, and the 汲 nodes of MOSFETS M7 and M8 are respectively connected to the 汲 nodes of MOSFETS M5 and M6. The secondary MOSFETs M7, M8 can be implemented, for example, using the IRF6603 DirectFET MOSFETs as a self-driven synchronous rectification topology. _831; " '2.. Oi" ^ The one-person bias circuit 420 includes a secondary bias wiring I5 that is magnetically coupled to the primary bias wiring 12 of the human bias circuit 43A. The diodes D8 and D9 are connected in series between the node N4 and the node N6, the capacitor C12 is connected to the node N7, the bias wiring 15 is connected between the capacitor c12 and the node N4, and the resistor R8 is connected in series with the adder. The diode D10 is connected between the nodes N6 and N4 and the package C13 and the resistor R9 are connected in parallel between the node N4 and the gates of the MOSFETs Μ?, M8. In this manner, the secondary bias circuit 420 is designed to allow the output terminals of the two busbar converters to be connected in parallel, operating separately from different nominal input voltages. Thus, even when one of the two busbar converters fails, the secondary biasing circuit 42〇 allows the half bridge converter circuit 405 to continue operating. Referring now to Figure 7, the front and back sides of an exemplary power board 7〇5 in accordance with the present invention are shown. The power board is on the 1/8 converter BMP profile and can deliver 150 watts to an output voltage of 8 volts over 96% efficiency. This efficiency is 3 to 5% more efficient and 15 50% smaller than the well-regulated power converter mounted on the board. In order to reduce the power consumption of the printed circuit board (PCB), the power board 7〇5 is composed of a multi-layer PCB board, for example, an 8-layer PCB board. The top and bottom layers, for example, contain 2 ounces of copper and the inner 6 layers contain, for example, 4 ounces of copper. The power board 7〇5 also includes a transformer having a flat PQ core that provides isolation of the voltage converter between the primary open loop inverting circuit 410 and the secondary rectifying and filtering circuit 425. The core of the transformer can be selected according to the maximum input voltage and frequency. FR3 materials can be used for low frequency loss at high frequencies. The extremely small air gap of the transformer can be set to reduce the open time of the primary MOSFETs Μ1, M2 during optical loading. A small 160 ηΗ output inductor with a gas PM 1 house meter can be used to limit the output and ripple current ripple to less than 4 amps. 12 The Half-Bridge Controller IC 415 is operative to provide high-side and low-side drive signals to the primary driver MOSFETS Ml, M2 with a 50% duty cycle and a minimum of external components. The gate drive capability of the half-bridge controller IC 415 is optimized to directly drive the next-generation power MOSFETs Ml, M2 without any additional drivers or buffers. Even though the example circuit of Figure 4 is implemented using the VW's nominal input voltage, the high-end nominal input voltage of 32 〇 can be as high as, for example, 1 volt. This architecture therefore allows for a wide range of nominal input voltage ranges for telecommunications, networking, and computing applications, such as 24 volts to 48 volts. In addition, the primary terminal bias can further optimize circuit performance in, for example, 1 (M 5 volt range). The difference in pulse width between the high-side drive signal and the low-end drive signal must be less than a predetermined threshold, such as less than 25 nanoseconds. In order to prevent the imbalance of magnetic flux, magnetic flux imbalance may be a problem in some applications. The switching frequency and neutral time between the high-end drive signal and the low-end drive signal can be adjusted for different applications by adjusting the resistor R1 value and capacitor. The value changes. The switching frequency is determined by the following equation: s 2RjC2 The external resistor R1 and the capacitor €2 also determine the neutral time between the high-end drive signal and the low-end drive nickname. Referring now to Figure 5, a graph is shown. When the specific capacitance value of capacitor C2 is not specified, the relationship between the value of the resistor and the neutral time. The neutral time must be longer than the primary end ]5]?]£1^]^1, M2. In order to prevent the shoot trough current, the off-time of the primary power MOSFET can be estimated by the following formula:
t〇ff - !δ 此處Qgd為M0SFET之開至汲電荷(亦即「密勒」電荷广卿 . 為後臨限值閘電荷以及㈣驅動器電流。 於空檔時間,二*M0SFETS M7、爾之本體二極體導 5〔口此工彳s日$間須設定為儘可能短時間來獲得最大效 率’同%仍然提供足夠時間讓一次端M〇SFETS]v^、M2可 於隶惡化情況之操作條件下斷路。 現在茶照第6圖,顯示第4圖之範例半橋控制器ic 4ΐ5 φ 之進-步細節。整她制㈣仍係以偏财塊6職生的 10偏壓』(例如1〇至!5伏特)操作。半橋控制器化包括分 別指定用於Vcc及Vb之電壓不足鎖定(uVL〇)方塊6〇5、 650。電壓不足鎖定功能可確保全部計時信號皆係維持於規 格範圍内。振盪益方塊615可提供具有5〇%工作週期之仿 555信號S1。内部軟起動方塊63〇可確保信號幻、幻、以之 15工作週期漸進由0提升至50%,藉此於起動期間方便湧入電 k。而立而及低端驅動器655、66〇例如可透過mqsfeTS 665、 摩 670、675、680提供例如1安培電流於高端及低端驅動器信 號(HO)、(LO)。半橋控制器IC 415也透過電流源64〇、645 及MOSFETS 690、695而含括限流功能。 20 如前述,半橋控制器1C 415可用來控制於開放回路操 — 作之未經調節之隔離直流匯流排轉換器,例如於48伏特二 級内建式電力分配系統使用乏直流匯流排轉換器。半橋控 制态1C 415對效能、簡化及成本皆調整為最佳化,整個控 14 1293831 ;.;84Γ2; 〇''4^ J ·, —— 現在麥照第9圖,顯示用於第3圖之BMp電力模組3〇5 之範例全橋轉換為電路9〇〇。全橋轉換器電路9〇〇包括一次 開放回路反相電路910、一次偏壓電路915及二次整流及濾 5 波電路425。 一次開放回路反相電路91〇包括一次全橋控制器Ic 905其具有端子(CS)、(D)、(CT)、(Gl)、(LOl)、(Vcc)、(VB1)、 (HOI)、(VS1)、(G2)、(L02)、(VS2)、(H02)及(VB2)。二 極體D11係連結於Vcc與控制器圯905之端子(VB1)間;二極 10體D12係連結於Vcc與控制器1(:9〇5之端子(VB2)間;電阻器 R1係連結於Vdd與控制器1<:: 9〇5之端子(CT)間;電容器a 係連結於Vdd與控制器ic 905之端子(Gl)、(G)間;電容器 C2係連結於控制器ic 905之端子(CT)與地電位間。電容器 C15係連結於控制器iC 9〇5之端子(VM)、(VS1)間;端子(Vcc) 15係連結於Vcc ;電容器C17及C18係彼此並聯連結於48伏特 名目輸入電壓320與地電位間,以及電容器ci6係連結於控 制器1C 905之端子(VS2)與(VB2)間。一次開放回路反相電 路905也包括電力MOSFETS M9、M10、MU、M12(例如四 IRF6603 30 伏特 n_ 通道 DirectFEir 電力 MOSFETS) 〇 20 MOSFETS M9、M10及Μη、M12於全橋組配狀態係彼此連 ' 結分別連結於節點Ν9、Ν10且介於48伏特名目輸入電壓320 * 與地電位間。節點Ν9也連結至控制器1C 905之端子(VS1)以 及節點Ν10也連結至控制器1(: 905之端子(VS2)。M0SFETS Μ9'Μ10、Μ11、Μ12之閘分別係連結至端子(H〇l)、(L01)、 15 1293831 ,n〇4 日 j (H02)、(L02)。一次佈線17係連結於節點N9與N10間T〇ff - !δ where Qgd is the opening of the M0SFET to the 汲 charge (that is, the "Miller" charge guangqing. For the threshold voltage and (4) the driver current. In the neutral time, two *M0SFETS M7, The body diode guide 5 [the mouth must be set as short as possible to obtain the maximum efficiency of the same time.] The same % still provides enough time for the primary end M〇SFETS]v^, M2 can deteriorate Under the operating conditions, the circuit is broken. Now, according to Figure 6 of the tea photo, the example of the half-bridge controller ic 4ΐ5 φ of Figure 4 is shown. The whole system (four) is still biased by the bias of the 6th position of the 6th position. (eg 1 ! to 5 volts) operation. The half-bridge controller includes the voltage under-lock (uVL〇) blocks 6〇5, 650 for Vcc and Vb respectively. The under-voltage lockout function ensures that all timing signals are guaranteed. Maintained within specifications. Oscillation benefit block 615 provides a simulated 555 signal S1 with a 5〇% duty cycle. The internal soft-start block 63〇 ensures signal illusion, illusion, and a 15 duty cycle progressively increased from 0 to 50%. In this way, it is convenient to inject electric power during starting, and the low-end drivers 655, 66〇 For example, the mqsfeTS 665, 670, 675, and 680 can provide, for example, 1 amp current to the high-side and low-side driver signals (HO), (LO). The half-bridge controller IC 415 also passes through the current sources 64〇, 645, and MOSFETS 690. 695 includes a current limiting function. 20 As mentioned above, the half bridge controller 1C 415 can be used to control an unregulated isolated DC busbar converter for open loop operation, for example, a 48 volt secondary built-in power distribution. The system uses a spent DC bus converter. The half-bridge control state 1C 415 is optimized for performance, simplification and cost. The whole control is 14 1293831 ;.;84Γ2; 〇''4^ J ·, —— now Mai Zhao Figure 9 shows an example full bridge converted to the circuit 9〇〇 for the BMp power module 3〇5 of Fig. 3. The full bridge converter circuit 9〇〇 includes an open loop inverting circuit 910, a primary bias current The circuit 915 and the secondary rectification and filtering 5 wave circuit 425. The primary open circuit inverting circuit 91A includes a primary bridge controller Ic 905 having terminals (CS), (D), (CT), (Gl), (LOl) ), (Vcc), (VB1), (HOI), (VS1), (G2), (L02), (VS2), (H 02) and (VB2). The diode D11 is connected between the Vcc and the terminal (VB1) of the controller 圯905; the two-pole 10 body D12 is connected to the Vcc and the controller 1 (: 9〇5 terminal (VB2) The resistor R1 is connected between Vdd and the terminal (CT) of the controller 1<:: 9〇5; the capacitor a is connected between the terminal (G1) and (G) of the Vdd and the controller ic 905; the capacitor C2 It is connected between the terminal (CT) of the controller ic 905 and the ground potential. Capacitor C15 is connected between terminals (VM) and (VS1) of controller iC 9〇5; terminal (Vcc) 15 is connected to Vcc; capacitors C17 and C18 are connected in parallel to 48 volts of input voltage 320 and ground potential. The capacitor ci6 is connected between the terminals (VS2) and (VB2) of the controller 1C 905. An open loop inverting circuit 905 also includes power MOSFETs M9, M10, MU, M12 (eg four IRF6603 30 volts n_channel DirectFEir power MOSFETS) 〇20 MOSFETS M9, M10 and Μη, M12 in the full bridge configuration state are connected to each other' The junctions are respectively connected to nodes Ν9, Ν10 and between the 48 volt nominal input voltage 320* and the ground potential. The node Ν9 is also connected to the terminal (VS1) of the controller 1C 905 and the node Ν10 is also connected to the terminal of the controller 1 (: 905 (VS2). The gates of the MOSFETs Μ9'Μ10, Μ11, Μ12 are respectively connected to the terminals (H〇 l), (L01), 15 1293831, n〇4 j (H02), (L02). Primary wiring 17 is connected between nodes N9 and N10
一次偏壓電路915包括一次偏壓MOSFETS M15、 M16 ;電阻器R16、R17係並聯連結於48伏特名目輸入電壓 320與MOSFETS M15間;電阻器Rl8係並聯連結於48伏特名 5目輸入電壓320與MOSFETS M4間;串聯連結增納二極體 D13、D14係連結於電阻器R18與地電位間;二極體D15係連 結至MOSFETS M16; —次偏壓佈線19係連結於二極體Dl5 與地電位間;電阻器R14及電容器C22係並聯連結於控制器 1C 905之端子(CS)與地電位間;電阻器R15、R13係串聯連 10結於節點Nil介於控制器IC 905之端子(CS)與地電位間;電 阻器R19係連結於控制器IC 905之端子(CS)與(rm)間;串聯 連結之二極體D16、D17係連結於節點Nil與地電位間;串 聯連結之二極體D18、D19係連結於節點Nil與地電位間; 以及線圈110係連結於串聯連結的二極體Di6、D17與D18、 15 D19 間。The primary bias circuit 915 includes primary bias MOSFETs M15, M16; the resistors R16 and R17 are connected in parallel between the 48 volt nominal input voltage 320 and the MOSFET S M15; the resistor R18 is connected in parallel to the 48 volt nominal 5 mesh input voltage 320. Between the MOSFETs M4 and the series connection, the Zener diodes D13 and D14 are connected between the resistor R18 and the ground potential; the diode D15 is connected to the MOSFETS M16; the sub-bias wiring 19 is connected to the diode D15 and Between the ground potentials; the resistor R14 and the capacitor C22 are connected in parallel between the terminal (CS) of the controller 1C 905 and the ground potential; the resistors R15 and R13 are connected in series 10 to the terminal of the node Nil at the controller IC 905 ( Between CS) and ground potential; resistor R19 is connected between terminals (CS) and (rm) of controller IC 905; diodes D16 and D17 connected in series are connected between node Nil and ground potential; The diodes D18 and D19 are connected between the node Nil and the ground potential; and the coil 110 is connected between the diodes Di6 and D17 and the D18 and 15D19 connected in series.
二次整流及濾波電路920包括二次佈線ill,其係磁耦 合一次開放回路反相電路910之一次佈線Γ7。二次佈線in 係連結於MOSFETS M17、M18間,MOSFETS M17、M18 彼此耦合於節點N12。MOSFETS M17、M18之閘節點各自 20係經由電阻器R11、R10連結至節點N12。電感測線圈18係 連結至中心分接頭節點N13,電容器C19、C20、C21係彼此 並聯連結於電感器線圈18與節點N12間。二次整流及濾波電 路425也設置兩個二次MOSFETS M13、M14。MOSFETS 1^13、1^14之閘節點彼此連結。增納二極體〇20及電容器(:23 16 Η -日丨 係彼此並聯連結於MOSFETS Μ13、Μ14之閘節點與節點 N12間。電阻器R12係連結於MOSFETS M13、M14之閘節點 與線圈18間。MOSFETS M13、M14之源節點係分別連結至 MOSFETS M17、M18之閘節點;以及MOSFETS M13、M14 之汲節點係分別連結至MOSFETS M17、M18之汲節點。二The secondary rectification and filtering circuit 920 includes a secondary wiring ill that is magnetically coupled to the primary winding Γ7 of the primary open loop inverting circuit 910. The secondary wiring in is connected between the MOSFETs M17 and M18, and the MOSFETs M17 and M18 are coupled to each other at the node N12. The gates 20 of the MOSFETs M17 and M18 are connected to the node N12 via resistors R11 and R10, respectively. The inductance measuring coil 18 is coupled to the center tap node N13, and the capacitors C19, C20, and C21 are connected in parallel between the inductor coil 18 and the node N12. The secondary rectification and filtering circuit 425 is also provided with two secondary MOSFETs S13, M14. The gate nodes of the MOSFETs 1^13 and 1^14 are connected to each other. The diode 〇20 and the capacitor (: 23 16 Η - the 丨 are connected in parallel between the gates of the MOSFETs Μ13 and Μ14 and the node N12. The resistor R12 is connected to the gates and coils 18 of the MOSFETs M13 and M14. The source nodes of MOSFETS M13 and M14 are respectively connected to the gates of MOSFETS M17 and M18; and the node nodes of MOSFETS M13 and M14 are respectively connected to the 汲 nodes of MOSFETS M17 and M18.
次端MOSFETS M13、M14例如可使用 IRF6603 DirectFET MOSFETs組配成自我驅動同步整流拓樸學而實作。 全橋控制器及驅動器1C 905係類似第4圖之半橋控制 器415,但具有改良之限流功能模以及彈性軟起動能力。限 流功能具有打嗝模(hiccup mode),其中打嗝期可由外部藉 電容器控制。一次端電流係使用電流變壓器感測。電流變 壓器具有南阻數比,例如15 0比1之阻數比。感測得之交流 電流資訊經過整流,然後於RC濾波之後提供作為驅動器IC 905之電流感測接腳(CS)之輸入信號。 由於此種控制器1C 905係設計作為全橋電路,故提供 分別用於MOSFETS M9、M10、Mil、M12之四個閘驅動信 號。於每個分支控制器交替以50%工作週期導通。二分支 間之導通期的差異須小於例如25奈秒來防止磁通量的不平 衡。兩個MOSFETS間之導通與斷路計時差也須少於25奈 秒。 現在參照第10圖,顯示一線圖,該線圖為於限流設定 21安培、電流負載設定22安培以及名目輸入電壓邮伏特, 於打嗝模之輸出電壓波形圖。如第ίο圖所示,控制哭1(:;:9〇5 一旦於預定時間試圖導通轉換器。例如預定時間例如可經 黎魏31 94 g: 04 Ί >—货調整電容器C14之值而設定為例如5〇〇毫秒 10 15 20The secondary MOSFETs M13, M14 can be implemented, for example, using the IRF6603 DirectFET MOSFETs as a self-driven synchronous rectification topology. The full bridge controller and driver 1C 905 is similar to the half bridge controller 415 of Figure 4, but with an improved current limiting function and elastic soft start capability. The current limiting function has a hiccup mode in which the snoring period can be controlled by an external capacitor. The primary current is sensed using a current transformer. The current transformer has a south resistance ratio, such as a resistance ratio of 15 0 to 1. The sensed AC current information is rectified and then provided as an input signal to the current sense pin (CS) of the driver IC 905 after RC filtering. Since the controller 1C 905 is designed as a full bridge circuit, four gate drive signals for MOSFETS M9, M10, Mil, and M12 are provided, respectively. Each branch controller is alternately turned on with a 50% duty cycle. The difference in the conduction period between the two branches must be less than, for example, 25 nanoseconds to prevent the imbalance of the magnetic flux. The turn-on and turn-off timing difference between the two MOSFETs must also be less than 25 nanoseconds. Referring now to Figure 10, there is shown a line graph showing the output voltage waveform of the snoring mode with a current limit of 21 amps, a current load setting of 22 amps, and a nominal input voltage of volts. As shown in Fig. ίο, control cry 1 (:;:9〇5 once attempting to turn on the converter at a predetermined time. For example, the predetermined time can be, for example, via the value of 黎魏 31 94 g: 04 Ί > - the cargo adjustment capacitor C14 Set to, for example, 5 milliseconds 10 15 20
半橋控制器1C 415及全橋控制器IC 9〇5係設計成允許 於跨騎頻率範圍容易達成外部同步。為了達成此項目的, 計時電阻器R1須被移除,計時電容器C2係連結於Ic 415、 905與外部同步源間,如第U圖所示。於自我振盪模,通過 外部計時電阻器幻之電流充電計時電容器〇。當於ic 415、905之(CT)端子電壓係高於預定臨限值,例如扣供應 電壓Vcc或Vdd之-半日夺,控制器IC415、9〇5之内部驅_ 開始放電計時f容HC2。於端子(⑶之電壓係低於預定臨 限值,例如電源電壓乂“或乂此之五分之一後,控制器= 405、905去能内部驅動器,中止計時電容器C2的放電,因 而流經電阻器R1之電流再度開始充電電容器C2。The Half Bridge Controller 1C 415 and the Full Bridge Controller IC 9〇5 are designed to allow external synchronization to be easily achieved across the SAR frequency range. In order to achieve this, the timing resistor R1 must be removed, and the timing capacitor C2 is coupled between the Ic 415, 905 and the external synchronization source, as shown in FIG. In the self-oscillating mode, the timing capacitor is charged by an external timing resistor. When the (CT) terminal voltage of the ic 415, 905 is higher than a predetermined threshold, for example, the half-day of the supply voltage Vcc or Vdd, the internal drive of the controller ICs 415, 9〇5 starts to discharge the timer f. After the voltage of the terminal ((3) is lower than a predetermined threshold, such as the power supply voltage 乂 "or one-fifth of this, the controller = 405, 905 can be used to cancel the internal capacitor, and the discharge of the timing capacitor C2 is suspended, thus flowing through The current of the resistor R1 starts to charge the capacitor C2 again.
於同步操作模,外部電容器C2搞合外部同步源之上升 緣至(CT)端子。當端子(CT)之電壓係高於預定臨限值,例 如ic電源電壓之半時,於控制器IC 415、9〇5之内部驅動哭 開始於端子(ct)放電電壓。#於料(CT)之電壓係、低於= 定臨限值例如1C 415、905電源電壓之五分之—時,IC化、 力人电。當施加負 時’内部二極體於端子(CT)復置電壓,維持跨外部〜 容器C2之電Μ㈣伏特。於跨外部計時電容㈣之電層 達〇時,電容犯準備妥祕次—外部正脈波。於⑸ 模’空槽日相唯麵端子(⑺之Μ阻抗決定,以及# 部計時電容器C2之電容決定。 1 因而限制最 於自我振盛模,計時電阻器R1不可過低 18 'y4. r.2 —高撫作頻率。通常計時電阻器R1須高於預定值例如2千歐 姆。電阻器R1之電阻值愈低,貝彳1C 415、905之内部放電驅 動器之匯集電流愈高。由於於同步模中,計時電阻器R1被 移除,故可達成更高操作頻率。於同步模之最大操作頻率 係由驅動外部一次端MOSFETS造成的功率耗散決定。 I:圖式簡單說明3 第1圖為方塊圖,顯示習知二級電力轉換架構。 第2圖為方塊圖,顯示根據本發明之基本二級電力轉換In the synchronous operation mode, the external capacitor C2 engages the rising edge of the external synchronization source to the (CT) terminal. When the voltage of the terminal (CT) is above a predetermined threshold, such as half of the ic supply voltage, the internal driving of the controller IC 415, 9〇5 begins to cry at the terminal (ct) discharge voltage. #为料(CT) The voltage system is lower than the = limit value, for example, 1C 415, 905, the power supply voltage is five-points, IC, power and electricity. When negative is applied, the internal diode resets the voltage at the terminal (CT) and maintains the electrical (four) volts across the external ~ container C2. When the electrical layer across the external timing capacitor (4) reaches 〇, the capacitor is prepared for a secret-external positive pulse. In (5) modulo 'vacuum solar phase only terminal (the impedance of (7) is determined, and the capacitance of the # chronograph capacitor C2 is determined. 1 Therefore, the limit is the most self-vibrating mode, and the chronograph resistor R1 cannot be too low 18 'y4. r .2 — high frequency of operation. Usually the timing resistor R1 must be higher than the predetermined value, for example, 2 kilo ohms. The lower the resistance value of the resistor R1, the higher the collection current of the internal discharge driver of the Belle 1C 415, 905. In the mode, the timing resistor R1 is removed, so that a higher operating frequency can be achieved. The maximum operating frequency of the synchronous mode is determined by the power dissipation caused by driving the external primary MOSFETS. I: Simple illustration of the figure 3 A block diagram showing a conventional secondary power conversion architecture. Figure 2 is a block diagram showing basic secondary power conversion in accordance with the present invention.
架構。 10 第3圖為方塊圖,顯示根據本發明之第一範例電力轉換 架構。 第4圖為根據本發明,安裝於板上之電力模組之範例電 力轉換電路。 第5圖為線圖,顯示根據本發明,半橋驅動器1C之空檔 15 時間。 第6圖為第4圖之半橋驅動器1C之方塊圖。Architecture. 10 is a block diagram showing a first example power conversion architecture in accordance with the present invention. Figure 4 is a diagram showing an example power conversion circuit for a power module mounted on a board in accordance with the present invention. Figure 5 is a line diagram showing the neutral time of the half bridge driver 1C in accordance with the present invention. Fig. 6 is a block diagram of the half bridge driver 1C of Fig. 4.
第7圖為根據本發明,範例電力轉換板之前方及後方之 說明圖。 第8圖為線圖,顯示電力轉換效率相對於輸出負載電 20 流。 第9圖為根據本發明,安裝於板上之電力模組之另一範 例電力轉換電路。 第10圖為線圖,顯示打嗝波形圖。 第11圖顯示兩種方法,用於將第4圖之半橋驅動器1C組 19 〇4. 2. 〇 4 <月曰_ 自我振蘆模或同步化模操作 【圖式之主要元件代表符號表】 105a-n· · ·電力轉換器 ll〇a-n、215a-n···負載點電力 轉換器 205、325…中間匯流排電壓 210···轉換器 300…半橋二級電力轉換架構 305…安裝於板之電力模組 310a-n···負載點轉換器 320…名目輸入電壓 330a-n···負載點電壓 405···半橋轉換器電路 410、910----次開放回路反相 電路 415···半橋控制器iC 420…二次偏壓電路Figure 7 is an illustration of the front and rear of an exemplary power conversion panel in accordance with the present invention. Figure 8 is a line graph showing the power conversion efficiency relative to the output load. Fig. 9 is a diagram showing another example of a power conversion circuit of a power module mounted on a board according to the present invention. Figure 10 is a line graph showing the snoring waveform. Figure 11 shows two methods for the half-bridge driver 1C group of Figure 4 19 〇 4. 2. 〇 4 < 曰 _ self-resonance mode or synchronous mode operation [the main component symbol of the figure Table 105a-n···Power converters 〇an, 215a-n··load point power converters 205, 325... intermediate bus voltage 210··· converter 300...half bridge secondary power conversion architecture 305 ...the power module 310a-n installed on the board...the load point converter 320...the name input voltage 330a-n··the point voltage 405···the half bridge converter circuit 410,910----open Loop inverting circuit 415···half bridge controller iC 420...secondary bias circuit
425…二次整流及濾波電路 430、915…一次偏壓電路 435···雙重FET封裝體 605、650."UVLO方塊 610…偏壓方塊 615…振盪器方塊 630···内部軟起動方塊 640、645…電流源 655···高端驅動器 660…低端驅動器 665-680·--MOSFETS 705…電力板 900…全橋轉換器電路 905----次全橋控制器1C425...Secondary rectification and filtering circuit 430, 915...primary bias circuit 435···double FET package 605, 650. "UVLO block 610...biasing block 615...oscillator block 630···internal soft start Blocks 640, 645... Current source 655... High-end driver 660... Low-end driver 665-680·--MOSFETS 705... Power board 900... Full-bridge converter circuit 905----Second full bridge controller 1C
2020
Claims (1)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US42542202P | 2002-11-11 | 2002-11-11 | |
US43631602P | 2002-12-23 | 2002-12-23 | |
US44763503P | 2003-02-14 | 2003-02-14 | |
US47731103P | 2003-06-09 | 2003-06-09 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200417116A TW200417116A (en) | 2004-09-01 |
TWI293831B true TWI293831B (en) | 2008-02-21 |
Family
ID=45067979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW92131557A TWI293831B (en) | 2002-11-11 | 2003-11-11 | Two stage power conversion circuit |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI293831B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107863879A (en) * | 2017-12-05 | 2018-03-30 | 珠海格力电器股份有限公司 | Isolated power supply control device and control method |
-
2003
- 2003-11-11 TW TW92131557A patent/TWI293831B/en active
Also Published As
Publication number | Publication date |
---|---|
TW200417116A (en) | 2004-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9106141B2 (en) | Switching power supply device | |
Yao et al. | Tapped-inductor buck converter for high-step-down DC-DC conversion | |
US6278624B1 (en) | High availability DC power supply with isolated inputs, diode-or-connected outputs, and power factor correction | |
US6198260B1 (en) | Zero voltage switching active reset power converters | |
US6288920B1 (en) | Drive compensation circuit for synchronous rectifier and method of operating the same | |
US7348767B2 (en) | Bidirectional power conversion with multiple control loops | |
TWI801442B (en) | Merged voltage-divider forward converter | |
US20070064451A1 (en) | Series resonant DC-DC converter | |
US20040037100A1 (en) | DC converters | |
EP2566027A1 (en) | Bidirectional dc/dc converter | |
EP1333567A2 (en) | Electrical power conversion | |
JP2003513606A (en) | External drive method of synchronous rectification | |
US6707285B2 (en) | Phase-controlled AC-DC power converter | |
TW200826463A (en) | Resonant converter and synchronous rectification driving circuit thereof | |
JP2004512662A (en) | Electronic ballast for continuous conduction of line current | |
TW200929814A (en) | DC transformer | |
US7586759B2 (en) | Power source apparatus | |
KR100667288B1 (en) | Two stage power conversion circuit | |
JP2000278943A (en) | Switching power supply | |
US20230344358A1 (en) | Isolated multiphase series capacitor converters | |
US20230155510A1 (en) | Switching power supply circuit | |
JP2002315331A (en) | Power supply equipped with dc-dc converter | |
TWI293831B (en) | Two stage power conversion circuit | |
TW201103243A (en) | Resonant power converter | |
KR20150070898A (en) | Dc-dc converter and switching method thereof |