1293654 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種再生纖維及其製造方法,且特別 是有關於一種纖維素之多機能再生纖維及其製造方法。 【先前技術】 人類使用棉、毛、絲、麻等天然纖維已有千年歷史, 隨著化學工業及高分子技術之發展,以化學方式產製之人BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a regenerated fiber and a method of manufacturing the same, and more particularly to a multi-functional regenerated fiber of cellulose and a method of manufacturing the same. [Prior Art] Humans have used cotton, wool, silk, hemp and other natural fibers for thousands of years. With the development of chemical industry and polymer technology, people who produce by chemical means
造纖維應運而生。人造纖維可分為再生纖維和合成纖維二 大類。其中’再生纖維(如嫘縈、醋酸纖維等)是將天然纖維 素重新以化學處理而形成。而合成纖維(如尼龍、聚酯、亞 克力纖維等)則是以石油資源為原料,經化學聚合再抽絲而 成的纖維。 但疋,石油資源不僅是屬於一種不可再生的資源,而 且在其聚合為合成纖維的過程中更會產生污染的問題。此 外’以合成纖維編織而成的織布於使用後也無法降解。然 ==於近年㈣料求㈣㈣漸高m,因此纖維製造 用天然的再生原料’例如以纖維素作為纺織原 枓,以改善環境污染之問題。 2素(⑽1。啦—種天然㈣保素材。其不僅且有 可::舒::能: 污染的織布。目十,· 纖維素製造出天然實用且低 季服都等衣物上。】”維素纖維f使用於内衣、内襯或夏 然而,纖維素的纖維織物之功用僅偈限於具良好的舒 1293654 適性,並無法進一步提供其他的機能。因此,最有效的方 法就是添加具機能性的粒子至纖維製程中,以增加纖維製 抑之機旎性。但在先前技術中僅僅是將具有機能性的粒子 添加至纖維素中,然後藉由攪拌或是捏合的方式,將機能 陡粒子分散於溶液之中。然而,這種傳統的攪拌或捏合方 式不僅無法讓機能性粒子均勻地分散於溶液中而達到良好 的分散效果,且很料於後續的製程中再發生凝聚的現 象。即使疋利用分散劑或是乳化劑,也會因為粒子過大或 因儲存時間過長而導致二次凝聚,甚至是發生結塊的現 象。如此一來,於加工過程中會發生不均勻的現象,甚至 造成無法加工的情形。 因此,如何製造具機能性且分散性良好之機能懸浮液 且應用於再生纖維素製程中,以製造環保且實㈣纖維織 布,實為紡織工業與消費者所企盼。 【發明内容】 口此本發明的目的就是在提供—種纖維素之多機能再 生纖維之製造方法,心改善製造過"所產生環境污染 之問題。 本發明的另一 纖維之製造方法, 的再生纖維織物。 目的是在提供一種纖維素之多機能再生 用以得到一天然且可自然分解之纖維素 本發明的又-目的是在提供一種纖維素之多機能再生 纖維之製造方法,用以提高纖維素的再生纖維之抗菌性、 除臭性以及运紅外線升溫效果。 1293654 本發明的再一目的是在提供一種纖維素之多機能再生 纖維之快速製造方法。將預先製備好的多機能炭粉的懸浮 液與纖維素溶液均勻混合,以形成一紡絲液。再利用濕式 纺絲法而紡絲成多機能再生纖維,以提高多機能再生纖維 之產率。 根據本發明之上述目的,提出一種纖維素之多機能纖 維之製造方法。依照本發明一較佳實施例,係先製備具高 分散性之多機能炭粉之懸浮液。再將纖維素添加於溶劑 中’均勻攪拌至纖維素完全溶解,以形成纖維素溶液。 接著’將纖維素溶液與多機能炭粉的懸浮液混合,並 均句授拌以形成纖維紡絲液。最後利用濕式紡絲法,使得 纖維紡絲液形成纖維素的多機能再生纖維。其中上述之纖 維素的多機能再生纖維係為黏膠纖維、Lyocell纖維、醋酸 纖維或上述纖維之衍生纖維。 由上述本發明之較佳實施例可知,應用本發明之方法 所製備而成的纖維素之多機能再生纖維及其織物,皆具有 較佳之抗菌效果、高除臭率以及遠紅外線之升溫效果。此 方法係使用纖維素作為纖維原料,不僅能改善先前技術所 導致的環境污染問題,更能編織成天然且實用的纖維素的 纖維織布。 且本發明之方法不僅能得到自然可分解的纖維素的纖 維織物,更能藉由添加機能性炭粉於纖維中,以形成纖維 素之多機能再生纖維,進而提高纖維素的纖維織物之機能 性。除此之外,本發明之方法係先製備機能性且分散性良 好之機能懸浮液,並將此懸浮液應用於再生纖維素製程 7 Ϊ293654 中,以製造環保且實用性高的纖維織布。 【實施方式】 本發明能有效提供一種天然且實用之纖維織布,同時 於製造過程中不產生污染問題。並且,於此天然織布中加 入功能性粒子,以提高天然纖維織布的機能性。 首先製備多機能炭粉的懸浮液,用以提高纖維素織布 的機能性。在本發明之一較佳實施例中,將分散劑與潤濕 劑溶於溶劑中,接著進行攪拌直至混合均勻。再將多機能 炭粉加入混合液中並進行高速攪拌。隨後進行研磨分散製 程以形成多機能炭粉的懸浮液。 其中’上述之多機能炭粉較佳為竹炭粉、木炭粉、備 長炭粉、活性炭粉、椰子殼炭粉、蚵殼炭粉或海藻炭粉, 且其係以較佳溫度約為3〇〇。〇到15〇〇〇c燒製原料後粉碎而 成而懸浮液中的多機能炭粉之重量百分比較佳範圍為 5 50 /。。研磨後之多機能炭粉的平均粒徑較佳為小於ο』 μπι且90 A之粉末粒徑較佳為小於1 。此外,上述用來 懸>于多機能碳粉之溶劑較佳為水、苯類、醇類、醛類或酚 類。 上述之分散劑之成分較佳為聚萘磺酸、曱醛及甲基酚 納鹽類共聚物、馬來酐二異丁烯類共聚物、聚萘甲醛磺酸 納鹽類、續酸缓酸醋類、續酸鹽類、脂肪酸類、聚丙稀酸 酯類、聚丙烯酸鹽類、聚醚類、聚羧酸類、聚氨基甲酸酯 類、聚石夕氧燒類共聚物與績酸鹽類共聚物之任意組合。由 上述較佳成份所組成之分散劑較佳為高分子量分散劑、低 8 1293654 分子量分散劑、陰離子型分散劑、陽離子型分散劑或非離 子型分散劑。 在本發明中之一些較佳實施例,分散劑係採用由余泰 貿易公司所提供,型號分別為Galoryl PT201、Galoryl PT245L、Galoryl DT50、Galoryl TD2卜 Galoryl MT 830ML、 Galoryl DT23、Galoryl MT 830ML、Galoryl TD164L 之分散 劑。或是由TEGO公司所提供,型號分別為Dispers 610、 Dispers 630、Dispers 650、Dispers 651、Dispers 652、Dispers 700、Dispers 710、Dispers 740W、Dispers 745、Dispers 750、 Dispers 752W、Dispers 760W 之分散劑。 濕潤劑之成分較佳為之成分較佳為聚萘磺酸、甲醛及 曱基酚納鹽類共聚物、馬來酐二異丁烯類共聚物、聚萘甲 醛磺酸鈉鹽類、磺酸羧酸酯類、磺酸鹽類、脂肪酸類、聚 丙烯酸酯類、聚丙烯酸鹽類、聚醚類、聚羧酸類、聚氨基 甲酸酯類、聚矽氧烷類共聚物與磺酸鹽類共聚物之任意組 合。在本發明之一些較佳實施例中,上述之濕潤劑係採由 TEGO公司所提供,型號分別為WET500、WET501、 WET502、TEGO WET270、TEGO WET245 之濕潤劑。或是, 由余泰貿易公司所提供,型號分別為Sulfoxyl 80、Galoryl TR16、BP、OD40 之濕潤劑。 然後,開始製備纖維素溶液。添加適量之纖維素於第 一溶劑中並攪拌均勻,使纖維素能溶解於溶劑中,以形成 纖維素溶液。其中,上述之纖維素係選自於紙、紙製品、 木材、木材纖維、木材原料、洋麻 '草莖、米糠、甘蔗渣、 棉、黃麻或上述纖維素原料之任意組合,且上述之纖維原 9 1293654 料複合物的抗彎強度較佳為至少3000 psi。而上述用來溶解 纖維素之溶劑較佳為氫氧化納溶液、N-甲基嗎啉N-氧化物 (N-methylmorpholine-N-oxide ; NMMO)水溶液、三級胺氧 化物、環狀胺氧化物、乙醇、二硫化碳、二曱基甲醯胺與 二曱亞硫之任意組合。 接著,進行濕式紡絲製程以形成纖維素之多機能再生 纖維。讓纖維素溶液與多機能炭粉的懸浮液均勻混合,以 形成纖維紡絲液,其中纖維素溶液的重量較佳為纖維紡絲 液之0.25〜40%比例。隨後,將已配置完成之纖維紡絲液 置入紡絲槽中進行紡絲製程,以得到纖維素之多機能再生 纖維。其中上述生成之多機能再生纖維係為黏膠纖維、 Lyocell纖維、醋酸纖維或上述纖維之衍生纖維。 其中,上述之纖維素的多機能再生纖維之聚合度 (Degree of polymerization ;DP)較佳約介於 150 〜7000 之間, 且其單纖長絲之纖維細度較佳為0.5〜20 dtex。 以下將分別針對本發明之兩較佳實施例做一詳細說 明,且兩較佳實施例為分別使用兩種不同的溶液作為纖維 素之溶劑。本發明較佳實施例之兩不同溶液並不用以限定 本發明之範圍。 首先製備多機能炭粉之懸浮液。本發明之兩較佳實施 例中,所製備之多機能炭粉之懸浮液均相同,係以竹炭粉 作為多機能炭粉。且使用余泰貿易公司所提供之分散劑以 及德國TEGO公司所提供之潤濕劑作為較佳實施例,其型 號分別為Galoryl PT245L與TEGO WET500。先製備竹炭粉 的懸浮液。將分散劑與潤濕劑溶於水中,接著進行攪拌直 1293654 ^均勻。再將竹炭粉加人混合液中並進行高速授掉。 ^進行研磨製程以形成具高分散性之竹炭粉的懸浮液。 /、中,竹炭粉的懸浮液在研磨製程前之溶劑、竹炭粉、八 散劑、潤濕劑之重量比例較佳為58:3〇: 1〇5 : 15。刀 接著,開始製備多機能纖維素纖維。以下將為本發明 之兩較佳實施例之詳細說明。 取出纖維素並於室溫下攪拌較佳約2小時。同時,配 =重量百分率濃度較佳為繼的氫氧化納水溶液。將纖維 素置=氫氧化納水溶液中,且攪拌均勻至纖維素已完全溶 解=氫氧化納水溶液中,而形成驗纖維素。隨後取出二硫 ,石反’並將上述之驗纖維素與二硫化碳充分混纟,且於室 /皿下攪拌較佳約為3小時。如此—來,即可得到纖維素黃 原酸納溶液。其巾,±述之纖維素、氫氧化納水溶液*二 硫化碳之重量百分比較佳為21:73:6。 人接著讓上述之懸浮液與纖維素黃原酸納溶液均句混 :以形成纖維纺絲液’其中纖維素黃原酸納溶液的重量 車:佳約為纖維紡絲液之0·25〜40%的比例。隨後,即可進 =濕式纺絲_程。於較佳溫度為抓的_槽巾,分別置 入較佳濃度為120 g/L的硫酸溶液、28〇 g/L的硫酸納溶液 =15 g/L的硫酸鋅溶液於紡絲槽内。再添加上述已製備完 、的纖維纺絲液於紡絲槽中,並以紡絲速度較佳為⑼ 会货、、進行濕式紡絲製程。其中,上述之硫酸溶液、硫酸 液硫&辞溶液與纖維紡絲液在紡絲槽中的較佳添加 11 1293654 量為12:28:1.5:58.5。最後,利用拉伸紡絲法進行拉伸,以 提高纖維素之多機能再生纖維之成型的穩定性。如此一 來,即可得到纖維素之多機能再生纖維。 實施例二 取 1000 公克的 N-甲基嗎啉 N-氧化物 (N-methylmorpholine-N-oxide ; NMMO)與 315 公克的水, 配置成重量百分率濃度較佳為76%之NMMO溶液。隨後, 加入較佳為15公克的纖維素於NMMO溶液中,並進行加 熱攪拌,使得纖維素能完全溶解於NMMO水溶液中。攪拌 均勻後即可得到纖維素溶液。其中上述之纖維素的聚合度 (Degree of polymerization ; DP)較佳為 625,且其水分含量 較佳為5%。 接著,讓上述之懸浮液與纖維素溶液均勻混合,以形 成纖維紡絲液,其中纖維素溶液的重量較佳約為纖維紡絲 液之0.25〜40%比例。隨後,於較佳溫度為85〜120°C之條 件下,進行濕式紡絲製程,以得到多機能Lyocell纖維。其 中,上述之纖維素於較佳溫度為90°C的條件下,其黏度較 佳介於0.5〜200 mPas,且其聚合度較佳為500〜700。 將上述所得之纖維素的多機能再生纖維進行紡織織布 工程,形成多機能纖維素織布後,分別進行抗菌、遠紅外 線以及除臭試驗。本發明係使用實施例二所得之織布來進 行抗菌、遠紅外線以及除臭試驗,其所得之結果將依序說 明如下。 12 1293654 抗菌試驗 表一多機能纖維素織布之抗菌試驗 試驗項目 一般織布 多機能纖維素 織布 金黃色葡萄球菌 抑菌值 0.17 4.94 (AATCC 6538P) 殺菌值 <0 2.42 肺炎桿菌 抑菌值 <0 5.18 (AATCC 4352) 殺菌值 <0 1.96 本發明之抗菌試驗係依據國際標準『JIS(Japanese Industrial Standards) L1902-1998纖維產品抗菌性試驗方法 及抗菌效果』的方法來進行試驗,且試驗之菌種為金黃色 葡萄球菌(Staphylococcus aureus)與肺炎桿菌(Klebsiella pneumoniae)兩種菌種。依照此抗菌標準,當抑菌值 (Bacteriostatic value)大於2.2表示測試樣本具有抑菌效 果,殺菌值(Bactericidal value)大於0表示測試樣本具有殺 菌效果。由表一可得知,由本發明較佳實施例的方法所製 備而成之多機能纖維素織布,其抗菌效果遠高於一般織 布,具有良好之抗菌與殺菌效果。 遠紅外線試驗 表二多機能纖維素織布之遠紅外線升溫測試 13 1293654 試驗項目 一般織布 多機能纖維 素單股織布 多機能纖維 素雙股織布 照射後室内溫度(°c) 23.9 23.4 24.1 照射後樣品溫度(°c) 25.0 32.8 34.3 溫差(°c) + 1.1 +9.4 + 10.2 本發明之遠紅外線測試項目係以遠紅外線升溫值測試 為主。所採用的測試儀器為Thermovision且以500 W之鹵 素燈照射多機能織布,照射距離為l〇〇cm,照射時間為10 min。由表二可知,由本發明較佳實施例的方法所製備而成 之多機能纖維素織布,其遠紅外線升溫效果遠高於一般織 布之遠紅外線升溫效果,使其溫度可比室溫高9〜10度以 上,具有較佳遠紅外線之效能。 除臭試驗 表三多機能纖維素織布之除臭試驗 試 驗項目 空白 一般 織布 多機能織布 Ohr NH3初始濃度 100 100 100 lhr nh3殘留濃度 100 87 14 NH3除臭率 - 13 86 上述結果係依據曰本纖維製品新機能評價協議會 1293654 (Japanese Association for the Functional Evaluation of Textiles ; JAFET)之除臭性能評估試驗法來進行試驗。本發 明之除臭試驗係將體積為3 L且初始濃度為100 ppm的氨 氣(NH3),置入於體積為5 L的Tedlar袋之中進行氨氣的除 臭性能測試。置入10x10 cm2之多機能纖維素織布,且於1 : 小時之後量測袋中之氨氣殘留濃度。接著,即可計算多機 能織布之除臭率。由表三可知,由本發明較佳實施例的方 法所製備而成之多機能織布,其除臭率約為86%,除臭效 • 果相當良好。 由上述之分析結果可知,應用本發明具有下列優點。 (1) 應用本發明之方法所製備而成之多機能纖維素纖維 及其織物,皆具有較佳之抗菌效果、高除臭率以及遠紅外 線之升溫效果。 (2) 本發明之方法係使用纖維素作為纖維原料,不僅能 改善先前技術所導致的環境污染問題,更能編織成天然且 實用的纖維素之纖維織布。 • (3)本發明之方法不僅能得到自然可分解的纖維素之纖 維織物,更能藉由添加機能性炭粉於纖維中,以形成多機 能纖維素的纖維織物,進而提高纖維素的纖維織物之機能 性。 • (4)本發明之方法係先製備機能性且分散性良好之機能 懸浮液,並將此懸浮液應用於再生纖維素製程中,以製造 環保且實用性高的纖維織布。 雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明,任何熟習此技藝者,在不脫離本發明之精 15 1293654 神和範圍内,當可作各種之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者為準。Fiber production came into being. Man-made fibers can be classified into two major categories: regenerated fibers and synthetic fibers. Among them, 'regenerated fibers (e.g., hydrazine, acetate, etc.) are formed by re-chemically treating natural cellulose. Synthetic fibers (such as nylon, polyester, acrylic fibers, etc.) are made from petroleum resources and chemically polymerized and then drawn. However, oil resources are not only a non-renewable resource, but also a problem of pollution in the process of polymerizing into synthetic fibers. In addition, the woven fabric woven with synthetic fibers cannot be degraded after use. However, in recent years (4), it is expected that (4) (4) gradually increase m, so the fiber is manufactured using natural recycled raw materials, such as cellulose as a textile raw material, to improve environmental pollution. 2 vegetarian ((10)1. La-species natural (four) material. Not only does it have:: Shu:: Can: Contaminated weaving. Mesh 10, · Cellulose produces natural and practical clothes in low seasons.] "Vecin fiber f is used in underwear, lining or summer. However, the function of cellulose fiber fabric is limited to good fitness 1293654, and no further function can be provided. Therefore, the most effective method is to add function. Sex particles into the fiber process to increase the flexibility of the fiber system. However, in the prior art, only the functional particles are added to the cellulose, and then the function is steep by stirring or kneading. The particles are dispersed in the solution. However, this conventional stirring or kneading method not only does not allow the functional particles to be uniformly dispersed in the solution to achieve a good dispersion effect, and is expected to re-agglomerate in subsequent processes. Even if you use a dispersant or an emulsifier, it will cause secondary aggregation or even agglomeration due to excessive particles or long storage time. Unevenness may occur during the process, and even the process may not be processed. Therefore, how to make a functional and dispersible functional suspension and apply it to the regenerated cellulose process to manufacture environmentally friendly (4) fiber woven fabrics The present invention is intended to provide a method for producing a multi-functional regenerated fiber of cellulose, and to improve the environmental pollution caused by the manufacture of the cellulose. A method for producing another fiber of the present invention, a recycled fiber fabric. The object of the present invention is to provide a cellulose which can be regenerated to obtain a natural and naturally decomposable cellulose. The invention discloses a method for manufacturing a multi-functional regenerated fiber for improving the antibacterial property, deodorizing property and the infrared heating effect of the regenerated fiber of cellulose. 1293654 A further object of the present invention is to provide a fast multi-functional regenerated fiber of cellulose. Manufacturing method: uniformly mixing a pre-prepared suspension of multi-functional carbon powder with a cellulose solution to Forming a spinning solution, which is then spun into a multi-functional regenerated fiber by a wet spinning method to increase the yield of the multi-functional regenerated fiber. According to the above object of the present invention, a method for producing a multi-functional fiber of cellulose is proposed. According to a preferred embodiment of the present invention, a suspension of a multi-functional carbon powder having a high dispersibility is prepared, and then the cellulose is added to a solvent to uniformly stir until the cellulose is completely dissolved to form a cellulose solution. 'The cellulose solution is mixed with a suspension of multi-functional carbon powder and uniformly mixed to form a fiber spinning solution. Finally, the fiber spinning solution is used to form a cellulose multi-functional regenerated fiber by a wet spinning method. The multi-functional regenerated fiber of the above cellulose is a viscose fiber, a Lyocell fiber, an acetate fiber or a fiber derived from the above fiber. From the above preferred embodiment of the present invention, the cellulose prepared by the method of the present invention is known. The multi-functional recycled fiber and its fabric have better antibacterial effect, high deodorization rate and warming effect of far infrared rays. This method uses cellulose as a fiber raw material, which not only improves the environmental pollution caused by the prior art, but also wovens into a natural and practical cellulose fiber woven fabric. Moreover, the method of the invention not only can obtain the fiber fabric of the naturally decomposable cellulose, but also can increase the function of the fiber fabric of the cellulose by adding the functional carbon powder to the fiber to form the multi-functional renewable fiber of the cellulose. Sex. In addition, the method of the present invention first prepares a functional suspension which is functional and highly dispersible, and applies the suspension to the regenerated cellulose process 7 Ϊ 293654 to produce an environmentally-friendly and practical fiber woven fabric. [Embodiment] The present invention can effectively provide a natural and practical fiber woven fabric without causing contamination problems in the manufacturing process. Further, functional particles are added to the natural woven fabric to improve the functionality of the natural fiber woven fabric. First, a suspension of multi-functional carbon powder is prepared to improve the functionality of the cellulose woven fabric. In a preferred embodiment of the invention, the dispersing agent and the wetting agent are dissolved in a solvent, followed by stirring until the mixing is uniform. The multi-functional carbon powder is then added to the mixture and stirred at high speed. A grinding and dispersion process is then carried out to form a suspension of multi-functional carbon powder. Among them, the above-mentioned multi-functional carbon powder is preferably bamboo charcoal powder, charcoal powder, prepared charcoal powder, activated carbon powder, coconut shell carbon powder, clam shell carbon powder or seaweed carbon powder, and the preferred temperature is about 3〇〇. . The weight percentage of the multi-functional carbon powder in the suspension after pulverization to 15 〇〇〇c is preferably 5 50 /. . The average particle diameter of the multi-functional carbon powder after grinding is preferably less than ο" μπι and the particle diameter of 90 A is preferably less than 1. Further, the solvent for suspending > multi-functional toner is preferably water, benzene, alcohol, aldehyde or phenol. The components of the above dispersing agent are preferably polynaphthalenesulfonic acid, furfural and methylphenol sodium salt copolymers, maleic anhydride diisobutylene copolymers, polynaphthalene formaldehyde sulfonate sodium salts, and acid-lowering acid vinegars. , a continuous acid salt, a fatty acid, a polyacrylate, a polyacrylate, a polyether, a polycarboxylic acid, a polyurethane, a polyoxo-copolymer, and a copolymer of a salt. random combination. The dispersing agent composed of the above preferred components is preferably a high molecular weight dispersing agent, a low molecular weight dispersing agent, an anionic dispersing agent, a cationic dispersing agent or a nonionic dispersing agent. In some preferred embodiments of the invention, the dispersant is supplied by Yutai Trading Co., Ltd., model number is Galloryl PT201, Galoryl PT245L, Galoryl DT50, Galoryl TD2, Galoryl MT 830ML, Galoryl DT23, Galoryl MT 830ML, Galoryl Dispersant for TD164L. Or supplied by TEGO, the dispersants of Dispers 610, Dispers 630, Dispers 650, Dispers 651, Dispers 652, Dispers 700, Dispers 710, Dispers 740W, Dispers 745, Dispers 750, Dispers 752W, Dispers 760W. Preferably, the component of the humectant is a polynaphthalenesulfonic acid, a formaldehyde and a nonylphenol sodium salt copolymer, a maleic anhydride diisobutylene copolymer, a polynaphthalene sulfonate sodium salt, a sulfonic acid carboxylic acid. Esters, sulfonates, fatty acids, polyacrylates, polyacrylates, polyethers, polycarboxylic acids, polyurethanes, polyoxyalkylene copolymers and sulfonate copolymers random combination. In some preferred embodiments of the invention, the humectant is supplied by TEGO, and the humectants are WET500, WET501, WET502, TEGO WET270, and TEGO WET245, respectively. Or, supplied by Yutai Trading Company, the humectants of the models are Sulfoxyl 80, Galoryl TR16, BP, OD40. Then, the preparation of the cellulose solution was started. An appropriate amount of cellulose is added to the first solvent and stirred uniformly to allow the cellulose to be dissolved in the solvent to form a cellulose solution. Wherein the cellulose is selected from the group consisting of paper, paper products, wood, wood fibers, wood materials, kenaf grass stems, rice bran, bagasse, cotton, jute or any of the above cellulose materials, and the above The fiber precursor 9 1293654 composite preferably has a flexural strength of at least 3000 psi. The solvent for dissolving the cellulose is preferably a sodium hydroxide solution, an N-methylmorpholine-N-oxide (NMMO) aqueous solution, a tertiary amine oxide, or a cyclic amine oxidation. Any combination of ethanol, carbon disulfide, dimethylformamide and disulfide. Next, a wet spinning process is carried out to form a cellulose multi-functional recycled fiber. The cellulose solution is uniformly mixed with a suspension of the multi-functional carbon powder to form a fiber spinning solution, wherein the weight of the cellulose solution is preferably 0.25 to 40% by weight of the fiber spinning solution. Subsequently, the fiber spinning solution which has been configured is placed in a spinning tank for a spinning process to obtain a multi-functional regenerated fiber of cellulose. The multi-functional recycled fiber produced by the above is a viscose fiber, a Lyocell fiber, an acetate fiber or a derivative fiber of the above fiber. The degree of polymerization of the multi-functional regenerated fiber of the above cellulose is preferably between about 150 and 7,000, and the fiber fineness of the monofilament filament is preferably from 0.5 to 20 dtex. Hereinafter, two preferred embodiments of the present invention will be separately described, and the two preferred embodiments use two different solutions as the solvent for the cellulose, respectively. The two different solutions of the preferred embodiments of the invention are not intended to limit the scope of the invention. First, a suspension of multi-functional carbon powder is prepared. In the two preferred embodiments of the present invention, the suspension of the multi-functional carbon powder prepared is the same, and the bamboo charcoal powder is used as the multi-functional carbon powder. The dispersant provided by Yutai Trading Co., Ltd. and the wetting agent provided by TEGO, Germany are used as preferred examples, and the models are Galoryl PT245L and TEGO WET500, respectively. A suspension of bamboo charcoal powder is prepared first. Dispersing agent and wetting agent were dissolved in water, followed by stirring to 1293654^. The bamboo charcoal powder is added to the mixture and is transferred at high speed. ^ A grinding process is performed to form a suspension of bamboo charcoal powder having high dispersibility. /, medium, the weight ratio of the bamboo charcoal powder before the grinding process, the bamboo charcoal powder, the eight powder, the wetting agent is preferably 58:3 〇: 1 〇 5: 15. Knives Next, the preparation of multi-functional cellulose fibers began. The following is a detailed description of two preferred embodiments of the invention. The cellulose is taken out and stirred at room temperature for preferably about 2 hours. At the same time, the concentration of the weight percent is preferably the aqueous sodium hydroxide solution. The cellulose was placed in an aqueous solution of sodium hydroxide and stirred until the cellulose was completely dissolved in an aqueous solution of sodium hydroxide to form a cellulose. The disulfide, stone counter is then removed and the cellulose as described above is thoroughly mixed with carbon disulfide and stirred under a chamber/dish for preferably about 3 hours. In this way, a cellulose sodium xanthate solution can be obtained. Preferably, the weight percentage of the cellulose, the aqueous sodium hydroxide solution * carbon disulfide is ± 21:73:6. The person then mixes the above suspension with the cellulose xanthogen sodium solution: to form a fiber spinning solution, wherein the weight of the cellulose xanthate nano solution is: 0·25~ 40% of the ratio. Then, you can enter the wet spinning process. At a preferred temperature for grasping, a sulfuric acid solution having a preferred concentration of 120 g/L and a sodium sulfate solution of 28 g/L = 15 g/L of zinc sulfate solution were placed in the spinning tank. Further, the above-prepared fiber spinning solution is added to the spinning tank, and the spinning speed is preferably (9), and the wet spinning process is carried out. Among them, the above sulfuric acid solution, sulfuric acid sulfur & gram solution and fiber spinning solution are preferably added in the spinning tank 11 1293654 amount is 12:28:1.5:58.5. Finally, the stretching is carried out by a stretch spinning method to improve the stability of the formation of the multi-functional recycled fiber of cellulose. In this way, a multi-functional renewable fiber of cellulose can be obtained. Example 2 1000 g of N-methylmorpholine-N-oxide (NMMO) and 315 g of water were used to prepare a NMMO solution having a weight percentage of preferably 76%. Subsequently, preferably 15 g of cellulose is added to the NMMO solution and heated with stirring to allow the cellulose to be completely dissolved in the NMMO aqueous solution. After stirring evenly, a cellulose solution can be obtained. The cellulose of the above-mentioned cellulose preferably has a degree of polymerization (DP) of 625 and a moisture content of preferably 5%. Next, the suspension is uniformly mixed with the cellulose solution to form a fiber spinning solution, wherein the weight of the cellulose solution is preferably about 0.25 to 40% by weight of the fiber spinning solution. Subsequently, a wet spinning process is carried out at a preferred temperature of 85 to 120 ° C to obtain a multi-functional Lyocell fiber. Preferably, the cellulose has a viscosity of preferably from 0.5 to 200 mPas at a temperature of preferably 90 ° C, and the degree of polymerization is preferably from 500 to 700. The multi-functional regenerated fibers of the cellulose obtained above were subjected to a woven fabric process to form a multi-functional cellulosic woven fabric, and then subjected to antibacterial, far-infrared rays and deodorization tests, respectively. In the present invention, the woven fabric obtained in the second embodiment is used for the antibacterial, far infrared ray and deodorizing tests, and the results obtained will be described below in order. 12 1293654 Antibacterial test table - Antibacterial test test item for multi-functional cellulosic woven fabrics General woven multi-functional cellulose woven fabric Staphylococcus aureus bacteriostatic value 0.17 4.94 (AATCC 6538P) Sterilization value <0 2.42 Pneumococcal bacteriostatic value <0 5.18 (AATCC 4352) Sterilization value <0 1.96 The antibacterial test of the present invention is tested in accordance with the method of the international standard "JIS (Japanese Industrial Standards) L1902-1998 antibacterial test method for fiber products and antibacterial effect", and The strains tested were Staphylococcus aureus and Klebsiella pneumoniae. According to this antibacterial standard, when the Bacteriostatic value is greater than 2.2, the test sample has a bacteriostatic effect, and the Bactericidal value greater than 0 indicates that the test sample has a bactericidal effect. As can be seen from Table 1, the multi-functional cellulose woven fabric prepared by the method of the preferred embodiment of the present invention has a much higher antibacterial effect than the general woven fabric and has good antibacterial and bactericidal effects. Far-infrared test table 2 Far-infrared temperature rise test of multi-functional cellulosic fabric 13 1293654 Test item General weaving multi-functional cellulose single-strand woven multi-functional cellulose double-strand woven fabric indoor temperature (°c) 23.9 23.4 24.1 Sample temperature after irradiation (°c) 25.0 32.8 34.3 Temperature difference (°c) + 1.1 +9.4 + 10.2 The far-infrared test item of the present invention is mainly based on far-infrared heating value test. The test instrument used was Thermovision and was irradiated with a multi-functional woven fabric with a 500 W halogen lamp at an irradiation distance of 10 cm and an irradiation time of 10 min. It can be seen from Table 2 that the far-infrared heating effect of the multi-functional cellulose woven fabric prepared by the method of the preferred embodiment of the present invention is much higher than that of the general ray fabric, so that the temperature can be higher than the room temperature. ~10 degrees or more, with better far infrared performance. Deodorization test table Three-functional cellulose woven fabric deodorization test test item blank General woven multi-functional woven fabric Ohr NH3 initial concentration 100 100 100 lhr nh3 residual concentration 100 87 14 NH3 deodorization rate - 13 86 The above results are based on The deodorization performance evaluation test method of the Japanese Association for the Functional Evaluation of Textiles (JAFET) was tested. The deodorization test of the present invention was carried out by placing ammonia (NH3) having a volume of 3 L and an initial concentration of 100 ppm in a Tedlar bag having a volume of 5 L for the deodorizing performance test of ammonia gas. A multi-functional cellulosic woven fabric of 10 x 10 cm2 was placed, and the residual concentration of ammonia in the bag was measured after 1 hour. Then, the deodorization rate of the multi-functional woven fabric can be calculated. As can be seen from Table 3, the multi-functional woven fabric prepared by the method of the preferred embodiment of the present invention has a deodorization rate of about 86% and a good deodorizing effect. From the above analysis results, it is understood that the application of the present invention has the following advantages. (1) The multi-functional cellulose fibers and their fabrics prepared by the method of the present invention have a better antibacterial effect, a high deodorization rate, and a warming effect of far infrared rays. (2) The method of the present invention uses cellulose as a fiber raw material, which not only improves the environmental pollution problem caused by the prior art, but also wovens into a natural and practical cellulose fiber woven fabric. • (3) The method of the present invention can not only obtain a fiber fabric of naturally decomposable cellulose, but also can add a functional carbon powder to the fiber to form a fiber fabric of multi-functional cellulose, thereby improving the fiber of the cellulose. The functionality of the fabric. (4) The method of the present invention first prepares a functional suspension which is functional and dispersible, and applies the suspension to a regenerated cellulose process to produce an environmentally-friendly and highly practical fiber woven fabric. Although the present invention has been disclosed in a preferred embodiment as above, it is not intended to limit the invention, and anyone skilled in the art can make various changes and modifications without departing from the scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.