TWI292956B - Liquid crystal display device and method of manufacturing the same - Google Patents

Liquid crystal display device and method of manufacturing the same Download PDF

Info

Publication number
TWI292956B
TWI292956B TW094112075A TW94112075A TWI292956B TW I292956 B TWI292956 B TW I292956B TW 094112075 A TW094112075 A TW 094112075A TW 94112075 A TW94112075 A TW 94112075A TW I292956 B TWI292956 B TW I292956B
Authority
TW
Taiwan
Prior art keywords
film
substrate
liquid crystal
forming
metal film
Prior art date
Application number
TW094112075A
Other languages
Chinese (zh)
Other versions
TW200605361A (en
Inventor
Yasutoshi Tasaka
Hidefumi Yoshida
Kunihiro Tashiro
Yoshinori Tanaka
Seiji Doi
Tomoshige Oda
Isao Tsushima
Original Assignee
Fujitsu Ltd
Au Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Au Optronics Corp filed Critical Fujitsu Ltd
Publication of TW200605361A publication Critical patent/TW200605361A/en
Application granted granted Critical
Publication of TWI292956B publication Critical patent/TWI292956B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Thin Film Transistor (AREA)

Description

1292956 九、發明說明: 【發明戶斤屬之技術領威】 發明領域 本發明關於一種反射式或半透射式液晶顯示裝 5 置,其係藉由利用外部光來顯示景像。尤其,本發明 ’ 係關於液晶顯示裝置,其中微細隆起物及傾斜係設置 於反射膜的表面,以及本發明關於製造此液晶顯示裝 置之方法。 _ C :冬餘】 10 發明背景 液晶顯示裝置具有薄且輕以及可在低電壓下驅動 以及具有低電力消耗的優點,以及廣泛地使用於各種 不同的電子裝置。尤其,主動矩陣液晶顯示裝置,其 中薄膜電晶體(TFT)係設置作為每一畫素之開關元 15件,與陰極射線管(CRT)顯示器相較,亦顯示出絕 佳的顯示品質,且因此廣泛地使用於作為電視、個人 # 電腦或其他類似物作的顯示器。 典型的液晶顯示裝置具有一結構,其中液晶係包 含於二面向彼此設置的基板之間。在一基板上,形成 2〇 有11^、晝素電極及類似元件;在另一基板上,形成有 濾色器、共同電極及類似元件。在下文中,在形成有 TFT、畫素電極及類似元件之基板係稱為TFT基板,以 及面向此TFT基板的基板係稱為相反基板。 液晶顯示裝置包括透射式液晶顯示裝置,其中背 5 光用於作為光源,以及其中使用通過液晶面板的光來 顯示景像’反射式液晶顯不裝置’其中藉由利用外部 光(天然光線或燈光)的反射來顯示景像;以及半透 射式液晶顯不裝置’其中利用黑暗處的背光或使用光 線良好處之外部光的反射來顯示景像。 因為不需要背光,反射式液晶顯示器具有電力、消 耗比透射式液晶顯示裝置的電力消耗少。再者,在周 園區域光線良好的场所’與利用为光之透射式液晶顯 系裝置相較,利用外部光之反射式液晶顯示裝置或半 透射式液晶顯示裝置通常可良好地看到景像。 另外’在反射式液晶顯示裝置及半透射式液晶顯 示裝置中,若用於反射光之膜(反射膜)的表面是平 滑的,可良好地看到景像的範圍(視角)變得極端窄, 且發生眩光及類似情況的問題。因此,必須藉由在反 射膜的表面設置微細隆起物及傾斜來散射光線。 迄今,已有人提出在反射膜之表面形成微細隆起 物及傾斜之方法。舉例而言,在日本未審查之專利公 開案笫平5(1993)-173158^5虎中’藉述一種技術,其中隆 起物及傾斜係使用光微影術及乾蝕刻,形成於有機絕 緣膜(聚酿亞胺膜)之表面,以及其中反射膜係形成 在該隆起物及傾斜上。再者,在日本專利第299〇〇46號 的說明書中,描述一種技術,其中隆起物及傾斜係藉 由利用用於形成開關元件(TFT)之金屬膜、絕緣膜及 半導體膜巾至少-者來形成,以及其巾反射膜係形成 1292956 在該隆起物及傾斜上,其等之間夾置有-絕緣膜。 然而,本發明之發明人考慮到上述之已知技術具 有下述的問題。換言之,在曰本未審查之專利公開案 第平5(1993)·173158號中所接述的技術要求將光感性 細月曰(光阻)舖展在有機絕緣膜之步驟,曝光及顯影 之步驟,以及乾蝕刻之步驟。因此,因為步驟數目增 加,故製造成本增加,以及產率降低。 在日本專利第2990046號的說明書中描述的技 術,係沈積金屬膜、絕緣膜,以及半導體膜,此等膜 1〇係藉由光微影術來蝕刻,隆起物及傾斜與TFT同時形 成,接著在整個表面上形成絕緣膜,以及進一步在絕 緣膜上形成反射膜。製造步驟數目之增加,可藉由如 上述般使隆起物及傾斜與TFr同時形成來避免。然而, 利用此技術’難以形成高密度之隆起物及傾斜,因為 15隆起物及傾斜的密度係依光微影術的解像度而定。 再者,於日本專利第2990046號的說明書中描述的 部分具體例中,一玻璃被蝕刻。然而,若玻璃基板被 姓刻,包含於玻璃基板中的雜質流出以致污染液晶, 且择員示品質可能顯著地受損。 20 【發明内容】 發明概要 有鑑於上述内容,本發明之一目的為一種液晶顯 示裝置,其設置有一反射膜,該反射膜之表面具有高 密度之隆起物及傾斜。 7 1292956 本發明之另一目的為提供一種製造液晶顯示裝置 之方法,其中表面具有高密度微細隆起物及傾斜之反 射膜可以少數步驟來形成。 上述問題係藉由一種液晶顯示裝置來解決,該液晶 5 顯示裝置包括:第一基板;第二基板,其設置成面向該第 一基板且透光;反射膜,其係形成在該第一基板上且反射 通過該第二基板之光;多數膜,其係以層合方式形成於該 第一基板及該反射膜之間;以及液晶,其係包含於該第 一基板及該第二基板之間。在此液晶顯示裝置中,圖 10 案係形成於該多數膜中,該等圖案在每一膜中的設置 節距不同,以及對應該多數膜之該等圖案的隆起物及 傾斜,係形成於該反射膜的表面。 再者,上述問題可藉由一種製造液晶顯示裝置之 方法來解決,該液晶顯示裝置具有第一基板,其中每 15 一晝素設置有薄膜電晶體及反射電極;第二基板,其 面向該第一基板;以及液晶,其包含於該第一基板及 該第二基板之間。在此方法中’在形成溥膜電晶體之 同時,多數圖案係以層合方式形成在該第一基板之形 成反射電極的區域中,該等圖案在每一膜中的設置節 20 距不同,以及接著在該多數膜上形成反射膜,且該反 射膜係作為該反射電極,該反射膜之一表面上的隆起 物及傾斜對應該多數膜之圖案。 在具體例中,圖案係形成於位在該反射電極下方 之多數膜中的至少二者中,該等圖案在每一膜中的設 8 置節距不同。因此,該等膜之該等圖案複雜地彼此重 疊,且形成隨意排列的微細隆起物及傾斜。在設置有 隨意排列之微細隆起物及傾斜的膜上,形成高反射度 膜,該膜含有例如A1 (鋁)或Ag (銀)作為主要成分, 並作為反射電極。因此,在反射電極之表面中,於在 下層之膜中設置圖案之後,形成微細隆起物及傾斜。 隆起物及傾斜之密度對光微影術之解像度無依賴性。 此使得此液晶顯示裝置用於作為反射式液晶顯示裝置 時,獲得有利的顯示特性是可能的。 圖式簡單說明 第1圖為顯示本發明之第一具體例之液晶顯示裝 置的截面圖。 第2圖為第一具體例之液晶顯示裝置的平面圖。 第3圖為第一具體例之液晶顯示裝置之一晝素的 等效電路圖。 第4A圖至第4L圖為顯示製造第一具體例之液晶 顯示裝置之方法的截面圖。 第5 A圖至第5 F圖為顯示製造第一具體例之液晶顯 示裝置之方法的平面圖。 第6圖為顯示第一具體例之一改良實施例之液晶 顯示裝置的截面圖。 第7A圖至第7F圖為顯示製造本發明之第二具體例 之液晶顯示裝置之方法的截面圖。 第8A圖至第8D圖為顯示製造本發明之第二具體 )292956 例之液晶顯示巢置之方法的平面圖。 第9A圖至第9F圖為顯示製造本發明之第三具體例 之液晶顯示裝置之方法的反射區域之截面圖。 第10A圖至第1〇D圖為顯示製造本發明之第三具 5體例之液晶顯示裝置之方法的TFT形成部分的截面圖。 第11A圖i第11E圖為顯示製造本發明之第四具體 例之液晶顯示裝置之方法的平面圖。 【實施冷式3 較佳實施例之詳細說明 1〇 在下文中,本發明將參考附圖來說明。 (第一具體例) 第1圖為顯示本發明之第一具體例之液晶顯示裝 置的截面圖,以及第2圖為第一具體例之平面圖。此具 體例為本發明應用於具有通道保護形式之TFT的半透 15 射式液晶顯示裝置的一實施例。 如第1圖,此具體例之液晶顯示裝置包括彼此相對 地設置之TFT基板10及相反基板40,以及包含於該TFT 基板10及該相反基板40之間的垂直配向型液晶(具有 負介電各向異性液晶)50。在TFT基板1〇下方,設置有 20 又/4波長板(相位板)51a及偏光板52a,以及背光(未 择員示)係設置在更下方的位置。另一方面,在相反基 板40上,設置有λ/4波長板(相位板)51b以及偏光板 52b。λ/4波長板51a及51b係設置成使其等之慢軸 (slow axes)相互垂直,以及偏光板52a及52b係設置 10 1292956 - 成使其等之透射輛(transmission axes )相互垂直。如 第2圖所不’在X方向(水平方向)延伸多數閘極匯流 排線13及在γ方向(垂直方向)延伸之多數數據匯流 排線22係形成在該TFT基板丨〇上。閘極匯流排線丨3係設 5置成彼此相互平行,例如約300//m節距,以及數據匯 流排線22係設置成彼此相互平行,例如約…^从^節 距。每一由閘極匯流排線丨3及數據匯流排線22所界定 之矩形區域為一畫素區域。 験在TFT基板1〇上,形成有輔助電容器匯流排線14, 10該輔助電容器匯流排線係設置成與閘極匯流排線丨3平 行且橫跨畫素區域中間部分。第一絕緣膜(閘極絕緣 膜)16係形成於該閘極匯流排線13及該數據匯流排線 22之間,以及形成於該輔助電容器匯流排線14及該數 據匯流排線22之間。閘極匯流排線13及輔助電容器匯 15 流排線14係藉由該第一絕緣膜16,與該數據匯流排線 22電氣隔離。 馨 再者,在TFT基板10上’於每一畫素區域形成τρτ1292956 IX. INSTRUCTIONS: [Technical Leadership of Inventions] Field of the Invention The present invention relates to a reflective or transflective liquid crystal display device that displays a scene by using external light. In particular, the present invention relates to a liquid crystal display device in which a fine bump and a tilting system are provided on a surface of a reflective film, and a method of manufacturing the liquid crystal display device of the present invention. _C: Wintertime] Background of the Invention Liquid crystal display devices are thin and light, and can be driven at a low voltage and have low power consumption, and are widely used in various electronic devices. In particular, an active matrix liquid crystal display device in which a thin film transistor (TFT) is provided as a switching element 15 for each pixel, and exhibits excellent display quality as compared with a cathode ray tube (CRT) display, and thus It is widely used as a display for televisions, personal computers, or the like. A typical liquid crystal display device has a structure in which a liquid crystal system is included between two substrates facing each other. On one substrate, 2?, a halogen electrode and the like are formed; on the other substrate, a color filter, a common electrode and the like are formed. Hereinafter, a substrate on which a TFT, a pixel electrode, and the like are formed is referred to as a TFT substrate, and a substrate facing the TFT substrate is referred to as an opposite substrate. The liquid crystal display device includes a transmissive liquid crystal display device in which a backlight 5 is used as a light source, and wherein a light passing through the liquid crystal panel is used to display a scene 'reflective liquid crystal display device' by using external light (natural light or light) The reflection is used to display the scene; and the semi-transmissive liquid crystal display device 'in which the backlight is used or the reflection of external light at a good light is used to display the scene. Since the backlight is not required, the reflective liquid crystal display has less power and consumes less power than the transmissive liquid crystal display device. In addition, in a place where the light is good in the Zhouyuan area, the reflective liquid crystal display device or the semi-transmissive liquid crystal display device using external light can generally see the image well compared with the transmissive liquid crystal display device using light. . Further, in the reflective liquid crystal display device and the transflective liquid crystal display device, if the surface of the film (reflective film) for reflecting light is smooth, the range (viewing angle) at which the scene can be satisfactorily seen becomes extremely narrow. , and problems with glare and the like occur. Therefore, it is necessary to scatter light by providing fine bumps and tilts on the surface of the reflective film. Heretofore, a method of forming fine bumps and tilting on the surface of a reflective film has been proposed. For example, in Japanese Unexamined Patent Publication No. 5(1993)-173158^5, a technology is used in which a bump and a tilting system are formed on an organic insulating film using photolithography and dry etching. The surface of the (polyimide film), and wherein the reflective film is formed on the bump and the slope. Further, in the specification of Japanese Patent No. 299-46, a technique is described in which a bump and a tilting system are at least used by using a metal film, an insulating film, and a semiconductor film for forming a switching element (TFT). The formation, and the towel reflection film formation 1292956, are interposed between the bumps and the slopes, and the like. However, the inventors of the present invention have considered the following problems in view of the above-mentioned known techniques. In other words, the technical requirements described in the Unexamined Patent Publication No. Hei 5 (1993) No. 173158, the step of spreading the photosensitive sensation (photoresist) on the organic insulating film, exposing and developing Steps, and steps of dry etching. Therefore, since the number of steps is increased, the manufacturing cost is increased, and the yield is lowered. The technique described in the specification of Japanese Patent No. 2990046 is to deposit a metal film, an insulating film, and a semiconductor film which are etched by photolithography, and bumps and tilts are simultaneously formed with the TFT, and then An insulating film is formed on the entire surface, and a reflective film is further formed on the insulating film. The increase in the number of manufacturing steps can be avoided by simultaneously forming the bumps and the tilt with the TFr as described above. However, with this technique, it is difficult to form high-density ridges and tilts because the 15 ridges and the slanted density depend on the resolution of photolithography. Further, in a part of the specific examples described in the specification of Japanese Patent No. 2990046, a glass is etched. However, if the glass substrate is engraved, the impurities contained in the glass substrate flow out to contaminate the liquid crystal, and the quality of the clerk may be significantly impaired. SUMMARY OF THE INVENTION In view of the above, an object of the present invention is a liquid crystal display device provided with a reflective film having a high density ridge and tilt on the surface. 7 1292956 Another object of the present invention is to provide a method of manufacturing a liquid crystal display device in which a surface having a high-density fine bump and a tilted reflective film can be formed in a few steps. The above problem is solved by a liquid crystal display device comprising: a first substrate; a second substrate disposed to face the first substrate and transmitting light; and a reflective film formed on the first substrate a light that is reflected by the second substrate; a plurality of films formed between the first substrate and the reflective film in a lamination manner; and a liquid crystal included in the first substrate and the second substrate between. In this liquid crystal display device, the case of Fig. 10 is formed in the majority of the films, the pitches of the patterns in each film are different, and the bumps and inclinations of the patterns corresponding to most of the films are formed in The surface of the reflective film. Furthermore, the above problem can be solved by a method of manufacturing a liquid crystal display device having a first substrate in which a thin film transistor and a reflective electrode are provided for every 15 pixels, and a second substrate facing the first a substrate; and a liquid crystal included between the first substrate and the second substrate. In this method, 'at the same time as the ruthenium film transistor is formed, a plurality of patterns are formed in a layered manner in a region where the reflective electrode is formed in the first substrate, and the patterns are different in the setting pitch 20 in each film. And then, a reflective film is formed on the majority of the film, and the reflective film serves as the reflective electrode, and the bumps on the surface of one of the reflective films and the tilt correspond to the pattern of most of the films. In a specific example, the pattern is formed in at least two of a plurality of films positioned below the reflective electrode, the patterns having different pitches in each film. Thus, the patterns of the films complexly overlap each other and form randomly arranged fine bumps and slopes. On the film provided with the randomly arranged fine bumps and the inclined film, a highly reflective film containing, for example, A1 (aluminum) or Ag (silver) as a main component is used as a reflective electrode. Therefore, in the surface of the reflective electrode, after the pattern is provided in the film of the lower layer, fine bumps and inclination are formed. The density of the bulge and the tilt has no dependence on the resolution of photolithography. This makes it possible to obtain advantageous display characteristics when the liquid crystal display device is used as a reflective liquid crystal display device. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view showing a liquid crystal display device of a first specific example of the present invention. Fig. 2 is a plan view showing a liquid crystal display device of a first specific example. Fig. 3 is an equivalent circuit diagram of a liquid crystal display device of the first specific example. 4A to 4L are cross-sectional views showing a method of manufacturing the liquid crystal display device of the first specific example. Figs. 5A to 5F are plan views showing a method of manufacturing the liquid crystal display device of the first specific example. Fig. 6 is a cross-sectional view showing a liquid crystal display device of a modified embodiment of the first specific example. 7A to 7F are cross-sectional views showing a method of manufacturing a liquid crystal display device of a second specific example of the present invention. 8A to 8D are plan views showing a method of manufacturing a liquid crystal display nest of a second specific example of the invention 292956. Figs. 9A to 9F are cross-sectional views showing a reflection region of a method of manufacturing a liquid crystal display device of a third specific example of the present invention. 10A to 1D are cross-sectional views showing a TFT forming portion of a method of manufacturing a liquid crystal display device of a third embodiment of the present invention. Fig. 11A is a plan view showing a method of manufacturing a liquid crystal display device of a fourth specific embodiment of the present invention. [Detailed Description of the Preferred Embodiments of the Cold Mode 3] Hereinafter, the present invention will be described with reference to the drawings. (First Specific Example) Fig. 1 is a cross-sectional view showing a liquid crystal display device according to a first specific example of the present invention, and Fig. 2 is a plan view showing a first specific example. This embodiment is an embodiment of the transflective liquid crystal display device of the present invention applied to a TFT having a channel protection type. As shown in FIG. 1, the liquid crystal display device of this specific example includes a TFT substrate 10 and an opposite substrate 40 disposed opposite to each other, and a vertical alignment type liquid crystal (having a negative dielectric) included between the TFT substrate 10 and the opposite substrate 40. Anisotropic liquid crystal) 50. Below the TFT substrate 1A, a 20/4 wavelength plate (phase plate) 51a and a polarizing plate 52a are provided, and a backlight (unlisted) is provided at a lower position. On the other hand, on the opposite substrate 40, a λ/4 wavelength plate (phase plate) 51b and a polarizing plate 52b are provided. The λ/4 wavelength plates 51a and 51b are disposed such that their slow axes are perpendicular to each other, and the polarizing plates 52a and 52b are provided with 10 1292956 - such that the transmission axes thereof are perpendicular to each other. As shown in Fig. 2, a plurality of gate bus lines 13 extending in the X direction (horizontal direction) and a plurality of data bus lines 22 extending in the γ direction (vertical direction) are formed on the TFT substrate. The gate bus bars 系3 are arranged 5 to be parallel to each other, for example, about 300//m pitch, and the data bus bars 22 are arranged to be parallel to each other, for example, about ^^. Each rectangular area defined by the gate bus line 丨3 and the data bus line 22 is a pixel area. On the TFT substrate 1A, an auxiliary capacitor bus bar 14 is formed, and the auxiliary capacitor bus bar is disposed in parallel with the gate bus bar 丨3 and across the middle portion of the pixel region. A first insulating film (gate insulating film) 16 is formed between the gate bus bar 13 and the data bus bar 22, and is formed between the auxiliary capacitor bus bar 14 and the data bus bar 22 . The gate bus bar 13 and the auxiliary capacitor sink 15 are electrically isolated from the data bus bar 22 by the first insulating film 16. Further, on the TFT substrate 10, τρτ is formed in each pixel region.

23。如第2圖所示,TFT 23使用部分閘極匯流排線13作 為閘極,以及使用一半導體膜(未顯示)作為主動層, 20該半導體膜係形成在該閘極匯流排線13上,其等之間 夾置有該第^一絕緣膜16,以及该半導體膜具有預定尺 寸。再者,通道保護膜19係選擇性地形成在該閘極匯 流排線13上,以及源極23a及汲極2:^係設置在該閘極 匯流排線13的寬度方向之相對側上以面向彼此。TFT 11 1292956 23之沒極23b係連接至該數據匯流排線22。 每一晝素區域係區分成沿著數據匯流排線22設置 的三個區域。在下文中,在此三個區域中,中間區域 係稱為反射區域B,以及將該反射區域B夾置於其等之 5間的二區域係分別稱為第一及第二透射區域A1及 A2 °在第一及第二透射區域A1及A2,以及反射區域B 中’每一區域形成有一透明畫素電極32a,該畫素電極 具有約呈矩形的形狀,其中角呈弧形。此等透明晝素 電極32a係由透明導電性材料,例如銦錫氧化物(IT〇) 10或其他類似材料製成,且係經由連接部分彼此電氣連 接,該連接部分係與該透明晝素電極同時形成,且由 透明導電性材料製成。 再者,在該反射區域Β之透明晝素電極32&上,形 成有約呈矩形形狀的反射電極(反射板)33,其角呈 15弧形。在此反射電極33之表面,藉由下文中所述方法, 形成高密度之隨意排列之微細隆起物及傾斜。再者, 於忒反射電極33下方,如下文中所述,形成與輔助電 各器匯流排線14及第一絕緣膜16構成輔助電容器之輔 2〇助電容器電極24 ;第一及第二金屬膜圖案14a及24a, 〇其中在該反射電極33之表面中設置有供形成隆起物及 频斜的開口部分;半導體膜(未顯示);絕緣膜27及類 似元件。 TFT 23之源極23a延伸至透射區域乂之透明晝素 電極32a之中心部分的下方位置,且係經由接觸孔—^ 12 I292956 電氣連接至相關的透明晝素電極32a。 透明畫素電極32a及反射電極33之表面係由垂直 配向膜(未顯示)所覆蓋,該垂直配向膜係例如由聚 酸亞胺所製成。 5 10 另一方面,如第1圖所示,在相反基板40之一表面 (第1圖中的下表面),形成有黑色矩陣(未顯示)及 雇色裔43。黑色矩係由例如Cr (鉻)或類似材料之阻 光材料所製成,且置於面向TFT基板1〇側之閘極匯流排 線13、數據匯流排線22,及TFT 23的位置。濾色器43 係區分成紅色、綠色及藍色三種形式。在紅色、綠色 及監色中任何一種顏色的濾色器係設置於個別的畫素 中。在此具體例中,在χ方向上彼此毗鄰設置之紅色、 、、彔色及藍色之三畫素構成一像素(pixel)。 15 在濾色器43下方,形成由例如汀〇或類似材料之透 明導電性材料所製成之共同電極44。在共同電極44下 。形成有由例如樹脂或類似材料之介電材料所製成 ==配向調整突出物45。配向調整突出物45係分 : 透射區域A1及A2以及反射區域B之中心的位 20 由例^1=電極44及配向調整突出物45之表面係 葚。1 ^所製成之垂直配向膜(未顯示)所覆 效電體例线晶顯示裝置之—晝素的等 及輔助電容^圖所7^ ’包括輔助電容龍流排線14 為%極24之輔助電容器Cs係平行連接至電 13 1292956 容器cLC,t容器Clc包括晝素電極(透明晝素電極似 及反射電極33)、共同電極料以及在晝素電極及共同電 極之間的液晶50,目此抑制經由TFT 23寫入晝素電極 之顯示電壓的降低。 5 在依上述所建構之此具體例的液晶顯示裝置中, 虽在至内或類似環境使用時,開啟設置於tft基板1〇 下方之月光,且利用通過液晶面板的光顯示景像。另 一方面,當在光線良好的地方使用時,關閉背光,且 使用藉由反射電極33反射之光顯示景像。在此例子 10中,視角特性是令人滿意的,以及可在相當廣的範圍 内得到令人滿意的景像,因為微細隆起物及傾斜係以 高密度形成於反射電極33的表面。 在下文中,將描述製造此具體例之液晶顯示裝置 的方法。首先,將參考第4A圖至第4L·圖以及第5A圖至 15第5F圖說明製造τρΤ基板10的方法。需注意的是,第4A 圖至弟4L圖為反射區域B之截面圖,以及第5A圖至第 5 F圖為反射區域B之平面圖。 首先,如第4A圖所示,A1 (鋁)膜(約150 nm)、 MoN (氮化鉬)膜(約70 nm),及Mo (鉬)膜(約15 20 nm)係藉由例如濺鑛,依序形成在玻璃基板η之整個 上表面上,該玻璃基板係用於作為TFT基板10之底材, 因此形成具有A1膜、MoN膜,及Mo膜之三層結構的第 一金屬膜12。 此外,第一金屬膜12未受限於上述組成。然而, 14 1292956 較佳為採用一組成作為主要成分,其中例如A1、Ag或 類似材料之低電阻金屬膜係由含有例如Ti (鈦)、Mo 或類似材料之高熔點金屬的金屬膜所覆蓋。 接下來,藉由光微影術圖案化第一金屬膜12,因 5 而形成閘極匯流排線13及輔助電容器匯流排線14,以 及如第5A圖所示,在第一金屬膜圖案14a面向彼此,由 Y方向之相對側,橫跨輔助電容器匯流排線14之位置 處,形成第一金屬膜圖案14a。閘極匯流排線13之寬度 係設定為例如10//m。再者,輔助電容器匯流排線14 10 之連接鄰近晝素部分的寬度係設定為例如約12//m,及 其在晝素内形成輔助電容器之部分的寬度(在下文中 稱為寬部),係設定成較大(例如25//m)。附帶一提的 是,第一金屬膜12並不受限於上述結構。第一金屬膜 12可利用各種不同的金屬材料來形成。 15 每一第一金屬膜圖案14a在Y方向具有例如約30 // m之長度,以及在X方向具有約55 // m之長度。如第5A 圖所示,第一金屬膜圖案14a遠離輔助電容器匯流排線 14來設置,且與輔助電容器匯流排線14電氣隔離。再 者,在輔助電容器匯流排線14之寬部及第一金屬膜圖 20 案14a,如第4B圖之截面圖及第5A圖之平面圖所示,多 數開口部分(開口圖案)15係與輔助電容器匯流排線 14及第一金屬膜圖案14a同時形成。此等開口部分15係 各自為例如邊長約4 // m之正方形(或直徑4 // m之圓 形),以及開口部分15之中心點係位在與邊長5.5//m之 15 1292956 等邊三角形之頂點位置一致處。 附帶一提的是,每一開口部分15之截面較佳具有 向前逐漸變細約15度至70度的形狀。每一開u部分15 之截面形狀係依第一金屬膜12之結構(每層之村料及 5 厚度)、钱刻劑之組成,以及钮刻條件(過度飿刻條件) 來決定。在此例子中,當該第一金屬膜12具有前述妹 構時,使用磷酸、硝酸及乙酸之混合酸可進行例如3〇 至75%之過度蝕刻。 接下來,如第4C圖所示,由例如SiN (氮化石夕)制 10 成且具有約350 nm厚度之第一絕緣膜(閘極絕緣膘) 16係形成於玻璃基板η之整個上表面上。閘極匯流排 線13、輔助電谷裔匯流排線14,及第一金屬膜圖案1々a 係由第一絕緣膜16所覆蓋。 接下來,如第4D圖所示,由非晶形矽所製成且具 15有30 11111之厚度的半導體膜π係藉由例如化學汽相沈 積法(CVD)形成在第一絕緣膜16上。接下來,如第 4E圖所示,形成由例如SiN (氮化秒)所製成且具有約 12〇 run厚度之第二絕緣膜18。接下來,藉由光微影術, 圖案化第二絕緣膜18,因此在閘極匯流排線^上,形 20成在Y方向上具有例如⑺㈣之長度以及在乂方向具有 例如40//m之長度的通道保護膜19,如第2圖之平面圖 所示再者在此日守,絕緣膜圖案19a係同時形成在第 -金屬膜圖案14a上’如糾圖及第5B圖所示。在此 時,具有約7㈣之直經的多數第二開口部分如係形成 16 !292956 於絕緣膜圖案19a。此等開口部分2〇係位在其中心位置 與邊長10//m之等邊三角形之頂點位置一致處。 附帶一提的是,在此具體例中,去除位在輔助電 各器匯流排線14上的第二絕緣膜18。這是因為若第二 5纟巴緣膜18存在於輔助電容器匯流排線14之上,在輔助 電谷器匯流排線14及輔助電容器電極24之間的距離增 加,且難以使輔助電容器(^的電容值符合設定值。 再者,每一開口部分20的截面,較佳具有向前逐 漸變細約15度至70度的形狀。舉例而言,在藉由反應 1〇性離子蝕刻(RIE)進行乾蝕刻第二絕緣膜18的例子 中’處理室内的壓力係設定為37·5 Pa,氣體的形式及 流速係設定為SF6/02= 70/430 seem (標準cc/min), 以及功率係設定在600 W。在此等條件下,SiN之蝕刻 速率約100 nm/min,以及光阻膜(感光樹脂膜)之蝕 15刻速率變為300至500 nm/min。每一開口部分2〇可形成 向前逐漸變細約15度至70度的形狀,其中藉由使光阻 膜自第二絕緣膜18逐漸後縮,使上部直徑大於下部直 徑。 接下來,由高密度η-型雜質非晶形矽所製成,且具 20有例如30 nm之厚度’及用於作為歐姆接觸層的第二半 導體膜(未顯示),係形成在玻璃基板11之整個上表面 上。接下來,如第4G圖所示,舉例而言,丁丨(鈦)膜 (具有20 nm之厚度),A1膜(具有75 nm之厚度),以 及Ti膜(具有40 nm之厚度)係依序形成在第二半導體 17 1292956 膜上,因此形成具有此等膜之層合結構的第二金屬膜 21。弟二金屬膜21之層結構並不限制於上述實施例, 而是例如可為Ti膜(具有20 nm之厚度)、A1膜(具有 75nm之厚度)、MoN膜(具有70nm之厚度),以及Mo 5 膜(具有15 nm之厚度)的四層結構,或可為m〇n膜(具 有50 nm之厚度)、A1膜(具有75 nm之厚度)、m〇N膜 (具有7〇nm之厚度),以及Mo膜(具有15nm之厚度) 的四層結構。 附帶一提的是,第二金屬膜亦未受限於上述組 10成。然而,較佳為採用一組成,其中作為主要成分之 含有Al、Ag或類似材料之低電阻金屬膜係夾置於作為 主要成分之含有例如Ti (鈦)·、Mo或類似材料之高熔點 金屬膜之間。 接下來,第二金屬膜21、第二半導體膜,以及第 15 一半導體膜17係藉由光微影術圖案化,因此同時形成 數據匯流排線22、源極23a、汲極23b、輔助電容器電 極24,及第二金屬膜圖案24a。數據匯流排線22之寬度 係設定為例如7//m。再者,如第2圖所示,源極23a係 延伸至第-透射區域A1之中心部分,以及具有例如邊 20長以m之正方形形狀的連接部分係形成在該源極的 末端部分。 —輔助電容器電極24係形成具有例如藉由在γ方向 之每::上’將輔助電容器匯流排線14之寬部加寬2// m所獲得之尺寸。在此輔助電容器電極24中,未形成隆 18 1292956 輔助—案°面向彼此之輔助電容器電㈣及 :成::™非線14’其中夾置有第-絕·, 構成圖之等效電路圖中所示的輔助電容器Cs。 弟一金屬膜圖案24a係形点i ^ 5案㈣位置,其中夹置有第^ 第一金屬膜圖 -5CS^_ .— —、、、巴緣骐18。如第4H圖及 弟二所不’在龄第二金屬膜圖案〜中,具有例如 之約呈正方形形狀的多數開口部妨,係twenty three. As shown in FIG. 2, the TFT 23 uses a part of the gate bus bar 13 as a gate, and a semiconductor film (not shown) is used as an active layer, and the semiconductor film is formed on the gate bus line 13, The first insulating film 16 is interposed therebetween, and the semiconductor film has a predetermined size. Further, a channel protection film 19 is selectively formed on the gate bus bar line 13, and a source electrode 23a and a drain electrode 2 are disposed on opposite sides of the gate bus bar line 13 in the width direction. Facing each other. The pole 23b of the TFT 11 1292956 23 is connected to the data bus line 22. Each of the pixel regions is divided into three regions disposed along the data bus line 22. Hereinafter, in the three regions, the intermediate region is referred to as a reflective region B, and the two regions in which the reflective region B is sandwiched between five, etc. are referred to as first and second transmissive regions A1 and A2, respectively. ° A transparent pixel electrode 32a is formed in each of the first and second transmission regions A1 and A2, and the reflection region B. The pixel electrode has a shape of a rectangular shape in which the corners are curved. The transparent halogen electrodes 32a are made of a transparent conductive material such as indium tin oxide (IT〇) 10 or the like, and are electrically connected to each other via a connection portion which is bonded to the transparent halogen electrode. It is formed at the same time and is made of a transparent conductive material. Further, on the transparent halogen electrode 32& of the reflection region, a reflection electrode (reflection plate) 33 having a rectangular shape is formed, and its angle is 15 arcs. On the surface of the reflective electrode 33, a high-density randomly arranged fine bump and tilt are formed by the method described hereinafter. Further, under the 忒 reflective electrode 33, as described below, the auxiliary 〇 auxiliary capacitor electrode 24 forming the auxiliary capacitor with the auxiliary electric device bus bar 14 and the first insulating film 16 is formed; the first and second metal films are formed below; Patterns 14a and 24a, wherein an opening portion for forming a bump and a frequency slope is provided in the surface of the reflective electrode 33; a semiconductor film (not shown); an insulating film 27 and the like. The source 23a of the TFT 23 extends to a position below the central portion of the transparent halogen electrode 32a of the transmission region, and is electrically connected to the associated transparent halogen electrode 32a via the contact hole - 12 12292956. The surfaces of the transparent pixel electrode 32a and the reflective electrode 33 are covered by a vertical alignment film (not shown) made of, for example, polyimide. 5 10 On the other hand, as shown in Fig. 1, on one surface (lower surface in Fig. 1) of the opposite substrate 40, a black matrix (not shown) and a descent 43 are formed. The black moment is made of a light-blocking material such as Cr (chromium) or the like, and is placed at a position facing the gate bus line 13, the data bus line 22, and the TFT 23 facing the TFT substrate 1 side. The color filter 43 is divided into three forms of red, green, and blue. A color filter of any one of red, green, and color is set in an individual pixel. In this specific example, three pixels of red, red, blue, and blue disposed adjacent to each other in the x-direction form a pixel. 15 Under the color filter 43, a common electrode 44 made of a transparent conductive material such as a tantalum or the like is formed. Under the common electrode 44. A == alignment adjustment protrusion 45 made of a dielectric material such as a resin or the like is formed. The alignment adjustment protrusion 45 is divided into: the transmission regions A1 and A2 and the position 20 of the center of the reflection region B by the surface of the electrode 14 and the alignment adjustment protrusion 45. 1 ^ The vertical alignment film (not shown) is coated with the effect of the electro-optic example of the line crystal display device - the halogen element and the auxiliary capacitance ^ Figure 7 ^ 'including the auxiliary capacitor dragon flow line 14 is the % pole 24 The auxiliary capacitor Cs is connected in parallel to the electricity 13 1292956 container cLC, and the t container Clc includes a halogen electrode (a transparent halogen electrode and a reflective electrode 33), a common electrode material, and a liquid crystal 50 between the halogen electrode and the common electrode. This suppression reduces the display voltage of the pixel electrode written to the pixel via the TFT 23. In the liquid crystal display device of the specific example constructed as described above, the moonlight disposed under the tft substrate 1A is turned on when used in an interior or the like, and the scene is displayed by light passing through the liquid crystal panel. On the other hand, when used in a place where light is good, the backlight is turned off, and the light reflected by the reflective electrode 33 is used to display the scene. In this example 10, the viewing angle characteristics are satisfactory, and a satisfactory scene can be obtained over a relatively wide range because the fine bumps and the inclined lines are formed at a high density on the surface of the reflective electrode 33. Hereinafter, a method of manufacturing the liquid crystal display device of this specific example will be described. First, a method of manufacturing the τρΤ substrate 10 will be described with reference to Figs. 4A to 4L. and Figs. 5A to 15F. It should be noted that the 4A to 4L diagrams are sectional views of the reflection area B, and the 5A to 5F are plan views of the reflection area B. First, as shown in Fig. 4A, an A1 (aluminum) film (about 150 nm), a MoN (molybdenum nitride) film (about 70 nm), and a Mo (molybdenum) film (about 15 20 nm) are used, for example, by sputtering. The ore is sequentially formed on the entire upper surface of the glass substrate η, which is used as a substrate of the TFT substrate 10, thereby forming a first metal film having a three-layer structure of an A1 film, a MoN film, and a Mo film. 12. Further, the first metal film 12 is not limited to the above composition. However, 14 1292956 preferably employs a composition as a main component, wherein a low-resistance metal film such as Al, Ag or the like is covered by a metal film containing a high melting point metal such as Ti (titanium), Mo or the like. Next, the first metal film 12 is patterned by photolithography, the gate bus bar 13 and the auxiliary capacitor bus bar 14 are formed by 5, and the first metal film pattern 14a is as shown in FIG. 5A. The first metal film pattern 14a is formed facing each other from the opposite side of the Y direction across the position of the auxiliary capacitor bus bar 14. The width of the gate bus bar 13 is set to, for example, 10/m. Further, the width of the connection of the auxiliary capacitor bus bar 14 10 adjacent to the pixel portion is set to, for example, about 12 //m, and the width of a portion of the auxiliary capacitor which is formed in the pixel (hereinafter referred to as a wide portion), Set to be larger (for example, 25//m). Incidentally, the first metal film 12 is not limited to the above structure. The first metal film 12 can be formed using a variety of different metal materials. Each of the first metal film patterns 14a has a length of, for example, about 30 // m in the Y direction and a length of about 55 // m in the X direction. As shown in Fig. 5A, the first metal film pattern 14a is disposed away from the auxiliary capacitor bus bar 14 and is electrically isolated from the auxiliary capacitor bus bar 14. Furthermore, in the wide portion of the auxiliary capacitor bus bar 14 and the first metal film of FIG. 20, 14a, as shown in the cross-sectional view of FIG. 4B and the plan view of FIG. 5A, most of the opening portions (opening patterns) 15 are auxiliary. The capacitor bus bar 14 and the first metal film pattern 14a are simultaneously formed. Each of the opening portions 15 is, for example, a square having a side length of about 4 // m (or a circle having a diameter of 4 // m), and a center point of the opening portion 15 is at a length of 5.5//m 15 15292952 The vertices of the equilateral triangles are in the same position. Incidentally, the cross section of each of the opening portions 15 preferably has a shape which tapers forward by about 15 to 70 degrees. The cross-sectional shape of each open portion 15 is determined by the structure of the first metal film 12 (the thickness of each layer and the thickness of the layer), the composition of the money engraving agent, and the buttoning condition (excessive engraving conditions). In this example, when the first metal film 12 has the above-described structure, over-etching of, for example, 3 Torr to 75% can be performed using a mixed acid of phosphoric acid, nitric acid, and acetic acid. Next, as shown in FIG. 4C, a first insulating film (gate insulating germanium) 16 made of, for example, SiN (Nitrix) and having a thickness of about 350 nm is formed on the entire upper surface of the glass substrate η. . The gate bus line 13, the auxiliary electric valley bus line 14, and the first metal film pattern 1a are covered by the first insulating film 16. Next, as shown in Fig. 4D, a semiconductor film π made of an amorphous germanium and having a thickness of 30 11111 is formed on the first insulating film 16 by, for example, chemical vapor deposition (CVD). Next, as shown in Fig. 4E, a second insulating film 18 made of, for example, SiN (nitriding seconds) and having a thickness of about 12 Å run is formed. Next, the second insulating film 18 is patterned by photolithography, so that on the gate bus bar ^, the shape 20 has a length of, for example, (7) (4) in the Y direction and, for example, 40//m in the x direction. The channel protective film 19 of the length is as shown in the plan view of Fig. 2, and the insulating film pattern 19a is simultaneously formed on the first metal film pattern 14a as shown in Fig. 5B. At this time, a plurality of second opening portions having a straightness of about 7 (four) are formed as 16 ! 292 956 in the insulating film pattern 19a. These opening portions 2 are at the center position coincident with the apex positions of the equilateral triangles having a side length of 10/m. Incidentally, in this specific example, the second insulating film 18 positioned on the bus bar 14 of the auxiliary electric device is removed. This is because if the second 5 纟 缘 film 18 is present on the auxiliary capacitor bus bar 14, the distance between the auxiliary galvanic bus bar 14 and the auxiliary capacitor electrode 24 increases, and it is difficult to make the auxiliary capacitor (^ The capacitance value corresponds to the set value. Further, the cross section of each of the opening portions 20 preferably has a shape which tapers forward by about 15 to 70 degrees. For example, by reactive ion etching (RIE) In the example of dry etching the second insulating film 18, the pressure in the processing chamber is set to 37·5 Pa, and the form and flow rate of the gas are set to SF6/02=70/430 seem (standard cc/min), and power. The system is set at 600 W. Under these conditions, the etching rate of SiN is about 100 nm/min, and the etching rate of the photoresist film (photosensitive resin film) becomes 300 to 500 nm/min. The crucible may be formed into a shape which is tapered forward by about 15 to 70 degrees, wherein the upper diameter is larger than the lower diameter by gradually retreating the photoresist film from the second insulating film 18. Next, by a high density η-type Impurity amorphous yttrium made with 20 thicknesses of, for example, 30 nm' and used A second semiconductor film (not shown) which is an ohmic contact layer is formed on the entire upper surface of the glass substrate 11. Next, as shown in Fig. 4G, for example, a butadiene (titanium) film (having 20 nm) Thickness), A1 film (having a thickness of 75 nm), and Ti film (having a thickness of 40 nm) are sequentially formed on the film of the second semiconductor 17 1292956, thus forming a second layer having a laminated structure of such films The metal film 21. The layer structure of the second metal film 21 is not limited to the above embodiment, but may be, for example, a Ti film (having a thickness of 20 nm), an A1 film (having a thickness of 75 nm), and a MoN film (having a thickness of 70 nm). Thickness), and a four-layer structure of Mo 5 film (having a thickness of 15 nm), or may be a m〇n film (having a thickness of 50 nm), an A1 film (having a thickness of 75 nm), a m〇N film (having A thickness of 7 〇 nm), and a four-layer structure of a Mo film (having a thickness of 15 nm). Incidentally, the second metal film is also not limited to the above group 10. However, it is preferable to adopt a composition. a low-resistance metal film clip containing Al, Ag or the like as a main component Between the high melting point metal film containing, for example, Ti (titanium), Mo, or the like as a main component. Next, the second metal film 21, the second semiconductor film, and the fifteenth semiconductor film 17 are made of light. The lithography is patterned, so that the data bus bar 22, the source 23a, the drain 23b, the auxiliary capacitor electrode 24, and the second metal film pattern 24a are simultaneously formed. The width of the data bus bar 22 is set to, for example, 7//. Further, as shown in Fig. 2, the source 23a extends to the central portion of the first-transmissive region A1, and a connecting portion having a square shape in which the side 20 is elongated by m is formed at the end portion of the source. . The auxiliary capacitor electrode 24 is formed to have a size obtained by, for example, widening the wide portion of the auxiliary capacitor bus bar 14 by 2//m in each of the γ directions. In the auxiliary capacitor electrode 24, the lumps 18 1292956 are not formed. The auxiliary capacitors (4) and the ::TM non-wires 14' are interposed therebetween, and the equivalent circuit diagram is formed in the figure. The auxiliary capacitor Cs is shown. The second metal film pattern 24a is in the position (iv) of the case i ^ 5, in which the first metal film pattern -5CS^_. As shown in Fig. 4H and Fig. 2, in the second metal film pattern of the aged, there is a plurality of openings which are, for example, approximately square.

輕圖案⑽同時形成。此等開口部分25係位 在^心位置與邊長6㈣之等邊三角形之頂點位置— 1〇 致處。 接下來,如第41圖所*,由例如siN所製成且具有 約330 run之厚度的第三絕緣膜2?係形成在玻璃基板n 的整個上表面上,藉此使數據匯流排線22、TFT 23、 輔助電容器電極24及第二金屬膜圖案施為第三絕緣 15膜27所覆蓋。再者,第三絕緣助係藉由光微影術圖 案化’因此形成與源極22a之連接部分相通的接觸孔 27a ’以及如第4J圖之截面圖以及第5d圖之平面圖所 示,形成與輔助電容器電極24及第二金屬膜圖案24a相 通之多數第四開口部分28,以及與第一金屬膜圖案“a 20相通的接觸孔28a。開口部分28係位在其中心位置與邊 長7//m之等邊三角形之頂點位置一致處。 在此’用於弟三絕緣膜(SiN膜)27之乾姓刻條件 例如如下·處理室之壓力為6.7 Pa,餘刻氣體之形式及 流速設定為F6/〇2= 200/200( seem),以及功率為6〇〇 19 1292956 W苐二絕緣膜27具有二或多層之層合結構,其中上 層係由高蝕刻速率之SiN所製成,以及其中下層係由低 蝕刻速率之SiN所製成,以及蝕刻形狀較佳變成向前逐 漸變細約15度至70度的形狀。再者,藉由如前述般採 用膜組成’其中構成第三絕緣膜27之二SiN層的姓刻 • 速率大於第一絕緣膜16之蝕刻速率,第一絕緣膜16及 , 第二絕緣膜2 7之蝕刻形狀分別變成向前逐漸變細約15 度至70度的形狀,以及形成各自在厚度方向之中間部 分具有梯級之接觸孔。 10 在上述的蝕刻條件下,第一絕緣膜16之蝕刻速率 變為約200 nm/min,第三絕緣膜27之下層膜的蝕刻速 率變為300至400 nm/min,第三絕緣膜27之上層膜的蝕 刻速率變為4〇0至5〇〇nm/min,以及光阻膜之钱刻速率 變為200至300 nm/min。在蝕刻後立即呈現的形狀中, 15第三絕緣膜27係自第一絕緣膜16逐漸後縮。光阻膜的 後縮量及第一絕緣膜16之後縮量約彼此相同,且獲得 • 罩篷(屋頂)的形狀。 " 接下來,如第4K圖所示,第三金屬膜四係由例如 k ITQ錢似材料之透明導電性材料卿成,形成在玻璃 … 2G絲11之整個上表面上。第三金屬膜29之膜厚度係設 定為例如70 nm。第三金屬膜29係藉由光微影術圖案 化,因此形成如第2圖及第5E圖所示之透明畫素電極 32a。每-此等透明晝素電極仏的尺寸約為例如:有 邊長80/^之正方形。再者,透明晝素電極仏之間的 20 1292956 。此等透明晝素電極迅係經由設置在第 三絕緣膜27巾的_?U7af氣連接至源肋a,以及 、工由開口 °卩刀28電氣連接至辅助電容器電極24。 接下來’第四金屬膜係形成在玻璃基板η之整個 上表面上。在此第四金屬膜中,至少最上層係由包含 A1、Ag或類似#料之高·反射度金屬作為主要成分所形 成。接下來’藉由光微影術圖案化第四金屬膜,因此The light pattern (10) is formed at the same time. These opening portions 25 are located at the apex of the equilateral triangle of the side of the heart and the length of the side (6) - 1 〇. Next, as shown in Fig. 41, a third insulating film 2 made of, for example, siN and having a thickness of about 330 run is formed on the entire upper surface of the glass substrate n, whereby the data bus line 22 is formed. The TFT 23, the auxiliary capacitor electrode 24, and the second metal film pattern are covered by the third insulating 15 film 27. Further, the third insulating help is patterned by photolithography "thereby forming a contact hole 27a' communicating with the connection portion of the source 22a, and as shown in the cross-sectional view of FIG. 4J and the plan view of FIG. 5d, forming a plurality of fourth opening portions 28 communicating with the auxiliary capacitor electrode 24 and the second metal film pattern 24a, and a contact hole 28a communicating with the first metal film pattern "a20. The opening portion 28 is tied at its center position and side length 7 // The position of the apex of the equilateral triangle of m is the same. Here, the condition of the dry name of the three-layer insulating film (SiN film) 27 is as follows: The pressure in the processing chamber is 6.7 Pa, the form and flow rate of the residual gas It is set to F6 / 〇 2 = 200 / 200 (the seem), and the power is 6 〇〇 19 1292956 W 苐 two insulating film 27 has a laminated structure of two or more layers, wherein the upper layer is made of SiN of high etching rate, And wherein the lower layer is made of SiN having a low etching rate, and the etching shape is preferably changed to a shape which is tapered forward by about 15 to 70 degrees. Further, by using a film composition as described above, The surname of the two SiN layers of the insulating film 27 • Rate The etching rate of the first insulating film 16 and the second insulating film 27 becomes a shape which is tapered forward by about 15 to 70 degrees, respectively, and is formed in the middle of the thickness direction, respectively. A portion of the contact hole having a step. 10 Under the above etching conditions, the etching rate of the first insulating film 16 becomes about 200 nm/min, and the etching rate of the film under the third insulating film 27 becomes 300 to 400 nm/min. The etching rate of the film above the third insulating film 27 becomes 4 〇 0 to 5 〇〇 nm / min, and the etching rate of the photoresist film becomes 200 to 300 nm / min. In the shape immediately after the etching 15, the third insulating film 27 is gradually retracted from the first insulating film 16. The amount of shrinkage of the photoresist film and the amount of shrinkage of the first insulating film 16 are about the same as each other, and the shape of the hood (roof) is obtained. Next, as shown in FIG. 4K, the third metal film is formed of a transparent conductive material such as kITQ money-like material, formed on the entire upper surface of the glass 2G wire 11. The third metal film 29 The film thickness is set to, for example, 70 nm. The third metal film 29 is made by photolithography The pattern is patterned so that the transparent pixel electrodes 32a as shown in Figs. 2 and 5E are formed. The size of each of the transparent pixel electrodes 约为 is, for example, a square having a side length of 80/^. 20 1292956 between the transparent halogen electrodes 。. These transparent halogen electrodes are connected to the source rib a via the _U7af gas disposed on the third insulating film 27, and are electrically connected by the opening 卩 28 To the auxiliary capacitor electrode 24. Next, the 'fourth metal film is formed on the entire upper surface of the glass substrate η. In the fourth metal film, at least the uppermost layer is formed of a high reflectance metal containing Al, Ag or the like as a main component. Next, the fourth metal film is patterned by photolithography, so

在如第4L®及第5F®中所示的反射區域B巾的透明畫 素電極32a上,形成反射電極33。 10 在此具體例中,如上所述,輔助電容器匯流排線 14及弟一金屬膜圖案i4a中之開口 15,第二絕緣膜圖案 19a中的開口部分20,第二金屬膜圖案24a中的開口部 分25,以及第三絕緣膜27中的開口部分28之間的尺寸 及設置節距是不相同的。因此,在此等開口部分15、 15 20、25及28之間的重疊不是均一的。因此,隆起物及A reflective electrode 33 is formed on the transparent pixel electrode 32a of the reflective area B as shown in 4L® and 5F®. In this specific example, as described above, the auxiliary capacitor bus bar 14 and the opening 15 in the metal film pattern i4a, the opening portion 20 in the second insulating film pattern 19a, and the opening in the second metal film pattern 24a The size and the set pitch between the portion 25 and the opening portion 28 in the third insulating film 27 are different. Therefore, the overlap between the opening portions 15, 15, 20, 25 and 28 is not uniform. Therefore, the bumps and

傾斜係形成在反射電極33之表面。此等隆起物及傾斜 的密度對光微影術之解像度無依賴性,且隆起物及傾 斜為微細、隨意排列,且高密度的。於隨意排列之微 細隆起物及傾斜已以如上述般之南岔度形成於反射電 20 極33之表面中,聚醯亞胺係塗佈在玻璃基板11之整個 上表面上,以形成垂直配向膜。因此’完成TFT基板1〇。 接下來,將參考第1圖說明製造相反基板40的方 法。 首先,例如Cr或類似材料之金屬膜係形成在玻璃 21 基板之表面上(第1圖中的下表面),該金屬基板係作 為相反基板40的底材,以及此金屬膜係經圖案化以形 成黑色矩陣。接下來,使用紅色、綠色及藍色感光性 才对月旨形成紅色、綠色及藍色濾色器43。附帶一提的是, 黑色矩陣可由黑色樹脂形成,或藉由將紅色、綠色及 <色滤色器中' 一或多種顏色之濾' 色器層合在一起來製 成。 接下來’藉由濺鑛例如ITO或類似材料之透明導電 性材料’在玻璃基板之整個上表面上形成共同電極 44。接下來,將感光性樹脂塗佈在共同電極44上,並 進行曝光及顯影,因此形成配向調整突出物45。配向 調整突出物45係形成在透射區域A1及A2以及反射區 域B1的中心位置。每一此等配向調整突出物45具有例 如10//m之直徑,以及2.5//m之高度。 接下來,例如將聚醯亞胺塗佈在共同電極44及配 向調整突出物45之表面上,因此形成垂直配向膜(未 顯示)。因此,完成相反基板40。 於TFT基板10及相反基板40已如上述般形成之 後,將具有負介電各向異性(Λε <0)之液晶50,藉 由真空注入或滴液注入,充填於TFT基板10及相反基板 40之間的空間中,因此形成液晶面板。接下來,將入 /4波長板5la及51b,以及偏光板52a及52b置於液晶面 板的二側,並連接至背光單元。因此,完成此具體例 之液晶顯示裝置。 22 1292956 在此具體例中,絕緣膜、半導體膜,及金屬膜於 反射區域B中之形成,係與TFT之形成同時,以及具有 不同尺寸及設置節距的開口部分係分別形成於此等絕 緣膜、半導體膜,及金屬膜,藉此於反射電極之表面 5 中形成隆起物及傾斜。如此使得在未增加步驟數目之 下,有可能相當容易地形成表面具有高密度之微細隆 起物及傾斜的反射電極。 (改良實施例) 第6圖為顯示第一具體例之改良實施例之液晶顯 10 示裝置的截面圖。需注意的是,在第6圖中,與第1圖 所示相同的元件,係以相同的元件符號表示,且不再 進一步說明。再者,在第6圖中,配向調整突出物,λ /4波長板,以及未顯示偏光板。 在第1圖顯示之液晶顯示裝置中,在使用作為透射 15 式液晶顯示裝置時,光僅通過濾色器43—次。另一方 面,在使用作為反射式液晶顯示裝置時,光通過濾色 器43二次,以及螢幕因此看起來是黑暗的。 有鑑於此,在第6圖所示之液晶顯示裝置中,在反 射區域Β之濾色器43設置一開口部分43a,以及在對應 20 開口部分43a之部分形成一透明樹脂膜47。若透明樹脂 膜47形成於如上述之反射區域B的部分,可使螢幕變明 亮,因為被濾色器43減少的光量降低。 在此例子中,若濾色器43之開口部分43a太大,通 過濾色器43之光部分減少,以及使顏色顯示特性劣 23 1292956 化。然而,藉由使濾色器43之開口部分43a的尺寸小, 當光進入液晶面板或當光自液晶面板發出時,大部分 通過透明樹脂膜47的光通過濾色器43,以及可避免顏 色顯示特性的劣化。 5 再者,如第6圖所示,使用透明樹脂膜47,調整與 透射區域A1及A2之液晶單元間隙(ceu gap )隔開的反 射區域B之液晶單元間隙(ceu gap)變成是可能的。 換言之’可能將透射區域A1及A2之液晶單元間隙(ceu gap)設定成對透射式液晶顯示裝置最適化的值,以及 10將反射區域B之液晶單元間隙(cell gap )設定成對反 射式液晶顯示裝置最適化的值。因此,無論使用作為 透射式液晶顯示裝置或使用作為反射式液晶顯示裝 置,可獲得絕佳的顯示性能。 對透明樹脂膜47而言,較佳係進行賦予光散射能 15力之處理,以改良光散射能力。舉例而言,透明樹脂 膜可藉由添加供散射光線至透明樹脂之材料(珠粒或 類似材料,其具有與透明樹脂不同之折射指數)來形 成。 (第二具體例) 20 在下文中,將描述本發明之第二具體例。A tilting system is formed on the surface of the reflective electrode 33. The density of these bumps and tilts is independent of the resolution of photolithography, and the bumps and tilts are fine, randomly arranged, and high density. The fine protrusions and the inclinations which are randomly arranged are formed in the surface of the reflective electric poles 33 in a southerness as described above, and the polyimide film is coated on the entire upper surface of the glass substrate 11 to form a vertical alignment. membrane. Therefore, the TFT substrate 1 is completed. Next, a method of manufacturing the opposite substrate 40 will be described with reference to Fig. 1. First, a metal film such as Cr or the like is formed on the surface of the glass 21 substrate (the lower surface in FIG. 1) as a substrate of the opposite substrate 40, and the metal film is patterned to A black matrix is formed. Next, the red, green, and blue color filters 43 are formed for the moon using red, green, and blue photosensitivity. Incidentally, the black matrix may be formed of a black resin or by laminating a filter of one or more colors in red, green, and color filters. Next, a common electrode 44 is formed on the entire upper surface of the glass substrate by sputtering a transparent conductive material such as ITO or the like. Next, the photosensitive resin is applied onto the common electrode 44, and exposed and developed, whereby the alignment adjusting protrusion 45 is formed. The alignment adjustment protrusions 45 are formed at the center positions of the transmission areas A1 and A2 and the reflection area B1. Each of the alignment adjustment protrusions 45 has a diameter of, e.g., 10/m, and a height of 2.5/m. Next, for example, polyimine is coated on the surfaces of the common electrode 44 and the alignment adjusting protrusion 45, thereby forming a vertical alignment film (not shown). Therefore, the opposite substrate 40 is completed. After the TFT substrate 10 and the opposite substrate 40 have been formed as described above, the liquid crystal 50 having a negative dielectric anisotropy (Λε < 0) is filled in the TFT substrate 10 and the opposite substrate by vacuum injection or drop injection. In the space between 40, a liquid crystal panel is thus formed. Next, the /4 wavelength plates 5a and 51b, and the polarizing plates 52a and 52b are placed on both sides of the liquid crystal panel, and are connected to the backlight unit. Therefore, the liquid crystal display device of this specific example is completed. 22 1292956 In this specific example, the insulating film, the semiconductor film, and the metal film are formed in the reflective region B at the same time as the formation of the TFT, and the opening portions having different sizes and pitches are respectively formed into the insulating layer. The film, the semiconductor film, and the metal film thereby form bumps and slopes in the surface 5 of the reflective electrode. Thus, it is possible to form a fine bump having a high density on the surface and a tilted reflective electrode relatively easily without increasing the number of steps. (Modified embodiment) Fig. 6 is a cross-sectional view showing a liquid crystal display device of a modified embodiment of the first specific example. It is to be noted that in the sixth embodiment, the same components as those in the first embodiment are denoted by the same reference numerals and will not be further described. Further, in Fig. 6, the alignment adjustment protrusions, the λ /4 wavelength plate, and the polarizing plate are not shown. In the liquid crystal display device shown in Fig. 1, when a liquid crystal display device as a transmissive liquid crystal display device is used, light passes only through the color filter 43. On the other hand, when used as a reflective liquid crystal display device, light passes through the color filter 43 twice, and the screen thus appears to be dark. In view of this, in the liquid crystal display device shown in Fig. 6, an opening portion 43a is provided in the color filter 43 of the reflection region, and a transparent resin film 47 is formed in a portion corresponding to the opening portion 43a. If the transparent resin film 47 is formed in the portion of the reflection region B as described above, the screen can be made bright, because the amount of light reduced by the color filter 43 is lowered. In this example, if the opening portion 43a of the color filter 43 is too large, the light portion passing through the color filter 43 is reduced, and the color display characteristics are deteriorated. However, by making the size of the opening portion 43a of the color filter 43 small, when light enters the liquid crystal panel or when light is emitted from the liquid crystal panel, most of the light that has passed through the transparent resin film 47 passes through the color filter 43, and color can be avoided. Deterioration of display characteristics. Further, as shown in Fig. 6, by using the transparent resin film 47, it is possible to adjust the liquid crystal cell gap (ceu gap) of the reflection region B spaced apart from the liquid crystal cell gap (ceu gap) of the transmissive regions A1 and A2. . In other words, it is possible to set the liquid crystal cell gap (ceu gap) of the transmissive regions A1 and A2 to a value optimized for the transmissive liquid crystal display device, and 10 to set the liquid crystal cell gap of the reflective region B to a reflective liquid crystal. The value of the display device is optimized. Therefore, excellent display performance can be obtained regardless of whether it is used as a transmissive liquid crystal display device or as a reflective liquid crystal display device. For the transparent resin film 47, it is preferable to carry out a treatment for imparting light scattering energy to improve the light scattering ability. For example, the transparent resin film can be formed by adding a material for scattering light to a transparent resin (beads or the like which has a refractive index different from that of the transparent resin). (Second Specific Example) 20 Hereinafter, a second specific example of the present invention will be described.

弟7A圖至第7F圖為顯示製造本發明之第二具體例 之液晶顯不裝置之方法的截面圖,以及第8八圖至第8D 圖為此液晶顯示裝置的平面圖。附帶_提的是,第7a 圖至第7F圖為反射區域之截面圖,以及第8a圖至第8D 24 1292956 圖為反射區域之平面圖。再者,此具體例與第一具體 例不同處在於形成反射電極之方法不同。除此之外, 結構基本上與第一具體例相同。因此,與第一具體例 相同的元件將參考第2圖來說明。然而,在第8A圖至第 5 8D圖中,在輔助電容器匯流^非線14及第一金屬膜圖案 14a中之開口部分(開口圖案)15的形狀是圓形。再者, 相反基板之結構與第一具體例相同,且所以在此處不 再描述。 首先’如第7A圖及第8A圖所示,藉由與第一具體 10例相同的方法,在玻璃基板11上形成閘極匯流排線 13、輔助電容器匯流排線14、第一金屬膜圖案14a、第 一絕緣膜16、第一半導體膜17,以及絕緣膜圖案19&, 以及接著再形成第二金屬膜21。第二金屬膜21係藉由 例如由下往上依序沈積具有厚度2〇mn之Ti膜、具有厚 15度75 nm之A1膜,以及具有厚度40 nm之Ti膜來形成。 第二金屬膜21可具有例如丁丨膜(具有2〇 nm之厚度)、 A1膜(具有75 nm之厚度)、M〇N膜(具有7〇 nm之厚 度),以及Mo膜(具有15nm之厚度)之四層結構,或 M〇N膜(具有5〇 nm之厚度)、娜(具有75咖之厚 20度)、MoN膜(具有7〇腿之厚度),以及乂。膜(具有 15 nm之厚度)之四層結構。 、 附T —提的是,類似於第一具體例,開口部分15 係形成於輔助電容器匯流排線14之寬部及第一金屬圖 * 14a中’卩及開口部分2〇係形成於絕緣膜圖案⑼ 25 1292956 中。在此等開口部分15及20之間,尺寸及設置節距不 相同。 接下來,藉由光微影術圖案化第二金屬膜21,因 此形成數據匯流排線22、源極23a,及汲極23b,以及 5 如第7B圖及第8B圖所示,形成反射電極61,其亦在反 射區域B中用於作為輔助電容器電極。 接下來,如第7C圖所示,在玻璃基板11之整個上 表面上,形成例如SiN之第三絕緣膜62,因此利用第三 絕緣膜62,覆蓋數據匯流排線22、TFT 23,以及反射 10 電極61。 接下來,如第7D圖及第8C圖所示,藉由光微影術 圖案化第三絕緣膜62,因此形成開口部分63,經由該 開口部分曝露反射電極61。然而,需注意的是,使開 口部分63以一對應光微影術之邊界的量,小於反射電 15極61,以及留下反射電極61之邊界部分以供由第三絕 緣膜62所覆蓋。再者,藉由使用SF6/〇2氣體,利用乾 蝕刻進行第三絕緣膜62之蝕刻。 在此光微影術步驟,使接觸孔27a在源極23a上開 孔,以及開口部分係藉由蝕刻數據匯流排線22之末端 2〇部分(連接端子部分)上的第三絕緣膜62,以及閘極 匯流排線13之末端部分(連接端子部分)上之第一及 第三絕緣膜16及62來形成。在㈣期間,银刻並去除 第二金屬膜21最上層中的Ti膜(或MoN膜及_膜),以 及曝露出Ti膜下方的顯。藉由如上述般曝露ai膜, 26 1292956 其為第一金屬膜21之中間層,與在表面曝露丁丨膜、]^〇1^ 膜、Mo膜或類似結構的例子相較,增加反射電極之反 射度,且可進行亮色顯示。 再者,在典型之SiN膜的乾蝕刻中,其中使用SF6 5 /〇2氣體,因為Ti膜、^^〇]^膜,及Mo膜容易被蝕刻, 但A1膜不被蝕刻,可留下…膜作為蝕刻擋止層。對此 步驟中的SiN膜之乾蝕刻條件而言,舉例而言,處理室 _ 中的壓力係設定在6.7Pa,氣體的形式及流速係設定為 SF6/〇2 = 200/200 (sccm),以及功率係設定為600 10 w ° 接下來,如第7E圖所示,透明導電性材料,例如 ITO或類似材料,係濺鍍在玻璃基板u之整個上表面 上’因此形成第三金屬膜64。 接下來’藉由光微影術圖案化第三金屬膜64,因 5此分別在第一及第二透射區域A1及A2,以及反射區域 鲁 B ’开>成透明畫素電極64a,如第7F圖及第8D圖所示。 接下來,類似於第一具體例,形成覆蓋透明畫素 電極64a之表面的垂直配向膜(未顯示)。因此,完成 TFT基板。接下來’將TFT基板及相反基板設置成面向 2〇彼此,以及將液晶充填於TFT基板及相反基板之間的空 間中。因此,完成此具體例之液晶顯示裝置。 在此具體例中,形成於輔助電容器匯流排線14及 第一金屬膜圖案14a中之開口部分15,以及形成於絕緣 膜圖案19a中的開口部分2〇,尺寸及設置節距亦不同。 27 1292956 因此,有可能在未增加製造步驟之下,以高密度在反 射電極61之表面形成微細隆起物及傾斜。再者,在此 具體例中,因為與第一具體例相較,省略一形成金屬 膜之步驟,具有降低製造成本的優點。 5 (第三具體例) 在下文中將說明本發明之第三具體例。在此具體 例中,將說明本發明應用於製造具有通道钱刻型TFT 之液晶顯不1置之方法的貫施例。 第9A圖至第9F圖及第l〇A圖至第10D圖為顯示製 10 造本發明之第三具體例之液晶顯示裝置的截面圖。第 9A圖至第9F圖為反射區域B中的截面圖,以及第i〇A圖 至第10D圖為TFT形成部分中的截面圖。需注意的是, 在此具體例中,與第一具體例相同的元件將參考第2圖 來說明。再者,相反基板之結構與第一具體例相同, 15 且所以在此處不再描述。 首先,如第9A圖及第i〇A圖所示,A1膜、MoN膜, 以及Mo膜係藉由例如濺鍍,依序形成在玻璃基板11之 上側,該玻璃基板係作為TFT基板1〇之底材,因此形成 具有A1膜、m〇N膜,及Mo膜之三層結構。接著,藉由 2〇光微影術圖案化第一金屬膜,因此形成閘極匯流排線 13、輔助電容器匯流排線,以及第一金屬膜圖案 14a。在此時,類似於第一具體例,多數開口部分15係 形成在個別之輔助電容器匯流排線14之寬部以及第一 金屬膜圖案14a中。需注意的是,在第1〇A圖中,元件 28 1292956 付號71代表用於形成閘極匯流排線13之光阻膜。 接下來,如第9B圖及第10B圖所示,siN係藉由 CVD沈積在玻璃基板Η之整個上表面上,以形成第一 絕緣膜73,因此利用第一絕緣膜73覆蓋閘極匯流排線 5 I3、輔助電容器匯流排線Μ,以及第一金屬膜圖案 14a。接下來,作為τρτ 23之主動層之第一半導體膜 74,係由未摻雜之非晶形矽或多晶矽形成於第一絕緣 膜73上。再者,在所得的結構上,形成作為歐姆接觸 層之第二半導體膜75,其係由非晶形矽所形成,其中 1〇摻雜高密度之η-型雜質。接下來,藉由光微影術圖案 化第一及第二半導體膜74及75,因此在TFT形成區域形 成島狀半導體膜,如第1〇B圖所示。需注意的是,在第 10B圖中,元件符號76代表用於在TFT形成區域形成島 狀半導體膜的光阻膜。 15 再者,於此際,如第9B圖所示,於第一金屬膜圖 案14a上之第一絕緣膜73上,形成包括第一及第二半導 體膜74及75之半導體膜圖案77,以及於半導體膜圖案 77中形成第二開口部分78。使此等第二開口部分78形 成具有與形成於輔助電容器匯流排線14及第一金屬膜 圖案14a中第—開口部分15不同的尺寸及設置節距。 接下來’在玻璃基板11之整個上表面上形成第二 金屬膜。第二金屬膜具有例如Ti膜(具有20 nm之厚 度)、A1膜(具有75 nm之厚度),以及Ti膜(具有40 nm 之厚度)之三層結構。接下來,如第9C圖及第i〇c圖所 29 1292956 示’ It由光微影術圖案化第二金屬膜,因此形成數據 匯流排線22、源極23a、汲極23b,及第二金屬膜圖案 79。在此時,如第1〇c圖所示,將源極23a及汲極23b 之間的第一及第二半導體膜74及75,在第一半導體膜 5 74之厚度方向上蝕刻掉一半,因此使源極23a下方的第 二半導體膜75與汲極23b下方的第二半導體膜75彼此 電氣隔離。再者,於第一金屬膜圖案14a上形成第二金 屬膜圖案79。在此等第二金屬膜圖案79中,第三開口 部分80係形成具有不同於第一及第二開口部分15及78 1〇的尺寸及設置節距。需注意的是,第10C圖中的元件符 號81代表用於形成源極23a及汲極23b之光阻膜。 接下來’如第9D圖所示,由例如siN所製成之第二 絕緣膜82係形成在玻璃基板此整個上表面上,因此 利用第一絕緣膜82覆蓋數據匯流排線22、TFT 23,及 15第一金屬膜圖案79。接著,藉由光微影術,形成與源 極23a連通之接觸孔27a,以及與輔助電容器電極14、 第-金屬圖案14a’及第二金屬膜圖案79連通的多數第 四開口部分83。 接下來,如第9E圖所示,將由例如ITO或類似材料 2〇之透明導電性材料所製成之第三金屬膜84,形成在玻 璃基板11之整個上表面上。 接下來,如第9F圖及第圖所示,圖案化第三金 屬' 口此形成透明晝素電極84a。接下來,形成第 土屬膜#中至少最上層係由含有A卜Ag或類似材 30 1292956 料之高-反射度金屬作為主要成分所製成。將第四金屬 膜圖案化,因此形成反射電極85。再者,覆蓋透明書 素電極84a及反射電極85之表面之垂直配向膜,係由例 如聚醯亞胺所形成。因此,完成TFT基板。接下來,將 5 TFT基板及相反基板設置成面向彼此,以及於該tjpt基 板及相反基板之間的空間中充填液晶。因此,完成根 據此具體例之液晶顯示裝置。 除了功效類似於第一具體例之外,與第一具體例 之液晶顯示裝置相較,此具體例具有可降低製造成本 10 的功效,因為形成絕緣膜之步驟數目比第一具體例少。 (第四具體例) 在下文中將說明本發明之第四具體例。在此具體 例中,亦說明本發明應用於製造具有通道姓刻型tpt 之液晶顯示裝置的實施例。 I5 弟11A圖至弟11E圖為錄員不製造本發明之第四具體 例之液晶顯示裝置之方法的截面圖。此等第11A圖至第 11E圖為反射區域B中的截面圖。再者,在此具體例中, 與第一具體例相同的元件將參考第2圖來說明。再者, 相反基板之結構與第一具體例相同,且所以在此處不 20 再描述。 首先,如第11A圖所示,A1膜、MoN膜,以及Mo 膜係藉由例如濺鍍,依序形成在玻璃基板11之上側, 該玻璃基板係作為TFT基板10之底材,因此形成具有 A1膜、MoN膜,及Mo膜之三層結構。接著,藉由光微 31 1292956 -影術圖案化第-金屬膜,因此形成問極匯流排線13、 輔助包谷态匯流排線14,以及第一金屬膜圖案14a。在 此時,類似於第一具體例,多數開口部分15係形成在 個別之輔助電容器匯流排線14之寬部以及第一金屬膜 5 圖案14a中。 接下來,如第11B圖所示,SiN係藉由cvD沈積在 玻璃基板11之整個上表面上,以形成第一絕緣膜91, 因此利用第一絕緣膜91覆蓋閘極匯流排線13、輔助電 容器匯流排線14,以及第一金屬膜圖案14a。接下來, 1〇 «TFT 23之絲層之第-半導體魏,係由未推雜 之非晶形矽或多晶矽形成於第一絕緣膜91上。再者, 在所得的結構上,形成作為歐姆接觸層之第二半導體 膜93,其係由非晶形矽所形成,其中摻雜高密度之心 型4貝。接下來,藉由光微影術圖案化第一及第二半 15導體膜92及93,因此在TFT形成區域形成島狀半導體 _ 膜。再者,於此際,如第11B圖所示,在第一金屬膜圖 案14a上之第一絕緣膜91上,形成包括第一及第二半導 體膜92之半導體膜圖案94,以及在半導體膜圖案弘中 形成第二開口部分95。此等第二開口部分95係形成具 2〇有與形成於輔助電容器匯流排線14及第一金屬膜圖案 14a中之第一開口部分15不同的尺寸及設置節距。 接下來,如第11C圖所示,在玻璃基板11之整個上 表面上形成第二金屬膜。第二金屬膜具有例如71膜(具 有20 nm之厚度)、八丨膜(具有75腿之厚度),以及Ή 32 1292956 膜(具有40 nm之厚度)之三層結構。接下來,圖案化 第二金屬膜,因此形成數據匯流排線22、源極23a,及 汲極23b。在此時,同時在面向第一金屬膜圖案14a的 位置,形成第二金屬膜圖案96。 5 接下來,如第11D圖所示,於玻璃基板11之整個上 表面上形成第二絕緣膜97。在第二絕緣膜97中,形成 與源極23a連通之接觸孔27a,以及開口部分98,第二 金屬膜圖案96係經由開口部分98而曝露。在此時,藉 由蝕刻金屬膜圖案96之表面,曝露中間層中的A1膜, 10 並用於作為反射電極96a。 附帶一提的是,中間層可由含有Al、Ag或類似材 料之高-反射度金屬作為主要成分來形成,以及覆蓋層 可由含有例如Ti、Mo,或類似材料之高熔點金屬作為 主要成分之金屬來形成。 15 接下來,如第11E圖所示,將由例如ITO或類似材 料之透明導電性材料所製成之第三金屬膜,形成在玻 璃基板11之整個上表面上。圖案化第三金屬膜,因此 形成透明畫素電極99a。覆蓋透明畫素電極99a及反射 電極96a之表面的垂直配向膜係由例如聚醯亞胺所形 20成。因此完成TFT基板。接下來,將TFT基板及相反基 板設置成面向彼此,以及於該TFT基板及相反基板之間 的空間中充填液晶。因此,完成根據此具體例之液晶 顯示裝置。 除了功效類似於第一具體例之外,與第一具體例 33 1292956 之液晶顯示裝置相較,此具體例具有可降低製造成本 的功效,因為形成絕緣膜之步驟數目以及形成金屬膜 的步驟數目比第一具體例少。 附帶一提的是,在上述第一至第四具體例中,已 5 描述本發明應用於半透射式液晶顯示装置的實施例。 然而,本發明當然可應用於反射式液晶顯示裝置。再 者,本發明未限制於具有第一至第四具體例所描述之 結構的液晶顯示裝置,也可應用於其他具有反射板的 液晶顯不裝置。 10 【圖式簡單說明】 第1圖為顯示本發明之第一具體例之液晶顯示裝 置的截面圖; 第2圖為第一具體例之液晶顯示裝置的平面圖; 第3圖為第一具體例之液晶顯示裝置之一晝素的 15 等效電路圖; 第4A圖至第4L圖為顯示製造第一具體例之液晶 顯示裝置之方法的截面圖; 第5A圖至第5F圖為顯示製造第一具體例之液晶顯 示裝置之方法的平面圖; 20 第6圖為顯示第一具體例之一改良實施例之液晶 顯示裝置的截面圖; 第7A圖至第7F圖為顯示製造本發明之第二具體例 之液晶顯示裝置之方法的截面圖; 第8A圖至第8D圖為顯示製造本發明之第二具體 34 1292956 例之液晶顯示裝置之方法的平面圖; 第9A圖至第9F圖為顯示製造本發明之第三具體例 之液晶顯示裝置之方法的反射區域之截面圖; 第10A圖至第10D圖為顯示製造本發明之第三具 5 體例之液晶顯示裝置之方法的TFT形成部分的截面 圖,以及 第11A圖至第11E圖為顯示製造本發明之第四具體 例之液晶顯示裝置之方法的平面圖。 【主要元件符號說明】 10 TFT基板 22 數據匯流排線 11 玻璃基板 23 TFT 12 第一金屬膜 23a 源極 13 閘極匯流排線1 23b 汲極 14 輔助電容器匯流排 24 輔助電容器電極 線 24a 第二金屬膜圖案 14a 第一金屬膜圖案 25 開口部分 15 開口部分 27 第三絕緣膜 16 第一絕緣膜 27a 接觸孔 17 半導體膜 28 開口部分 18 第二絕緣膜 28a 接觸孔 19 通道保護膜 29 第三金屬膜 19a 絕緣膜圖案 32a 透明晝素電極 20 開口部分 33 反射電極 21 第二金屬膜 40 相反基板 35 12929567A to 7F are cross-sectional views showing a method of manufacturing a liquid crystal display device of a second specific example of the present invention, and Figs. 8 to 8D are plan views of the liquid crystal display device. Incidentally, the 7a to 7F are sectional views of the reflection area, and 8a to 8D 24 1292956 are plan views of the reflection area. Further, this specific example is different from the first specific example in that the method of forming the reflective electrode is different. Except for this, the structure is basically the same as the first specific example. Therefore, the same elements as those of the first specific example will be explained with reference to Fig. 2. However, in Figs. 8A to 58D, the shape of the opening portion (opening pattern) 15 in the auxiliary capacitor bus line 14 and the first metal film pattern 14a is circular. Further, the structure of the opposite substrate is the same as that of the first specific example, and therefore will not be described here. First, as shown in FIGS. 7A and 8A, the gate bus bar 13, the auxiliary capacitor bus bar 14, and the first metal film pattern are formed on the glass substrate 11 by the same method as the first specific example. 14a, a first insulating film 16, a first semiconductor film 17, and an insulating film pattern 19&, and then a second metal film 21. The second metal film 21 is formed by, for example, sequentially depositing a Ti film having a thickness of 2 〇mn, an A1 film having a thickness of 15 degrees and 75 nm, and a Ti film having a thickness of 40 nm, from bottom to top. The second metal film 21 may have, for example, a butadiene film (having a thickness of 2 〇 nm), an A1 film (having a thickness of 75 nm), an M〇N film (having a thickness of 7 〇 nm), and a Mo film (having a thickness of 15 nm) The thickness of the four-layer structure, or M〇N film (having a thickness of 5 〇 nm), Na (having a thickness of 75 mils of 20 degrees), MoN film (having a thickness of 7 〇 legs), and 乂. A four-layer structure of a film (having a thickness of 15 nm). Referring to the first embodiment, the opening portion 15 is formed in the wide portion of the auxiliary capacitor bus bar 14 and the first metal pattern * 14a '卩 and the opening portion 2 are formed on the insulating film Pattern (9) 25 1292956. Between these opening portions 15 and 20, the size and the set pitch are not the same. Next, the second metal film 21 is patterned by photolithography, thereby forming the data bus line 22, the source 23a, and the drain 23b, and 5, as shown in FIGS. 7B and 8B, forming a reflective electrode 61, which is also used as an auxiliary capacitor electrode in the reflective region B. Next, as shown in FIG. 7C, a third insulating film 62 of, for example, SiN is formed on the entire upper surface of the glass substrate 11, so that the data insulating bus bar 22, the TFT 23, and the reflection are covered by the third insulating film 62. 10 electrode 61. Next, as shown in Figs. 7D and 8C, the third insulating film 62 is patterned by photolithography, thereby forming an opening portion 63 through which the reflective electrode 61 is exposed. However, it is to be noted that the opening portion 63 is made smaller than the reflective electric pole 61 by the amount corresponding to the boundary of the photolithography, and the boundary portion of the reflective electrode 61 is left for being covered by the third insulating film 62. Further, etching of the third insulating film 62 is performed by dry etching by using SF6/〇2 gas. In this photolithography step, the contact hole 27a is opened in the source 23a, and the opening portion is formed by etching the third insulating film 62 on the end portion 2 (connection terminal portion) of the data bus bar 22, And the first and third insulating films 16 and 62 on the end portion (connection terminal portion) of the gate bus bar 13 are formed. During the (IV) period, the Ti film (or MoN film and _ film) in the uppermost layer of the second metal film 21 is silver-etched and removed, and the underside of the Ti film is exposed. By exposing the ai film as described above, 26 1292956 is the intermediate layer of the first metal film 21, and the reflective electrode is added as compared with the example of the surface exposed Ding film, the film, the Mo film or the like. Reflectance, and can be displayed in bright colors. Furthermore, in the dry etching of a typical SiN film, SF6 5 /〇2 gas is used, because the Ti film, the film, and the Mo film are easily etched, but the A1 film is not etched, leaving The film acts as an etch stop. For the dry etching condition of the SiN film in this step, for example, the pressure in the processing chamber is set at 6.7 Pa, and the form and flow rate of the gas are set to SF6/〇2 = 200/200 (sccm). And the power system is set to 600 10 w °. Next, as shown in FIG. 7E, a transparent conductive material such as ITO or the like is sputtered on the entire upper surface of the glass substrate u. Thus, the third metal film 64 is formed. . Next, the third metal film 64 is patterned by photolithography, because the first and second transmissive regions A1 and A2, and the reflective region are respectively B'opened into a transparent pixel electrode 64a, such as Figure 7F and Figure 8D show. Next, similar to the first specific example, a vertical alignment film (not shown) covering the surface of the transparent pixel electrode 64a is formed. Therefore, the TFT substrate is completed. Next, the TFT substrate and the opposite substrate are disposed so as to face each other, and the liquid crystal is filled in the space between the TFT substrate and the opposite substrate. Therefore, the liquid crystal display device of this specific example is completed. In this specific example, the opening portion 15 formed in the auxiliary capacitor bus bar line 14 and the first metal film pattern 14a, and the opening portion 2A formed in the insulating film pattern 19a have different sizes and setting pitches. 27 1292956 Therefore, it is possible to form fine bumps and inclinations on the surface of the reflective electrode 61 at a high density without increasing the manufacturing steps. Further, in this specific example, since the step of forming a metal film is omitted as compared with the first specific example, there is an advantage that the manufacturing cost is lowered. 5 (Third Specific Example) A third specific example of the present invention will be described below. In this specific example, a description will be given of a method in which the present invention is applied to a method of manufacturing a liquid crystal display having a channel type TFT. Figs. 9A to 9F and Figs. 1A to 10D are cross-sectional views showing a liquid crystal display device according to a third specific example of the present invention. Figs. 9A to 9F are cross-sectional views in the reflective region B, and the i-th to tenth D-th views are cross-sectional views in the TFT forming portion. It is to be noted that, in this specific example, the same elements as those of the first specific example will be described with reference to Fig. 2. Furthermore, the structure of the opposite substrate is the same as that of the first specific example, and therefore will not be described here. First, as shown in FIG. 9A and FIG. 9A, the A1 film, the MoN film, and the Mo film are sequentially formed on the upper side of the glass substrate 11 by sputtering, for example, as a TFT substrate. The substrate is thus formed into a three-layer structure having an A1 film, a m〇N film, and a Mo film. Next, the first metal film is patterned by 2 photolithography, thereby forming a gate bus bar 13, an auxiliary capacitor bus bar, and a first metal film pattern 14a. At this time, similarly to the first specific example, a plurality of opening portions 15 are formed in the wide portions of the individual auxiliary capacitor bus bars 14 and in the first metal film pattern 14a. It should be noted that in the first diagram A, the component 28 1292956 and the reference numeral 71 represent the photoresist film for forming the gate bus bar 13. Next, as shown in FIGS. 9B and 10B, the siN is deposited on the entire upper surface of the glass substrate by CVD to form the first insulating film 73, so that the gate bus is covered by the first insulating film 73. Line 5 I3 , auxiliary capacitor bus bar Μ, and first metal film pattern 14a. Next, the first semiconductor film 74 as the active layer of τρτ 23 is formed of the undoped amorphous germanium or polysilicon on the first insulating film 73. Further, on the resultant structure, a second semiconductor film 75 as an ohmic contact layer is formed which is formed of an amorphous germanium in which a high density η-type impurity is doped. Next, the first and second semiconductor films 74 and 75 are patterned by photolithography, whereby an island-shaped semiconductor film is formed in the TFT formation region as shown in Fig. 1B. It is to be noted that, in Fig. 10B, the element symbol 76 represents a photoresist film for forming an island-shaped semiconductor film in the TFT formation region. Further, at this time, as shown in FIG. 9B, a semiconductor film pattern 77 including the first and second semiconductor films 74 and 75 is formed on the first insulating film 73 on the first metal film pattern 14a, and A second opening portion 78 is formed in the semiconductor film pattern 77. The second opening portions 78 are formed to have a different size and a set pitch from the first opening portion 15 formed in the auxiliary capacitor bus bar 14 and the first metal film pattern 14a. Next, a second metal film is formed on the entire upper surface of the glass substrate 11. The second metal film has a three-layer structure of, for example, a Ti film (having a thickness of 20 nm), an A1 film (having a thickness of 75 nm), and a Ti film (having a thickness of 40 nm). Next, as shown in FIG. 9C and FIG. 29C, 29 1292956, 'It is patterned by photolithography to form a second metal film, thus forming a data bus bar 22, a source 23a, a drain 23b, and a second. Metal film pattern 79. At this time, as shown in FIG. 1c, the first and second semiconductor films 74 and 75 between the source 23a and the drain 23b are etched in half in the thickness direction of the first semiconductor film 574. Therefore, the second semiconductor film 75 under the source 23a and the second semiconductor film 75 under the drain 23b are electrically isolated from each other. Further, a second metal film pattern 79 is formed on the first metal film pattern 14a. In the second metal film pattern 79, the third opening portion 80 is formed to have a size different from the first and second opening portions 15 and 78 1 及 and a set pitch. It is to be noted that the symbol 81 in Fig. 10C represents a photoresist film for forming the source 23a and the drain 23b. Next, as shown in FIG. 9D, a second insulating film 82 made of, for example, siN is formed on the entire upper surface of the glass substrate, so that the data bus bar 22 and the TFT 23 are covered by the first insulating film 82, And 15 first metal film pattern 79. Next, a contact hole 27a communicating with the source electrode 23a and a plurality of fourth opening portions 83 communicating with the auxiliary capacitor electrode 14, the first metal pattern 14a' and the second metal film pattern 79 are formed by photolithography. Next, as shown in Fig. 9E, a third metal film 84 made of a transparent conductive material such as ITO or the like is formed on the entire upper surface of the glass substrate 11. Next, as shown in Fig. 9F and Fig. 1, the third metal is patterned to form a transparent halogen electrode 84a. Next, at least the uppermost layer formed in the first earth film # is made of a high-reflectance metal containing Ab Ag or the like 30 1292956 as a main component. The fourth metal film is patterned, thereby forming the reflective electrode 85. Further, a vertical alignment film covering the surfaces of the transparent pixel electrode 84a and the reflection electrode 85 is formed of, for example, polyimide. Therefore, the TFT substrate is completed. Next, the 5 TFT substrate and the opposite substrate are disposed to face each other, and a space between the tjpt substrate and the opposite substrate is filled with liquid crystal. Therefore, the liquid crystal display device according to this specific example is completed. This specific example has an effect of reducing the manufacturing cost 10 as compared with the liquid crystal display device of the first specific example, since the number of steps for forming the insulating film is smaller than that of the first specific example. (Fourth Specific Example) A fourth specific example of the present invention will be described below. In this specific example, the embodiment of the present invention applied to the manufacture of a liquid crystal display device having a channel type tpt is also described. I5 Brother 11A to 11E is a cross-sectional view showing a method of recording a liquid crystal display device of the fourth specific example of the present invention. These 11A to 11E are sectional views in the reflection area B. Furthermore, in this specific example, the same elements as those of the first specific example will be described with reference to FIG. Further, the structure of the opposite substrate is the same as that of the first specific example, and therefore will not be described again here. First, as shown in FIG. 11A, the A1 film, the MoN film, and the Mo film are sequentially formed on the upper side of the glass substrate 11 by, for example, sputtering, and the glass substrate is used as a substrate of the TFT substrate 10, thereby forming A three-layer structure of A1 film, MoN film, and Mo film. Next, the first metal film is patterned by photomicro 31 1292956 - shadow formation, thereby forming the interrogation bus line 13, the auxiliary grain bus bar 14, and the first metal film pattern 14a. At this time, similarly to the first specific example, a plurality of opening portions 15 are formed in the wide portion of the individual auxiliary capacitor bus bars 14 and in the first metal film 5 pattern 14a. Next, as shown in FIG. 11B, SiN is deposited on the entire upper surface of the glass substrate 11 by cvD to form the first insulating film 91, so that the gate bus bar 13 is covered by the first insulating film 91, and the auxiliary The capacitor bus bar 14 and the first metal film pattern 14a. Next, the first semiconductor layer of the filament layer of the TFT 23 is formed of an undoped amorphous or polycrystalline germanium on the first insulating film 91. Further, on the resultant structure, a second semiconductor film 93 as an ohmic contact layer is formed which is formed of an amorphous crucible in which a high-density core type is doped. Next, the first and second halves 15 conductor films 92 and 93 are patterned by photolithography, thereby forming an island-shaped semiconductor film in the TFT formation region. Further, at this time, as shown in FIG. 11B, on the first insulating film 91 on the first metal film pattern 14a, the semiconductor film pattern 94 including the first and second semiconductor films 92 is formed, and the semiconductor film is formed. The pattern Hongzhong forms a second opening portion 95. The second opening portions 95 are formed to have different sizes and set pitches from the first opening portions 15 formed in the auxiliary capacitor bus bar line 14 and the first metal film pattern 14a. Next, as shown in Fig. 11C, a second metal film is formed on the entire upper surface of the glass substrate 11. The second metal film has a three-layer structure of, for example, a 71 film (having a thickness of 20 nm), an octagonal film (having a thickness of 75 legs), and a film of Ή 32 1292956 (having a thickness of 40 nm). Next, the second metal film is patterned, thereby forming the data bus line 22, the source 23a, and the drain 23b. At this time, the second metal film pattern 96 is simultaneously formed at a position facing the first metal film pattern 14a. 5 Next, as shown in Fig. 11D, a second insulating film 97 is formed on the entire upper surface of the glass substrate 11. In the second insulating film 97, a contact hole 27a communicating with the source 23a and an opening portion 98 are formed, and the second metal film pattern 96 is exposed through the opening portion 98. At this time, by etching the surface of the metal film pattern 96, the A1 film in the intermediate layer is exposed, 10 and used as the reflective electrode 96a. Incidentally, the intermediate layer may be formed of a high-reflectance metal containing Al, Ag or the like as a main component, and the cover layer may be a metal containing a high melting point metal such as Ti, Mo, or the like as a main component. To form. Next, as shown in Fig. 11E, a third metal film made of a transparent conductive material such as ITO or the like is formed on the entire upper surface of the glass substrate 11. The third metal film is patterned, thereby forming a transparent pixel electrode 99a. The vertical alignment film covering the surfaces of the transparent pixel electrode 99a and the reflection electrode 96a is formed of, for example, polyimine. Therefore, the TFT substrate is completed. Next, the TFT substrate and the opposite substrate are disposed to face each other, and a space between the TFT substrate and the opposite substrate is filled with liquid crystal. Therefore, the liquid crystal display device according to this specific example is completed. This specific example has an effect of reducing the manufacturing cost as compared with the liquid crystal display device of the first specific example 33 1292956, in addition to the effect similar to the first specific example, because the number of steps of forming the insulating film and the number of steps of forming the metal film Less than the first specific example. Incidentally, in the above first to fourth specific examples, the embodiment in which the present invention is applied to a transflective liquid crystal display device has been described. However, the present invention is of course applicable to a reflective liquid crystal display device. Further, the present invention is not limited to the liquid crystal display device having the structure described in the first to fourth specific examples, and can be applied to other liquid crystal display devices having a reflecting plate. 10 is a cross-sectional view showing a liquid crystal display device according to a first specific example of the present invention; FIG. 2 is a plan view showing a liquid crystal display device of a first specific example; and FIG. 3 is a first specific example. 15 equivalent circuit diagram of a liquid crystal display device; FIGS. 4A to 4L are cross-sectional views showing a method of manufacturing the liquid crystal display device of the first specific example; FIGS. 5A to 5F are diagrams showing the first manufacturing FIG. 6 is a cross-sectional view showing a liquid crystal display device of a modified embodiment of the first specific example; and FIGS. 7A to 7F are diagrams showing the second specific embodiment of the present invention. FIG. 8A to FIG. 8D are plan views showing a method of manufacturing the liquid crystal display device of the second specific example of the invention, and FIGS. 9A to 9F are diagrams showing the manufacturing method. A cross-sectional view of a reflection region of a method of a liquid crystal display device of a third specific example of the invention; FIGS. 10A to 10D are diagrams showing TFT formation of a method for manufacturing a liquid crystal display device of a third embodiment of the present invention; Partial cross-sectional view, and FIGS. 11A through 11E of the graph of the liquid crystal display manufacturing a fourth embodiment of the present invention, particularly a method of a plan view of a display device. [Main component symbol description] 10 TFT substrate 22 Data bus bar 11 Glass substrate 23 TFT 12 First metal film 23a Source 13 Gate bus bar 1 23b Datum 14 Auxiliary capacitor bus bar 24 Auxiliary capacitor electrode line 24a Second Metal film pattern 14a First metal film pattern 25 Opening portion 15 Opening portion 27 Third insulating film 16 First insulating film 27a Contact hole 17 Semiconductor film 28 Opening portion 18 Second insulating film 28a Contact hole 19 Channel protective film 29 Third metal Film 19a insulating film pattern 32a transparent halogen electrode 20 opening portion 33 reflective electrode 21 second metal film 40 opposite substrate 35 1292956

43 濾色器 82 第二絕緣膜 43a 開口部分 83 開口部分 44 共同電極 84 第三金屬膜 45 配向調整突出物 84a 透明晝素電極 47 透明樹脂膜 85 反射電極 50 液晶 91 第一絕緣膜 51a 波長板 92 第一半導體膜 51b 波長板 93 第二半導體膜 52a 偏光板 94 半導體膜圖案 52b 偏光板 95 開口部分 61 反射電極 96 第二金屬膜圖案 62 第三絕緣膜 96a 反射電極 63 開口部分 97 第二絕緣膜 64 第三金屬膜 98 開口部分 64a 透明晝素電極 99a 第二絕緣膜 71 光阻膜 A1 第一透射區域 73 第一絕緣膜 A2 第二透射區域 74 第一半導體膜 B 反射區域 75 第二半導體膜 Cs 輔助電容器 76 光阻膜 cLC 電容器 77 半導體膜圖案 78 開口部分 79 第二金屬膜圖案 3643 color filter 82 second insulating film 43a opening portion 83 opening portion 44 common electrode 84 third metal film 45 alignment adjusting protrusion 84a transparent halogen electrode 47 transparent resin film 85 reflective electrode 50 liquid crystal 91 first insulating film 51a wave plate 92 first semiconductor film 51b wave plate 93 second semiconductor film 52a polarizing plate 94 semiconductor film pattern 52b polarizing plate 95 opening portion 61 reflective electrode 96 second metal film pattern 62 third insulating film 96a reflective electrode 63 opening portion 97 second insulation Film 64 Third metal film 98 Opening portion 64a Transparent halogen electrode 99a Second insulating film 71 Photoresist film A1 First transmission region 73 First insulating film A2 Second transmission region 74 First semiconductor film B Reflection region 75 Second semiconductor Film Cs auxiliary capacitor 76 photoresist film cLC capacitor 77 semiconductor film pattern 78 opening portion 79 second metal film pattern 36

Claims (1)

qfc年10月丨日修(更)正本 1292956 十、申請專利範圍: 第94112075號專利申請案申請專利範圍修正本 修正日期:96年10月 1 · 一種液晶顯示裳置,包含: 弟一基板; 第二基板,其設置成面向該第一基板且透光; 反射膜’其係形成在該第一基板上且反射通過該 弟一基板之光;Qfc October 丨日修 (more) original 1292956 X. Patent application scope: Patent No. 94112075 Patent application application patent revision Amendment date: October 1, 1996 · A liquid crystal display skirt, including: a younger substrate; a second substrate disposed to face the first substrate and transparent to light; a reflective film formed on the first substrate and reflecting light passing through the substrate; 10 多數膜’其係以層合方式形成於該第一基板及該 反射膜之間;以及 液晶,其係包含於該第一基板及該第二基板之間, 其中圖案係形成於該多數膜中,該等圖案在每一 膜中的設置節距不同,以及對應該多數膜之該等圖案 的隆起物及傾斜,係形成於該反射膜的表面。 15 2.如申請專利範圍第1項之液晶顯示裝置,其中每一畫素 區域具有利用由該反射膜反射之光進行顯示之一反射 φ 區域,以及利用通過該第一及第二基板之光進行顯示 之透射區域。 3. 如申請專利範圍第1項之液晶顯示裝置,其中該第二基 20 板具有一濾色器,其中一開口部分係設置在面向該第 一基板之該反射膜的位置。 4. 如申請專利範圍第3項之液晶顯示裝置,其中該濾色器 之該開口部分的尺寸係小於該反射膜之尺寸。 5. 如申請專利範圍第4項之液晶顯示裝置,其中一透明樹 37 1292956 "ί . 脂膜係形成於該濾色器之該開口部分中及該濾色器之 ~ 該開口部分周圍。 6. 如申請專利範圍第5項之液晶顯示裝置,其中該透明樹 5 10 15a majority of the film is formed between the first substrate and the reflective film in a lamination manner, and a liquid crystal is included between the first substrate and the second substrate, wherein a pattern is formed on the majority of the film The pitches of the patterns in each film are different, and the bumps and tilts of the patterns corresponding to most of the films are formed on the surface of the reflective film. [2] The liquid crystal display device of claim 1, wherein each pixel region has a region that reflects φ by light reflected by the reflective film, and uses light passing through the first and second substrates. The transmissive area of the display is performed. 3. The liquid crystal display device of claim 1, wherein the second substrate 20 has a color filter, wherein an opening portion is disposed at a position facing the reflective film of the first substrate. 4. The liquid crystal display device of claim 3, wherein the opening portion of the color filter has a size smaller than a size of the reflective film. 5. The liquid crystal display device of claim 4, wherein a transparent tree is formed in the opening portion of the color filter and around the opening portion of the color filter. 6. The liquid crystal display device of claim 5, wherein the transparent tree 5 10 15 20 脂膜被賦予光散射能力。 7· 如申請專利範圍第5項之液晶顯示裝置,其中該透明樹 脂膜之厚度係大於該濾色器之厚度。 8_ 如申請專利範圍第1項之液晶顯示裝置,其中設置於該 多數膜之至少一者中的該圖案之截面形狀為向前逐漸 變細約15度至70度的形狀。 9. 一種製造液晶顯示裝置之方法,該液晶顯示裝置具有 第一基板,其中每一畫素設置有薄膜電晶體及反射電 極;第二基板,其面向該第一基板;以及液晶,其包 含於該第一基板及該第二基板之間, 其中在形成薄膜電晶體之同時,具有圖案之多數 膜係以層合方式形成在該第一基板之形成反射電極的 區域上,該等圖案在每一膜中的設置節距不同,以及 接著在該多數膜上形成反射膜,且該反射膜係作為該 反射電極,該反射膜之一表面上的隆起物及傾斜對應 該多數膜之圖案。 10. —種製造液晶顯示裝置之方法,包含下述步驟: 在第一基板上形成第一金屬膜; 圖案化該第一金屬膜以形成閘極匯流排線及輔助 電容器匯流排線; 在該第一基板之整個上表面上形成第一絕緣膜; 38 1292956 鵝 -. 在該第一絕緣膜上形成第一半導體膜; — 在該第一半導體膜上形成第二絕緣膜; 圖案化該第二絕緣膜以形成用於保護薄膜電晶體 之至少一通道的通道保護膜; 5 在該第一基板之整個上表面上形成第二半導體 膜; 在該第二半導體膜上形成第二金屬膜;20 The lipid film is given light scattering ability. 7. The liquid crystal display device of claim 5, wherein the thickness of the transparent resin film is greater than the thickness of the color filter. The liquid crystal display device of claim 1, wherein the cross-sectional shape of the pattern disposed in at least one of the plurality of films is a shape which tapers forward by about 15 to 70 degrees. A method of manufacturing a liquid crystal display device, the liquid crystal display device having a first substrate, wherein each pixel is provided with a thin film transistor and a reflective electrode; a second substrate facing the first substrate; and a liquid crystal included in Between the first substrate and the second substrate, wherein a plurality of films having a pattern are formed on the region of the first substrate on which the reflective electrode is formed while forming the thin film transistor, the patterns are The set pitch in a film is different, and then a reflective film is formed on the majority of the film, and the reflective film serves as the reflective electrode, and the bumps on the surface of one of the reflective films and the tilt correspond to the pattern of most of the films. 10. A method of fabricating a liquid crystal display device comprising the steps of: forming a first metal film on a first substrate; patterning the first metal film to form a gate bus bar and an auxiliary capacitor bus bar; a first insulating film is formed on the entire upper surface of the first substrate; 38 1292956 goose-. forming a first semiconductor film on the first insulating film; forming a second insulating film on the first semiconductor film; patterning the first a second insulating film to form a channel protective film for protecting at least one channel of the thin film transistor; 5 forming a second semiconductor film on the entire upper surface of the first substrate; forming a second metal film on the second semiconductor film; 10 1510 15 圖案化該第二金屬膜及該第一半導體膜及該第二 半導體膜,以決定該薄膜電晶體之主動層的形狀,以 及形成數據匯流排線、薄膜電晶體之源極及汲極,以 及面向該辅助電容器匯流排線之輔助電容器電極,其 等之間夾置有該第一絕緣膜; 在該第一基板之整個上表面上形成第三絕緣膜; 在該第三絕緣膜上形成反射電極,該反射電極係 經由形成於該第三絕緣膜之接觸孔,電氣連接至該薄 膜電晶體之該源極及該輔助電容器電極;以及 設置第二基板,使該第二基板面向該第一基板, 並於該第一基板及該第二基板之間的空間中充填液 晶, 20 其中在該反射電極下方之該輔助電容器匯流排 線,該第一半導體膜及該第二半導體膜,以及該第二 絕緣膜及該第三絕緣膜中之至少二者中,形成在每一 膜中之設置節距不同的圖案。 11.如申請專利範圍第10項之方法,其中第一金屬膜圖案 39 1292956 係與該輔助電容器匯流排線之形成同時,形成於該輔 助電容器匯流排線之鄰近處,而第二金屬膜圖案係與 該輔助電容器電極之形成同時,形成於該輔助電容器 電極的鄰近處,以及於該第一金屬膜圖案及該第二金 屬膜圖案中形成圖案,該圖案在每一該金屬膜圖案中 具有不同的設置節距。Patterning the second metal film and the first semiconductor film and the second semiconductor film to determine a shape of an active layer of the thin film transistor, and forming a data bus bar, a source and a drain of the thin film transistor, and An auxiliary capacitor electrode facing the auxiliary capacitor bus bar, the first insulating film being interposed therebetween; a third insulating film is formed on the entire upper surface of the first substrate; and a reflection is formed on the third insulating film An electrode, the reflective electrode is electrically connected to the source of the thin film transistor and the auxiliary capacitor electrode via a contact hole formed in the third insulating film; and the second substrate is disposed such that the second substrate faces the first a substrate, and filling a space between the first substrate and the second substrate with a liquid crystal, 20 of the auxiliary capacitor bus line under the reflective electrode, the first semiconductor film and the second semiconductor film, and the In at least two of the second insulating film and the third insulating film, patterns having different pitches are formed in each of the films. 11. The method of claim 10, wherein the first metal film pattern 39 1292956 is formed adjacent to the auxiliary capacitor bus bar while being formed adjacent to the auxiliary capacitor bus bar line, and the second metal film pattern Simultaneously with the formation of the auxiliary capacitor electrode, formed adjacent to the auxiliary capacitor electrode, and forming a pattern in the first metal film pattern and the second metal film pattern, the pattern having in each of the metal film patterns Different settings pitch. 10 1510 15 12. 如申請專利範圍第10項之方法,其中由透明導電性材 料所製成之第四金屬膜係形成於該第三絕緣膜及該反 射電極之間。 13. —種製造液晶顯示裝置之方法,包含下述步驟: 在第一基板上形成第一金屬膜; 圖案化該第一金屬膜以形成閘極匯流排線及輔助 電容器匯流排線; 在該第一基板之整個上表面上形成第一絕緣膜; 在該第一絕緣膜上形成第一半導體膜; 在該第一半導體膜上形成第二絕緣膜; 圖案化該第二絕緣膜以形成保護薄膜電晶體之至 少一通道的通道保護膜; 在該第一基板之整個上表面上形成第二半導體 20 膜; 在該第二半導體膜上形成第二金屬膜; 圖案化該第二金屬膜及該第一半導體膜及該第二 半導體膜,以決定該薄膜電晶體之主動層之形狀,及 形成數據匯流排線、薄膜電晶體之源極及汲極,及反 40 1292956 τ „ •i _ 射電極; — 在該第一基板之整個上表面上形成第三絕緣膜; 於該第三絕緣膜中形成一開口部分,以曝露該反 射電極; 5 設置第二基板,使該第二基板面向該第一基板, 且於該第一基板及該第二基板之間的空間中充填液 晶,12. The method of claim 10, wherein the fourth metal film made of a transparent conductive material is formed between the third insulating film and the reflective electrode. 13. A method of fabricating a liquid crystal display device comprising the steps of: forming a first metal film on a first substrate; patterning the first metal film to form a gate bus bar and an auxiliary capacitor bus bar; Forming a first insulating film on the entire upper surface of the first substrate; forming a first semiconductor film on the first insulating film; forming a second insulating film on the first semiconductor film; patterning the second insulating film to form protection a channel protective film of at least one channel of the thin film transistor; forming a second semiconductor 20 film on the entire upper surface of the first substrate; forming a second metal film on the second semiconductor film; patterning the second metal film and The first semiconductor film and the second semiconductor film determine the shape of the active layer of the thin film transistor, and form a data bus line, a source and a drain of the thin film transistor, and a reverse 40 1292956 τ „ • i _ a third insulating film is formed on the entire upper surface of the first substrate; an opening portion is formed in the third insulating film to expose the reflective electrode; A second substrate to the second substrate facing the first substrate, and a space between the second substrate and the first substrate, liquid crystal is filled, 1515 20 其中在該反射電極下方之該輔助電容器匯流排 線,該第一半導體膜,以及第二絕緣膜中之至少二者 中,形成在每一膜中之設置節距不同的圖案。 14. 如申請專利範圍第13項之方法,其中具有開口部分之 金屬膜圖案,係與該輔助電容器匯流排線之形成同 時,形成於該辅助電容器匯流排線的鄰近處。 15. 如申請專利範圍第13項之方法,其中由透明導電性材 料所製成之第四金屬膜,係形成於該第三絕緣膜及該 反射電極之間。 16. —種製造液晶顯示裝置之方法,包含下述步驟: 在第一基板上形成第一金屬膜; 圖案化該第一金屬膜以形成閘極匯流排線及輔助 電容器匯流排線; 在該第一基板之整個上表面上形成第一絕緣膜; 在該第一絕緣膜上形成半導體膜; 圖案化該半導體膜; 在該第一基板之整個上表面上形成第二金屬膜; 41 1292956 圖案化該第二金屬膜,以形成數據匯流排線、薄 膜電晶體之源極及汲極,以及面向該輔助電容器匯流 排線之輔助電容器電極,其等之間夾置有該第一絕緣 膜; 在該第一基板之整個上表面上形成第二絕緣膜; 於該第二絕緣膜中形成一開口部分;20 wherein at least two of the auxiliary capacitor bus bar, the first semiconductor film, and the second insulating film under the reflective electrode are formed with a pattern having a different pitch in each film. 14. The method of claim 13, wherein the metal film pattern having the opening portion is formed adjacent to the auxiliary capacitor bus bar line at the same time as the auxiliary capacitor bus bar line. 15. The method of claim 13, wherein the fourth metal film made of a transparent conductive material is formed between the third insulating film and the reflective electrode. 16. A method of fabricating a liquid crystal display device comprising the steps of: forming a first metal film on a first substrate; patterning the first metal film to form a gate bus bar and an auxiliary capacitor bus bar; Forming a first insulating film on the entire upper surface of the first substrate; forming a semiconductor film on the first insulating film; patterning the semiconductor film; forming a second metal film on the entire upper surface of the first substrate; 41 1292956 pattern The second metal film is formed to form a data bus bar, a source and a drain of the thin film transistor, and an auxiliary capacitor electrode facing the auxiliary capacitor bus bar, and the first insulating film is interposed therebetween; Forming a second insulating film on the entire upper surface of the first substrate; forming an opening portion in the second insulating film; 10 在該第一基板之整個上表面上形成第三金屬膜; 圖案化該第三金屬膜以形成反射電極;以及 設置第二基板,使該第二基板面向該第一基板, 且於該第一基板及該第二基板之間的空間中充填液 晶, 其中在該反射電極下方之該輔助電容器匯流排 線,該半導體膜,以及第二絕緣膜中之至少二者中, 形成在每一膜中之設置節距不同的圖案。 15 17.如申請專利範圍第16項之方法,其中第一金屬膜圖案 係與該辅助電容器匯流排線之形成同時,形成於該輔 Φ 助電容器匯流排線之鄰近處,而第二金屬膜圖案係與 該輔助電容器電極之形成同時,形成於該辅助電容器 電極的鄰近處,以及於該第一金屬膜圖案及該第二金 20 屬膜圖案中形成圖案,該圖案在每一該金屬膜圖案中 具有不同的設置節距。 18.如申請專利範圍第16項之方法,其中由透明導電性材 料所製成之第四金屬膜係形成於該第三絕緣膜及該反 射電極之間。 42 1292956 19. 一種製造液晶顯示裝置之方法,包含下述步驟: 在第一基板上形成第一金屬膜; 圖案化該第一金屬膜以形成閘極匯流排線及輔助 電容器匯流排線; 5Forming a third metal film on the entire upper surface of the first substrate; patterning the third metal film to form a reflective electrode; and disposing the second substrate such that the second substrate faces the first substrate, and a space between a substrate and the second substrate is filled with liquid crystal, wherein at least two of the auxiliary capacitor bus bar under the reflective electrode, the semiconductor film, and the second insulating film are formed on each film Set the pattern with different pitch. The method of claim 16, wherein the first metal film pattern is formed adjacent to the auxiliary capacitor bus bar and formed adjacent to the auxiliary Φ capacitor bus line, and the second metal film And forming a pattern adjacent to the auxiliary capacitor electrode, forming a pattern in the first metal film pattern and the second gold film pattern, wherein the pattern is in each of the metal film There are different setting pitches in the pattern. 18. The method of claim 16, wherein a fourth metal film made of a transparent conductive material is formed between the third insulating film and the reflective electrode. 42 1292956 19. A method of manufacturing a liquid crystal display device, comprising the steps of: forming a first metal film on a first substrate; patterning the first metal film to form a gate bus bar and an auxiliary capacitor bus bar; 10 在該第一基板之整個上表面上形成第一絕緣膜; 在該第一絕緣膜上形成半導體膜; 圖案化該半導體膜; 在該第一基板之整個上表面上形成第二金屬膜; 圖案化該第二金屬膜,以形成數據匯流排線、薄 膜電晶體之源極及汲極,以及反射電極; 在該第一基板之整個上表面上形成第二絕緣膜; 於該第二絕緣膜中形成一開口部分,以曝露該反 射電極;以及 設置第二基板,使該第二基板面向該第一基板, 15 且於該第一基板及該第二基板之間的空間中充填液 晶, 其中在該反射電極下方之該輔助電容器匯流排線 及該半導體膜中,形成在每一膜中之設置節距不同的 ' 圖案。 20 20·如申請專利範圍第19項之方法,其中該第二金屬膜包 含一中間層及一覆蓋層,該覆蓋層覆蓋該中間層,以 及在圖案化該第二絕緣膜的步驟中,該覆蓋層被蝕刻 以曝露該中間層。 21.如申請專利範圍第20項之方法,其中該中間層係由含 43 1292956 有A1及Ag中之至少一者作為主要成分之金屬所製 成,以及該覆蓋層係由含有Ti及Mo中之至少一者作為 主要成分之金屬所製成。 510 forming a first insulating film on the entire upper surface of the first substrate; forming a semiconductor film on the first insulating film; patterning the semiconductor film; forming a second metal film on the entire upper surface of the first substrate; Patterning the second metal film to form a data bus bar, a source and a drain of the thin film transistor, and a reflective electrode; forming a second insulating film on the entire upper surface of the first substrate; and the second insulating layer Forming an opening portion in the film to expose the reflective electrode; and providing a second substrate, the second substrate facing the first substrate, 15 and filling a space between the first substrate and the second substrate; Wherein the auxiliary capacitor bus bar under the reflective electrode and the semiconductor film form a pattern having a different pitch in each film. The method of claim 19, wherein the second metal film comprises an intermediate layer and a cover layer, the cover layer covers the intermediate layer, and in the step of patterning the second insulating film, The cover layer is etched to expose the intermediate layer. 21. The method of claim 20, wherein the intermediate layer is made of a metal containing 43 1292956 having at least one of A1 and Ag as a main component, and the covering layer is composed of Ti and Mo. At least one of them is made of a metal as a main component. 5 10 22·如申請專利範圍第19項之方法,其中具有多數開口部 分之金屬膜圖案,係在該辅助電容器匯流排線之形成 同時,形成於該輔助電容器匯流排線之鄰近處。 23. 如申請專利範圍第1項之液晶顯示裝置,更包含垂直配 向膜係形成在該第一基板及該第二基板上,其中該液 晶具有負介電各向異性。 24. 如申請專利範圍第23項之液晶顯示裝置,更包含第一 相位板及第一偏光板係設置在液晶面板之一側,該液 晶面板包括第一基板及第二基板以及被包含於該第一 基板及弟二基板之間的液晶’以及第二相位板及第二 偏光板係設置在該液晶面板的另一側。 15The method of claim 19, wherein the metal film pattern having a plurality of opening portions is formed adjacent to the auxiliary capacitor bus bar while forming the auxiliary capacitor bus bar. 23. The liquid crystal display device of claim 1, further comprising a vertical alignment film formed on the first substrate and the second substrate, wherein the liquid crystal has a negative dielectric anisotropy. 24. The liquid crystal display device of claim 23, further comprising a first phase plate and a first polarizing plate disposed on one side of the liquid crystal panel, the liquid crystal panel including the first substrate and the second substrate and being included in the The liquid crystal ' between the first substrate and the second substrate and the second phase plate and the second polarizing plate are disposed on the other side of the liquid crystal panel. 15 4444
TW094112075A 2004-06-03 2005-04-15 Liquid crystal display device and method of manufacturing the same TWI292956B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004165320A JP4499481B2 (en) 2004-06-03 2004-06-03 Liquid crystal display device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW200605361A TW200605361A (en) 2006-02-01
TWI292956B true TWI292956B (en) 2008-01-21

Family

ID=35448472

Family Applications (1)

Application Number Title Priority Date Filing Date
TW094112075A TWI292956B (en) 2004-06-03 2005-04-15 Liquid crystal display device and method of manufacturing the same

Country Status (4)

Country Link
US (1) US7768603B2 (en)
JP (1) JP4499481B2 (en)
KR (1) KR100799440B1 (en)
TW (1) TWI292956B (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101238408B (en) 2005-08-03 2011-06-01 夏普株式会社 Liquid crystal display device and electronic device using the same
TWI314658B (en) * 2005-09-09 2009-09-11 Au Optronics Corp Pixel structure of transflective tft lcd panel and fabricating method thereof
JP4919644B2 (en) * 2005-10-04 2012-04-18 三菱電機株式会社 Liquid crystal display
CN101395525B (en) 2006-03-23 2010-11-10 夏普株式会社 Liquid crystal display device
US8300186B2 (en) 2006-05-01 2012-10-30 Sharp Kabushiki Kaisha Liquid crystal display device comprising a reflection region having tilted first and second recesses and method for manufacturing the same
JP5010586B2 (en) * 2006-05-01 2012-08-29 シャープ株式会社 Liquid crystal display device and method of manufacturing liquid crystal display device
JP5170985B2 (en) 2006-06-09 2013-03-27 株式会社ジャパンディスプレイイースト Liquid crystal display
CN101484839B (en) * 2006-06-30 2012-07-04 夏普株式会社 Liquid crystal display and method for manufacturing liquid crystal display
EP2063313A4 (en) 2006-09-12 2011-08-17 Sharp Kk Liquid crystal display panel provided with microlens array, method for manufacturing the liquid crystal display panel, and liquid crystal display device
WO2008047517A1 (en) * 2006-10-18 2008-04-24 Sharp Kabushiki Kaisha Liquid crystal display and method for manufacturing liquid crystal display
US7995167B2 (en) * 2006-10-18 2011-08-09 Sharp Kabushiki Kaisha Liquid crystal display device and method for manufacturing liquid crystal display device
KR101304902B1 (en) * 2006-11-24 2013-09-05 삼성디스플레이 주식회사 Liquid crystal display
EP2124093A4 (en) * 2006-12-14 2010-06-30 Sharp Kk Liquid crystal display device and process for producing liquid crystal display device
EP2128690B1 (en) * 2007-01-24 2013-10-23 Sharp Kabushiki Kaisha Liquid crystal display device
EP2124094A4 (en) * 2007-01-31 2011-09-07 Sharp Kk Liquid crystal display device
JP5186776B2 (en) 2007-02-22 2013-04-24 富士通株式会社 Semiconductor device and manufacturing method thereof
JP4386084B2 (en) 2007-03-06 2009-12-16 エプソンイメージングデバイス株式会社 Liquid crystal device and electronic device
TWI410711B (en) * 2007-03-27 2013-10-01 Cpt Technology Group Co Ltd Back light module and liquid crystal display having the same
WO2008129748A1 (en) * 2007-04-13 2008-10-30 Sharp Kabushiki Kaisha Liquid crystal display and method of manufacturing liquid crystal display
EP2166403A4 (en) * 2007-06-26 2011-05-25 Sharp Kk Liquid crystal display device and method of manufacturing liquid crystal display device
US8614777B2 (en) 2008-08-20 2013-12-24 Sharp Kabushiki Kaisha Liquid crystal display device
JP2011257437A (en) * 2008-10-02 2011-12-22 Sharp Corp Liquid crystal display device
JP4752967B2 (en) * 2009-01-27 2011-08-17 カシオ計算機株式会社 Multilayer film forming method and display panel manufacturing method
JP5310409B2 (en) * 2009-09-04 2013-10-09 東京エレクトロン株式会社 Plasma etching method
JP5253674B2 (en) * 2010-08-30 2013-07-31 シャープ株式会社 Semiconductor device and manufacturing method thereof
JP5766467B2 (en) 2011-03-02 2015-08-19 株式会社東芝 THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND DISPLAY DEVICE
JP5172023B2 (en) * 2012-02-01 2013-03-27 株式会社ジャパンディスプレイイースト Manufacturing method of liquid crystal display device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05173158A (en) 1991-12-26 1993-07-13 Sharp Corp Reflection type liquid crystal display device and its manufacture
MY114271A (en) 1994-05-12 2002-09-30 Casio Computer Co Ltd Reflection type color liquid crystal display device
JP2990046B2 (en) 1995-08-16 1999-12-13 日本電気株式会社 Reflective liquid crystal display device and method of manufacturing the same
US6295109B1 (en) * 1997-12-26 2001-09-25 Sharp Kabushiki Kaisha LCD with plurality of pixels having reflective and transmissive regions
WO2000016153A1 (en) 1998-09-10 2000-03-23 Seiko Epson Corporation Substrate for liquid crystal panel, liquid crystal panel, electronic apparatus comprising the panel, and method for manufacturing substrate for liquid crystal panel
US20030053016A1 (en) * 2000-02-16 2003-03-20 Hirofumi Kubota Formed body, reflecting plate, reflection display device, and method for fabricating reflecting plate
JP4785229B2 (en) * 2000-05-09 2011-10-05 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP3904828B2 (en) * 2000-12-07 2007-04-11 株式会社日立製作所 Liquid crystal display
JP2002323705A (en) * 2001-04-25 2002-11-08 Seiko Epson Corp Electro-optical device and electronic equipment
JP4050119B2 (en) * 2001-10-02 2008-02-20 シャープ株式会社 Liquid crystal display
JP4489346B2 (en) * 2002-12-17 2010-06-23 シャープ株式会社 Liquid crystal display
JP4319872B2 (en) * 2003-08-07 2009-08-26 三菱電機株式会社 Manufacturing method of reflective liquid crystal display device

Also Published As

Publication number Publication date
TW200605361A (en) 2006-02-01
JP4499481B2 (en) 2010-07-07
US7768603B2 (en) 2010-08-03
JP2005345757A (en) 2005-12-15
US20050270447A1 (en) 2005-12-08
KR20060047724A (en) 2006-05-18
KR100799440B1 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
TWI292956B (en) Liquid crystal display device and method of manufacturing the same
TWI291234B (en) Liquid crystal display
US7751022B2 (en) Liquid crystal display device and method of fabricating the same
US7538850B2 (en) Panel for display device, manufacturing method thereof and liquid crystal display
US8068188B2 (en) Thin film transistor array panel and manufacturing method thereof
US6424399B1 (en) Active matrix substrate and liquid crystal display apparatus having electrical continuity across contact holes, and method for producing the same
JP3993543B2 (en) Transflective liquid crystal display device and manufacturing method thereof
TWI279612B (en) Transflective liquid crystal display and method of fabricating the same
TWI358562B (en) Liquid crystal display and thin film transistor ar
US8537296B2 (en) Display device wherein a thickness of a first insulating layer is greater than a thickness of a first conductor and wherein the first insulating layer completely covers lateral side surfaces of the first conductor
TW562961B (en) Liquid crystal display device
US8319924B2 (en) Liquid crystal display and method of fabricating the same
TW200424719A (en) Liquid crystal display, thin film transistor array panel therefor, and manufacturing method thereof
TWI228630B (en) TFT array substrate, producing method thereof, and liquid crystal display device utilizing the substrate
TW200809365A (en) Liquid crystal display device and manufacturing method thereof
TWI339443B (en) A pixel and a storage capacitor of the pixel and a method of forming thereof
JP2009139853A (en) Liquid crystal display device
US7847889B2 (en) Panel for display device with light blocking on blue color filter and liquid crystal display
JPH10209463A (en) Method for wiring formation of display device, manufacture of display device, and display device
JP4605438B2 (en) Liquid crystal display device and manufacturing method thereof
TWI300149B (en) Pixel structure and manufracturing method thereof
TWI331238B (en) Method for manufacturing a liquid crystal display device