TWI292680B - Organic light emitting diodes - Google Patents

Organic light emitting diodes Download PDF

Info

Publication number
TWI292680B
TWI292680B TW95102245A TW95102245A TWI292680B TW I292680 B TWI292680 B TW I292680B TW 95102245 A TW95102245 A TW 95102245A TW 95102245 A TW95102245 A TW 95102245A TW I292680 B TWI292680 B TW I292680B
Authority
TW
Taiwan
Prior art keywords
light
emitting
blue
red
organic light
Prior art date
Application number
TW95102245A
Other languages
Chinese (zh)
Other versions
TW200730025A (en
Inventor
Bong Ok Kim
Chi Sik Kim
So Young Jung
Hyuck Joo Kwon
Young Jun Cho
Kyung Hoon Choi
Sung Min Kim
Seung Soo Yun
Original Assignee
Gracel Disply Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gracel Disply Inc filed Critical Gracel Disply Inc
Priority to TW95102245A priority Critical patent/TWI292680B/en
Publication of TW200730025A publication Critical patent/TW200730025A/en
Application granted granted Critical
Publication of TWI292680B publication Critical patent/TWI292680B/en

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Description

• 1292680 九、發明說明: 【發明所屬之技術領域】 本發明有關一種有機發光二極體,尤其有關一種具有 紅綠藍白(RGBW)獨立發光模式之有機發光二極體。 【先前技術】 有機發光二極體簡稱0LED,具有重量輕、厚度薄、功 耗低及反應速度快等特性,目前已成備受矚目的新生代平 面顯示器,適於顯示動晝或動態影像等。截至目前為止, ® 有機發光二極體在一般用途上的發展已有快速進展,同時 也被採納用作行動電話外部視窗的基本面板。由於科技發 展快速增進,所以近來已開發出20英吋大小的有機發光二 ' 極體。預期在近幾年内即可生產中、大型螢幕的有機發光 ‘ 二極體電視。尤其是在許多亞洲國家中,包括韓國、日本 與台灣,憑藉它們在開發諸如半導體與液晶顯示器(LCD) 等最新顯示元件的經驗,已加速發展有機發光二極體此種 • 技術。因此可以預期往後在顯示器市場的領導上,將有更 激烈的競爭。 為了利用此種有機發光二極體來實現全彩顯示器,開 發屬於核心主題的發光物質,曾被視為一項極重要的因 素。然而,以中、大型螢幕之目標而言,關於此種發光物 質性能的改進,其速度相當緩慢。因此,必須從顯示面板 結構的層面引進新概念’以求顯著增進有機發光二極體的 性能。因此,各面板生產公司提出了許多經由改變面板結 構來具體實現一般用途顯示器的概念。 1292680 為了使用有機發光二極體具體實現全彩顯示器,目# 有下述三種已知的模式: 則 (1) 紅綠藍獨立發光模式 如圖一所示,此模式是一種獨立發光模式,其中採用 具有複數發光層的次像素,分別提供紅、綠、藍光之有機 光發射。紅綠藍獨立發光模式是最常見的有機發光二極體 面板結構,所有目前使用的面板都採用此種模式。 由於在傳統的紅綠藍獨立發光模式中,CIE座標的白 色(0· 33,0· 33)必須用紅、綠、藍調整,所以設計有機發 光二極體時,必須優先考慮色彩調和(均勻),甚至需要^ 衷電效率或色彩純度。此點與使用紅綠藍單位元素(像素) 的情況不同。例如,因為要實現白色,當純藍之效率或色 度低下時,必須使用色度略低之紅色,甚至可顯示純紅色。 (2) 光色轉換模式 如圖二所示,此模式係在一藍光發射元件上,包括处 白(blank)之藍色次像素及具有光色轉換層之紅、綠次像 素。在光色轉換模式中,高性能藍光發光物質的發展非常 重要。尤其是,從物質穩定性而言,具有較大能域(energy gap)的藍色光與其他光色的發光物質比較時,在器件中較 為不利。若是以目前已發展的藍光發光物質而言,即使從 色彩純度或發光效率層面來看,多少可以應用它,但由於 使用壽命短的缺點,所以在此之前少有應用模式(2)的報 導。 (3)設有濾色器的白光發光模式 .1292680 從圖三可以看出,在此模式中,係於白光有機發光二 極體上放置一紅綠藍濾色器。選擇此一模式有賴於發展具 有紅綠藍三色區清晰光譜、高亮度與高效率的白光有機發 光二極體。雖然有許多研究者專注於高效率白光有機發光 二極體的發展,但確實有許多問題出現。 白光有機發光二極體有二種模式:其中一種模式採用 二種發光物質,另一種模式則採用三種發光物質。採用二 種發光物質的模式,具有寬廣的加工裕度,並易於實現白 色度座標,但其缺點是,使用紅綠藍濾色器時,光效率顯 然降低。不論所使用的發光物質其波長範圍有多寬的區 域,通過濾色器的紅綠藍光各自的發光效率,都無法實現 到白色發光效率的1/5以上。相反地,採用三種發光物質 的模式,其缺點在於加工過程非常複雜,而且依驅動電壓 而定,白色度座標會發生極嚴重的改變,不過,即便在通 過紅綠藍濾色器之後,白色的發光效率並無顯著損失。 同時,柯達(Kodak)公司在2004年8月於韓國大丘 (Daegu)召開的國際資訊顯示會議“imid 2004”中,曾建 議一種方法,將紅綠藍白濾色器附著在具有圖四所示钟構 的白光有機發光二極體上,用以調整前述設有據色器的白 光發光模式。韓國專利公告第2003-77430號,及韓國專利 公告第2004-74958號中亦揭示相同的模式。 根據視頻影像分析,如圖五之色度座標分佈圖表所 示,在大多數視頻影像中,極少使用純紅綠藍色,但是與 白色混合的濁色(moderate colors)則經常使用。因此,從 J292680 紅綠藍及紅綠藍白顯示器關於不同影像的功耗圖表可以看 出,使用紅綠藍白模式之顯示裝置時,若採用紅綠藍白濾 色器(其中加入使用白光有機發光二極體色先的白色濾色 器),而不使用紅綠藍濾色器,可比使用紅綠藍濾色器時降 低50%的功耗。 然而,在柯達公司建議的採用紅綠藍白濾色器的模式 中,於白光有機發光二極體上使用濾色器以具體實現全彩 顯示器的方法,係採用一種本身無法發光的LCD顯示器實 例,因此,此種模式的缺點在於,由於濾色器造成極大的 光損失,所以功耗顯著增加。由於自發光的有機發光二極 體可以產生各種不同的高效率光色,所以前述模式(3)中使 用濾色器類型實現全彩之模式與柯達公司採用紅綠藍白遽 色器之模式,原先在功耗方面的缺點,實際上可有顯著改 進。 因此,本發明之目的是提供一種功耗較低之紅綠藍白 獨立發光模式有機發光二極體,其可充分實現自發光有機 發光二極體的優點,作為紅綠藍獨立發光模式的調整方 法。本發明另一目的是提供一種紅綠藍白獨立發光模式有 機發光二極體,其中不是用紅綠藍色實現白色,而是設有 獨立的白光發光次像素,所以較能免於白色平衡的問題, 因此,易於選擇發光物質或發光二極體結構。 【發明内容】 本發明有關-種功耗降低之紅綠藍白獨立發光模式 有機發光二極體(GLED),其可充分達成有機發光二極體自 9 1292680 發光的優點,作為紅綠藍獨立發光模式的調整方法。更明 確地說’本發明之特徵在於,财機發光二極體包括多數 次像素,該等次像素係在—具有透光率之第—電極上,依 序層疊-電洞傳輸層、一發光層、一電子傳輸層、及一金 屬電極’且每-次像素之發光層都包括多種有機發光物 質,可發射紅光、綠光、藍光及白光。 根據本發明之紅綠藍白獨立發光模式有機發光二極 體’係採用一種降低功耗的方法,其中只照亮二種次像素 ·(紅白、綠白或藍白),而非全部照亮三種 以實現構成大部份顏色的濁色。藉由採用紅綠藍白獨立發 光模式了以克服只使用紅綠藍三種次像素時必須考慮的 ^平衡問題H藉由採用本發明之紅綠藍白獨立發光 . 拉式,可以選擇發光物質與發光二極體結構,完全沒有習 用红綠藍獨立發光模式中常發生的問題。 本發明其他進一步之目的、特徵及優點,可經由以下 Φ 說明獲得更充分的了解。 【實施方式】 如圖七所示,根據本發明之紅綠藍白獨立發光模式有 機發光二極體包括多數次像素,該等次像素係在一具有透 光率之第一電極11上,依序層疊一電洞傳輸層13、一發 光層14、一電子傳輸層15、及一金屬電極π,且每一次 像素之發光層14都包括多種有機發光物質,可發射紅光' 綠光、藍光及白光。 照射紅光、綠光及藍光的發光層14,設有一種有機發 •1292680 光物質,此一有機發光物質或由相同成份構成,或是在第 一有機發光物質製成之有機發光層上掺合第二有機發光物 質而構成。其中,亦可採用已往紅綠藍獨立發光模式所使 用的有機發光物質,作為此種有機發光物質。照射白光之 次像素發光層14較佳是設有藍光有機發光物質與紅光有 機發光物質之積層,而且此發光層較佳採用一種掺合系 統,其中係在一第一有機發光物質上掺合一第二發光物 質,藉此藍光與紅光有機發光物質可分別包括兩種化合物。 • 申請人使用由化學式1與2構成之藍光發光物質,及 由化學式3與4構成之紅光發光物質,發明一種展現絕佳 性能之白光有機發光二極體,其最大發光效率為 13cd/A(燭光/安培),最大亮度為50, 000cd/m2(燭光/平方 公尺),因此可連同使用申請人發明的白光有機發光二極體 與已往紅綠藍獨立發光模式中採用的紅綠藍有機發光二極 體,達成性能優異的紅綠藍白獨立發光模式有機發光二極 體。 0 [化學式1]BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic light-emitting diode, and more particularly to an organic light-emitting diode having a red-green-blue-white (RGBW) independent light-emitting mode. [Prior Art] The organic light-emitting diode is abbreviated as 0LED, which has the characteristics of light weight, thin thickness, low power consumption and fast response speed. It has become a high-profile flat-panel display that is suitable for displaying moving images or moving images. . To date, the development of ® organic light-emitting diodes has been rapidly progressing in general use and has also been adopted as a basic panel for external windows of mobile phones. Due to the rapid development of technology, a 20-inch organic light-emitting diode has recently been developed. It is expected that in the next few years, it will be able to produce organic light-emitting "> diode TVs for medium and large screens. Especially in many Asian countries, including South Korea, Japan and Taiwan, they have accelerated the development of organic light-emitting diodes by virtue of their experience in developing the latest display components such as semiconductors and liquid crystal displays (LCDs). Therefore, it can be expected that there will be more intense competition in the future of the display market. In order to realize a full-color display using such an organic light-emitting diode, the development of a luminescent substance belonging to a core theme has been regarded as a very important factor. However, in terms of the goals of medium and large screens, the improvement in performance of such luminescent materials is quite slow. Therefore, it is necessary to introduce a new concept from the level of the display panel structure in order to significantly improve the performance of the organic light-emitting diode. Therefore, each panel production company has proposed many concepts for implementing a general-purpose display by changing the panel structure. 1292680 In order to realize the full-color display using the organic light-emitting diode, there are three known modes: (1) The red-green-blue independent light-emitting mode is shown in Figure 1, which is an independent light-emitting mode. Sub-pixels having a plurality of luminescent layers are used to provide organic light emission of red, green, and blue light, respectively. The red, green and blue independent lighting mode is the most common organic light emitting diode panel structure, and all currently used panels use this mode. Since the white (0·33, 0·33) of the CIE coordinate must be adjusted with red, green, and blue in the traditional red, green and blue independent illumination mode, color harmonization must be prioritized when designing the organic light-emitting diode. ), even need to be electrical efficiency or color purity. This is different from the case of using red, green and blue unit elements (pixels). For example, because white is to be achieved, when the efficiency or color of pure blue is low, it is necessary to use a red with a slightly lower chroma or even a solid red. (2) Light color conversion mode As shown in Fig. 2, this mode is on a blue light emitting element, including blue sub-pixels with blanks and red and green sub-pixels with light color conversion layers. In the light color conversion mode, the development of high performance blue light emitting materials is very important. In particular, in terms of material stability, blue light having a larger energy gap is more disadvantageous in a device than a light-emitting substance of other light colors. In the case of the currently developed blue light-emitting substance, even if it is applied in terms of color purity or luminous efficiency, it is rarely reported in the application mode (2) because of its short life. (3) White light-emitting mode with color filter. 1292680 As can be seen from Figure 3, in this mode, a red, green and blue color filter is placed on the white organic light-emitting diode. The choice of this mode relies on the development of white organic light-emitting diodes with clear spectrum, high brightness and high efficiency in the red, green and blue tri-color regions. Although many researchers have focused on the development of high-efficiency white-light organic light-emitting diodes, there are indeed many problems. White light organic light-emitting diodes have two modes: one mode uses two luminescent materials, and the other mode uses three luminescent materials. The use of two luminescent materials modes has a wide processing margin and is easy to achieve whiteness coordinates, but has the disadvantage that the light efficiency is significantly reduced when using red, green and blue color filters. Regardless of the region in which the luminescent material used has a wide wavelength range, the respective luminous efficiencies of the red, green and blue light rays of the color filter cannot be achieved to 1/5 or more of the white luminescence efficiency. Conversely, the mode of using three luminescent materials has the disadvantage that the processing is very complicated, and depending on the driving voltage, the whiteness coordinates will change very severely, but even after passing the red, green and blue color filters, white There is no significant loss in luminous efficiency. At the same time, Kodak proposed a method to attach red, green, blue and white color filters to Figure 4 in the International Information Display Conference "imid 2004" held in Daegu, South Korea in August 2004. The white light organic light emitting diode of the bell structure is used to adjust the white light emitting mode provided with the color filter. The same mode is also disclosed in Korean Patent Publication No. 2003-77430, and Korean Patent Publication No. 2004-74958. According to the video image analysis, as shown in the chromaticity coordinate distribution chart of Figure 5, pure red, green and blue are rarely used in most video images, but the moderate colors mixed with white are often used. Therefore, from the J292680 red, green, blue, red, green, blue and white display, the power consumption chart of different images can be seen, when using the red, green, blue and white display device, if the red, green, blue and white color filters are used (including the use of white light organic Instead of using red, green and blue filters, the white color filter of the LED color is used, which reduces the power consumption by 50% compared to the red, green and blue color filters. However, in Kodak's proposed mode of using red, green, blue and white color filters, the use of color filters on white light organic light-emitting diodes to achieve a full-color display is an example of an LCD display that cannot emit light by itself. Therefore, the disadvantage of this mode is that the power consumption is significantly increased due to the great light loss caused by the color filter. Since the self-illuminating organic light-emitting diode can generate various high-efficiency light colors, the mode (3) uses the color filter type to realize the full color mode and the Kodak company adopts the red, green, blue and white color mode. The original shortcomings in power consumption can actually be significantly improved. Therefore, the object of the present invention is to provide a red, green, blue and white independent light emitting mode organic light emitting diode with low power consumption, which can fully realize the advantages of the self-luminous organic light emitting diode, and is used as an adjustment of the red, green and blue independent light emitting mode. method. Another object of the present invention is to provide a red, green, blue and white independent light emitting mode organic light emitting diode, wherein white is not realized by red, green and blue, but independent white light emitting sub-pixels are provided, so that it is more free from white balance. Problem, therefore, it is easy to select a luminescent substance or a light-emitting diode structure. SUMMARY OF THE INVENTION The present invention relates to a red-green blue-white independent light-emitting mode organic light-emitting diode (GLED) with reduced power consumption, which can fully achieve the advantages of organic light-emitting diodes from 9 1292680, as red, green and blue independent. How to adjust the lighting mode. More specifically, the present invention is characterized in that the financial light-emitting diode includes a plurality of sub-pixels, and the sub-pixels are on the first electrode having light transmittance, sequentially stacked - a hole transport layer, and a light-emitting layer The layer, an electron transport layer, and a metal electrode 'and each of the sub-pixels of the luminescent layer comprise a plurality of organic luminescent materials that emit red, green, blue, and white light. The red-green-blue-white independent light-emitting mode organic light-emitting diode according to the present invention adopts a method of reducing power consumption, in which only two sub-pixels (red, white, green, white or blue-white) are illuminated, instead of all illuminating Three to achieve a cloudy color that constitutes most of the colors. By adopting the red, green, blue and white independent illumination mode to overcome the balance problem that must be considered when using only the three sub-pixels of red, green and blue, H can be selected by using the red, green, blue and white independent illumination of the present invention. The light-emitting diode structure has no problems that often occur in the conventional red-green-blue independent light-emitting mode. Further further objects, features and advantages of the present invention will become more fully understood from the following description. [Embodiment] As shown in FIG. 7, the red-green-blue-white independent light-emitting mode organic light-emitting diode according to the present invention includes a plurality of sub-pixels, which are on a first electrode 11 having light transmittance. A hole transport layer 13, a light-emitting layer 14, an electron transport layer 15, and a metal electrode π are stacked, and the light-emitting layer 14 of each pixel includes a plurality of organic light-emitting substances, which can emit red light, green light and blue light. And white light. The luminescent layer 14 illuminating red, green and blue light is provided with an organic hair material 1292680. The organic luminescent material is composed of the same component or is doped on the organic luminescent layer made of the first organic luminescent material. It is composed of a second organic light-emitting substance. Among them, an organic light-emitting substance which has been used in the red, green and blue independent light-emitting mode can also be used as such an organic light-emitting substance. Preferably, the sub-pixel luminescent layer 14 illuminating the white light is provided with a layer of a blue organic luminescent material and a red luminescent organic luminescent material, and the luminescent layer preferably adopts a blending system in which a first organic luminescent material is blended. A second luminescent material whereby the blue and red organic luminescent materials can comprise two compounds, respectively. • The applicant uses a blue light-emitting substance composed of Chemical Formulas 1 and 2 and a red light-emitting substance composed of Chemical Formulas 3 and 4 to invent a white light organic light-emitting diode exhibiting excellent performance with a maximum luminous efficiency of 13 cd/A. (candle/amperes), the maximum brightness is 50,000 cd/m2 (candle/m2), so it can be used together with the white-light organic light-emitting diodes invented by the applicant and the red-green-blue used in the previous red-green-blue independent light-emitting mode. The organic light-emitting diode achieves excellent red, green, blue and white independent light-emitting mode organic light-emitting diodes. 0 [Chemical Formula 1]

[化學式2] 1292680[Chemical Formula 2] 1292680

〇^/CH3 • 丨、 [化學式4]〇^/CH3 • 丨, [Chemical Formula 4]

設於本發明紅綠藍白獨立發光模式多色有機發光二 極體内的白色次像素發光層14,較佳是在一電洞傳輸層13 上,依序層疊藍光發光物質與紅光發光物質。所要的紅綠 藍白發光效率與亮度,可藉調整每一發光物質之層積厚度 來控制,就像考慮藍光發光物質與紅光發光物質等之發光 效率一樣。 關於分別設於發光層(LEL)14上方或下方而形成一次 像素的第一電極11、電洞傳輸層(HTL)13、電子傳輸層 12 •1292680 (ETL)15、及金屬電極17 ,可以採用技術界中習知者。第 一電極11與電洞傳輸層(HTL)13之間,可額外設一電洞注 入層(HIL)12。 ' 第一電極11是一透明導電電極。本發明中使用的習 式透明物質包括,但不限於,氧化銦錫(ΙΤ0)、氧化鋼辞 (ΙΖ0)、及氧化錫,以及掺雜鋁或銦的氧化鋅、氧化銦鎂及 氧化鎢鎳,並可使用任何適當的方式沉積,諸如蒸發、賤 鍍(sputtering)、化學蒸汽沉積或電化學方式。 籲電洞注入層(HIL)12是有需要時才設置的,其中採用 的電洞注入物質所扮演的角色是增進有機層之薄膜形成特 性,與促進電洞注入電洞傳輸層(HTL)13。適於用在電洞注 • 入層12内的物質包括,但不限於:含有二或多個芳族丙胺 • 分子(aromatic tertiary amine moieties)之芳基胺(aryl amine)化合物,US4, 720, 432所述的卟啉(porphyrin)化合 物,US6, 208, 075所述的等離子沉積碳氟聚合物 (plasma-deposited fluorocarbon polymers)等等。 關於對電洞傳輸層13有用的電洞傳輸物質,一般熟 知的有諸如芳族丙胺之化合物,諸如US4, 720, 432及 US5, 061,569所述的含有二或多個芳族丙胺分子的化合 物,但不限於這些化合物。 前述置於電洞傳輸層13之上的發光層14,其上方可 使用任何方式,諸如蒸發、喷濺、化學蒸汽沉積或電化學 方式,沉積一電子傳輸層(ETL) 15。較適合用於電子傳輸層 15的物質包括金屬螯合物(mefai chelating 13 .1292680 compounds)、σ引嗓(benzazoles)、聚苯次亞乙埽基 (polyphenylenevinylene)衍生物、聚苯衍生物等等。 金屬電極17由透明導電層及一電子注入層16組成; 透明導電層包括金屬或金屬氧化物,電子注入層16係接觸 該透明導電層下方的發光層14。 現在說明本發明紅綠藍白獨立發光模式有機發光二 極體中所使用的照射白光之次像素其一實施例中的二極體 發光特性。 • 本發明中的照射白光次像素,係採用如圖八所示之習 用次像素結構: 氧化銦錫(ΙΤ0)/電洞注入層(HIL)(60)/電洞傳輸層 (HTL)(20)/藍光發射層(BlueEML)(14)/紅光發射層 、 (kdEMDdg)/電子傳輸層ETL(30)/電子注入層EIL(2)/ 銘(A1)(單位:奈米nm)。 首先,依序使用三氣乙烯、丙酮、乙醇及蒸餾水超聲 φ 洗滌(ultrasonic washing)透明電極氧化銦錫(IT〇)薄膜 (15 Ω/匚])’然後儲存在異丙醇中。其中,該透明電極ΙΤ〇 薄膜是從玻璃取得用於有機發光二極體(Samsung_c〇rning 製造)。 在一真空蒸汽沉積裝置之基底載台上,設置一氧化銦 錫基底,同時,在該真空蒸汽沉積裝置之電解槽内充人如 化學式5所示之“,,三认卜⑶萘幻一苯氨基広苯胺 (2-TNATA)。經過換氣朗1Q—6托耳(τ猶)的室内真空度 後,對電解槽施以電流以蒸發2—TNATA,而在氧化銦錫基 1292680 底上蒸汽沉積一層厚度60nm之電洞注入層。 然後,在該真空蒸汽沉積裝置之另一電解槽内充入如 化學式6所示之萘基)_N,N,_聯笨〜七4,-聯氨 (NPB),並對該電解槽施以電流以蒸發NpB,因而在電^注 入層12上蒸汽沉積一層厚度2〇nm之電洞傳輸層。 以蒸汽沉積電洞傳輸層13之後,形成二層式發光物 質以構成一白光發光層。首先,在不同的電解槽内,以 2:1〇〇之莫耳比(m〇lar rati〇),分別充入化學式(1)之化 合物及化學式(2)之化合物,並同時蒸發它們,以便蒸汽沉 積一厚度14nm之第一發光層。然後,將莫耳比為4··1〇〇 的化學式(3)之化合物及化學式(4)之化合物同時蒸發,以 絡Η沉積厚度為1411111之第二發光層,藉此形成一白色發光 , 層。 然後,使用與ΝΡΒ相同的程序,在該發光層上沉積一 層厚度30nm如化學式(7)所示之三(g—經基喹啉)-鋁 (Alq),作為一電子傳輸層15。以同樣方式,蒸汽沉積一 層厚度2nm如化學式(8)所示之喹啉酸鋰(Liq),作為一電 子注入層16。 如上述形成有機層(7)之後,使用另一真空蒸汽沉積 裝置,蒸汽沉積一層厚度150nm之鋁(A1)金屬陰極,以構 成一白光有機發光二極體。 [化學式5] 15 1292680The white sub-pixel light-emitting layer 14 disposed in the red-green-blue-white independent light-emitting mode multi-color organic light-emitting diode of the present invention is preferably a layer of blue light-emitting material and red light-emitting material sequentially disposed on a hole transport layer 13. . The desired red, green, and blue luminous efficiency and brightness can be controlled by adjusting the thickness of each luminescent material, just as the luminous efficiency of the blue luminescent material and the red luminescent material is considered. The first electrode 11, the hole transport layer (HTL) 13, the electron transport layer 12 • 1292680 (ETL) 15 , and the metal electrode 17 which are formed above or below the light-emitting layer (LEL) 14 to form a primary pixel may be used. A learner in the technical world. An additional hole injection layer (HIL) 12 may be additionally provided between the first electrode 11 and the hole transport layer (HTL) 13. The first electrode 11 is a transparent conductive electrode. The transparent materials used in the present invention include, but are not limited to, indium tin oxide (ΙΤ0), oxidized steel (ΙΖ0), and tin oxide, and zinc or aluminum-doped zinc oxide, indium magnesium oxide, and tungsten oxide nickel doped with aluminum or indium. And may be deposited using any suitable means such as evaporation, sputtering, chemical vapor deposition or electrochemical means. The hole injection layer (HIL) 12 is provided when necessary, and the role of the hole injecting substance is to enhance the film formation characteristics of the organic layer and promote the hole injection hole transport layer (HTL) 13 . Suitable materials for use in the hole injection layer 12 include, but are not limited to, aryl amine compounds containing two or more aromatic tertiary amine moieties, US 4,720. The porphyrin compound of 432, the plasma-deposited fluorocarbon polymers described in US 6,208,075, and the like. With regard to the hole transporting materials useful for the hole transport layer 13, there are generally known compounds such as aromatic propylamines, such as those described in U.S. Patent Nos. 4,720,432 and 5,061,569, which contain two or more aromatic propylamine molecules. Compounds, but are not limited to these compounds. The foregoing luminescent layer 14 disposed above the hole transport layer 13 may be deposited thereon by any means such as evaporation, sputtering, chemical vapor deposition or electrochemical deposition. Materials suitable for the electron transport layer 15 include metal chelate compounds (mefai chelating 13.1292680 compounds), bnbazoles, polyphenylenevinylene derivatives, polyphenyl derivatives, and the like. . The metal electrode 17 is composed of a transparent conductive layer and an electron injecting layer 16; the transparent conductive layer comprises a metal or a metal oxide, and the electron injecting layer 16 is in contact with the light emitting layer 14 under the transparent conductive layer. The diode luminescence characteristics in one embodiment of the sub-pixels for illuminating white light used in the red-green-blue-white independent light-emitting mode organic light-emitting diode of the present invention will now be described. • The illuminating white sub-pixels of the present invention employ a conventional sub-pixel structure as shown in FIG. 8: indium tin oxide (ΙΤ0)/hole injection layer (HIL) (60)/hole transport layer (HTL) (20) ) / blue light emitting layer (BlueEML) (14) / red light emitting layer, (kdEMDdg) / electron transport layer ETL (30) / electron injection layer EIL (2) / Ming (A1) (unit: nano nm). First, a transparent electrode of a transparent electrode indium tin oxide (IT〇) film (15 Ω/匚]) was sequentially used using triethylene glycol, acetone, ethanol, and distilled water, and then stored in isopropanol. Among them, the transparent electrode ruthenium film is obtained from glass for use in an organic light-emitting diode (manufactured by Samsung Corporation). On the substrate stage of a vacuum vapor deposition device, an indium tin oxide substrate is disposed, and at the same time, the electrolytic cell of the vacuum vapor deposition device is filled with a chemical liquid as shown in the chemical formula 5, "three confession (3) naphthalene benzene Aminoaniline (2-TNATA). After the indoor vacuum of 1Q-6 torr (τJ), the electrolysis cell is applied with current to evaporate 2-TNATA, while the vapor on the indium tin oxide base 1292680 Depositing a hole injection layer with a thickness of 60 nm. Then, another electrolytic cell of the vacuum vapor deposition device is filled with naphthyl group as shown in Chemical Formula 6), N, N, _ _ _ _ _ _ 4, - hydrazine ( NPB), and applying an electric current to the electrolytic cell to evaporate NpB, thereby depositing a hole transport layer having a thickness of 2 〇 nm on the electro-injection layer 12. After vapor-depositing the hole transport layer 13, a two-layer form is formed. The luminescent material forms a white light-emitting layer. First, the compound of the formula (1) and the chemical formula (2) are respectively charged in a different electrolytic cell at a molar ratio of 2:1 〇m ratlar rati〇. Compounds and simultaneously evaporate them for vapor deposition to a thickness of 14 nm a luminescent layer. Then, a compound of the chemical formula (3) having a molar ratio of 4··1 及 and a compound of the chemical formula (4) are simultaneously evaporated to form a second luminescent layer having a thickness of 1411111 by a ruthenium, thereby forming a white luminescent layer, then a third layer of g (glycosylquinoline)-aluminum (Alq) as shown in chemical formula (7) is deposited on the luminescent layer using the same procedure as hydrazine as an electron. Transport layer 15. In the same manner, a layer of lithium quinolate (Liq) having a thickness of 2 nm as shown in the chemical formula (8) is deposited as an electron injecting layer 16. After the organic layer (7) is formed as described above, another vacuum is used. A vapor deposition apparatus vapor-deposits a metal (A1) metal cathode having a thickness of 150 nm to form a white organic light-emitting diode. [Chemical Formula 5] 15 1292680

[化學式6][Chemical Formula 6]

依上述製程製造白光次像素之發光層時,係使用發光 效率分別為15cd/A與18cd/A之藍、紅發光物質,來產生 .1292680 ^光有機發光二極體。所製出的有機㈣二極體器件,在 7C度3’ GGGcd/m2時顯示的發光效率$ I2cd/A,並在整個 照明區域内實現純白色。 圖九至圖十—顯示本發明紅綠藍白獨立發光模式有 光一極體中知用的白光次像素之發光特性。從這些圖 以看出本發明之白光有機發光二極體除了具有簡 =的發光二極體結構,並且具有以下優越特性:因為它可 二藍有機發光二極體結構相同的疊層而具有 用於紅綠藍白模式;其白色純度 發光效率極定;與制紅綠❹件比較時, =雖然詳細說明本發明若干較隹作 =::::節僅供解說之用,凡本技= 變化亦屬本發明請求:=發明精神與範圍’而此等 使用紅綠藍白獨立發 實現0LED全彩顯亍哭乂 f/有機發先二極體具體 約50%,因/口 1 其功耗比紅綠藍次像素系統降低 50%’因為只使用兩種次像素(紅白、綠白 =部:的濁色;而且,因為不是用=表 ::衡=擇發光物質或發光二嶋構,二 【圖式簡單說明】 體;圖一顯示習用之紅綠藍獨立發光模式有機發光二極 17 1292680 圖二顯示習用之光色轉換模式有機發光二極體; 圖三顯示習用設有濾色器之白光發光模式有機發光 二極體; 圖四顯示習用設有紅綠藍白濾色器之白-紅綠藍模式 有機發光二極體; 圖五顯示於13, 000個影像中採用的色度座標分佈圖; 圖六之圖表顯不紅綠藍顯不與紅綠藍白顯不關 於不同影像之功耗; 圖七顯示根據本發明之紅綠藍白獨立發光模式有機 發光二極體; 圖八顯示一根據本發明可發射白光之次像素結構; 圖九顯示一白光有機發光二極體之發光光譜; 圖十顯示根據本發明之白光有機發光二極體之發光 色彩純度; 圖十一顯示一白光有機發光二極體之電流密度相對 電壓之特性; 圖十二顯示一白光有機發光二極體之亮度相對電壓 之特性;以及 圖十三顯示一白光有機發光二極體之發光效率相對 亮度之特性。 【主要元件符號說明】 11 第一電極 12 電洞注入層(HIL) 13電洞傳輸層(HTL) 1292680 14發光層(LEL) 15電子傳輸層(ETL) 16 電子注入層(EIL) 17 金屬電極 18 藍光發光層 19 紅光發光層 20 光色轉換層 21濾色器 22白光發光層 23 液晶When the light-emitting layer of the white sub-pixel is fabricated by the above process, a blue and red light-emitting substance having luminous efficiencies of 15 cd/A and 18 cd/A, respectively, is used to produce a .1292680^ optical organic light-emitting diode. The organic (tetra) diode device produced exhibited a luminous efficiency of $1 2 cd/A at 7 C 3' GGGcd/m 2 and achieved pure white throughout the illumination area. Fig. 9 to Fig. 10 show the light-emitting characteristics of the white-light sub-pixels known in the light-polar body of the red-green-blue-white independent light-emitting mode of the present invention. It is seen from these figures that the white light organic light-emitting diode of the present invention has a light-emitting diode structure of a simple = and has the following superior characteristics: it has a structure in which the two blue organic light-emitting diodes have the same structure. In the red, green, blue and white mode; its white purity luminous efficiency is extremely fixed; when compared with the red and green pieces, = although the detailed description of the invention is more than the use of the =:::: section for illustrative purposes only, where the skill = The change is also a request of the present invention: = invention spirit and scope 'and these use red, green, blue and white independent hair to achieve 0LED full color display crying f / organic hair first diode specific about 50%, due to / mouth 1 The cost is reduced by 50% compared to the red, green and blue sub-pixel system 'because only two sub-pixels are used (red, white, green and white = part: the turbid color; and, because it is not used = table:: balance = choice of luminescent substances or luminescent structures) 2 (simplified description of the figure) body; Figure 1 shows the traditional red, green and blue independent light-emitting mode organic light-emitting diode 17 1292680 Figure 2 shows the conventional light-color conversion mode organic light-emitting diode; Figure 3 shows the custom color filter White light emitting mode organic light emitting diode; The four display uses a white-red, green and blue mode organic light-emitting diode with red, green, blue and white color filters; Figure 5 shows the chromaticity coordinate distribution used in the 13,000 images; Green and blue are not related to red, green, blue and white. Regardless of the power consumption of different images; FIG. 7 shows a red, green, blue and white independent light emitting mode organic light emitting diode according to the present invention; FIG. 8 shows a second light emitting light according to the present invention. Figure 9 shows the luminescence spectrum of a white organic light-emitting diode; Figure 10 shows the luminescent color purity of the white organic light-emitting diode according to the present invention; Figure 11 shows the current density of a white organic light-emitting diode relative to Figure 12 shows the characteristics of the brightness versus voltage of a white organic light-emitting diode; and Figure 13 shows the characteristics of the luminous efficiency of a white organic light-emitting diode relative to the brightness. One electrode 12 Hole injection layer (HIL) 13 Hole transport layer (HTL) 1292680 14 Light-emitting layer (LEL) 15 Electron transport layer (ETL) 16 Electron injection layer (EIL) 17 Metal electrode 18 Light-emitting layer 19 emitting a red light color conversion layer 20 of the color filter layer 21 is a white light emitting layer 23 of the liquid crystal 22

Claims (1)

Hr 二念Hr • 1292680 十、申請專利範爵1 1· 一種多色有機發光器件,其特徵在於包括多數次像素, 該等次像素係在一具有透光率之第一電極上,依序層疊 一電洞傳輸層、一發光層、一電子傳輸層、及一金屬電 極,且每一次像素之發光層都包括多種有機發光物質, 可發射紅光、綠光、藍光及白光。 2·如申請專利範圍第1項之多色有機發光器件,其特徵在 於該等發射紅光、綠光及藍光之發光層,係由相同成份 之有機發光物質構成,或由二或多種有機發光物質構 成;且該發射白光之次像素發光層係由藍光有機發光物 質與紅光有機發光物質構成。 3.如申請專利範圍第2項之多色有機發光器件,其特徵在 於該發射白光之發光層包括一藍光發光物質及一紅光 發光物質之積層,其中,該藍光發光物質係由化學式1 及化學式2構成;該紅光發光物質係由化學式3及化學 式4構成: [化學式1]• 1292680 X. Patent application Fanjue 1 1· A multi-color organic light-emitting device characterized in that it includes a plurality of sub-pixels which are sequentially stacked on a first electrode having a light transmittance and are sequentially stacked and transported by a hole. a layer, a light-emitting layer, an electron transport layer, and a metal electrode, and each of the light-emitting layers of the pixel includes a plurality of organic light-emitting substances, which can emit red light, green light, blue light, and white light. 2. The multicolor organic light-emitting device of claim 1, wherein the light-emitting layers emitting red, green and blue light are composed of organic light-emitting substances of the same composition or two or more organic light-emitting materials. The sub-pixel light-emitting layer that emits white light is composed of a blue organic light-emitting substance and a red light organic light-emitting substance. 3. The multicolor organic light emitting device of claim 2, wherein the white light emitting layer comprises a layer of a blue light emitting material and a red light emitting material, wherein the blue light emitting material is formed by the chemical formula 1 and The chemical formula 2 is composed; the red light-emitting substance is composed of Chemical Formula 3 and Chemical Formula 4: [Chemical Formula 1] [化學式2] • 1292680[Chemical Formula 2] • 1292680 [化學式3][Chemical Formula 3] 4·如申請專利範圍第3項之多色有機發光器件,其特徵在 於該發射白光之發光層係依序層積藍光發光物質及紅 光發光物質。 21 1292680 月以曰修(褎)正替換頁I 十一、圖式: __—-—^—一 ~4. A multicolor organic light-emitting device according to claim 3, characterized in that the light-emitting layer emitting white light sequentially laminates a blue light-emitting substance and a red light-emitting substance. 21 1292680 Month is repairing (褎) is replacing page I XI, schema: __---^—one ~ 綠 藍 圖一Green blue 圖二 C 5 ) 22 1292680 阮1广2----- | 專月曰修(更)正替換頁| 七、指定代表圖 (一) 本案指定代表圖為··圖七。 (二) 本代表圖之元件符號簡單說明: 11第一電極 13電洞傳輸層(HTL) 14發光層(LEL) 15電子傳輸層(ETL) 17金屬電極Figure 2 C 5 ) 22 1292680 阮 1 Guang 2 ---- | Special monthly repair (more) is replacing the page | VII, designated representative map (1) The designated representative figure of this case is · Figure 7. (2) A brief description of the component symbols of this representative figure: 11 First electrode 13 Hole transport layer (HTL) 14 Light-emitting layer (LEL) 15 Electron transport layer (ETL) 17 Metal electrode 八、本案若有化學式時,請揭示最能顯示發明特徵的化 學式=8. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention.
TW95102245A 2006-01-20 2006-01-20 Organic light emitting diodes TWI292680B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95102245A TWI292680B (en) 2006-01-20 2006-01-20 Organic light emitting diodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95102245A TWI292680B (en) 2006-01-20 2006-01-20 Organic light emitting diodes

Publications (2)

Publication Number Publication Date
TW200730025A TW200730025A (en) 2007-08-01
TWI292680B true TWI292680B (en) 2008-01-11

Family

ID=45067602

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95102245A TWI292680B (en) 2006-01-20 2006-01-20 Organic light emitting diodes

Country Status (1)

Country Link
TW (1) TWI292680B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI391468B (en) * 2007-12-31 2013-04-01 Gracel Display Inc Novel red electroluminescent compounds and organic electroluminescent device using the same
CN103588726A (en) * 2013-09-17 2014-02-19 吉林奥来德光电材料股份有限公司 Spirobifluorene olefine organic electroluminescent material and preparation method thereof
CN106098954B (en) * 2016-06-30 2018-02-27 京东方科技集团股份有限公司 A kind of organic electroluminescence device and preparation method thereof, display device

Also Published As

Publication number Publication date
TW200730025A (en) 2007-08-01

Similar Documents

Publication Publication Date Title
Zhang et al. Quantum-dot and organic hybrid tandem light-emitting diodes with multi-functionality of full-color-tunability and white-light-emission
US8502445B2 (en) RGBW OLED display for extended lifetime and reduced power consumption
US8981640B2 (en) Simplified patterned light panel
JP5560303B2 (en) Light emitting element
TWI644593B (en) Novel oled display architecture
JP2009289740A (en) Organic light-emitting display
JP2007234241A (en) Organic el element
US20170062531A1 (en) Hybrid mems oled display
US20220393127A1 (en) Organic light-emitting display device, manufacturing method thereof, and display panel
JP2012028064A (en) Organic el display device
KR102000292B1 (en) Organic light emitting display device and method for manufacturing thereof
US20170352709A1 (en) Architecture for very high resolution amoled display
WO2014008700A1 (en) Organic light-emitting diode component structure and display device
KR20130046640A (en) Organic electroluminescent diode and method of fabricating the same
JP2004281087A (en) Organic el device and organic el display
TWI292680B (en) Organic light emitting diodes
Shi et al. High-performance inverted organic light-emitting diodes with extremely low efficiency roll-off using solution-processed ZnS quantum dots as the electron injection layer
JP2004327373A (en) Organic el full color panel capable of adjusting light color purity and its manufacturing method
KR100605112B1 (en) Organic light emitting diodes
TWI321966B (en) Organic electro-luminescence device and method of manufacturing the same
KR100437476B1 (en) Organic Electroluminescence Device
CN105870351A (en) OLED (organic light-emitting diode) display panel and preparation method therefor
JP2014127303A (en) Method of manufacturing organic el device
CN115050895A (en) Light emitting device, light emitting substrate, and light emitting apparatus
TWI244878B (en) Optical modulation layer, optical modulation substrate and organic electroluminescent display panel thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees