TWI292479B - Circuit probe-forming apparatus - Google Patents

Circuit probe-forming apparatus Download PDF

Info

Publication number
TWI292479B
TWI292479B TW95106926A TW95106926A TWI292479B TW I292479 B TWI292479 B TW I292479B TW 95106926 A TW95106926 A TW 95106926A TW 95106926 A TW95106926 A TW 95106926A TW I292479 B TWI292479 B TW I292479B
Authority
TW
Taiwan
Prior art keywords
probe
test probe
power supply
representative
linear
Prior art date
Application number
TW95106926A
Other languages
Chinese (zh)
Other versions
TW200734647A (en
Inventor
Mei Wen Kao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW95106926A priority Critical patent/TWI292479B/en
Publication of TW200734647A publication Critical patent/TW200734647A/en
Application granted granted Critical
Publication of TWI292479B publication Critical patent/TWI292479B/en

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

1292479 九、發明說明: 月細使)正替換; 【發明所屬之技術領域】 本發明係有關—種電路職探針成形裝置,尤指一種 $解原藉由結構與電路控制探針浸泡於電解液面積^ 間,以成形各種探針尖端形狀之探針成形裝置。 、一、 【先前技術】 帛/^刊懷^,纟要祕與電子電 俨fί猎以對被測試物内部電路輸入測試 之信號;而習知測試探針成形,主要 2二;藉由機械研磨方式,依所需探針尖 =’^遺著探針直徑日趨小型化,採用研磨方式加I、 故,習知成形技術實有待改善之處。 、又口 【發明内容】 逆===== 數支待加卫探針,並與直流電源正極連接,使夾·! /、待加工楝針成正極電性;另設有一控制 , ^ 構做上下位移’並控制位移量及位 Γ純’直線致動結構將待加工探針下移, * 、’、 、°冓依據成形探針尖端形狀所需之各階段 5 1292479 % ) ιί 動崎’將探針持續上移離開電解液,藉由控制各階段 日守間,可控制探針成形之形狀;另,依電解原理,前述電 兩,,f可由控制電路,依預設成形探針尖端形狀各階段所 =雜ί做调變’配合直線致動結構以固定速度,將探針等速上 备電解液,經由控制各階段電解電壓,可控制探針成形之 J二3於前述夾具’其可同時夾持固定多支待加工探針, 故其可同%做大量探針電解加工成形,進而提高生產效率。 外=I,將似康圖面所示實施例而詳加綱本發明之裝置特 儂及操作功效。 【實施方式】 同奢參見第1圖’係為本發明一較佳實施例結構示意 ϊ、^、匕!5一電解槽(1)’電解槽(1)内設有一電極板(π), 査里之電解液(12),該電極板(11)與一直流電源 V連接;再於電解槽⑴侧面設有—直線致動結構 上古)、ii線致動結構⑵再與一夾具⑶接合;該夾具⑶ 你、ϋ原正極(512)連接,可夹持固定多支待加工探針⑷, (3)與待加工探針⑷成電氣導通,呈正極電性;另 ί㈣電路(5) ’用以控制電源(51)之電解電壓及驅動 直線=結構⑵做上下位移,並㈣位移量及位移速度。 -批為胁在各階财騎_麵針獻彡之雜,設有 該㈣f路可以根據預設成形探針尖端形狀各階 做調整,以便於配合直線制動結構,以固定速度將 、’—速上移離開電解液,經由控制各階段電解電壓值之大 ^別丨探針成形的形狀。如此本案即可以藉由控制電路 壓大小、直線制動結構的位移量級位移速度, 達到提兩楝針加工的精密度及生產效率等優點。 例之=參,2 ®及第3 ®所* ’ ^難本發[較佳實施 不思圖及動作原理不意圖。其中示意該直線致動結構 1292479 y),係於-基座⑻上端,設有—動力元件(22) 達),該動力元件(22)由控制電路⑸控制驅^ 動件(23)(例如滾珠螺桿加螺帽)接合,線性傳 ) ▼動做上下位移運動,相對亦使固定於連 w上之央具(3)做同步上下位移運動;藉由前述, 始,直線致動結構⑵帶動夾具⑶向下位^, 巧針⑷之探針加工段(4丨)整段浸泡於電解液中, 由控難路⑸將電源(51)正、負極導通 ί贮:ϊ_針力α段(41)因浸泡於電解液⑴i 溶解(陽極氧化),而逐漸除去多餘之^依 探針配合直線致動結構⑺,依據預設成形 j所需向上位移速度,持續向上位移,使已加工办 巧電解液,循此模式,直到探針整個離開電解液: 所ί 3圖至第3B圖步驟成形動作示意圖 ϋ/ί,輪式,其可以固定電解電壓,藉由探針離開雷 電‘液的線’決定探針尖端形狀;或將探針離開 圖係為本發明一較佳實施例於定電壓加工時, 液運動曲線與成形形狀關係示意圖。 $ 漸降‘ΐ,圖所示,電解電壓固定,探針離開電解液時逐 之尖錐^電闰解溶解量加大;可形成—表面内縮弧 形針大,弟4B圖所示,電解電壓固定,探針離開電解 ,1292479 1¾足 λ一:'i 修楼頁j H斤增加速度,可形成一表面内縮弧之尖錐形針尖。 速度離開雷線圖此圖中,其探針以固定 t離施以蚊電解電壓,如此可形成 針等速離開,逐漸加高雷自至雷段彳 °兩”璧’隨 t 形成—表面内縮弧之尖錐形針尖·第11292479 IX. Description of the invention: monthly replacement; [Technical field of the invention] The present invention relates to a circuit probe forming device, in particular, a solution for immersing in electrolysis by a structure and circuit control probe The liquid area is used to form probe tip forming devices of various probe tip shapes. First, [previous technology] 帛 / ^ publications ^, 纟 secret and electronic 俨 ί 猎 hunting to test the internal circuit of the test object signal; and the conventional test probe forming, mainly 2 2; by mechanical Grinding method, according to the required probe tip = '^ The probe diameter is increasingly miniaturized, and the grinding method is used to add I, so the conventional forming technology needs to be improved. , and then [invention] Reverse ===== Several probes to be added, and connected to the positive pole of the DC power supply, so that the clamp is turned into a positive polarity; another control is provided. Do the up and down displacement 'and control the displacement and position the pure 'linear actuator structure' to move the probe to be processed, *, ', , ° ° according to the shape of the tip shape of the forming probe required 5 1292479 %) ιί 'The probe is continuously moved up and away from the electrolyte, and the shape of the probe can be controlled by controlling the daily phase of each stage; in addition, according to the electrolysis principle, the electric two, f can be controlled by the control circuit, and the probe is formed according to the preset Each stage of the tip shape is mixed with the line to adjust the speed. The fixed speed is used to prepare the electrolyte at a constant speed. By controlling the electrolysis voltage at each stage, the probe forming J 2 can be controlled in the above fixture. 'It can hold and fix a large number of probes to be processed at the same time, so it can do a large number of probe electroforming and forming with the same amount, thereby improving production efficiency. External = I, the device features and operational efficiencies of the present invention will be detailed in the embodiment shown in the accompanying drawings. [Embodiment] Referring to Figure 1 is a schematic view of a preferred embodiment of the present invention, ^, ^, 匕! 5 an electrolytic cell (1) 'electrolytic cell (1) is provided with an electrode plate (π), Chali's electrolyte (12), the electrode plate (11) is connected to the DC power supply V; further on the side of the electrolytic cell (1) - the linear actuation structure is ancient), the ii line actuation structure (2) is coupled to a clamp (3) ; The fixture (3) You, the 正极 original positive electrode (512) connection, can hold a fixed number of probes to be processed (4), (3) electrically conductive with the probe to be processed (4), positive polarity; another ί (four) circuit (5) 'Use to control the electrolysis voltage of the power supply (51) and the drive line = structure (2) to make up and down displacement, and (4) displacement and displacement speed. -The batch is threatened in each stage of the financial riding _ 面 彡 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , The electrolyte is removed, and the shape of the probe is shaped by controlling the value of the electrolysis voltage at each stage. In this case, the precision of the two needle processing and the production efficiency can be achieved by controlling the magnitude of the circuit pressure and the displacement displacement speed of the linear brake structure. Example = Reference, 2 ® and 3 ® * ′ ^ Difficult to send [Preferred implementation Not thinking and operating principle is not intended. Wherein the linear actuating structure 1292479 y) is illustrated at the upper end of the base (8) and is provided with a power element (22) which is controlled by the control circuit (5) (for example) Ball screw and nut) joint, linear transmission) ▼ move up and down displacement movement, relative to the fixed mechanism (3) fixed on the w to do synchronous up and down displacement movement; by the above, the linear actuation structure (2) Fixture (3) to the lower position ^, the probe processing section (4丨) of the smart needle (4) is immersed in the electrolyte in the whole section, and the positive and negative electrodes of the power supply (51) are turned on by the control road (5): ϊ_needle force α segment ( 41) due to immersion in the electrolyte (1) i dissolved (anodized), and gradually remove the excess of the probe according to the linear actuating structure (7), according to the preset shape of the required upward displacement speed, continuous upward displacement, so that the processing has been processed The electrolyte, according to this mode, until the probe leaves the electrolyte: ί 3 to 3B, step forming action diagram ϋ / ί, wheel type, which can fix the electrolysis voltage, leaving the lightning 'liquid line by the probe 'Determine the tip shape of the probe; or leave the probe away from the diagram When processing a given voltage to the embodiment preferred embodiment, the liquid motion curve showing the relationship between the shape of the molding. $ 降降'ΐ, as shown in the figure, the electrolysis voltage is fixed, and the probe is separated from the tip of the electrolyte by the taper. The amount of dissolution is increased; the surface can be formed with a large curved needle, as shown in Figure 4B. The electrolysis voltage is fixed, the probe leaves the electrolysis, and 1292479 13⁄4 is sufficient for the λ1: 'i repair page j kg to increase the speed, which can form a pointed conical tip with a surface inward arc. Speed away from the lightning diagram In this figure, the probe is fixed at a distance from the mosquito electrolysis voltage, so that the needle can be formed to move at a constant speed, gradually increasing the height from the thunder to the thunder and then "two" 璧' with t forming - in the surface Conical arc tip taper tip · 1st

S、lfi第5A圖所示’其開始加以初始電解電壓,隨著探 逐漸 % 5B ,依此由高電解溶解量ϋ到^:解^ 始,初?電解電壓,隨著探針等逮離開, 可形$ —表面凸起之弧形尖錐形針尖 大旦=所f,本發明,其在同-電解槽中可同時加工成形 ί= 2習知技術有顯著的進步性,完全符合i利4· 上,其目的在使熟習此項技S, lfi shown in Figure 5A, which starts with the initial electrolysis voltage, and as the gradual % 5B is detected, the amount of high electrolytic solution is reduced to ^: The electrolysis voltage can be shaped as the probe or the like is removed, and the arc-shaped tip-shaped tip of the surface is convex. The present invention can be simultaneously formed in the same-electrolytic cell. The technology has made remarkable progress, and it is fully in line with i.4, and its purpose is to familiarize itself with this technology.

2^irr 請專利範^ 之精神時,均應包括於本發明之申 【圖式簡單說明】 =圖係本發明—較佳實施例結構示意圖。 =2圖係本翻—健實施纖作示意圖。 圖 弟3圖〜第3B圖係本發明一較佳實施例之動作原理示意 禊第4β _本發明—較佳實施例於^電壓加工時, 心針=電解液運動曲線與成形形狀關係示意圖。 圖〜第5Β圖係本發明一較佳實施例於探針定速運動離 1292479 外年州/^狀更:丨正替換頁 丨 „ -r- •一一 一·♦ 一m 開電解液時,成系形狀與電壓曲線示意圖。 【主要元件符號說明】 1.........電解槽 11.........電極板 1 2.........電解液 2.........直線致動結構 2 1 ••基座 2 2 ••動力元件 2 3 ••線性傳動件 2 4 ••連接件 3·, 夾具 4·. 待加工探針 4 1 ••探針加工段 5·· 控制電路 5 1 ••電源 5 1 1…· ••電源負極 5 1 2··· .電源正極2^irr Please, in the spirit of the patent, should be included in the present invention. [Simplified description of the drawings] = Figure 1 is a schematic view of the structure of the preferred embodiment. The =2 diagram is a schematic diagram of the implementation of the fibrillation. FIG. 3 to FIG. 3B are diagrams showing the principle of operation of a preferred embodiment of the present invention. 禊 4β _ The present invention is a schematic diagram showing the relationship between the movement curve and the shape of the electrolyte during the voltage processing. Figure ~ Figure 5 is a preferred embodiment of the present invention in the constant velocity movement of the probe from 1292479 outside the state / ^ shape: 丨 positive replacement page 丨 „ -r- • one by one · ♦ a m open electrolyte Schematic diagram of the shape and voltage curve of the system. [Explanation of main component symbols] 1.........electrolytic cell 11......electrode plate 1 2......... Electrolyte 2.........Linear actuated structure 2 1 ••Base 2 2 ••Power unit 2 3 ••Linear drive 2 4 ••Connector 3·, Fixture 4·. Probe 4 1 ••Probe processing section 5·· Control circuit 5 1 ••Power supply 5 1 1...·••Power supply negative pole 5 1 2··· .

Claims (1)

niL ,1292479 丨厶η " — 日修(更)正替換' 申請專利範圍 一 一電) 負極連接 1 · 一測,針成形裝置,其包含: °亥電解槽内設有一電極板,該電極板與一電源 $致,結構’係設於該電解槽側面; ff" Jrf夹具與上述該直線致動結構相接合,與該直線 可夾持 及 mf/量級轉速度’並可㈣該直線致動結構ϋί 段所制電料哺據職成職針尖卿狀各階 整便於配合直線制動結構,以固定速度將 ,針2速上移,開轉液,經紐制各階段電解電壓值之大 小,藉以控制探針成形的形狀。 L·如申請專利範圍第1項所述之電路測試探針成形裝置,苴 I該ίif動結構,係於—基座上端,設有一動力元件,該ί 兀 ϋ亥控制電路控制驅動,並與一線性傳動件接合,兮綠 性傳動件再與-連接件連接。 ㈣懷。雜 3·如申請專利範圍第2項所述之電路測試探針成形 i 中該動力元件為一伺服馬達。 /、 4·如申凊專利範圍第2項所述之電路測試探針成形裝豆 中該線性傳動件為一滾珠螺桿加螺帽。 八 5 ·如申請專利範圍第2項所述之電路測試探針成形裝置,苴 中§亥夾具係固設於該連接件上,與該直線致動結構同步連動二 1292479 , 、, 备年谓.(更)正*換頁: ‘1、 ! 七、指定代表圖: 一—―…——-…一—— •(一)本案指定代表圖為:第(1 )圖。 (二)本代表圖之元件符號簡單說明: 1 .........電解槽 11.........電極板 1 2.........電解液 2 .........直線致動結構 2 1.........基座 2 2.........動力元件 φ 2 3.........線性傳動件 2 4.........連接件 3 .........失具 4 .........待加工探針 5 .........控制電路 5 1.........電源 511……電源負極 5 1 2....電源正極 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:niL , 1292479 丨厶 & quot quot 日 日 日 日 日 日 日 日 日 日 日 日 ' ' ' ' 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极 负极The board and a power source are configured to be disposed on the side of the electrolytic cell; the ff" Jrf clamp is engaged with the linear actuating structure, and the line can be clamped and the mf/magnitude rotation speed can be (4) the straight line Actuation structure ϋ 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段 段To control the shape of the probe. L. The circuit test probe forming device according to claim 1, wherein the ilif structure is attached to the upper end of the base, and is provided with a power component, and the control circuit drives the drive and A linear drive member is engaged and the green drive member is coupled to the connector. (4) Huai. Miscellaneous 3. In the circuit test probe forming described in claim 2, the power component is a servo motor. /, 4. The circuit test probe forming bean according to item 2 of the patent application scope is a ball screw and a nut.八5. The circuit test probe forming device according to item 2 of the patent application scope is fixed on the connecting member, and the linear actuating structure is synchronously linked with the second 1292479. (more) positive * page change: '1, ! VII, designated representative map: one - "..." -... one - • (a) The representative representative of the case is: (1). (2) Brief description of the symbol of the representative figure: 1 .........electrolytic tank 11......electrode plate 1 2......electrolyte 2 .........Line-actuated structure 2 1.........Base 2 2......Power element φ 2 3........ .Linear Transmission 2 4.........Connector 3 .........Lack of 4 .........Processing Probe 5 ... ...control circuit 5 1.........power supply 511...power supply negative pole 5 1 2....power supply positive pole 8. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention:
TW95106926A 2006-03-02 2006-03-02 Circuit probe-forming apparatus TWI292479B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95106926A TWI292479B (en) 2006-03-02 2006-03-02 Circuit probe-forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95106926A TWI292479B (en) 2006-03-02 2006-03-02 Circuit probe-forming apparatus

Publications (2)

Publication Number Publication Date
TW200734647A TW200734647A (en) 2007-09-16
TWI292479B true TWI292479B (en) 2008-01-11

Family

ID=45067539

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95106926A TWI292479B (en) 2006-03-02 2006-03-02 Circuit probe-forming apparatus

Country Status (1)

Country Link
TW (1) TWI292479B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6042761B2 (en) * 2013-03-28 2016-12-14 東京エレクトロン株式会社 Probe device

Also Published As

Publication number Publication date
TW200734647A (en) 2007-09-16

Similar Documents

Publication Publication Date Title
Tian et al. Penetrating the oxide barrier in situ and separating freestanding porous anodic alumina films in one step
Mayyas et al. Pulsing liquid alloys for nanomaterials synthesis
Lazarus et al. Ultrafine pitch stencil printing of liquid metal alloys
US11926524B1 (en) Methods, apparatus, and systems for fabricating solution-based conductive 2D and 3D electronic circuits
Lee et al. Removable tubing interconnects for glass-based micro-fluidic systems made using ECDM
CN106946221A (en) Pliable pressure sensor production method based on " V " type groove array electrode
CN103856096B (en) High power nano friction generator and preparation method thereof
CN105839156A (en) Method for preparing orderly one-dimensional nanometer array on conductive substrate
CN105058366B (en) Four-degree-of freedom piezoelectric micro-clamp
CN102887478A (en) Micro-nano machining method based on electrochemical micro-nano system for functional material and device thereof
TWI292479B (en) Circuit probe-forming apparatus
CN206200274U (en) Electrochemical machining device
Grez et al. Synthesis and characterization of p-Cu2O nanowires arrays
US9702507B2 (en) Device for controlling particles
CN104701020B (en) Three-dimensional micro-electrode preparation method based on the photoresists of SU 8
TWI736676B (en) Electrolytic treatment method
CN104894634A (en) Novel electrochemical polishing device
CN108298496B (en) Graphene batch assembly method based on optical dielectrophoresis
CN208283433U (en) Capacitor fixture and capacitor clamping device
CN104096932A (en) Manufacturing method and device of electrochemical micromachining electrodes
Chen et al. Fabrication of Fe–Fe 1− x O based 3D coplanar microsupercapacitors by electric discharge rusting of pure iron substrates
Zhang et al. Controllable Multimodal Actuation in Fully Printed Ultrathin Micro-Patterned Electrochemical Actuators
TW201221964A (en) Columnar body, forming device thereof and forming method thereof
Li et al. Rapid Fabrication of High-Resolution Flexible Electronics via Nanoparticle Self-Assembly and Transfer Printing
Hu et al. 1000° C High-Temperature Wetting Behaviors of Molten Metals on Laser-Microstructured Metal Surfaces