TWI291414B - Magnetic embossing method and apparatus - Google Patents

Magnetic embossing method and apparatus Download PDF

Info

Publication number
TWI291414B
TWI291414B TW95100570A TW95100570A TWI291414B TW I291414 B TWI291414 B TW I291414B TW 95100570 A TW95100570 A TW 95100570A TW 95100570 A TW95100570 A TW 95100570A TW I291414 B TWI291414 B TW I291414B
Authority
TW
Taiwan
Prior art keywords
magnetic
mold
magnetic material
micro
lower substrate
Prior art date
Application number
TW95100570A
Other languages
Chinese (zh)
Other versions
TW200726657A (en
Inventor
Hong Hocheng
Ting-Ting Wen
Original Assignee
Hong Hocheng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hong Hocheng filed Critical Hong Hocheng
Priority to TW95100570A priority Critical patent/TWI291414B/en
Publication of TW200726657A publication Critical patent/TW200726657A/en
Application granted granted Critical
Publication of TWI291414B publication Critical patent/TWI291414B/en

Links

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

Disclosed is a magnetic embossing method and apparatus. The magnetic embossing method includes (1) providing an upper and a lower substrates, a magnetic material, a mold, and an electro-magnetic system; (2) coating or attaching the magnetic material onto the lower substrate, then placing the lower substrate and the mold in the electro-magnetic system; (3) turning on an electrical power to produce a magnetic force that allows the magnetic material and the mold being tightly attached together; and (4) removing the mold after the magnetic material being solidified.

Description

1291414 九、發明說明: 【發明所屬之技術領域】 本發明係關於磁性微元件的製造技術,特別是關於一種磁 力(magnetic)辅助壓印(embossing)的方法與系統,可應用於微 -機電系統、微致動器、微電磁裝置、高密度儲存裝置等磁性 •微元件的製造技術。 • 【先前技術】 磁性薄膜(magnetic thin films)與磁性微結構元件 (microstructure devices),除了廣泛應用於電腦記憶方面等領 域。近年來的新應用更遍及了微機電系統 (micro-electro-mechanical system,MEMS)、磁性微感測器 (magnetic micro-sensor)、微轉換器(micro-processor)、磁性微 幫浦(magnetic micro_pump)、微致動器(micro actuator)與精密 φ 測量儀器(precision measuring instruments)等。 目月il這些磁性微元件大部分皆是利用半導體光微影姓刻 技術(conventional photolithography and deep reactive ion etching process technology)或微奈米壓印技術(nan〇-imprinting lithography technology)於一機板上製做出微細的結構,然後再 使用磁性薄膜沉積技術,如:電鍍(鎳、鐵)技術、真空熱 蒸鍍()、賤鍍(sputtering)技術等,將磁性材料沉積於微細結構 5 上而成為磁性微元件。此外,也有利用雷射或聚焦離子束 (focused ion beam)直接在磁性薄膜上刻畫出微奈米結構,進 而製作出磁性硬碟與磁性致動開關(micro magnetic actuators) 等元件。 第一圖為傳統的壓板微熱壓機(micro-hot embossing machine)之示意圖,此壓板微熱壓機主要包含一加壓系統 10、一加熱系統11、一冷卻系統12、一控制箱13、一驅動 器14、一真空錶15、及一微熱壓模組19。此微熱壓模組19 更包含一上壓板16a、一下壓板16b、一塑膠材料π、及一 模具1·8。 此微熱壓機之製程方法是藉由壓板機械來加熱加壓。熱 壓時塑膠材料17之溫度必須在玻璃轉換溫度(giass transiti〇n temperature,Tg)之上才會開始軟化,待上壓板16a下降壓住 塑膠材料17或模具18,塑膠材料π因壓力產生流動變形而 充填微模穴。待塑膠材料17填充完畢之後,必須將溫度降至 玻璃轉換溫度Tg之下才能進行脫模,此時,溫度下降會使塑 膠材料17產生收縮。因此必須維持一定的壓力來當作保壓壓 力,讓模穴内的塑膠材料17在產生收縮的同時,能繼續有塑 膠材料17充填模穴,補充塑膠材料17收縮掉的部分。待溫 度降至Tg之下才脫模取出成品。 1291414 上述之技術的共同缺點為製程複雜、設備昂貴、需高溫 高壓製程緩慢、猶服及成相高,甚至有污純境的問 題存在,如:電化學沉積技術或電鍍技術。將來若與生物科 技技術結合或應用於生化材料時,此相關技術牽涉高溫、高 壓及化學污染將可能被淘汰。 有鑑於此,所以有必要發展創新的製程,並藉此降低製 造成本、提升生產效能,以符合未來相關產品大型量產化、 低價化與多功能化的需求。 【發明内容】 鑑於上述之發明背景中,為了符合產業上之要求,本發 明提供一種創新的磁力輔助壓印的方法。其製程簡易快速、 設備成本低廉,不僅可製作出微奈米等級的磁性微元件,亦 可用此技術來解決傳統微熱壓印所產生的元件缺陷,如:模 穴填充不完整、產品凹陷、或不易脫模,此外可將其應用於 微機電製程中圖形轉印上。 本發明更可應用於磁性高容量硬碟等電腦記憶儲存元件 的製造與微機電系統中磁性微感測器、微轉換器、磁性微幫 浦、微致動器等微元件之製作,以及其他具有磁性微結構之 零組件的相關製程上。 本發明係應用磁化原理(magnetization theorem),先利用 笔磁感應糸統產生的磁場磁化(magnetize)模具,使模具有磁 性’再由此模具吸附底下的磁性材質填入此模穴,此時此模 穴具内部因為只有頂端有導磁物質,而周圍並沒有任何磁性 物質,因此磁性材質容易往模穴頂端移動。 本發明之磁力輔助壓印的方法,包括下列步驟。參考第二 圖,步驟201,首先提供一上、下基板、一磁性材質、一模 具,及一電磁感應系統;在步驟202,再將此磁性材質塗佈 或黏附在下基板上;於步驟203中,把基板與模具放置在此 電磁感應系統中;在步驟204,開啟電力使此磁性材質與此 模具受磁力而緊密貼合;最後的步驟205,因為此磁性材質 壓力與磁力作用而填滿此模具的模穴,待此磁性材質固化 後、脫模。 此磁性材質為磁性高分子材料或磁性光阻液係材質示 例,主要是為導磁性粉體顆粒例如:元素鐵(Fe)、元素始(c〇)、 或元素鎳㈣)與高分子材料(thermop lastic)或是與光阻液 (photoresist)混練而成。此模具表面具有特定的圖形 1291414 (patterns),此模穴内塗怖導磁性物質,經由磁力作用,辅 助此磁性材質填充至此模具上的模穴内,待此磁性材質固化 脫模後,即可得到磁性微元件。藉由改變此電磁力系統的電 壓與電流之大小及方向,便可精確控制材料的模穴充填與成 品之品質。 茲配合下列圖示、實施例之詳細說明及申請專利範圍, 將上述及本發明之其他目的與優點詳述於後。 【實施方式】 本發明的磁力輔助壓印方法及系統,其中此方法包括下 列步驟,首先提供一上、下基板、一磁性材質、一模具,及 一電磁感應系統(electro-magnetic system),再將此磁性材質塗 佈或黏附在下基板上,把基板與模具放置在此電磁感應系統 中,並開啟電力使此磁性材質與此模具受磁力而緊密貼合, 因為此磁性材質壓力與磁力作用而填滿此模具的模穴,待此 磁性材質固化後、脫模。 第三圖為本發明的磁力輔助壓印之電磁感應系統的示意 圖。其中電磁感應系統31是將傳統微熱壓機之微熱壓模組 19中該上壓板16a及該下壓板16b改善成為一對磁化元件, 分別如標號31a和31b所示。第三圖和第四圖分別為此磁化 9 1291414 元件的兩個實施例。 參考第四圖,第四圖為本發明之磁力輔助壓印裝置之第 一實施例。第一磁化元件31a包含一電磁鐵壓板41a與電源 供應器41b ;第二磁化元件31b包含一電磁鐵壓板42a與電 源供應器42b。其_該電磁鐵壓板41a、42a直接取代上壓板 16a與下廢板16b(參考第一圖所示)之原本的加壓加熱功能。 參考第五圖,第五圖為本發明之磁力輔助壓印裝置之第 二實施例,第一磁化元件31a包含一電磁鐵元件組51及上壓 板16a’,其中該電磁元件組51更包含一電磁鐵51a及一電源 供應器51b ,苐一磁化元件31b包含一電磁鐵元件組52及下 壓板16b,其中該電磁元件組52更包含一電磁鐵52a及一電 源供應器52b。 第六a圖為磁力輔助填充示意圖。參考第六a圖,此磁 力辅助填充應用磁化原理,先利用磁化原件31a產生的磁場 磁化一磁性微結構模具62,使磁性微結構模具62具有磁性, 再由此磁性微結構模具62吸附底下的一磁性高分子材料64 填入一模穴65,此時模穴具内部因為只有頂端有一導磁物質 63’而周圍並沒有磁性物質,因此磁性高分子材料64容易往 10 模穴頂端移動。此磁性高分子材料64填滿模穴65後之示意 圖如第六b圖所示。 其中,此磁性高分子材料64主要是由導磁性粉體顆粒與 光阻液或鬲分子材料混鍊而成。此磁性微結構模具62表面具 有特定的模穴65圖形,模穴65頂端有導磁性物質63,如: 錄0 參考第六圖,此電磁感應系統31經由磁力作用,輔助此 磁性高分子材料64填充至此磁性微結構模具62上的模穴65 内,待此磁性高分子材料64固化脫模後,即可得到磁性微元 件。藉由改變此電磁感應系統31的電壓與電流大小方向,便 可精癌控制材料於此模穴65的填充與脫膜。 本發明係利用微機電機技術中的薄膜沉積、光微影、蝕 刻、與掀離製程(脉0均技術等製程,分別製作兩種模具:第 七a圖為模具I,具有微結構的導磁性模具;第七b圖為模 具Π,透明模具。 第八a圖至第八d圖為磁力輔助壓印過程之示意圖。先 將磁性微結構模具62置於備有磁性高分子材料64之上,此 模八65内的微結構圖案頂端具有一層導磁物質,如:鎳 等等,如第八3圖所示。加熱磁性高分子材料64,並達到玻 璃轉移溫度Tg以上,使雖高分子材料64開始軟化。隨後 施以一微小固定的預壓力(Pre-load) 83,使磁性高分子材. 料64能夠緊貼磁性微結構模具62,如第八b圖所示。此時, 立即開啟磁性微結構模具62上方的第一磁化元件31a,使其 產生磁場效應並將磁性高分子材料64吸入模穴65内,如第 八c圖所示。 第八d圖為磁力辅助脫模之示意圖。參考第八圖,待磁 性高分子材料64冷卻至玻璃轉移溫度Tg點之下且固定成型 後,隨後打開第二磁化元件31b,使第一磁化元件3la與第 二磁化元件31b產生相反之磁場。由於磁性微結構模具62與 第一磁化元件31a非常接近,因此較易被其磁化;而磁性高 分子材料64則被第二磁化元件31b所磁化,所以藉由磁性微 結構模具62與磁性高分子材料64之間產生同性相斥原理的 排斥力(repulsion force),進而助於脫模步驟之簡易性。 本發明之第二個實施例是應用於微機製程中的圖形轉 印。第九a圖至第九c圖為磁力辅助圖形轉印(transferpattem) 製程之示意圖。先將犧牲層(transfer layer)92沉積於石夕(&)基 板93上,再利用旋轉塗怖機(spin coater)塗怖導磁性光阻液 (ferromagnetism photo-resist)91,並置透明模具71於導磁性光 阻液91上,如第九a圖所示。接著利用第一磁化元件3匕使 導磁性光阻液91受磁力作用,而精準的轉移出透明模具71 上的圖形(pattern),隨後使其圖形固化,(如第九b圖與第九 c圖所不)’知、光固化〇3Jiotolithography)94。依照導磁性光阻 液91所轉移出來的圖形,姓刻犧牲層gg後,並將導磁性光 阻液91完全去除乾淨,使圖形轉移至矽基板93上,即可進 行後續製程(如第九d圖所示)。 惟,以上所述者,僅為發明之最佳實施例而已,當不能 依此限定本發明實施之顧,大凡—本發日种請專利範圍 所作之均等變化與修飾,皆應仍屬本發明專利涵蓋之範圍内。 1291414 _ 【圖式簡單說明】 第一圖為傳統的壓板微熱壓機之示意圖。 第二圖為本發明的印壓方法之示意圖。 第三圖為本發明的磁力輔助壓印之電磁感應系統的示意圖。· • 第四圖為磁力辅助壓印裝置之電磁感應系統的第一實施例。 • 第五圖為磁力輔助壓印裝置之電磁感應系統的第二實施例。 第六a圖與第六b圖為磁力辅助充填之示意圖。 Φ 第七a圖為磁性微結構模具之示意圖。 第七b圖為透明模具之示意圖。 第八a圖至第八c圖為磁力辅助壓印過程之示意圖。 第八d圖為模具與材料之脫模示意圖。 第九a圖至第九。圖為磁力辅助圖形轉印製程之示意圖。 帛九d圖為磁力輔助圖形轉㈣程的後製程之示意圖。 【主要元件符號說明】 10加壓系統 ---~—— 12冷卻系統 ----—一 14驅動器 —-—----- 16a上壓板 ------ Π塑膠材料 11加熱系統 13控制箱 15真空錶 16b下壓板 18模具 1291414 19微熱壓模組 21準備材料與設備 22塗佈磁性材料在下基板 23放置基板與模具再電磁感 24開啟電力使模具磁化 應系統中 25壓力與磁力使模具填滿 31電磁感應糸統 31a第一磁化元件 31b第二磁化元件 32模具 33磁性材料 41a電磁鐵壓板 41b電源供應器 42a電磁鐵壓板 42b電源供應器 51電磁元件組 51a電磁鐵 51b電源供應器 52電磁元件組 52a電磁鐵 52b電源供應器 62磁性微結構模具 63導磁物質 64磁性高分子材料 65模穴 71透明模具 83預壓力 91導磁性光阻液 92犧牲層 93矽基板 94照光固化 15BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manufacturing technique of magnetic micro-elements, and more particularly to a magnetic-assisted embossing method and system, which can be applied to a micro-electromechanical system. Manufacturing technology for magnetic and micro-components such as microactuators, micro-electromagnetic devices, and high-density storage devices. • [Prior Art] Magnetic thin films and magnetic microstructure devices are widely used in computer memory. In recent years, new applications have spread all over micro-electro-mechanical systems (MEMS), magnetic micro-sensors, micro-processors, and magnetic micro-pumps. ), micro actuators, and precision measuring instruments. Most of these magnetic micro-elements are made on a single board using conventional photolithography and deep reactive ion etching process technology or nano-imprinting lithography technology. Making a fine structure, and then using magnetic thin film deposition techniques such as electroplating (nickel, iron) technology, vacuum thermal evaporation (), sputtering technology, etc., depositing magnetic material on the fine structure 5 Magnetic micro-components. In addition, a laser or a focused ion beam is used to directly pattern the micro-nano structure on the magnetic film to form a magnetic hard disk and a micro-magnetic actuators. The first figure is a schematic diagram of a conventional micro-hot embossing machine, which mainly comprises a pressurizing system 10, a heating system 11, a cooling system 12, a control box 13, and a driver. 14. A vacuum gauge 15 and a micro-hot stamping module 19. The micro-hot stamping module 19 further includes an upper pressing plate 16a, a lower pressing plate 16b, a plastic material π, and a mold 1·8. The process of the micro hot press is heated and pressurized by a platen machine. The temperature of the plastic material 17 during hot pressing must start to soften above the glass transition temperature (gia), and the upper platen 16a is lowered to press the plastic material 17 or the mold 18, and the plastic material π flows due to pressure. Deformation and filling the micro-cavity. After the plastic material 17 is filled, the temperature must be lowered below the glass transition temperature Tg to release the mold, and at this time, the temperature drop causes the plastic material 17 to shrink. Therefore, it is necessary to maintain a certain pressure as the holding pressure, so that the plastic material 17 in the cavity can continue to have the plastic material 17 filling the cavity while replenishing the contracted portion of the plastic material 17 while shrinking. The product is released from the mold after the temperature drops below Tg. 1291414 The common shortcomings of the above-mentioned technologies are complex process, expensive equipment, high temperature, high compression process, high and high phase, and even fouling problems such as electrochemical deposition or electroplating. In the future, if combined with biotechnology or biochemical materials, the related technologies involved in high temperature, high pressure and chemical pollution may be eliminated. In view of this, it is necessary to develop innovative processes, thereby reducing the cost of production and improving production efficiency, in order to meet the needs of large-scale mass production, low-cost and multi-functionality of related products in the future. SUMMARY OF THE INVENTION In view of the above-described background of the invention, the present invention provides an innovative method of magnetically assisted imprinting in order to comply with industry requirements. The process is simple and fast, and the equipment cost is low. Not only can micro-nano-scale magnetic micro-components be produced, but also the technology can be used to solve the component defects caused by the traditional micro-thermal imprinting, such as: incomplete cavity filling, product sag, or It is not easy to demould, and it can be applied to graphic transfer in MEMS process. The invention can be further applied to the manufacture of computer memory storage components such as magnetic high-capacity hard disks and the manufacture of micro-components such as magnetic micro-sensors, micro-converters, magnetic micro-pulls, micro-actuators, etc. in MEMS, and others. On related processes with components with magnetic microstructures. The invention applies the magnetization theorem, first magnetizes the mold by using a magnetic field generated by the magnetic induction system, and makes the mold magnetic. Then the magnetic material under the mold is filled into the cavity, and the mold is filled. Since the inside of the hole has only a magnetic substance at the top and no magnetic substance around it, the magnetic material is easy to move toward the top of the cavity. The magnetic assisted imprint method of the present invention comprises the following steps. Referring to the second figure, step 201, first, an upper and lower substrate, a magnetic material, a mold, and an electromagnetic induction system are provided; in step 202, the magnetic material is coated or adhered to the lower substrate; And placing the substrate and the mold in the electromagnetic induction system; in step 204, turning on the electric power to make the magnetic material and the mold are closely adhered by the magnetic force; the final step 205, because the magnetic material pressure and magnetic force fill the same The mold cavity of the mold, after the magnetic material is solidified, demoulding. The magnetic material is an example of a magnetic polymer material or a magnetic photoresist liquid material, and is mainly a magnetic conductive powder particle such as elemental iron (Fe), elemental (c〇), or elemental nickel (tetra)) and a polymer material ( Thermop lastic) is either mixed with photoresist. The surface of the mold has a specific pattern 1291414 (patterns), and the magnetic material is coated in the cavity to assist the magnetic material to be filled into the cavity on the mold through magnetic force. After the magnetic material is solidified and demoulded, the magnetic material can be obtained. Micro-components. By changing the magnitude and direction of the voltage and current of the electromagnetic force system, the cavity filling and quality of the material can be precisely controlled. The above and other objects and advantages of the present invention will be described in detail with reference to the accompanying drawings. [Embodiment] The magnetic assisted imprinting method and system of the present invention, wherein the method comprises the steps of first providing an upper and lower substrate, a magnetic material, a mold, and an electro-magnetic system, and then The magnetic material is coated or adhered to the lower substrate, the substrate and the mold are placed in the electromagnetic induction system, and the electric power is turned on to make the magnetic material and the mold closely adhere to the magnetic force, because the magnetic material acts on the magnetic force and the magnetic force. Fill the cavity of the mold, and then release the mold after the magnetic material is solidified. The third figure is a schematic view of the electromagnetic induction imprinted electromagnetic induction system of the present invention. The electromagnetic induction system 31 is formed by modifying the upper pressing plate 16a and the lower pressing plate 16b of the micro-hot pressing module 19 of the conventional micro-heating press into a pair of magnetizing elements, as shown by reference numerals 31a and 31b, respectively. The third and fourth figures respectively modulate two embodiments of the 9 1291414 component. Referring to the fourth drawing, the fourth drawing is a first embodiment of the magnetic auxiliary imprinting apparatus of the present invention. The first magnetizing element 31a includes an electromagnet platen 41a and a power supply 41b; the second magnetizing element 31b includes an electromagnet platen 42a and a power supply 42b. The electromagnet press plates 41a, 42a directly replace the original pressurization heating function of the upper platen 16a and the lower scrap plate 16b (refer to the first figure). Referring to the fifth embodiment, the fifth embodiment is a second embodiment of the magnetic auxiliary stamping apparatus of the present invention. The first magnetizing element 31a includes an electromagnet element group 51 and an upper pressing plate 16a', wherein the electromagnetic element group 51 further comprises a The electromagnet 51a and the power supply unit 51b comprise an electromagnet element group 52 and a lower pressing plate 16b. The electromagnetic element group 52 further includes an electromagnet 52a and a power supply 52b. Figure 6a is a schematic diagram of magnetically assisted filling. Referring to the sixth figure, the magnetic assisted filling applies the magnetization principle. First, the magnetic microstructure mold 62 is magnetized by the magnetic field generated by the magnetization element 31a, so that the magnetic microstructure mold 62 has magnetic properties, and then the magnetic microstructure mold 62 is adsorbed underneath. A magnetic polymer material 64 is filled in a cavity 65. At this time, since there is only a magnetic substance 63' at the tip and there is no magnetic substance around the cavity, the magnetic polymer material 64 easily moves toward the top of the 10 cavity. A schematic view of the magnetic polymer material 64 after filling the cavity 65 is shown in Figure 6b. Among them, the magnetic polymer material 64 is mainly formed by mixing magnetic conductive powder particles with a photoresist liquid or a ruthenium molecular material. The surface of the magnetic microstructure mold 62 has a specific cavity 65 pattern, and the top of the cavity 65 has a magnetic conductive substance 63, such as: Recording 0 Referring to the sixth figure, the electromagnetic induction system 31 assists the magnetic polymer material 64 by magnetic force. The magnetic micro-elements are obtained by filling the mold holes 65 on the magnetic microstructure mold 62, and after the magnetic polymer material 64 is cured and demolded. By changing the direction of the voltage and current of the electromagnetic induction system 31, the filling and stripping of the cavity 65 can be controlled by the cancer control material. The invention utilizes the methods of thin film deposition, photolithography, etching, and separation process (pulse 0 homogenous technology) in the microcomputer motor technology to respectively prepare two kinds of molds: the seventh a picture is the mold I, and has the microstructure of the magnetic permeability. The seventh step b is a mold Π, a transparent mold. The eighth to eighth figures are schematic diagrams of the magnetic assisted embossing process. The magnetic microstructure mold 62 is first placed on the magnetic polymer material 64. The top of the microstructure pattern in the mold 85 has a layer of magnetic conductive material, such as nickel, etc., as shown in the eighth figure. The magnetic polymer material 64 is heated and reaches a glass transition temperature Tg or more, so that the polymer material is 64 begins to soften. A small fixed pre-load 83 is then applied to enable the magnetic polymer material 64 to fit snugly against the magnetic microstructure mold 62, as shown in Figure 8b. The first magnetization element 31a above the magnetic microstructure mold 62 causes a magnetic field effect to be generated and the magnetic polymer material 64 is drawn into the cavity 65 as shown in the eighth c. The eighth diagram is a schematic diagram of the magnetically assisted demolding Referring to the eighth figure, the magnetic height is high. After the sub-material 64 is cooled below the glass transition temperature Tg point and fixedly formed, then the second magnetization element 31b is opened, causing the first magnetization element 31a and the second magnetization element 31b to generate an opposite magnetic field. Since the magnetic microstructure mold 62 and the A magnetized element 31a is very close to each other and thus is more easily magnetized; and the magnetic polymer material 64 is magnetized by the second magnetized element 31b, so that the same is repulsed by the magnetic microstructure mold 62 and the magnetic polymer material 64. The repulsion force of the principle, in turn, facilitates the ease of the demolding step. The second embodiment of the present invention is applied to the pattern transfer in the micromechanical process. The ninth to ninth c diagrams are magnetically assisted. Schematic diagram of the transfer transfer process. The transfer layer 92 is first deposited on the & substrate 93, and then coated with a spin coater to expose the magnetic photoresist (ferromagnetism). Photo-resist) 91, juxtapose the transparent mold 71 on the magnetic conductive resist liquid 91, as shown in Fig. 9a. Then, the first magnetized element 3 is used to magnetically actuate the magnetic conductive resist liquid 91, and the precise The pattern on the transparent mold 71 is transferred out, and then the pattern is solidified (as in the ninth b and ninth c diagrams), "known, light cured 〇 3Jiotolithography" 94. According to the pattern transferred by the magnetic conductive resist liquid 91, after the sacrificial layer gg is engraved, the magnetic conductive resist liquid 91 is completely removed, and the pattern is transferred to the crucible substrate 93, so that the subsequent process can be performed (such as the ninth Figure d). However, the above description is only the preferred embodiment of the invention, and the invention should not be limited thereto, and the equivalent variations and modifications of the scope of the patent application should still belong to the present invention. Within the scope of the patent. 1291414 _ [Simple description of the diagram] The first picture is a schematic diagram of a conventional platen micro-heat press. The second figure is a schematic view of the printing method of the present invention. The third figure is a schematic view of the electromagnetic induction printing electromagnetic induction system of the present invention. • The fourth figure is a first embodiment of an electromagnetic induction system of a magnetically assisted imprint apparatus. • Figure 5 is a second embodiment of an electromagnetic induction system for a magnetically assisted imprinting device. Figures 6a and 6b are schematic views of magnetically assisted filling. Φ Figure 7a is a schematic diagram of a magnetic microstructure mold. Figure 7b is a schematic view of a transparent mold. Figures 8 through 8 c are schematic views of the magnetic assisted imprint process. The eighth figure is a schematic diagram of the demoulding of the mold and the material. Ninth a to ninth. The figure shows a schematic diagram of a magnetic assisted pattern transfer process. Figure 9 is a schematic diagram of the post-process of the magnetically assisted graphic transfer (four) process. [Main component symbol description] 10 Pressurization system---~——12 Cooling system-----14 driver------- 16a upper plate ------ Π plastic material 11 heating system 13 control box 15 vacuum table 16b lower pressure plate 18 mold 1291414 19 micro-thermal pressure module 21 preparation materials and equipment 22 coated magnetic material on the lower substrate 23 placed substrate and mold and then electromagnetic sense 24 open power to make the mold magnetization system 25 pressure and magnetic force Filling the mold 31 Electromagnetic induction system 31a First magnetization element 31b Second magnetization element 32 Mold 33 Magnetic material 41a Electromagnet pressure plate 41b Power supply 42a Electromagnet pressure plate 42b Power supply 51 Electromagnetic element group 51a Electromagnet 51b Power supply 52 electromagnetic element group 52a electromagnet 52b power supply 62 magnetic microstructure mold 63 magnetic material 64 magnetic polymer material 65 cavity 71 transparent mold 83 pre-pressure 91 magnetic photoresist liquid 92 sacrificial layer 93 矽 substrate 94 photo curing 15

Claims (1)

1291414 申請專利範圍: 1· 一種磁力輔助壓印的方法,該方法包含下列步驟: 提供一上、下基板、一磁性材質、一模具、與一電磁 感應糸統, 先將該磁性材質塗佈或黏附在下基板上,再將該下基 板與該模具放置於該電磁感應系統中; 然後開啟電力使該磁性材質與該模具受一磁力而緊 饴貼合,其該磁性材質由於一壓力與該磁力作用而填 滿該模具的模穴;以及 待其該磁性材質固化後、脫模。 2·’如申請範圍第1項所述之磁力輔助壓印的方法,該脫 模方式利用該對磁化元件產生相反磁場原理,使該磁 性微結構模具與該磁性高分子材料之間形成一排斥 力,而有助於該脫模的動作。 3· —種磁力輔助壓印的系統,該系統包括一上、下基 板、一磁性材質、一模具、與一電磁感應系統。 4.如申印範圍苐3項所述之磁力輔助壓印的系統,|中 該基板為一機台上之壓板或電磁鐵板之其中一種。 5·如申請範圍第3項所述之磁力輔助壓印的系統,其中 該磁性材質為一磁性高分子材料或一導磁性光阻液。 6·如申請範圍第5項所述之磁力輔助壓印的系統,其中 161291414 Patent application scope: 1. A magnetic assisted imprinting method, the method comprising the following steps: providing an upper and lower substrate, a magnetic material, a mold, and an electromagnetic induction system, first coating the magnetic material or Adhering to the lower substrate, and placing the lower substrate and the mold in the electromagnetic induction system; then turning on the electric power to make the magnetic material and the mold are closely pressed by a magnetic force, the magnetic material is due to a pressure and the magnetic force Functioning to fill the cavity of the mold; and demolding the magnetic material after it is cured. 2. The method of magnetically assisted imprinting as described in claim 1, wherein the demolding method utilizes the principle of the opposite magnetic field of the pair of magnetized elements to form a repulsive relationship between the magnetic microstructure mold and the magnetic polymer material. Force, and contribute to the action of demolding. 3. A magnetic assisted imprinting system comprising an upper and lower substrate, a magnetic material, a mold, and an electromagnetic induction system. 4. The magnetic assisted imprinting system as described in the scope of claim 3, wherein the substrate is one of a platen or an electromagnet plate on a machine table. 5. The magnetic assisted imprinting system of claim 3, wherein the magnetic material is a magnetic polymer material or a magnetically permeable photoresist. 6. A magnetically assisted imprinting system as described in item 5 of the application, 16
TW95100570A 2006-01-06 2006-01-06 Magnetic embossing method and apparatus TWI291414B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95100570A TWI291414B (en) 2006-01-06 2006-01-06 Magnetic embossing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95100570A TWI291414B (en) 2006-01-06 2006-01-06 Magnetic embossing method and apparatus

Publications (2)

Publication Number Publication Date
TW200726657A TW200726657A (en) 2007-07-16
TWI291414B true TWI291414B (en) 2007-12-21

Family

ID=39461152

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95100570A TWI291414B (en) 2006-01-06 2006-01-06 Magnetic embossing method and apparatus

Country Status (1)

Country Link
TW (1) TWI291414B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448396B (en) * 2009-03-27 2014-08-11 Hon Hai Prec Ind Co Ltd Imprinting apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI448396B (en) * 2009-03-27 2014-08-11 Hon Hai Prec Ind Co Ltd Imprinting apparatus

Also Published As

Publication number Publication date
TW200726657A (en) 2007-07-16

Similar Documents

Publication Publication Date Title
EP1509379B1 (en) Methods and apparatus of field-induced pressure imprint lithography
Worgull Hot embossing: theory and technology of microreplication
Lipomi et al. 7.11: soft lithographic approaches to nanofabrication
US20070014920A1 (en) Micro-contact-printing engine
KR101759810B1 (en) Method for microcontact printing
JP2006148055A (en) Method of hot embossing lithography
WO2005057634A1 (en) Pattern-forming process utilizing nanoimprint and apparatus for performing such process
Asif et al. Hot embossing of microfluidics in cyclic-olefin co-polymer using a wafer aligner-bonder
EP2138896B1 (en) Nano imprinting method and apparatus
TWI291414B (en) Magnetic embossing method and apparatus
CN110891895A (en) Method for micro and nano fabrication by selective template removal
TWI322331B (en)
CN108892099B (en) Method for preparing uniform surface microstructure by impressing ultrathin material
CN102358611B (en) Dielectrophoretic force embossing and forming method for manufacturing microlens array with parabolic concave surface
KR100526053B1 (en) Mold using amorphous fluorine resin and fabrication method thereof
CN106681102A (en) Nano-imprinting method
TWI255471B (en) Manufacturing method of planar coils
Worgull et al. Hot embossing
Hsu et al. A double-sided PDMS mold for double-sided embossing by rollers
Jakeway et al. Transition of MEMS technology to nanofabrication
TW200919095A (en) Magnetic conductivity molding plate with creative multiple structural form
Weng Direct imprinting using magnetic nickel mold and electromagnetism assisted pressure for replication of microstructures
Bachman et al. Laminated microfluidic structures using a micromolding technique
TW200919098A (en) Magnetic-force imprint system and method
TWM517679U (en) Replication system device for supercritical nano fluid low-temperature eco-friendly transferring

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees