TWI291171B - Magnetic memory media with ordered structure FePt alloy film and manufacturing method therefor - Google Patents

Magnetic memory media with ordered structure FePt alloy film and manufacturing method therefor Download PDF

Info

Publication number
TWI291171B
TWI291171B TW94114508A TW94114508A TWI291171B TW I291171 B TWI291171 B TW I291171B TW 94114508 A TW94114508 A TW 94114508A TW 94114508 A TW94114508 A TW 94114508A TW I291171 B TWI291171 B TW I291171B
Authority
TW
Taiwan
Prior art keywords
film
iron
magnetic recording
recording medium
alloy
Prior art date
Application number
TW94114508A
Other languages
Chinese (zh)
Other versions
TW200639818A (en
Inventor
Chih-Huang Lai
Cheng-Han Yang
Chao-Chien Chiang
Original Assignee
Univ Tsinghua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Tsinghua filed Critical Univ Tsinghua
Priority to TW94114508A priority Critical patent/TWI291171B/en
Publication of TW200639818A publication Critical patent/TW200639818A/en
Application granted granted Critical
Publication of TWI291171B publication Critical patent/TWI291171B/en

Links

Abstract

This invention provides a memory media for magnetic with an ordered phase FePt alloy film, which comprises a substrate, a FePt film with an ordered phase formed on the substrate, an intermediate film sandwiched between the substrate and the FePt film, a soft magnetics film sandwiched between the substrate and the intermediate film, and a metal silicide film containing an M sandwiched between the substrate. Wherein, orderly forms a precursor, the soft magnetics film, the intermediate film and a FePt material on the substrate, finally, applies a heat treatment to the substrate, the precursor, the soft magnetics film, the intermediate film and the FePt material, and in such manner to transfer the FePt material into the FePt alloy film with the ordered phase. The M is selected from the group consisting of Cu, Pt, Fe, and a combination thereof.

Description

1291171 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種磁記錄媒體,特別是指一種具有序 化結構鐵鉑合金膜的磁記錄媒體及其製作方法。 【先前技術】 隨著數位時代的來臨,以及網路的普及化,人們對於資 料儲存的需求量越來越大。因此增加儲存媒體的記錄密度一 直疋此領域研發人員努力的目標,現今的記錄密度成長約為 每年100% 。要增加記錄密度,則需縮小每個記錄位元,但 在未來幾年内,極小的記錄位元將會遇到超順磁現象的瓶 頸。超順磁現象是當磁性物質的體積太小,使得磁異向性能 /、版積的乘積(KuV )不足以克服外界溫度所造成的熱擾動 (KT)因而導致磁矩任意的翻轉,產生無法記錄的結果。 對於硬碟的記錄層來說,為了提升記錄密度,不僅需要 ^小日S粒大小並需具備有良好的隔離以降低雜訊比,此外, 亦需要提供足夠的磁異向性@ (Ku)以提供良好的熱穩定 性。增加熱穩定性有兩種方法:―是增加記錄層的矯頑磁場 (coel^ivity,亦即Hc),另-是利用垂直式記錄。 由=磁頭無法有效產生高磁範圍來克服抗頑磁力,使得 ^員磁場太大會造成寫人的困難,因此利用提高矯頑磁場來 曰加熱穩定性的方法即受到限制。 、,j 9遍使用的水平式記錄在縮小記錄位元體積的 ㈣ "^向的長度跟著縮短,造成去磁場(Hd)隨之越 1疋1±也鉍差。反之,垂直式記錄在記錄位元縮小 5 1291171 的同時,垂直方向反而變成長軸’使其在更小的位元下不會 影響到穩定性’因此垂直式記錄有達到較高密度的發展潛 力。 具有面心長方晶(FCT) L1。序化相(ordered phase)結構 的鐵鉑(FePt )合金,因為擁有很高的磁晶體異向性 (magnetic magnetocrystalline anis〇tr〇py)能(Ku〜7y〇7 erg/cc)及矯頑磁場(Hc)值,因此,非常.適合作為超高密 度垂直记錄媒體的材料。如圖i所示,為鐵鉑(Fept)合金非 序化相與序化相結構的示意圖。在非序化相時,鐵、鉑原子 隨意的佔據晶格點並呈面心立方體(FCC)的結構,而在序化 相時,鐵、鉑原子交錯層狀排列,而且晶體的c軸變短、a 軸變長,形成面心長方體(FCT)的結構。一般鐵鉑合金由非 序化的面心立方(FCC)結構轉變成序化結構Fept [丨。相需 要經過大於50(TC高溫退火的過程才能形成相變化。然而在 經過如此高溫的熱處理後會造成晶粒成長,使得磁頭讀取信 號時的雜訊增加,故不適用於目前記錄媒體的製程。 因此’如何將形成鐵舶合金L1 〇序化相的製程溫度降 低,以增加其實用性,是許多研究人員努力的方向。其中已 有研究顯示,具有較大晶格的底層與鐵鉑合金層之間的晶格 差異(lattice misfit)在退火處理(postannealing)過程中 所產生的面内應力(in-plane stress),有助於拉樓鐵麵合 金晶格並壓縮c軸誘導序化相的生成,因而降低序化溫度。 例如 YingfanXu、J_ S· Chen 及 J· P. Wang 等人在 Αρρι· Phys· Lett· 80 (2002) 3325中揭露一種利用鉻釕合金(CrRu) 1291171 底層做為緩衝層並長出具有優選方向的序化鐵鉑合金薄 膜。其藉由調變釕的比例以調整緩衝層的晶袼常數,而在釕 的比例為9 at%時,晶格差異約為6·3%,此時,鐵鉑合金具 有最大的垂直矯頑磁場。但是當釕的比例繼續增加,鐵鉑合 金的矯頑磁場不升反降,因為晶格差異雖然越來越大,卻也 在晶袼間累積過多的應力造成差排⑷slQcati〇n)的產生。 另一例子如 Yu—Nu Hsu、Sa^lu Jeong 及 David E.Laughlin 等人在 j· Αρρ1· phys 89 (2〇〇l) 7〇68 中揭露 一種使用銀(Ag)底層做為緩衝層,同樣地利用晶格差異產 生應力而促進FePt於低溫進行相變化。 然而從上述例子可知,當應力大於一定程度時,即會產 生差排將多餘應力釋放,使得可利用的應力有限,因此也偾 得FePt由非序化相轉換成Uq序化相結構的程度受到限 而且,雖然格差異所造成的底層應力可以誘導序化 相的形成因而降低相變化溫度,但是此種應力為靜態的應 力,會一直存在於結構中,所以容易造成材料缺陷的產生, 並影響產品的穩定性及可靠度。 由上所述,如何降低賴合金序化溫度,同時亦能取得 高矯頑磁場並降低材料缺陷以提高磁紀錄媒體的穩定性及 可靠度,是研究高密度磁紀㈣體相關領域者所需克服的難 題。 、 【發明内容】 〈發明概要〉 為了解決殘留應力的問題,同時保留利用底層應力促進 鐵翻合金序化相的形成而降低序化溫度的優點,本發明利用 鑛製於鐵翻合金膜下層的前驅物(precursor),致使該 月D驅物在低於400°C的熱處理過程中產生化合反應並形成一 金屬矽化物。此外,在形成該金屬矽化物的過程中,藉該前 驅物中不同組成成分之間的熱膨脹係數差而伴隨應力的產 生,以在化合反應完成後同時將應力釋放完。此一動態應力 能夠促使鐵鉑合金膜形成面内拉伸應力(in—plane tensile stress),使其在該前驅物之化合反應產生的同時,利用此 面内拉伸應力形成L1。序化相結構,且在反應完成後無應力 殘留的問題。 因此本發明之目的,即在提供一種具有序化結構鐵翻 合金膜的磁記錄媒體,特別是指一種鐵鉑合金序化溫度低、 矯頑磁場高、材料缺陷少、穩定性佳且可靠度高的磁紀錄媒 體。 本%明之另一目的,即在提供一製作磁紀綠媒體的方 法。 於是,本發明具有序化結構鐵鉑合金膜的磁記錄媒體, 包含··一基材、一形成於該基材上並具有序化結構的鐵鉑合 金膜、一夾置於該基材及該鐵鉑合金膜之間的中間膜、一夹 置於該基材及該中間膜之間的軟磁膜(s〇ft magnetics),及 一夾置於該基材及該軟磁膜之間且含有一 Μ的金屬石夕化物 膜。 其中’在該基材上依序形成一前驅物、該軟磁膜、該中 間膜、及一鐵鉑合金,最後,對該基材、該前驅物、該軟磁 包含下列步驟··BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium, and more particularly to a magnetic recording medium having a sequence structure of an iron-platinum alloy film and a method of fabricating the same. [Prior Art] With the advent of the digital age and the popularity of the Internet, there is a growing demand for data storage. Therefore, increasing the recording density of storage media has been the goal of researchers in this field. Today's record density is growing at about 100% per year. To increase the recording density, each recording bit needs to be reduced, but in the next few years, very small recording bits will encounter bottle necks with superparamagnetic phenomena. The phenomenon of superparamagnetism is that when the volume of the magnetic substance is too small, the product of the magnetic anisotropy performance/product volume (KuV) is insufficient to overcome the thermal disturbance (KT) caused by the external temperature, thereby causing the magnetic moment to be arbitrarily reversed, resulting in failure. Recorded results. For the recording layer of the hard disk, in order to increase the recording density, it is necessary to provide not only a small S size but also good isolation to reduce the noise ratio, and also to provide sufficient magnetic anisotropy @ (Ku). To provide good thermal stability. There are two ways to increase the thermal stability: - increase the coercive magnetic field (also known as Hc) of the recording layer, and - use vertical recording. The method of suppressing the coercive force by the inability of the magnetic head to effectively generate the high magnetic range makes the writing of the magnetic field too large, which is difficult to write. Therefore, the method of increasing the coercive magnetic field to improve the heating stability is limited. The horizontal recording used by j 9 times is shortened by the length of the (4) "^ direction of the reduced recording bit volume, resulting in a demagnetization field (Hd) which is more than 1疋1±. Conversely, the vertical recording reduces the vertical density of the recording bit to 5 1291171, but the vertical direction becomes the long axis 'so that it does not affect the stability under smaller bits'. Therefore, vertical recording has the potential to achieve higher density. . Has a face centered rectangular (FCT) L1. The iron-platinum (FePt) alloy of the ordered phase structure has a high magnetic crystalocrystalline anis〇tr〇py energy (Ku~7y〇7 erg/cc) and a coercive magnetic field. The (Hc) value, therefore, is very suitable as a material for ultra-high density perpendicular recording media. As shown in Figure i, it is a schematic diagram of the structure of the disproportioned phase and the ordered phase of the iron-plated (Fept) alloy. In the unordered phase, the iron and platinum atoms randomly occupy the lattice point and form a face-centered cubic (FCC) structure. In the order of the phase, the iron and platinum atoms are alternately layered, and the c-axis of the crystal changes. Short, the a-axis becomes longer, forming a structure of a face-centered rectangular parallelepiped (FCT). In general, iron-platinum alloys are transformed from a disordered face-centered cubic (FCC) structure into a sequenced structure Fept [丨. The phase needs to pass through a process of more than 50 (TC high temperature annealing to form a phase change. However, after such a high temperature heat treatment, the grain growth is caused, so that the noise of the magnetic head when reading the signal is increased, so it is not suitable for the current recording medium process. Therefore, it is the direction of many researchers to reduce the process temperature of the formation of the iron-plated alloy L1, which has been shown to have a larger crystal lattice and an iron-platinum alloy. The in-plane stress generated by the lattice misfit during the postannealing process contributes to the lattice of the iron-faced alloy and compresses the c-axis induced sequence. Generation, thus reducing the temperature of the sequence. For example, YingfanXu, J_S·Chen and J. P. Wang et al. in Αρρι·Phys· Lett. 80 (2002) 3325 disclose the use of a chrome-tantalum alloy (CrRu) 1291171 underlayer as The buffer layer grows a ordered iron-platinum alloy film having a preferred orientation by adjusting the ratio of germanium to adjust the crystal constant of the buffer layer, and at a ratio of 9 at% of the germanium, the lattice The difference is about 6.3%. At this time, the iron-platinum alloy has the largest vertical coercive field. However, as the proportion of niobium continues to increase, the coercive field of the iron-platinum alloy does not rise and fall, because the lattice difference is getting more and more Large, but also accumulated excessive stress between the wafers, resulting in the generation of the difference row (4) slQcati〇n). Another example such as Yu-Nu Hsu, Sa^lu Jeong, and David E. Laughlin et al. in j. Αρρ1· phys 89 (2〇〇l) 7〇68 reveals the use of a silver (Ag) underlayer as a buffer layer. Similarly, the lattice difference is used to generate stress to promote the phase change of FePt at a low temperature. However, it can be seen from the above examples that when the stress is greater than a certain degree, the differential discharge is released, and the excess stress is released, so that the available stress is limited, so that the degree of conversion of the FePt from the unordered phase to the Uq ordered phase structure is also obtained. Moreover, although the underlying stress caused by the difference in lattice can induce the formation of the sequence phase and thus reduce the phase change temperature, such stress is a static stress and will always exist in the structure, so it is easy to cause the occurrence of material defects and affect Product stability and reliability. From the above, how to reduce the temperature of the Lai alloy, while also achieving high coercive magnetic field and reducing material defects to improve the stability and reliability of the magnetic recording medium, is required for the study of high-density magnetic (four) body related fields. Overcome the puzzle. SUMMARY OF THE INVENTION [Summary of the Invention] In order to solve the problem of residual stress while retaining the advantage of using the underlying stress to promote the formation of the iron-alloyed alloyed phase and lowering the ordering temperature, the present invention utilizes minerals in the lower layer of the iron-alloyed alloy film. The precursor causes the D-drain to produce a chemical reaction and form a metal halide during the heat treatment below 400 °C. Further, in the process of forming the metal telluride, the difference in thermal expansion coefficient between the different constituents in the precursor is accompanied by the generation of stress to release the stress simultaneously after the completion of the compounding reaction. This dynamic stress can cause the iron-platinum alloy film to form in-plane tensile stress, so that the in-plane tensile stress forms L1 while the compounding reaction of the precursor is generated. The phase structure is sequenced and there is no problem of residual stress after the reaction is completed. Therefore, the object of the present invention is to provide a magnetic recording medium having a ferroalloy film having a sequential structure, in particular to an iron-platinum alloy having a low ordering temperature, a high coercive field, less material defects, good stability and reliability. High magnetic record media. Another purpose of this example is to provide a method of making magnetic green media. Therefore, the magnetic recording medium having the ordered structure of the iron-platinum alloy film comprises: a substrate, an iron-platinum alloy film formed on the substrate and having a sequential structure, and a clip placed on the substrate and An intermediate film between the iron-platinum alloy films, a soft magnetic film sandwiched between the substrate and the intermediate film, and a sandwich between the substrate and the soft magnetic film and containing A glimpse of the metal lithium film. Wherein a precursor, the soft magnetic film, the intermediate film, and an iron-platinum alloy are sequentially formed on the substrate, and finally, the substrate, the precursor, and the soft magnetic material comprise the following steps:

1291171 5孟轭予一熱處理以構成該金屬矽化 勿膜,同時,並致使該鐵鉑合金轉變 鉬合金膜。 具有序化結構的鐵 另外,本發明製作磁記錄媒體的方法 (a)提供一基材; (b) 於該基材上形成一前驅物; (c) 於该前驅物上形成一軟磁膜; (d) 於該軟磁膜上形成一中間膜; (e) 於該中間膜上形成一鐵鉑合金,· (〇最後,施予一熱處理以使該前驅物形成一含_ ^之 金屬矽化物膜,同時,並致使該鐵鉑合金轉變成一 具有序化結構的鐵鉑合金膜。 〈發明詳細說明〉 参閱圖2 ’本發明具有序化結構鐵麵合金膜的磁記錄媒 體之-較佳實施例,包含:一基材卜一形成於該基材i上 並具有序化結構的_合金膜2、—夾置於該基材丨及該鐵 鉬合金膜2之間的中間膜3、—夾置於該基材i及該中間膜 3之間的軟磁膜4’及一夹置於該基材!及該軟磁膜4之間 且含有一 Μ的金屬矽化物膜5。 ▲其中’在該基材1上依序形成—前驅物、該軟磁膜4、 該:間膜3及一鐵鉑合金,最後,對該基材卜該前驅物、 車兹膜4該中間膜3及該鐵翻合金施予一熱處理以構成 金屬矽化物膜5,同時,並致使該鐵鉑合金轉變成該具有 序化結構的鐵鉑合金膜2。 9 1291171 適用於本發明之該Μ是選自於下列所構成之群組:鋼、 鉑、鐵及此等之一組合。 較佳地’该基材1是由石夕所製成,且該前驅物具有一含 該Μ之底層。在一具體實施例中,該Μ是銅。在另一具體實 施例中,該Μ是鉑。在又一具體實施例中,該Μ是鐵。較佳 地,該含該Μ之底層的厚度至少為15 nm。更佳地,該含該 Μ之底層的厚度是介於15 nm至1〇〇 nm之間。 較佳地,該基材1是由玻璃或鋁鎂合金所製成,且該前 驅物具有一矽底層及一含該Μ之底層。在一具體實施例中, 忒基材1疋由玻璃所製成,該Μ是銅。較佳地,該石夕底層的 厚度至少為15 nm,該含該Μ之底層的厚度至少為15 nm ; 更佳地’該石夕底層的厚度是介於15 pm至1〇() nm之間,該 含该Μ之底層的厚度是介於15 nm至1〇〇 nm之間。 較佳地’該熱處理的溫度是介於25〇。(:至4501之間; 更佳地’該熱處理的溫度是介於275°c至350°C之間。 較佳地,該熱處理的時間是介於25分鐘至300分鐘之 間;更佳地,該熱處理的時間是介於25分鐘至6〇分鐘之間。 較佳地,該軟磁膜是由至少一選自於下列所構成之群組 的合金層所構成:鈷鐵(c〇—Fe)、鈷鐵氮(c〇—Fe-N)、鈷锆鈕 (Co Zr Ta)、鐵鈕碳(Fe—Ta-〇、鎳鐵(μ—及鎳碟 (Ni P)。在一具體實施例中,該軟磁膜是由一鈷鐵合金層所 構成。 車乂佳地,δ亥中間膜是由一金屬材料或一氧化物材料所製 成;該金屬材料是選自於下列所構成之群組:#(pt)、銀 10 1291171 (Ag)、銅(Cu)、鉻(Cr)、釕(Ru)、鉬(M〇)、錳(Mn)、鋁(A1) 及此等之一組合;該氧化物材料是選自於下列所構成之群 組:氧化鎂(MgO)、氧化鋁(A12〇3)。在一具體實施例中, 該中間膜是由-金屬材料所製成,該金屬材料是翻。 再者,本發明前述之具有序化結構鐵鉑合金膜的磁紀錄 媒肢可藉由下述製作磁記錄媒體的方法所製得。本發明製作 磁紀錄媒體的方法,包含下列步驟: (a)提供一基材; (b )於$基材上形成一前驅物; (c) 於該前驅物上形成一軟磁膜; (d) 於該軟磁膜上形成一中間膜; (e) 於該中間膜上形成一鐵鉑合金; (f) 最後,施予一熱處理以使該前驅物形成一含一从之 金屬矽化物膜,同時,並致使該鐵鉑合金轉變成一 具有序化結構的鐵鉑合金膜。 適用於本發明之該M是選自於下列所構成之群組:銅、 翻、鐵及此等之一組合。 較佳地,該步驟(a)的基材是切所製成,且該步驟 2)的前驅物是在該基材上形成一含該M之底層。在一具體 貝也例中.亥Μ疋銅。在另一具體實施例中,該μ是鉑。在 〃體貫把例中,該Μ是鐵。較佳地,該含該Μ之底層的 厚度至少為15 nm。φ 1 m更佳地,該含該Μ之底層的厚度是介於 15 nm 至 1 〇〇 nm 之間。 也°亥步驟(a)的基材是由玻璃或鋁鎂合金所製 1291171 成,且該步驟(b)的前驅物是在該基材上形成一矽底層及一 含該Μ之底層。在-具體實施例中,該步驟(a)的基材是由 玻璃所製成,該Μ是銅。較佳地,該矽底層的厚度至少為15 ⑽,該含該Μ之底層的厚度至少為15 nm;更佳地,該矽底 層的厚度是介於15⑽至1GG nm之間’該含該^底層的 厚度是介於15 nm至100 nm之間。 較佳地,該步驟(〇的熱處理之溫度是介於25〇力至45〇 C之間;更佳地,該步驟(f)的熱處理之溫度是介於2冗。〇至 350°C之間。 較佳地’該步驟(f)的熱處理之時間是介於25分鐘至3〇〇 分鐘之間;更佳地,該步驟的熱處理之時間是介於託分 鐘至6 0分鐘之間。 較佳地,該步驟(c)的軟磁膜是由至少一選自於下列所 構成之群組的合金層所構成··鈷鐵、鈷鐵氮、鈷鍅鈕、鐵釦 ,、鎳鐵及鎳磷。在一具體實施例中,該步驟(c)的軟磁膜 是由一鈷鐵合金層所構成。 較佳地,該步驟(d)的中間膜是由一金屬材料或—氧化 物材料所製成;該金屬材料是選自於下列所構成之群組·· 鉑、銀、銅、鉻、釕、鉬、錳、鋁及此等之—組合;該氧化 物材料是選自於下列所構成之群組:氧化鎂及氧化紹。在— 具體實施例中,該步驟⑷的中間膜是由—金屬材料所製 成’該金屬材料是鉑。 、 【實施方式】 有關本發明之前述及其他技術内容、特點與功效,在以 12 1291171 記錄層,並利用該軟磁膜4引導集中磁力線以讓寫人更有效 率;而該中間膜3則是用來隔絕該鐵鉑合金膜2(即,該記錄 層)及該軟磁膜4並抑制該鐵鉑合金膜5與該軟磁膜4之間 的父互作用,進而避免雜訊的產生。 &lt;比較例一 &gt; 相較於該具體實施例一使用氫氟酸清洗過的矽基板,比 較例一是使用一表層具有Si〇2 (200 nm)膜的矽基板,以相 同於該具體實施例一的鍍膜條件依序於該^⑴膜上鍍製:1291171 5 Meng yoke is heat treated to form the metal bismuth film, and at the same time, the iron-platinum alloy is transformed into a molybdenum alloy film. Iron having a sequenced structure In addition, the method (a) of the present invention for producing a magnetic recording medium provides a substrate; (b) forming a precursor on the substrate; (c) forming a soft magnetic film on the precursor; (d) forming an intermediate film on the soft magnetic film; (e) forming an iron-platinum alloy on the intermediate film, (finally, applying a heat treatment to form the precursor into a metal telluride containing _ ^ The film, at the same time, causes the iron-platinum alloy to be transformed into an iron-platinum alloy film having a ordered structure. <Detailed Description of the Invention> Referring to Figure 2, a magnetic recording medium having a sequential structure of a ferroalloy film of the present invention is preferably used. The embodiment comprises: a substrate, an alloy film 2 formed on the substrate i and having a sequential structure, an intermediate film 3 sandwiched between the substrate and the iron-molybdenum alloy film 2, a soft magnetic film 4' interposed between the substrate i and the intermediate film 3, and a metal halide film 5 interposed between the substrate and the soft magnetic film 4 and containing a crucible. Forming a precursor on the substrate 1 , the soft magnetic film 4 , the interlayer film 3 and an iron-platinum alloy, and finally, The precursor, the film 4, the intermediate film 3, and the iron alloy are subjected to a heat treatment to form the metal vapor film 5, and at the same time, the iron-platinum alloy is converted into the iron-platinum alloy having the ordered structure. Membrane 2. 9 1291171 The crucible suitable for use in the present invention is selected from the group consisting of steel, platinum, iron, and combinations thereof. Preferably, the substrate 1 is made of Shi Xi. And the precursor has a bottom layer comprising the crucible. In one embodiment, the crucible is copper. In another embodiment, the crucible is platinum. In yet another embodiment, the crucible is iron. Preferably, the underlayer containing the germanium has a thickness of at least 15 nm. More preferably, the thickness of the underlayer containing the germanium is between 15 nm and 1 nm. Preferably, the substrate 1 is made of glass or aluminum-magnesium alloy, and the precursor has a crucible bottom layer and a bottom layer containing the crucible. In a specific embodiment, the crucible substrate 1 is made of glass, and the crucible is copper. Preferably, the thickness of the bottom layer of the stone is at least 15 nm, and the thickness of the bottom layer containing the germanium is at least 15 nm; more preferably, the bottom layer of the stone The thickness is between 15 pm and 1 〇 () nm, and the thickness of the underlayer containing the yt is between 15 nm and 1 〇〇 nm. Preferably, the temperature of the heat treatment is between 25 〇. (: between 4501; more preferably 'the temperature of the heat treatment is between 275 ° C and 350 ° C. Preferably, the heat treatment time is between 25 minutes and 300 minutes; more preferably Preferably, the heat treatment time is between 25 minutes and 6 minutes. Preferably, the soft magnetic film is composed of at least one alloy layer selected from the group consisting of cobalt iron (c〇- Fe), cobalt iron nitrogen (c〇-Fe-N), cobalt zirconium button (Co Zr Ta), iron button carbon (Fe-Ta-〇, nickel iron (μ- and nickel disc (Ni P). In a specific embodiment, the soft magnetic film is composed of a cobalt-iron alloy layer. Preferably, the δ hai interlayer film is made of a metal material or an oxide material; the metal material is selected from the group consisting of: #(pt), silver 10 1291171 (Ag), copper (Cu), chromium (Cr), ruthenium (Ru), molybdenum (M〇), manganese (Mn), aluminum (A1), and combinations thereof; the oxide material is selected from the group consisting of : Magnesium oxide (MgO), alumina (A12〇3). In a specific embodiment, the intermediate film is made of a - metallic material that is turned over. Further, the magnetic recording medium having the above-described ordered structure of the iron-platinum alloy film of the present invention can be obtained by the following method for producing a magnetic recording medium. The method of making a magnetic recording medium of the present invention comprises the steps of: (a) providing a substrate; (b) forming a precursor on the substrate; (c) forming a soft magnetic film on the precursor; (d) Forming an intermediate film on the soft magnetic film; (e) forming an iron-platinum alloy on the intermediate film; (f) finally, applying a heat treatment to form the precursor into a metal-containing vaporized film; And causing the iron-platinum alloy to transform into an ordered structure of an iron-platinum alloy film. The M suitable for use in the present invention is selected from the group consisting of copper, turn, iron, and combinations thereof. Preferably, the substrate of the step (a) is formed by dicing, and the precursor of the step 2) is formed on the substrate to form a bottom layer containing the M. In a specific example of a shellfish. In another specific embodiment, the μ is platinum. In the case of the body, the cockroach is iron. Preferably, the underlayer containing the tantalum has a thickness of at least 15 nm. Preferably, the thickness of the underlayer containing the crucible is between 15 nm and 1 〇〇 nm. The substrate of the step (a) is also made of glass or aluminum-magnesium alloy, and the precursor of the step (b) is formed on the substrate to form a bottom layer and a bottom layer containing the same. In a specific embodiment, the substrate of step (a) is made of glass and the crucible is copper. Preferably, the underlayer of the crucible has a thickness of at least 15 (10), and the underlayer containing the crucible has a thickness of at least 15 nm; more preferably, the thickness of the underlayer of the crucible is between 15 (10) and 1 GG nm. The thickness of the bottom layer is between 15 nm and 100 nm. Preferably, the step (the heat treatment temperature of the crucible is between 25 Torr and 45 〇C; more preferably, the heat treatment temperature of the step (f) is between 2 〇 and 350 to 350 ° C. Preferably, the heat treatment time of the step (f) is between 25 minutes and 3 minutes; more preferably, the heat treatment time of the step is between between minutes and 60 minutes. Preferably, the soft magnetic film of the step (c) is composed of at least one alloy layer selected from the group consisting of cobalt iron, cobalt iron nitrogen, cobalt cobalt, iron buckle, nickel iron and Nickel phosphorus. In a specific embodiment, the soft magnetic film of the step (c) is composed of a cobalt-iron alloy layer. Preferably, the intermediate film of the step (d) is made of a metal material or an oxide material. Made of; the metal material is selected from the group consisting of platinum, silver, copper, chromium, ruthenium, molybdenum, manganese, aluminum, and the like; the oxide material is selected from the following A group consisting of: magnesium oxide and oxidized. In a specific embodiment, the intermediate film of the step (4) is made of a metal material. The material is platinum. [Embodiment] Regarding the foregoing and other technical contents, features and effects of the present invention, the layer is recorded at 12 1291171, and the soft magnetic film 4 is used to guide the concentrated magnetic lines of force to make the writer more efficient; The film 3 is used to insulate the iron-platinum alloy film 2 (ie, the recording layer) and the soft magnetic film 4 and suppress the parent interaction between the iron-platinum alloy film 5 and the soft magnetic film 4, thereby avoiding noise. [Comparative Example 1] Compared to the ruthenium substrate washed with hydrofluoric acid in the specific example 1, a comparative example uses a ruthenium substrate having a Si〇2 (200 nm) film on the surface layer, which is the same as The coating conditions of the first embodiment are sequentially plated on the film (1):

Cu(l〇〇nm)/CoFe(60nm)/Pt(1〇nm)/FePt(5〇nm),並對該比較 例一施予真空熱處理。 參閱圖3’由該具體實施例一 [HF - cleaned Si (l〇〇)J 與該比較例一(Si/Si〇2)之矯頑磁場(He)對退火溫度關係圖 顯示’該具體實施例一的鐵鉑合金膜2之序化溫度大幅降低 至2 7 5 C ’此外’該具體實施例一在退火溫度3 〇 q t時所得 的He值最大(7000 〇e),其值遠大於該比較例一的He值(1950 Oe) 〇 另外’值得一提的是,由圖4 (即,He對退火時間關係 圖)顯示,複數使用相同於該具體實施例一的鍍膜條件所製 得的試片,分別在275t且持溫30分鐘至4小時的熱處理 後,所測得的He值最高亦可達6200(Oe)。 參閱圖5,是使用X光繞射(X-ray diffraction,簡稱 XRD)儀所測得的X光繞射圖。圖5中,曲線(a)為該比較例 一中以300°C退火30分鐘後的試片所測得;曲線(b)為該具 體實施例一在未經過熱處理的試片所測得;及曲線(c)為該 14 1291171 具體實施例一在經過30(TC退火30分鐘後的試片所測得。由 圖5中的曲線(b)、(c)可看出,該具體實施例一中的試片在 經過300。〇退火後,Cu(200)的繞射峰消失並出現Cu3Si(32〇) 的繞射峰,且FePt(l 11)的繞射峰往高角度偏移(如圖5中的 虛線所示),亦代表著鐵鉑合金序化相的生成。然而,由圖5 中的曲線(a)顯示,該比較例一中的試片並無此現象產生, 此結果與圖3中所測得的磁性質變化相吻合。由於該以〇2膜 阻礙位於其上方的銅底層之銅原子擴散至位於其下方的矽 基板以形成CusSi,因此在比較例一中製得的試片,沒有Cu3Si 的形成所以不能提供動態應力以促進該鐵鉑合金膜2產生相 變化。 蒼閱圖6並配合參閱圖2,由該具體實施例一之二次離 子質譜儀(SIMS)的成分縱深分布(depth pr〇f丨le)分析可 知,在鐵鉑合金(亦即,該鐵鉑合金膜2)中並未發現Si及 Cu的訊號,且於Co存在最多的地方,Si與Cu的訊號急遽 下降,顯示鈷鐵合金(亦即,該軟磁膜4)在3〇(rCT能夠有 效地阻止Si與Cu的擴散,因此鈷鐵合金除了可做為軟磁膜 之外,也具有做為擴散阻絕(diffusi〇n t)arrier)層的效用。 此結果也證明該鐵鉑合金膜2可在低溫條件完成序化結構相 的相變化,並非藉由銅原子擴散進入該鐵鉑合金膜2之中以 產生FePtCu三元合金所造成。 另外,為了測知CuaSi於形成過程中的應力變化情形, 在一經過氫氟酸清洗過的矽基板(〗〇〇μπ])上鍍製一銅膜(〗〇〇 nm)以構成一參考試片,再將該參考試片在真空中進行熱處 15 1291171 理(升溫速率15t:/min),並以高感度的雷射偏差系統(laser deilecti0n system)即時量測該參考試片在升溫過程中的曲 率變化情形。由圖7可知,溫度剛開始增加時該參考試片曲 / ; L漸羑小,主要原因在於銅膜與石夕基板兩者之間的熱膨脹 係數不同所造成;當溫度到達約270°C時,該參考試片曲率 急遽下降,但是到達約3〇(rc時,該參考試片曲率幾乎回到 =點。此參考試片曲率在約27(rc急遽下降與CusSi的形成 溫度一致。前揭形成CU3Si的溫度關係,M. Sett〇n、j. v⑽ der Slpiege卜及 Β· Rothman 等人於 Appl. Phys. Lett 57 (1 990) 357中已有相關資料的記載。 負曲率顯示由於CmSi傾向體積膨脹,致使矽基板阻止 八月?/脹而處於壓應力的狀態。然而,CusS i的體積膨脹卻使 在其上層的鐵鉑合金膜產生面内的拉伸應力因而加速鐵鉑 合金膜序化相的形成。值得注意的是,此應力僅存在於c⑴以 的化合反應過程中,當反應完成後此應力就完全釋放,因此 是一種動態應力。 麥閱圖8 ’是將該具體實施一具有不同Cu底層厚度的試 片進行30 0°C退火30分鐘後所測得的此值。由圖8中可看 出,當Cu底層厚度為15 nm時He值已有明顯的增加,並隨 著Cu底層厚度的增加He值也越高,在Cu底層厚度約5〇⑽ 時達到最大值,並且在Cu底層厚度大於5〇 nm之後,對於 He值的改變已無多大影響(均維持在最大值),此時Hc值已 達飽和值。 &lt;具體實施例二&gt; 16 1291171 處理前,該基材2與其上方的鐘膜結構為Si(OOl)基板/Fe (1〇〇 nm) / CoFe (60nm) / Pt (l〇nm) / FePt (5〇nm)。 參閱圖10,由使用相同於該具體實施例二之鍍膜設計且 真工熱處理日守間為3〇分鐘的一試片(曲線八〜)與該 具體實施例-(曲線Cu/Si)、三(曲線Fe/Si)及該比較例一 (曲線Cu/Si〇2)的石兹滯曲線比較圖(hysteresis 1〇〇p)顯示, 曲線Fe/Si所得到的此值雖然較該具體實施例一(亦即,曲 線Cu/Si)的He值小,但曲線Fe/Si所得到的Hc值亦可達 4600 〇e。此外,該具體實施例三在XRD分析(圖未示)中偵 測不到新的相形成,其主要原因在於典型FeSi形成的溫度 約咼於450°C,所以在300°C退火時,形成FeSi的應力不足 以促進鐵鉑合金完全形成序化相之變化,相對地,曲線 所得到的He值(4600 〇e)亦較曲線Cu/Si與曲線pt/Si的Hc 值小。值得注意的是’該試片pt/S i所測得的磁滯曲線為雙 彎曲線(double loop),顯示部分鐵鉑合金並未完全形成序 化相結構之相變。因此,施予於該具體實施例二之真空熱處 理的時間需增加至90分鐘才可得到Hc值為63〇〇(〇e)的單一 曲線(single loop,圖未示),由此可知PtSi的形成速率比 CihSi 低。 &lt;具體實施例四&gt; 再參閱圖2,本發明具有序化結構鐵鉑合金膜的磁記錄 媒體的一具體實施例四大致上是與該具體實施例一相同。其 不同處僅在於,該基材1是由玻璃所製成。 該具體實施例四的製作方法也與該具體實施例一大致 18 1291171 相同,其不同處僅在於該具體實施例四的前驅物更具有一形 成於該Cu底層下方的矽底層。因此,該具體實施例四於真 空熱處理前,該基材2與其上方的鍍膜結構為玻璃基板 /Si(100nm)/Cu(100nm)/CoFe(60nm)/Pt(10nm)/FePt(50nm)Cu (l 〇〇 nm) / CoFe (60 nm) / Pt (1 〇 nm) / FePt (5 〇 nm), and vacuum heat treatment was applied to the comparative example 1. Referring to FIG. 3 'the specific embodiment 1 [HF - cleaned Si (l〇〇) J and the comparative example 1 (Si / Si 〇 2) coercive magnetic field (He) versus annealing temperature diagram shows 'this implementation The order temperature of the iron-platinum alloy film 2 of Example 1 is greatly reduced to 2 7 5 C '. In addition, the specific value of He obtained at the annealing temperature of 3 〇qt is the largest (7000 〇e), and the value is much larger than the value. The He value of Comparative Example 1 (1950 Oe) 〇 additionally, it is worth mentioning that, by FIG. 4 (ie, the He vs. annealing time relationship diagram), the plural is obtained using the same coating conditions as in the specific example 1. The test piece, after heat treatment at 275 t and holding temperature for 30 minutes to 4 hours, may have a measured He value of up to 6200 (Oe). Referring to Figure 5, there is an X-ray diffraction pattern measured using an X-ray diffraction (XRD) instrument. In Fig. 5, the curve (a) is measured in the test piece after annealing at 300 ° C for 30 minutes in the comparative example 1, and the curve (b) is measured in the untested test piece of the specific example 1; And curve (c) is the 14 1291171. The specific embodiment 1 is measured after passing 30 (the sample after 30 minutes of TC annealing. As can be seen from the curves (b) and (c) in FIG. 5, the specific embodiment After passing through 300.〇 annealing, the diffraction peak of Cu(200) disappears and a diffraction peak of Cu3Si(32〇) appears, and the diffraction peak of FePt(l 11) shifts to a high angle ( As shown by the broken line in Fig. 5, it also represents the formation of the iron-platinum alloy sequence phase. However, as shown by the curve (a) in Fig. 5, the test piece in the first comparative example does not have this phenomenon. The results are in agreement with the change in magnetic properties measured in Fig. 3. Since the copper atom of the copper underlayer located above the 〇2 film is diffused to the underlying substrate located underneath to form CusSi, it is made in Comparative Example 1. The obtained test piece, without the formation of Cu3Si, could not provide dynamic stress to promote the phase change of the iron-platinum alloy film 2. 2, the depth pr〇f丨le analysis of the secondary ion mass spectrometer (SIMS) of the specific example 1 shows that in the iron-platinum alloy (that is, the iron-platinum alloy film 2) No signal of Si and Cu was found, and in the place where Co exists most, the signal of Si and Cu drops sharply, indicating that the cobalt-iron alloy (that is, the soft magnetic film 4) is at 3 〇 (rCT can effectively prevent the diffusion of Si and Cu). Therefore, in addition to being used as a soft magnetic film, the cobalt-iron alloy also has the effect of being a diffuse barrier layer. This result also proves that the iron-platinum alloy film 2 can be used to complete the structural phase at low temperature. The phase change is not caused by the diffusion of copper atoms into the iron-platinum alloy film 2 to produce the FePtCu ternary alloy. In addition, in order to detect the stress change of the CuaSi during the formation, it is washed by hydrofluoric acid. A copper film (〗 〖〇〇 )nm) is plated on the ruthenium substrate (〗 〖μπ) to form a reference test piece, and the reference test piece is subjected to heat in a vacuum 15 1291171 (heating rate 15t: / Min), with a high sensitivity laser deviation system (laser Deilecti0n system) Instantly measures the curvature change of the reference test piece during the heating process. It can be seen from Fig. 7 that the reference test piece is slightly smaller when the temperature starts to increase, and the main reason is that the copper film and the stone substrate are The difference in thermal expansion coefficient between the two is caused; when the temperature reaches about 270 ° C, the curvature of the reference test piece drops sharply, but when it reaches about 3 〇 (rc, the curvature of the reference test piece almost returns to the = point. The curvature of the test piece is about 27 (rc sharp drop is consistent with the formation temperature of CusSi. The temperature relationship of CU3Si is formed before, M. Sett〇n, j. v(10) der Slpiege and Β· Rothman et al. at Appl. Phys. Lett 57 (1 990) 357 has been recorded in the relevant materials. The negative curvature shows that the CmSi tends to expand in volume, causing the ruthenium substrate to prevent the August?/expansion from being in a state of compressive stress. However, the volume expansion of CusS i causes the in-plane tensile stress in the upper layer of the iron-platinum alloy film to accelerate the formation of the film phase of the iron-platinum alloy. It is worth noting that this stress exists only during the chemical reaction of c(1). When the reaction is completed, the stress is completely released, so it is a dynamic stress. Fig. 8' is a value measured after the test piece having a different thickness of the Cu underlayer was subjected to annealing at 30 ° C for 30 minutes. It can be seen from Fig. 8 that when the thickness of the Cu underlayer is 15 nm, the He value has increased significantly, and the He value increases with the thickness of the Cu underlayer. The maximum value is obtained when the thickness of the Cu underlayer is about 5 〇 (10). And after the Cu underlayer thickness is greater than 5 〇 nm, there is no significant influence on the change of He value (all maintained at the maximum value), at which time the Hc value has reached a saturation value. &lt;Specific Example 2&gt; 16 1291171 Before the treatment, the substrate 2 and the bell structure thereon are Si (OOl) substrate / Fe (1 〇〇 nm) / CoFe (60 nm) / Pt (l 〇 nm) / FePt (5〇nm). Referring to FIG. 10, a test piece (curve VIII) which is the same as the coating design of the second embodiment and which has a heat treatment time of 3 〇 is used, and the specific embodiment - (curve Cu/Si), three (curve Fe/Si) and the comparison of the shale curve of the first comparative example (curve Cu/Si〇2) (hysteresis 1〇〇p) show that the value obtained by the curve Fe/Si is higher than that of the specific embodiment. The He value of one (ie, curve Cu/Si) is small, but the Hc value obtained by the curve Fe/Si can also reach 4600 〇e. In addition, in the third embodiment, no new phase formation is detected in the XRD analysis (not shown). The main reason is that the temperature of typical FeSi formation is about 450 ° C, so when it is annealed at 300 ° C, it is formed. The stress of FeSi is not enough to promote the change of the fully formed phase of the iron-platinum alloy. In contrast, the He value (4600 〇e) obtained by the curve is smaller than the Hc value of the curve Cu/Si and the curve pt/Si. It is worth noting that the hysteresis curve measured by the test piece pt/S i is a double loop, indicating that part of the iron-platinum alloy does not completely form a phase change of the sequence structure. Therefore, the time for the vacuum heat treatment applied to the second embodiment is increased to 90 minutes to obtain a single curve (not shown) having an Hc value of 63 〇〇 (〇e), thereby knowing the PtSi. The formation rate is lower than CihSi. &lt;Detailed Embodiment 4&gt; Referring again to Fig. 2, a fourth embodiment of the magnetic recording medium having the ordered structure of the iron-platinum alloy film of the present invention is substantially the same as that of the specific embodiment 1. The only difference is that the substrate 1 is made of glass. The manufacturing method of the fourth embodiment is also the same as that of the first embodiment, substantially 18 1291171, except that the precursor of the fourth embodiment further has a bottom layer formed under the Cu underlayer. Therefore, in the fourth embodiment, before the vacuum heat treatment, the substrate 2 and the coating structure thereon are glass substrates /Si (100 nm) / Cu (100 nm) / CoFe (60 nm) / Pt (10 nm) / FePt (50 nm)

。值得一提的是,於該具體實施例四中,雖然該前驅物是由 兩層(Si/Cu)的層狀結構所構成,但亦可利用共濺鑛鐘法 (co-sputtering)形成一同時具有Si及Cu的底層以構成該 具體實施例四的前驅物。 參閱圖11,由該具體實施例四的退火前[曲線(b)]與退 火後[曲線(a)]的XRD圖發現,經過熱處理後cu(ni)的繞射 峰省失且FePt (111)的繞射峰往咼角度移動,並摘測到cU3si 的繞射峰。另外,量測其He值亦可達7900(〇e)。由此可知, 利用鍍製在玻璃基板上的銅、矽底層可以成功地降低形成鐵 鉑合金序化相結構的序化溫度。值得注意的是,雖然形成於 該具體實施例一、四中的銅底層分別具有(2〇〇)及(m)之不 同方向的織構(texture),卻均能在低溫形成序化相結構並 達到較^ hc #。由冑述可得m賴蟲晶成長 (epitaxial growth)或特殊的織構方向,只要能形成CmS·, 並藉由形A CmSi的化合反應過程中所構成的體積膨服,即 能促進鐵始合金在低溫進行相變化。所以將玻璃基板替換成 目前製作磁碟常用的鋁鎂基板,應能達到相同的效果。 在此,值得-提的是’雖然本發明的前驅物於真空埶處 理產生化合反應的過程中’可提供該勒合金膜2—動能的 面内拉伸應力’致使該_合金膜2可在3GQt的條件下士 19 1291171 圖4是該具體實施例一的He值對退火時間關係圖; 圖5是該具體實施例一在熱處理前後及該比較例一在熱 處理後之XRD比較圖譜; 圖6是該具體實施例一的SIMS成份縱深分布圖; 圖7是一參考試片之曲率與溫度關係圖,說明銅矽化物 形成過程中應力的改變; 圖8是該具體實施例一之不同銅底層厚度變化與矯頑磁 場值的相對關係圖; 圖9是本發明具有序化結構鐵翻合金膜的磁記錄媒體之 一具體實施例二於退火前後的XRD圖; 圖10是一磁滯曲線比較圖·,及 圖11是本發明具有序化結構鐵鉑合金膜的磁記錄媒體 之一具體實施例四於退火前後的XRD圖。 21 1291171 【主要元件符號說明】 1 ..... 基材 2 ..... 鐵鉑合金膜 3 · · · · · 中間膜 4 ..... 軟磁膜 5 ..... 金屬石夕化物膜 22. It is worth mentioning that in the fourth embodiment, although the precursor is composed of a two-layer (Si/Cu) layered structure, a co-sputtering method can also be used to form a At the same time, a bottom layer of Si and Cu is formed to constitute the precursor of the fourth embodiment. Referring to FIG. 11, it is found from the XRD patterns of the pre-annealing [curve (b)] and the annealing [curve (a)] of the fourth embodiment that the diffraction peak of cu(ni) is lost after heat treatment and FePt (111) The diffraction peak moves toward the 咼 angle and the diffraction peak of cU3si is measured. In addition, the measured He value can also reach 7900 (〇e). From this, it can be seen that the order temperature of the formation of the ordered structure of the iron-platinum alloy can be successfully reduced by using the copper and tantalum underlayers plated on the glass substrate. It should be noted that although the copper underlayers formed in the first embodiment and the fourth embodiment have textures in different directions of (2〇〇) and (m), respectively, the sequence structure can be formed at a low temperature. And reach ^ hc #. From the above description, the epitaxial growth or the special texture direction can be obtained, as long as CmS· can be formed, and the volume formed by the chemical reaction of the form A CmSi can be promoted. The alloy undergoes a phase change at low temperatures. Therefore, replacing the glass substrate with the aluminum-magnesium substrate commonly used in the current production of magnetic disks should achieve the same effect. Here, it is worth mentioning that although the precursor of the present invention can provide the in-plane tensile stress of the kinetic energy during the vacuum hydrazine treatment to produce a compounding reaction, the _ alloy film 2 can be 3GQt condition Corporal 19 1291171 Figure 4 is a comparison of the He value versus annealing time for the specific example 1; Figure 5 is a comparison of the XRD of the specific example 1 before and after the heat treatment and after the heat treatment of the comparative example 1; FIG. 7 is a graph showing the relationship between the curvature and the temperature of a reference test piece, showing the change of stress during the formation of the copper telluride; FIG. 8 is the thickness of the different copper underlayer of the specific embodiment 1. Figure 9 is a diagram showing the relationship between the change and the value of the coercive magnetic field; Fig. 9 is a view showing an XRD pattern of the magnetic recording medium having the ordered structure of the iron-alloyed film of the present invention before and after annealing; Fig. 11 is an XRD pattern of a fourth embodiment of the magnetic recording medium having the ordered structure of the iron-platinum alloy film of the present invention before and after annealing. 21 1291171 [Description of main component symbols] 1 ..... Substrate 2 ..... Iron-platinum alloy film 3 · · · · · Intermediate film 4 ..... Soft magnetic film 5 .....夕化膜22

Claims (1)

號專利發明申請案之申請專利範圍替換頁(95年12月修正)十、申請專利範圍: 19; —Ί 1 · 一種具有序化結構鐵鉑合金膜的磁記錄媒體,包含 一基材; 一形成於該基材上並具有序化結構的鐵鉑合金膜; 夾置於该基材及該鐵翻合金膜之間的中間膜; 一夾置於該基材及該中間膜之間的軟磁膜;及 一夾置於該基材及該軟磁膜之間且含一以的金屬矽 化物膜,該Μ是選自於下列所構成之群組:銅、鉑、鐵 及此等之一組合; 其中,在該基材上依序形成一前驅物、該軟磁膜、 該中間膜及一鐵鉑合金,最後,對該基材、該前驅物、 忒軟磁膜、該中間膜及該鐵鉑合金施予一熱處理以構成 該金屬矽化物膜,同時,並致使該鐵鉑合金轉變成該具 有序化結構的鐵鉑合金膜。 2.依據申睛專利範圍第1項所述之具有序化結構鐵鉑合金Patent Application Serial No. (Revised in December 1995) X. Patent Application Range: 19; —Ί 1 · A magnetic recording medium having a sequenced structure of an iron-platinum alloy film, comprising a substrate; An iron-platinum alloy film formed on the substrate and having a sequential structure; an intermediate film sandwiched between the substrate and the iron-over alloy film; a soft magnetic layer sandwiched between the substrate and the intermediate film a film; and a metal halide film interposed between the substrate and the soft magnetic film, the germanium is selected from the group consisting of copper, platinum, iron, and a combination thereof Forming a precursor, the soft magnetic film, the intermediate film and an iron-platinum alloy on the substrate, and finally, the substrate, the precursor, the soft magnetic film, the intermediate film and the iron-platinum The alloy is subjected to a heat treatment to constitute the metal halide film, and at the same time, the iron-platinum alloy is converted into the iron-platinum alloy film having the ordered structure. 2. The ordered structure of iron-platinum alloy according to item 1 of the scope of the patent application 膜的磁記錄媒體,其中,該基材是由石夕所製成,且該前 驅物具有一含該Μ之底層。 I依據申料利範圍帛2㉟戶斤述之具有序化結構鐵舶合金 膜的磁記錄媒體’其中,該Μ是銅。 4.依據申請專利範圍第2 膜的磁記錄媒體,其中 5·依據申請專利範圍第2 膜的磁記錄媒體,其中 6·依據申請專利範圍第2 項所述之具有序化結構鐵鉑合金 5亥Μ是始。 項所述之具有序化結構鐵鉑合金 ’該Μ是鐵。 項所述之具有序化結構鐵鉑合金 23 一 I汾沖对8號專利發明申請案之申請專利範圍替換頁(95年12 正i 一一^…— :丨年 _ 11:.ί9 : -膜的磁記錄媒體’其中,該含該M 1 5nm 〇 7·依據申請專利範圍第6項所述之具有序化結構鐵鉑合金 膜的磁記錄媒體,其中,該含該Μ之底層的厚度是介於 15 nm 至 100 nm 之間。 8·依據申料利範圍帛丨帛戶斤述之具有序化結構鐵銘合金 膜的磁記錄媒體,其中,該基材是由玻璃或鋁鎂合金所 製成,且該前驅物具有一矽底層及一含該Μ之底層。 9. 依據申言素專利範圍f 8項所述之具有序化結構鐵^合金 膜的磁記錄媒體,其中,該Μ是銅。 ” 10. 依據申請專利範圍第8項所述之具有序化結構鐵鉑合金 膜的磁S己錄媒體,其中,該矽底層的厚度至少為15 η/ 該含該Μ之底層的厚度至少為15 nm。 η.依射請專利範圍第1G項所述之具有序化結構鐵麵 膜的磁記錄媒體,其中,該石夕底層的厚度是介於ΐ5σ⑽ 至100 nm之間,該含該Μ之底層的厚度是介於15 n m 100 nm 之間。 t 12. 依據中請專利制第丨述之具有序化結構鐵麵合金 膜的磁記錄媒體,其中,該熱處理的溫度是介於25〇 450°C之間。 至 13. 依據中請專利範圍第12項所述之具有序化結構鐵銘合全 膜的磁舌己錄媒體,其中,該熱處理的溫度是介於 350°C之間。 C至 1 4.依據申請專利範圍第1頊裕、+、+目士 &amp; 固乐i項所述之具有序化結構鐵鉑合金 24 利範圍替換頁(95年12^修革) Ι29)141ι7518號專利發明中請案之中請專 該熱處理的時間是介於25分鐘 項所述之具有序化結構鐵鉑合金 該熱處理的時間是介於25分鐘 膜的磁記錄媒體,其中 至3 0 0分鐘之間。 14 中 1 5 ·依據申請專利範圍第 膜的磁記錄媒體,其 至6 0分鐘之間。 所述之具有序化結構鐵鉑合金 該軟磁膜是由至少一選自於下 所構成:鈷鐵、鈷鐵氮、鈷锆 〇 所述之具有序化結構鐵鉑合金 該軟磁膜是由一鈷鐵合金層所A magnetic recording medium of a film, wherein the substrate is made of Shi Xi, and the precursor has a bottom layer containing the crucible. I. According to the scope of the application, the magnetic recording medium of the ordered structure of the iron alloy film is 235. 4. A magnetic recording medium according to the second film of the patent application scope, wherein: 5. The magnetic recording medium according to the second film of the patent application scope, wherein the metallographic alloy 5 having the ordered structure according to the second application of the patent application scope 5 Hai Yu is the beginning. The ordered structure of the iron-platinum alloy described in the section is the iron. The ordered structure of the iron-platinum alloy 23-I 汾 对 对 8 8 8 8 8 8 8 8 8 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 The magnetic recording medium of the film, wherein the magnetic recording medium having the ordered structure of the iron-platinum alloy film according to claim 6 of the invention, wherein the thickness of the underlayer containing the crucible It is between 15 nm and 100 nm. 8. According to the scope of the application, the magnetic recording medium of the ordered structure of the iron alloy film, which is made of glass or aluminum-magnesium alloy. And the precursor has a bottom layer and a bottom layer containing the tantalum. 9. The magnetic recording medium having the ordered structure iron alloy film according to claim 8 of the patent application, wherein Μ is copper. ” 10. The magnetic S recording medium having the ordered structure of the iron-platinum alloy film according to claim 8 wherein the thickness of the bottom layer of the crucible is at least 15 η / the bottom layer containing the crucible The thickness is at least 15 nm. η. According to the patent, the ordered structure described in the scope of the patent scope 1G The magnetic recording medium of the iron mask, wherein the thickness of the bottom layer of the diarrhea is between ΐ5σ(10) and 100 nm, and the thickness of the bottom layer containing the enamel is between 15 nm and 100 nm. The magnetic recording medium having the ordered structure iron-faced alloy film described in the patent system, wherein the temperature of the heat treatment is between 25 and 450 ° C. To 13. According to the scope of claim 12 A magnetic tongue-recorded medium having a sequenced structure of iron-integrated film, wherein the temperature of the heat treatment is between 350 ° C. C to 1 4. According to the scope of the patent application, the first, Yu, +, + &amp; The structure of the ordered structure of the iron-platinum alloy 24, the replacement of the order of the article (95 years 12^ leather) Ι29) 141ι7518 patent invention in the case of the request for the heat treatment time is between 25 The ordered structure of the iron-platinum alloy described in the minute term is heat-treated for a period of 25 minutes between the magnetic recording media of the film, wherein it is between 300 minutes. 14 of the 1 5 · Magnetic recording of the film according to the scope of the patent application Media, which is between 60 minutes. The ordered structure of iron The soft magnetic alloy film is composed of at least one selected from: iron, cobalt, cobalt-iron-nitrogen, zirconium cobalt square of the sequence structure having a soft magnetic iron-platinum alloy film is formed of a cobalt-iron alloy layer 1 6 ·依據申請專利範圍第1項 膜的磁記錄媒體,其中, 列所構成之群組的合金層 鈕、鐵鈕碳、鎳鐵及鎳磷 1 7 ·依據申請專利範圍第1 6項 膜的磁記錄媒體,其中, 構成。 18·依據巾專利範圍第丨項所述之具有序化結構鐵舶合金 膜的磁記錄媒體,其中,該中間膜是由-金屬材料或一 氧化物材料所製成;該金屬材料是選自於下列所構成之 群、、且鉑銀、鋼、鉻、釕、鉬、猛、鋁及此等之一組 口,該氧化物材料是選自於下列所構成之群組:氧化鎂 及氧化紹。 ' 19·依據申請專利範圍第18項所述之具有序化結構鐵鉑合金 膜的磁記錄媒體,其中,該中間膜是由一金屬材料所製 成,該金屬材料是鉑。 2 0 · —種製作磁記錄媒體的方法,包含下列步驟: (a) 提供一基材·, (b) 於該基材上形成一前驅物; 25 Ι^^Ι4!·1^8號專利發明申請案之申請專利範圍替換頁(95年12月修正) (C)於該前驅物上形成一軟磁膜; (d) 於該軟磁膜上形成一中間膜; (e) 於該中間膜上形成一鐵銘合金; (〇最後,施予一熱處理以使該前驅物形成一含一M的金 屬石夕化物膜,同時,並致使該鐵鉑合金轉變成一序化 結構的鐵翻合金膜,其中該Μ是選自於下列所構成之 群組:銅、翻、鐵及此等之一組合。 21.依據申請專利範圍第2〇項所述之製作磁記錄媒體的方 法,其中,該步驟(a)的基材是由矽所製成,且該步驟 (b )的剷驅物是在該基材上形成一含該μ之底層。 22·依據申請專利範圍第21項所述之製作磁記錄媒體的方 法’其中’該Μ是銅。 2 3 ·依據申請專利範圍第21項所述之製作磁記錄媒體的方 法,其中,該Μ是鉑。 依據申請專利範圍第21項所述之製作磁記錄媒體的方 | 法,其中,該Μ是鐵。 25·依據申請專利範圍第21項所述之製作磁記錄媒體的方 法’其中,該含該Μ之底層的厚度至少為1 5nm。 26·依據申請專利範圍第25項所述之製作磁記錄媒體的方 法’其中,該含該Μ之底層的厚度是介於15 nm至1〇〇 nm 之間。 27·依據申請專利範圍第20項所述之製作磁記錄媒體的方 法’其中,該步驟(a)的基材是由玻璃或鋁鎂合金所製 成’且該步驟(b)的前驅物是在該基材上形成一石夕底層及 26 號專利發明申請案之申請專利範圍替換頁(95年12月修正) • 一含該Μ之底層。 28.依據申請專利範圍第27項所述之製作磁記錄媒體的方 法,其中,該Μ是銅。 2 9 ·依據申請專利範圍第2 7項所述之製作磁記錄媒體的方 法’其中,該矽底層的厚度至少為15 nm,該含該Μ之 底層的厚度至少為15 nm。 3〇·依據申請專利範圍第29項所述之製作磁記錄媒體的方 法’其中’該石夕底層的厚度是介於15 nm至100 nm之間, 該含該Μ之底層的厚度是介15 nm至1〇〇 nm之間。 31 ·依據申請專利範圍第2 0項所述之製作磁記錄媒體的方 法,其中,該步驟(f)的熱處理之溫度是介於250 °C至450 °C之間。 3 2 ·依據申請專利範圍第31項所述之製作磁記錄媒體的方 法’其中,該步驟(f)的熱處理之溫度是介於275°C至350 °C之間。1 6 · A magnetic recording medium according to the film of the first application of the patent scope, wherein the alloy layer button, the iron button carbon, the nickel iron and the nickel phosphorus of the group formed by the column are according to the film of the 16th film of the patent application scope Magnetic recording medium, in which, constitutes. The magnetic recording medium having the ordered structure iron alloy film according to the invention of the invention, wherein the intermediate film is made of a metal material or an oxide material; the metal material is selected from the group consisting of: In the group consisting of platinum silver, steel, chromium, niobium, molybdenum, lanthanum, aluminum, and the like, the oxide material is selected from the group consisting of magnesium oxide and oxidation. Shao. The magnetic recording medium having the ordered structure iron-platinum alloy film according to claim 18, wherein the intermediate film is made of a metal material which is platinum. 20 0 — A method of making a magnetic recording medium comprising the steps of: (a) providing a substrate, (b) forming a precursor on the substrate; 25 Ι^^Ι4!·1^8 patent (C) forming a soft magnetic film on the precursor; (d) forming an intermediate film on the soft magnetic film; (e) forming an intermediate film on the soft film; Forming a ferrous alloy; (finally, applying a heat treatment to form the precursor into a metal-lithium film containing one M, and at the same time causing the iron-platinum alloy to be converted into a ferroalloy film of a sequential structure, Wherein the crucible is selected from the group consisting of copper, tumbling, iron, and the like. 21. A method of making a magnetic recording medium according to the scope of claim 2, wherein the step The substrate of (a) is made of ruthenium, and the shovel of the step (b) is formed on the substrate to form a bottom layer containing the μ. 22. The production according to claim 21 The method of magnetic recording media 'where' the Μ is copper. 2 3 · Manufactured according to the scope of claim 21 A method of recording a medium, wherein the crucible is platinum. The method of producing a magnetic recording medium according to claim 21, wherein the crucible is iron. 25 according to claim 21 A method of producing a magnetic recording medium, wherein the thickness of the underlayer containing the crucible is at least 15 nm. 26. The method for producing a magnetic recording medium according to claim 25, wherein the bottom layer of the crucible is The thickness is between 15 nm and 1 〇〇 nm. 27. The method for producing a magnetic recording medium according to claim 20, wherein the substrate of the step (a) is made of glass or aluminum-magnesium alloy. The precursor of the step (b) is formed on the substrate and the replacement of the patent application scope of the patent application No. 26 (revised in December 1995) 28. The method of producing a magnetic recording medium according to claim 27, wherein the crucible is copper. [9] The method for producing a magnetic recording medium according to the scope of claim 27, wherein The thickness of the bottom layer of the crucible to The thickness of the underlayer containing the germanium is at least 15 nm. The method for producing a magnetic recording medium according to claim 29 of the patent application 'where the thickness of the bottom layer is 15 nm Between 100 nm, the thickness of the underlayer containing the germanium is between 15 nm and 1 〇〇 nm. 31. The method for producing a magnetic recording medium according to claim 20, wherein the step The heat treatment temperature of (f) is between 250 ° C and 450 ° C. 3 2 · The method of producing a magnetic recording medium according to claim 31 of the patent application 'wherein the heat treatment of the step (f) The temperature is between 275 ° C and 350 ° C. 3 3 ·依據申請專利範圍第2 〇項所述之製作磁記錄媒體的方 法,其中,該步驟(f)的熱處理之時間是介於25分鐘至 3〇〇分鐘之間。 3 4.依據申請專利範圍第3 3項所述之製作磁記錄媒體的方 法’其中,該步驟(f)的熱處理之時間是介於25分鐘至 6 〇分鐘之間。 3 5 ·依據申請專利範圍第2 0項所述之製作磁記錄媒體的方 法,其中,該步驟(c )的軟磁膜是由至少一選自於下列所 構成之群組的合金層所構成:始鐵、結鐵氮、始錯組、 27 I綱祕8 號專利發明申請案之申請專利範圍替換頁(95 年12月修正) { 鐵鈕碳、鎳鐵及鎳磷。 i_ — 36. 依據申請專利範圍第35項所述之製作磁記錄 法,其中,該步驟(C)的軟磁膜是由一钻鐵合金層所構成 37. 依據申請專利範圍第20項所述之製作磁記錄媒體的方 法,其中’該步驟⑷的中間膜是由一金屬材料 物材料所製成;該金屬材料是選自於下列所構成之群 組.麵、銀、鋼、鉻、釕、銷、猛、銘及此等之一也人. =化物材料是選自於下列所構成之群組:氧化鎂心 3 8 ·依據申請直》 彳範圍第3 7項所述之製作磁記錄媒體的方 ,該步驟(d)的中間膜是由一金屬材料所製成, 該金屬材料是鉑。3 3 . The method of producing a magnetic recording medium according to the second aspect of the patent application, wherein the heat treatment time of the step (f) is between 25 minutes and 3 minutes. 3. The method of producing a magnetic recording medium according to claim 3, wherein the heat treatment time of the step (f) is between 25 minutes and 6 minutes. The method of producing a magnetic recording medium according to claim 20, wherein the soft magnetic film of the step (c) is composed of at least one alloy layer selected from the group consisting of: The replacement scope of the patent application scope of the patent application for the invention of the iron, the iron-bearing nitrogen, the initial fault group, and the 27 I invention No. 8 (revised in December 1995) { iron button carbon, nickel iron and nickel phosphorus. I_ — 36. The magnetic recording method according to claim 35, wherein the soft magnetic film of the step (C) is composed of a layer of a drilled iron alloy. 37. The production according to claim 20 A method of magnetic recording medium, wherein the intermediate film of the step (4) is made of a metal material; the metal material is selected from the group consisting of: face, silver, steel, chrome, tantalum, pin. , Meng, Ming and one of them are also. = The material is selected from the group consisting of: Magnesium oxide 3 8 · According to the application of the 》 第 第 第 第 第 制作 制作 制作 制作The intermediate film of the step (d) is made of a metal material which is platinum. 28 1291171 第094114508號發明專利申請案之修正頁(94年5月修正) 十一、圖式:28 1291171 Amendment page for Invention Patent Application No. 094114508 (amended in May 1994) XI. Schema: (a)非序化γ相 a=3.816A _ :鉑 〇:鐵 (b)序化γ2 a=3.853A c=3.713A :鉑或鐵(a) Unordered γ phase a=3.816A _ : Platinum 〇: Iron (b) Sequential γ2 a=3.853A c=3.713A: Platinum or iron 2 1291171 第094114508號發明專利申請案之修正頁(94年5月修正) (90) (£)嗨驽幣繫2 1291171 Amendment Page for Invention Patent Application No. 094114508 (Amended in May 1994) (90) (£) 3 *73 *7 0 30 60 90 120 150 180 210 240 270 退火時間(AnnealingTime) (min) 4 1291171 ·η·Β) (☆isuajcl)^娥 第094114508號發明專利申請案之修正頁(94年5月修正) - • Si(002)J ★ FePt(111) Cu Si (320) L V ▼ CoFe (200) w :(c) Pt (111) ★ j k Cu (200) ▼ :(b) • ^ l - J '(a) • K &gt; ★ -Cu(111) V A 1 I 1 I i 1 i 1 1 1 1 ' 1 ' 25 30 35 40 45 50 55 60 2Θ (degree) 圖5 ·I*·*·*·· Ι·Ξ I 60(^40 30(^10 (SJUnouUOIhspu8as)lf^^#^-:r0 30 60 90 120 150 180 210 240 270 Annealing Time (AnnealingTime) (min) 4 1291171 ·η·Β) (☆isuajcl)^娥第094114508 Revision of the invention patent application (amended in May 1994) - • Si(002)J ★ FePt(111) Cu Si (320) LV ▼ CoFe (200) w :(c) Pt (111) ★ jk Cu (200) ▼ :(b) • ^ l - J '(a) • K &gt; ★ -Cu(111) VA 1 I 1 I i 1 i 1 1 1 1 ' 1 ' 25 30 35 40 45 50 55 60 2Θ (degree) Figure 5 ·I*·*·*·· Ι· Ξ I 60(^40 30(^10 (SJUnouUOIhspu8as)lf^^#^-:r )200 400 600 800 1000 1200 1400 1600 1800 滅射時間(SputteringTime) (sec)) 200 400 600 800 1000 1200 1400 1600 1800 Shotout Time (SputteringTime) (sec) 1291171 第094114508號發明專利申請案之修正頁(94年5月修正) 94 5^31 0.10· (”ul) (aJSBAJnu)跻电1291171 Amendment page of Invention Patent Application No. 094114508 (amended in May 1994) 94 5^31 0.10· ("ul) (aJSBAJnu) -0.20- 300 50 100 150 200 250 溫度(Temperature) (°C) 圖7-0.20- 300 50 100 150 200 250 Temperature (Temperature) (°C) Figure 7 跡勝瓣5000-娜祕 (00) (OH)胜胜瓣5000-Na Mi (00) (OH) I 1 I 1 I 1 I f I 0 20 40 60 80 銅膜厚度(Cu Thickness ) (nm)I 1 I 1 I 1 I f I 0 20 40 60 80 Copper film thickness (Cu Thickness ) (nm) 100 1000 1291171 第094114508號發明專利申請案之修正頁(94年5月修正) (·η·Β) sl)^^100 1000 1291171 Amendment page of invention patent application No. 094114508 (amended in May 1994) (·η·Β) sl)^^ 2 0 (degree) 1291171 ·η·Β) (bJSUiiuhHHSX )铡緦匿Θ 第094114508號發明專利申請案之修正頁(94年5月修正)2 0 (degree) 1291171 · η·Β) (bJSUiiuhHHSX) 铡缌 Θ Amendment page of the invention patent application No. 094114508 (amended in May 1994) 外加電場(Applied Field )( Oe ) 圖10 1291171 第094114508號發明專利申請案之修正頁(94年5月修正)Applied Field (Oe) Figure 10 1291171 Amendment Page for Invention Patent Application No. 094114508 (Amended in May 1994) |FeR (111)Cu3Si (320) CoFe(111)||FeR (111)Cu3Si (320) CoFe(111)| 2Θ (degree) 圖112Θ (degree) Figure 11
TW94114508A 2005-05-05 2005-05-05 Magnetic memory media with ordered structure FePt alloy film and manufacturing method therefor TWI291171B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94114508A TWI291171B (en) 2005-05-05 2005-05-05 Magnetic memory media with ordered structure FePt alloy film and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94114508A TWI291171B (en) 2005-05-05 2005-05-05 Magnetic memory media with ordered structure FePt alloy film and manufacturing method therefor

Publications (2)

Publication Number Publication Date
TW200639818A TW200639818A (en) 2006-11-16
TWI291171B true TWI291171B (en) 2007-12-11

Family

ID=39460452

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94114508A TWI291171B (en) 2005-05-05 2005-05-05 Magnetic memory media with ordered structure FePt alloy film and manufacturing method therefor

Country Status (1)

Country Link
TW (1) TWI291171B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI384503B (en) * 2009-01-07 2013-02-01 Nat Univ Tsing Hua Magnetic material with ordered phase of fept alloyed nano-particles and the method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI384503B (en) * 2009-01-07 2013-02-01 Nat Univ Tsing Hua Magnetic material with ordered phase of fept alloyed nano-particles and the method for producing the same

Also Published As

Publication number Publication date
TW200639818A (en) 2006-11-16

Similar Documents

Publication Publication Date Title
JP4812254B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4169663B2 (en) Perpendicular magnetic recording medium
US20040191578A1 (en) Method of fabricating L10 ordered fePt or FePtX thin film with (001) orientation
US9899050B2 (en) Multiple layer FePt structure
JPWO2006003922A1 (en) Perpendicular magnetic recording disk and manufacturing method thereof
JP2008169483A (en) RHENIUM(Re)-BASED ALLOY USABLE AS DEPOSITION TARGET FOR FORMING INTERLAYER IN GRANULAR PERPENDICULAR MAGNETIC RECORDING MEDIA AND MEDIA UTILIZING ALLOY
JP2007257679A (en) Magnetic recording medium, its manufacturing method, and magnetic storage device
JP3022909B2 (en) Magnetic recording medium and method of manufacturing the same
JP4247575B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP4211436B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP4552668B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP5325945B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
TWI291171B (en) Magnetic memory media with ordered structure FePt alloy film and manufacturing method therefor
JP2005251264A (en) Vertical magnetic recording medium and its manufacturing method
TW200917240A (en) Perpendicular magnetic recording film and method of fabricating the same
JP5874872B1 (en) Method for manufacturing perpendicular magnetic recording medium
JP6416041B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus
JP4491768B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP5981564B2 (en) Magnetic recording medium and method for manufacturing the same
US20030228495A1 (en) Magnetic recording medium and manufacturing method thereof
JP4626861B2 (en) Perpendicular magnetic recording medium
TWI274788B (en) Method for fabricating L10 phase alloy thin film
JP4072324B2 (en) Magnetic recording medium and method for manufacturing the same
JP2005092918A (en) Perpendicular magnetic recording medium having amorphous soft magnetic film
TWI304596B (en)

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees