TWI289661B - Method for the surface tension measurement of melting glasses at high temperature - Google Patents

Method for the surface tension measurement of melting glasses at high temperature Download PDF

Info

Publication number
TWI289661B
TWI289661B TW95101782A TW95101782A TWI289661B TW I289661 B TWI289661 B TW I289661B TW 95101782 A TW95101782 A TW 95101782A TW 95101782 A TW95101782 A TW 95101782A TW I289661 B TWI289661 B TW I289661B
Authority
TW
Taiwan
Prior art keywords
glass
molten
droplet
temperature
surface tension
Prior art date
Application number
TW95101782A
Other languages
Chinese (zh)
Other versions
TW200728703A (en
Inventor
Shi-Yow Lin
Yao-Yuan Chang
Ming-Ya Wu
Hsien-Yin Tsai
Original Assignee
Picvue Optoelectronics Interna
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Picvue Optoelectronics Interna filed Critical Picvue Optoelectronics Interna
Priority to TW95101782A priority Critical patent/TWI289661B/en
Publication of TW200728703A publication Critical patent/TW200728703A/en
Application granted granted Critical
Publication of TWI289661B publication Critical patent/TWI289661B/en

Links

Abstract

This invention is a method for the surface tension measurement of melting glasses at high temperature, especially is a method of creating a silhouette of a pendant drop of melting glass, of video-imaging the silhouette, of digitizing the image, of best-fitting the edge-coordinates with theoretical Young-Laplace equation in order to result an accurate surface tension of the melting glasses at high temperature.

Description

1289661 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種測量高溫熔融狀態之玻璃液滴之表 、 面張力的方法,尤指經由懸垂液滴影像形狀與由Y〇ung Laplace方程式計算而得的液滴形狀,經由最佳比對而得高 溫熔融玻璃液滴之表面張力值的方法。 【先前技術】 產品品質有相當大的影響。因溫度改變而產生的密度和表 面張力變化,會關係著玻璃膏池内熔融玻璃的流動,同時 也關係著熔融玻璃液的均勻度、精細度、起泡和破裂。 為了提供高溫熔融玻璃液濟之基本界面物性, 探究動態界面特性、濕潤行為探究,及高溫熔融玻 璃在不同的氣體環境,例如Αγ、Ή2、N2、乾燥空氣與 濕空氣下,表面張力的變化,高溫熔融玻璃之表面 張力測量扮演著重要的角色。 目前被使用來量測高溫熔融玻璃之奉面張力量 測方法有滴重法(drop weight)、最大拉伸法(maximum pull » ^ ^ Μ Ψ >ίτ dipping cylinder) ^ ¾ Λ Μ ^ (maximum bubble pressure)、和固著液滴法(sessile drop)、 及纖維拉伸法(fiber elongation)。[參見 A. Kucuk,A.G. Clare,L.E Jones,“An Estimation of the Surface Tension for1289661 IX. Description of the Invention: [Technical Field] The present invention relates to a method for measuring the surface and surface tension of a glass droplet in a molten state at a high temperature, in particular, by calculating the shape of a droplet image and the equation by the Y〇ung Laplace equation. The obtained droplet shape is obtained by optimally aligning the surface tension value of the molten glass droplet at a high temperature. [Prior Art] Product quality has a considerable impact. The change in density and surface tension due to temperature changes is related to the flow of molten glass in the glass paste bath, as well as the uniformity, fineness, blistering and cracking of the molten glass. In order to provide the basic interface properties of high-temperature molten glass liquid, explore the dynamic interface characteristics, wet behavior investigation, and the change of surface tension of high-temperature molten glass in different gas environments, such as Αγ, Ή2, N2, dry air and humid air, Surface tension measurement of high temperature molten glass plays an important role. The method for measuring the tensile strength of the high-temperature molten glass currently used is drop weight and maximum pull method (maximum pull » ^ ^ Μ Ψ > ίτ dipping cylinder) ^ 3⁄4 Λ Μ ^ (maximum Bubble pressure), and sessile drop, and fiber elongation. [See A. Kucuk, A.G. Clare, L.E Jones, "An Estimation of the Surface Tension for

Silicate Glass Melts at 1400 〇C Using Statistical Analysis,” Glass Technol·,40(5),149-53 (1999)·]。 1289661 /然而’目前已知量測高温熔融玻璃之方法準確性 ,低’或僅能量测較低之表Φ張力值,於測量應用 上受到限制。 &因此’本發明的主要目的在於提供一種測量高溫熔融 狀態之玻璃液滴之表面張力的方法,以解決上述問題。 【發明内容】 表面張力的方法,發展一套可適用於熔融玻璃於 间狐下之表面張力的測量系統,除了所量測高溫熔 融玻璃較準確,並且可量測較高範圍之表面張力值 之外’其測量溫度更可高達至165〇 〇c。 f發明技術乃利用數位影像擷取之方式,藉由擷取懸 垂熔融玻璃液滴之輪廓曲線侧影,來測得高溫熔融玻璃之 表面張力,包含其下步驟: ⑴在咼溫時可藉由自行設計的白金_铑針頭得到一穩 定的懸掛熔融玻璃液滴卜 (2)拍攝其熔融玻璃懸垂液滴的影像及數位化該影像 以獲得該懸垂液滴之邊界上複數點的座標位置;w〜 ⑶計算出該熔融玻璃懸垂液滴邊界的理論曲線,包含 ⑻設定X〇,Z(),R〇及β值,其中Zq分別為兮 懸垂液滴頂點(apex)的水平及垂直座標位置,R❹為^ 液滴頂點的曲率半徑,及β為毛細常數,p = 1289661 △p為高溫熔融玻瑜與空氣兩者間之密度差值,g為重 力加速度,γ為熔融玻璃液滴表面張力;及 (b)積分下列微分方程式 cos诊 dx ds dz .. —=sm φ ds άφ — 2 ·' Apg二 ύηφ ds R γ xSilicate Glass Melts at 1400 〇C Using Statistical Analysis,” Glass Technol·, 40(5), 149-53 (1999)·] 1289661 / However, the current method for measuring high-temperature molten glass is known to be accurate, low' or Only the energy measurement lower Φ tension value is limited in measurement applications. Therefore, the main object of the present invention is to provide a method for measuring the surface tension of glass droplets in a high temperature molten state to solve the above problems. SUMMARY OF THE INVENTION The method of surface tension develops a measuring system that can be applied to the surface tension of molten glass under a fox, except that the measured high temperature molten glass is more accurate and can measure a higher range of surface tension values. 'The measurement temperature can be as high as 165〇〇c. f The invention uses the method of digital image capture to measure the surface tension of high-temperature molten glass by capturing the profile of the suspended molten glass droplets. The following steps: (1) A stable suspension of molten glass droplets can be obtained by self-designed platinum _ 铑 needle at the temperature of 咼 (2) filming its molten glass drape The image of the drop and digitize the image to obtain the coordinate position of the complex point on the boundary of the overhanging droplet; w~ (3) Calculate the theoretical curve of the droplet boundary of the molten glass, including (8) setting X〇, Z(), R 〇 and β value, where Zq is the horizontal and vertical coordinate position of the apex apex (apex), R ❹ is the radius of curvature of the apex of the droplet, and β is the capillary constant, p = 1289661 △p is the high temperature melting glass The difference in density between the air and the air, g is the gravitational acceleration, γ is the surface tension of the molten glass droplets; and (b) integrates the following differential equation cos diagnosis dx ds dz .. —=sm φ ds άφ — 2 ·' Apg二ύηφ ds R γ x

邊界條件:x’⑼=z’⑼= s(0)=0 其中 x’ = x/R〇,z’ = z/R〇,s,= s/R〇,其中乂及2 分別為邊界點水平及垂直方向的座標位置,s為距離 該液滴頂點之孤長,卢是旋轉角度(turningangle),R〇 的定義同上; (4) 計算步驟(2)之複數點的座標位置與步驟(3)理 論曲線的最近距離;及 (5) 重複步驟⑶及⑷直到該最近距離的平方和小 於一想要的值,再以步驟(3)設定的R〇及β算出γ = △PgR〇2, 因此,藉由本發明測量高溫熔融狀態之玻璃液滴之表 面張力的方法,係發展出一套可適用於熔融玻璃於高 溫下之表面張力的測量系統,利用獨特白金-铑針頭的 設計,更配合T字型氧化鋁管的應用,除了所量測高溫炼 融玻璃較準確,並且可量測較高範圍之表面張力值之 外,其測量溫度更可高達至1650。〇 關於本發明之優點與精神可以藉由以下的發明詳述及 1289661 所附圖式得到進一步的瞭解。 【實施方式】 將經適當裁切過的玻璃30,填入自行設計的白金、聲 針頭(20%铑以及80%白金)32中(參見圖五),於白金_錢奸 頭32的上端外掛一玻璃塊30其重量約為1〇〜5〇 mg,再將 剩下的玻璃塊30從後端填入白金-錢針頭32内,故總重_ 為100〜300 mg。當加溫至選定之測量溫度後,白金_錯斜 頭32可形成一穩定的熔融懸垂玻璃液滴34,再藉由數位 影像擷取系統擷取其熔融懸垂液滴34的影像,再透過與 Yoimg-Laplace方程式之理論液滴進行最佳比對而獲知^ ㉔懸垂玻璃液滴34的表面張力。 高溫熔融縣__ 34其表祕力曲線可由傳統 Laplace方程式表示 其中M :氣液界面上兩相之壓力差,γ:為表面張办, m2:液氣界面上任一點之兩個主要曲率半徑 (principal radius) ° 影響因此方程式 由於熔融懸垂玻璃液滴34受重力之 (1)的壓力差可由下式表示厂 △ρ =Δρ〇 +Apgz· ······ :·(2) 垂液滴頂點(apex)的壓 其中ΔΡ〇為液氣界面在懸 力差 ’ ΔΡ〇 =2γ/Κ0。 1289661 其中R〇為熔融懸垂液滴34頂點(apex)的曲率半 徑,γ之定義同上述,Λρ為液氣兩相密度差,g為重力 加速度,z為距液滴34頂點之垂直距離。 參見圖一所示之熔融懸垂液滴34的座標系統, 由平面幾何得知 —= cos^ ^ = sin^·-...----(3)Boundary condition: x'(9)=z'(9)= s(0)=0 where x' = x/R〇,z' = z/R〇,s,= s/R〇, where 乂 and 2 are boundary points respectively The coordinate position in the horizontal and vertical directions, s is the long distance from the apex of the droplet, Lu is the turning angle, R 〇 is defined as above; (4) Calculating the coordinate position and step of the complex point of step (2) 3) the closest distance of the theoretical curve; and (5) repeat steps (3) and (4) until the sum of squares of the nearest distances is less than a desired value, and then calculate γ = ΔPgR 〇 2 by R 〇 and β set in step (3) Therefore, the method for measuring the surface tension of the glass droplets in the high-temperature molten state by the present invention develops a measuring system which is applicable to the surface tension of the molten glass at a high temperature, and utilizes the design of a unique platinum-ruthenium needle. In combination with the application of T-shaped alumina tubes, in addition to the accurate measurement of high-temperature smelting glass, and the measurement of the surface tension value in the higher range, the measurement temperature can be as high as 1650. The advantages and spirit of the present invention can be further understood from the following detailed description of the invention and the drawings of 1289661. [Embodiment] The appropriately cut glass 30 is filled into a self-designed platinum, acoustic needle (20% 铑 and 80% platinum) 32 (see Figure 5), and is hanged on the upper end of Platinum _ 钱 奸 32 A glass block 30 has a weight of about 1 〇 to 5 〇 mg, and the remaining glass block 30 is filled into the platinum-money needle 32 from the rear end, so that the total weight _ is 100 to 300 mg. After heating to the selected measurement temperature, the platinum slanting head 32 can form a stable molten drape glass droplet 34, and the image of the molten sag droplet 34 is captured by the digital image capture system, and then transmitted through The theoretical droplets of the Yoimg-Laplace equation are optimally aligned to obtain the surface tension of the drape glass droplets 34. The high-temperature melting county __ 34 its apparent gravity curve can be represented by the traditional Laplace equation where M: the pressure difference between the two phases on the gas-liquid interface, γ: the surface tension, m2: the two main radii of curvature at any point on the liquid-gas interface ( The principal radius) ° influences the equation because the pressure difference of the molten drape glass droplet 34 by gravity (1) can be expressed by the following formula: Δρ = Δρ〇 + Apgz · ········(2) The pressure of the apex (Δex) is ΔΡ〇 which is the difference in the suspension force between the liquid and gas interfaces ΔΡ〇=2γ/Κ0. 1289661 where R〇 is the radius of curvature of the apex of the molten drape 34, γ is defined as above, Λρ is the difference between the two phases of liquid-vapor, g is the acceleration of gravity, and z is the vertical distance from the apex of the droplet 34. Referring to the coordinate system of the molten drape 34 shown in Figure 1, it is known from the plane geometry -= cos^ ^ = sin^·-...----(3)

U 丄一㈣ r4V A ds ,〜一 x………㈧U 丄一(四) r4V A ds , ~ a x.........(eight)

其中X及Z分別為水平及垂直座標位置,s為該 液滴34頂點算之弧長(arclength),彡是旋轉角度 (turning angle) ° 將方程式(2),(3)及(4)代入(1)可得 A , APSZ sin^ 论一A 了—丁…·…·⑶^ 為了無因次化進一步定義/ = /=尤/見, ν=ζ/尽,代入方程式⑶跟(5)而得Where X and Z are the horizontal and vertical coordinate positions, s is the arc length of the apex of the droplet 34, and 彡 is the turning angle. ° Substituting equations (2), (3) and (4) (1) A can be obtained, APSZ sin^ On the A--...(3)^ Further definition for the dimensionless / = /= especially / see, ν = ζ / exhaust, substituted into equation (3) and (5) And got

2 ! A^gR〇 - sin^ ,..,.... ,(7) ds γ χ …⑻ f= 一 從已知邊界條件為X,⑼=z’⑼=s⑼=0可利用數 值方法積分方程式(7)、(8)及(9)而得到懸垂液滴34 之邊界點之理論曲線,例如使用四階Runge-Kutta方 法[參見 Carnahan,B; Luther,H· A·; J· 〇· Applied Numerical 12896612 ! A^gR〇- sin^ ,..,.... ,(7) ds γ χ ...(8) f= A numerical method is used for the known boundary condition X, (9)=z'(9)=s(9)=0 The theoretical equations for the boundary points of the suspended droplets 34 are obtained by integrating the equations (7), (8) and (9), for example using the fourth-order Runge-Kutta method [see Carnahan, B; Luther, H. A.; J· 〇 · Applied Numerical 1289661

Methods; John Wiley & Sons: New York,1969]及以下列一 趨近解答起始計算[參見Huh, c·; Reed,Reed, R. L. J. of colloid Interface Sci. 1983, 91? 472]: 此趨近解答適用於φ«1的情形,其中:[办,)為 Bessel function of the first kind °Methods; John Wiley & Sons: New York, 1969] and start with the following approach [see Huh, c.; Reed, Reed, RLJ of colloid Interface Sci. 1983, 91? 472]: This approach The answer applies to the case of φ«1, where: [do], Bessel function of the first kind °

圖二所示即為R^l及不同β值時使用數值方法 積分方程式⑺、(8)、(9)所獲得的結果。 當將熔融懸垂玻璃液滴34的影像數位化後,吾 人即可以從其中取足夠多的邊界點並將其等之座標 位置資料與上述理論曲線比對,藉由適當的數值分 析方法可以迅速獲得一組最佳的比對結果,再由此 最佳的比對結果中的R〇及β值計算出表面張力rFigure 2 shows the results obtained by using the numerical method to integrate equations (7), (8), and (9) for R^l and different β values. When the image of the molten drape glass droplet 34 is digitized, we can take enough boundary points from it and compare the coordinate position data with the above theoretical curve, which can be quickly obtained by appropriate numerical analysis methods. A set of optimal alignment results, and then calculate the surface tension r from the R〇 and β values in the best comparison result.

一特定的熔融玻璃表面張力的計算方法,包含 設定一目標函數其定義為測量點Un與上述理論曲 線v的垂直距離的平方和,亦即e= Σ二i [dn(Un,v)]2 ; N為測量點的總數目。此目標函數 受四個未知變數(qi,i = 1,2, 3, 4)的影響|懸垂液滴 頂點的時實際位置(X〇及Z〇),頂點的曲率半徑(仏)及 毛細常數(β)。為了在測量點與理論曲線之間獲得最 佳的比對,此目標函數必須對此四個變數成最小值 (^:/邱,I = 1,2, 3, 4)。最小化方程式的解出係直接 藉 Newton-Raphhson 方法[參見 Carnahan,B; Luther,Η· A·; 1289661A specific method for calculating the surface tension of a molten glass includes setting an objective function defined as the sum of the squares of the vertical distances between the measurement point Un and the above theoretical curve v, that is, e= Σ二i [dn(Un,v)]2 ; N is the total number of measurement points. This objective function is affected by four unknown variables (qi, i = 1, 2, 3, 4) | the actual position (X〇 and Z〇) of the apex of the overhanging droplet, the radius of curvature of the vertex (仏) and the capillary constant (β). In order to obtain the best alignment between the measurement point and the theoretical curve, the objective function must have a minimum of these four variables (^: / Qiu, I = 1, 2, 3, 4). The solution to minimize the equation is directly borrowed from the Newton-Raphhson method [see Carnahan, B; Luther, Η·A·; 1289661

Wilkes, J. 0. Applied Numerical Methods; John Wiley & Sons: New York,1969] ’再從最佳的心及p值算出熔融 玻璃張力值γ。 要使用上述之方法來求得高溫熔融玻璃表面張 力值,須先給予四個適當參數⑶,%,仏,ρ)之起始 值,起始值若偏離真實值太遠,則Newt〇n-Raphs〇n法 無法收斂。XG之起始值可取所有的邊界測量點之水 平座=私點之平均值而獲得,Zg之起始值可取3個最低 ,(或最高)測量點座標之平均獲得;而^及^的起始 值之給予就必須利用本發明所定義之液滴形狀因子 而計算得到。 本發明提供-測量系統,用來測量高溫玻璃之表 面張力。本系統亦可用來測得高溫熔融玻璃在不同溫度時 之表面張力變化。 此懸垂液滴暈測系統之所以能夠得其熔融玻璃在高溫 時之表面張力值,端賴下列五裝置之密切配合: 1 ⑻穩定光強度之平行光源裝置。 (b)精良之攝影機、影像處理及液滴輪廓搜尋裝 置。 ⑷高溫恆溫系統,其溫度變化在士代内。 構造與尺寸的白金·錢針頭32。 1289661 (6) 張力計鼻軟體程式。藉液滴34形成函數之訂 定’可準確地求得熔融懸垂玻璃液滴34之毛細常數 (β)及熔融玻璃液濟34頂點之曲率半徑值(仏)。 本發明系統裝置如圖三所示。裝置中含5個子系統裝 置··(1)平行光光源裝置(參見圖三)(2)影像處理暨處理裝置 (參見圖三)(3)高溫恆溫系統42(參見圖四)(4)懸垂液滴生 成裝置40(參見圖i) (5)張力計算軟體程式。 光源系統含一定光強度之可見光源2,一組平凸透鏡 3 ’針孔4及消色差透鏡5。上述組件均固定於可調動上升、 下降或旋轉之光學鏡座及基座20上。此平行光通過熔融玻 璃液滴34而將液滴影像投射於攝影機16之信號感測器 (sensor)上。 影像攝影暨處理裝置含一接物鏡13,一組透鏡組14 及藍色濾光片15,攝影機16,一影像數位化介面卡21, 一電腦螢幕17及一熔融玻璃液滴34輪廓找尋之電腦程式 (儲存於電腦17中)。攝影機16安裝於一可供旋轉、傾斜、 昇降及前後、左;&祕之光學敍2G ±。平行絲過懸垂 溶融玻璃_ 34而成像於攝職16之域❹傻上,影 像數位介面卡21將攝影機16之信號數位化後,紀錄於^ 腦17上。電腦螢幕將攝影機16上之影像顯示出來。液滴 輪廓尋找料職液狀數•邊界點絲烟並存槽。 高溫怪溫系統42含-高溫爐體6,—溫控箱1〇,—f 控電腦11及-怪温水槽12。高溫爐體6内含一 了型: 銘管22(參見圖四),一管外測溫棒7,―管内測溫棒8及 12 懸垂液滴進料棒9。待測熔融玻璃液滴34所在之T型氧化 銘β 22為一封閉系統(ci〇se SyStem)。 高溫爐體6連接一恆溫水槽12,用來降低系統升溫時 T型管22尾端之溫度。溫控箱10連接至高溫爐體6,於 随控箱10設定升、降溫之程式,當開始啟動後可以利用管 外測溫棒7和管内測溫棒8以獲知高溫爐體6和熔融玻璃 的溫度,且其溫度可控制在誤差±1〇C内。溫控電腦η可 以記錄每一時段下溫度變化之情形。Τ型氧化鋁管22的兩 ^分別加上石英片23,使其高溫爐體6内之Τ型氧化鋁管 22系統為一封閉系統。 炫融玻璃懸垂液谪生成裝置40含一個自行研發的白 金-铑針頭32(參見圖五)及氧化鋁管進料棒9。其白金_铑針 頭32的功用在於高溫時可得一穩定的熔融懸垂液滴34。 將白金-錢頭32填滿玻璃後,置入懸垂液滴進料棒9中, 再插入加熱爐中,調整適當焦距後升溫至所選定溫度,玻 璃塊3〇成熔融液滴形狀即開始取像,其所形成的熔融玻璃 液滴34影像經由平行光投影於攝影機16之感測器上,若 當溫度達所選定之升溫終點時,開始降溫。 以上裝置除了溫控箱1〇,恆溫水槽12及溫控電腦u 外’其餘皆安裝固定於一充氣式防震桌(vibrati〇n Is〇lati〇nWilkes, J. 0. Applied Numerical Methods; John Wiley & Sons: New York, 1969] 'The molten glass tension value γ is calculated from the best heart and p value. To use the above method to obtain the surface tension value of high-temperature molten glass, the starting values of four appropriate parameters (3), %, 仏, ρ) must be given first. If the starting value is too far from the true value, then Newt〇n- The Raphs〇n method cannot converge. The starting value of XG can be obtained by taking the average value of the horizontal seat=private point of all boundary measurement points. The starting value of Zg can be taken as the lowest of the three lowest (or highest) measuring point coordinates; and the starting point of ^ and ^ The administration of the initial value must be calculated using the droplet shape factor defined by the present invention. The present invention provides a measuring system for measuring the surface tension of a high temperature glass. The system can also be used to measure the change in surface tension of high temperature molten glass at different temperatures. The reason why the drape droplet measurement system can obtain the surface tension value of the molten glass at a high temperature depends on the close cooperation of the following five devices: 1 (8) Parallel light source device for stabilizing light intensity. (b) sophisticated camera, image processing and droplet contour search devices. (4) High temperature constant temperature system, the temperature change is within the Shidai. Platinum and money needles 32 of construction and size. 1289661 (6) Tension meter nose software program. The capillary constant (β) of the molten pendant glass droplet 34 and the radius of curvature value (仏) of the apex of the molten glass liquid 34 can be accurately determined by the definition of the droplet 34 forming function. The system device of the present invention is shown in Figure 3. The device contains 5 subsystems. (1) Parallel light source device (see Figure 3) (2) Image processing and processing device (see Figure 3) (3) High temperature thermostat system 42 (see Figure 4) (4) Overhang Droplet generating device 40 (see Fig. i) (5) Tension calculation software program. The light source system contains a visible light source 2 of a certain light intensity, a set of plano-convex lenses 3' pinholes 4 and an achromatic lens 5. The above components are all fixed to the optical lens holder and the base 20 which can be raised, lowered or rotated. This parallel light is projected onto the signal sensor of camera 16 by melting the glass droplets 34. The image capturing and processing device comprises an objective lens 13, a set of lens groups 14 and blue filters 15, a camera 16, an image digital interface card 21, a computer screen 17 and a computer for searching the contours of the molten glass droplets 34. Program (stored in computer 17). The camera 16 is mounted on a rotating, tilting, lifting, front and rear, left; & secret optical 2G ±. Parallel wire overhangs the molten glass _ 34 and is imaged in the field of the job 16 idiot, the image digital interface card 21 digitizes the signal of the camera 16, and records it on the brain 17. The computer screen displays the image on the camera 16. The droplet profile looks for the number of liquids in the job. The high temperature strange temperature system 42 contains - high temperature furnace body 6, - temperature control box 1 〇, - f control computer 11 and - strange temperature water tank 12. The high temperature furnace body 6 contains a type: Ming tube 22 (see Figure 4), one tube outer temperature measuring rod 7, "in-tube temperature measuring rod 8 and 12 hanging droplet feeding rod 9". The T-type oxidation of the molten glass droplet 34 to be tested is a closed system (ci〇se SyStem). The high temperature furnace body 6 is connected to a constant temperature water tank 12 for reducing the temperature of the tail end of the T-tube 22 when the system is warmed up. The temperature control box 10 is connected to the high temperature furnace body 6, and the program for raising and lowering the temperature is set in the control box 10. When the start of the start, the temperature measuring rod 7 and the temperature measuring rod 8 in the tube can be used to know the high temperature furnace body 6 and the molten glass. Temperature, and its temperature can be controlled within ±1〇C. The temperature control computer η can record the temperature changes in each time period. The two ^-type alumina tubes 22 are respectively provided with quartz plates 23, so that the bismuth-type alumina tube 22 system in the high-temperature furnace body 6 is a closed system. The glazed glass drape liquid helium generating device 40 comprises a self-developed platinum-ruthenium needle 32 (see Figure 5) and an alumina tube feed rod 9. Its function as a platinum 铑 pin 32 is to obtain a stable molten drape droplet 34 at high temperatures. After the platinum-head 32 is filled with glass, it is placed in the hanging liquid droplet feeding rod 9, inserted into the heating furnace, adjusted to the appropriate focal length, and then heated to the selected temperature, and the glass block 3 is turned into a molten droplet shape to start taking For example, the image of the molten glass droplet 34 formed by it is projected onto the sensor of the camera 16 via parallel light, and begins to cool down when the temperature reaches the selected temperature rise end point. In addition to the temperature control box 1 , the constant temperature water tank 12 and the temperature control computer u are installed and fixed on an inflatable shockproof table (vibrati〇n Is〇lati〇n

Table)20上,另有一小型空壓機提供防震桌所需之高壓空 氣。 張力計算裝置由一台個人電腦17及自行撰寫的運算 程式所組成。先由自行撰寫的連續取像程式來獲取高溫熔 融玻璃液滴34之影像、再藉由液滴邊界自動搜尋程式得其 13 1289661 熔融液滴34之邊界點,再用Y〇ung-Laplace方程式與溶融 玻璃軸邊界雜最佳化哺,既可求娜祕璃液滴之 表面張力。 其相關實施例敘述如下; 一,用本發明系統之懸垂液滴影像數位化測量儀(如圖 二所示),來量測高溫熔融玻璃之表面張力。張力測量步驟 如下: | (a)懸垂液滴法 將裁切好的玻璃塊30放入白金-錢針頭32内, 並且在白金-姥針頭32的前端外掛一玻璃塊3〇約 10〜50 mg的玻璃塊30,所填入玻璃塊3〇重含外掛之 玻璃塊30約1〇〇〜3〇〇mg。將白金_錢針頭32放入懸 垂液滴進料棒9内,插入加熱爐中,加熱後,會得到 一穩定的懸垂熔融破璃液滴34,達所選定溫度後開 始取像,再藉取像程式、液滴邊界自動搜尋程式、和 | 溶融玻璃液滴3 4邊界點之最佳化比對程式,進而測 得懸垂熔融玻璃液滴34在不同溫度下,表面張力隨 溫度之變化情形。 (b)固著液滴法 將裁切好的玻璃塊,取約1〇〜8〇mg,放置於耐火 碑上’再將耐火碑與玻璃塊放置在掛锅及水平進料 棒上,其中坩鍋需放在水平進料棒上。將其水平進 料棒推入加熱爐體,加熱後玻璃塊會形成溶融液 滴,達所選定溫度開始取像,再藉取像程式、液滴邊 1289661 界自動搜尋程式、和熔融坡璃液滴邊界點之最佳化 比對程式,進而測得固著熔融破璃在不、、w下, 表面張力隨溫度之變化情形。 脏又 使用本發明來測量玻螭液滴表面張力,與固著 液滴法比較’具有較高的準確性,請參閱圖六,圖 六為一 Pyrex玻璃之固著液滴在耐火磚上,液滴邊 界點與理論曲線之最佳比對’ T=攝氏85〇度,不同 曲線代表不同表面張力,熔融破璃液滴重 =24.75mg。圖六顯示使甩固著液滴法所測得的表面 張力’經由理論曲線與玻瑪液滴邊界點最佳比對 後,其表面張力值之差異性較大,故知其準確度^較 低。懸垂液滴法測量表面張力,(參見圖七為理論曲 線與玻璃液滴邊界點最佳比對),其表面張力值的再 現性或準確性均較佳。故懸垂液滴法的表面張力準 確度較高。 圖七係一 pyrex玻璃熔融懸垂液滴之液滴邊界點 與理論曲線之最佳比對,攝氏850度,不同曲線 代表不同表面張力,熔融玻璃液滴重=3258mg。圖 六和七顯示T=85G π時,使卿著液滴跟懸錄滴兩種方 法測量熔融玻璃之表面張力時之最佳比對情形。圖六和七 上之兩液滴約略有相同重量。經最佳化比對,獲知使用懸 ^液滴法可獲得較準確之Beta形狀因子。此二方法之測量 標準差(S.D·)齡糊八,圖八係顧錄滴法與固著液滴 法張力準確性之比較。由圖八和表一之數據顯示,利用顯 垂液滴法時,其表_力準確賴於畴顏法。藉由標 15 f差^和最佳化比對曲線,我們發現當SD.值超過0 45 時’其最佳比對曲線和液滴邊界點間就有明 訂定S.D.請5時之表面張力為系“ 付之&理張力值。圖八顯示利用懸垂液滴法測得之表面張 力的準確度(± 8mN/m)優於固著液滴法(± 58mN/m),^ 巧誤拜圍明顯地較小,亦即,使用懸垂液滴絲測 里焉溫溶融玻璃之表面張力,準確度較高。 目前產業界常使賴|賴縣制高溫熔融玻璃之 表辱張力。但其張力值的可#性較差’本發明使用懸垂液 滴法量測,可以獲得較準確的張力值。 表一顯示懸垂液滴法與固著液滴法準確性之比較On Table 20, another small air compressor provides the high-pressure air required for the shockproof table. The tension calculation device consists of a personal computer 17 and a self-written computing program. The image of the high-temperature molten glass droplet 34 is obtained by a continuous image capturing program written by itself, and the boundary point of the 13 1289661 molten droplet 34 is obtained by the automatic search of the droplet boundary, and then the Y〇ung-Laplace equation is used. The optimal blending of the molten glass shaft boundary can be used to obtain the surface tension of the nano-cell droplets. The related embodiments are described below. First, the surface tension of the high temperature molten glass is measured by the drape droplet image digitization measuring instrument (shown in Fig. 2) of the system of the present invention. The tension measurement steps are as follows: (a) The drape drop method puts the cut glass block 30 into the platinum-money needle 32, and a glass block 3 〇 10 to 50 mg is attached to the front end of the platinum-ruthenium needle 32. The glass block 30 is filled with a glass block 3, and the outer glass block 30 is about 1 〇〇 to 3 〇〇 mg. The platinum _ money needle 32 is placed in the hanging liquid droplet feeding rod 9 and inserted into the heating furnace. After heating, a stable suspended molten glass droplet 34 is obtained, and the image is taken after the selected temperature is reached, and then borrowed. The program, the droplet boundary automatic search program, and the optimization of the boundary point of the molten glass droplets 34, and the change of the surface tension with temperature at different temperatures of the suspended molten glass droplets 34 are measured. (b) Fixing the glass block by the fixed droplet method, taking about 1〇~8〇mg, placing it on the refractory monument, and then placing the refractory monument and the glass block on the hanging pot and the horizontal feeding rod, wherein The crucible should be placed on a horizontal feed bar. Pushing the horizontal feed rod into the heating furnace body, after heating, the glass block will form molten droplets, and the selected temperature will start to take the image, and then borrow the image program, the droplet edge 1288961 boundary automatic search program, and the molten glass liquid The optimization of the drop boundary point is compared with the program, and then the change of the surface tension with temperature is measured under the condition that the molten glass is not melted. Dirty and using the present invention to measure the surface tension of the glass drop, compared with the fixed drop method 'has a higher accuracy, please refer to Figure 6, Figure 6 is a fixed droplet of Pyrex glass on the refractory brick, The optimal ratio of the droplet boundary point to the theoretical curve is 'T=85 degrees Celsius, the different curves represent different surface tensions, and the molten glass droplet weight = 24.75 mg. Figure 6 shows that the surface tension measured by the tamping droplet method is optimally compared with the boundary point of the Boma droplet through the theoretical curve, and the difference in surface tension value is large, so that the accuracy is lower. . The surface tension is measured by the drape drop method (see Figure 7 for the optimal alignment of the theoretical curve and the droplet boundary point), and the surface tension value is better or more accurate. Therefore, the surface tension of the drape drop method is high. Figure 7 is a comparison of the droplet boundary point of a pyrex glass melted drape droplet with the theoretical curve, 850 degrees Celsius, different curves representing different surface tensions, and the weight of molten glass droplets = 3258 mg. Figures 6 and 7 show the optimal alignment of the surface tension of the molten glass when T=85G π is used to measure the surface tension of the molten glass. The two droplets on Figures 6 and 7 are approximately the same weight. By optimizing the alignment, it is known that a more accurate Beta shape factor can be obtained by using the suspension method. The measurement of the two methods is the standard deviation (S.D·) age paste, and the comparison between the eight methods is the comparison of the tension accuracy of the drop method and the fixed droplet method. The data from Figure 8 and Table 1 show that when using the vertical drop method, the surface force is accurate depending on the domain method. By labeling 15 f difference ^ and optimizing the alignment curve, we found that when the SD. value exceeds 0 45, the surface tension between the optimal alignment curve and the droplet boundary point is clearly set at 5 o'clock. It is the value of the tensile force measured by the drape drop method (± 8mN/m), which is better than the fixed droplet method (± 58mN/m). The circumference is obviously small, that is, the surface tension of the molten glass is measured by using the drape droplets, and the accuracy is high. At present, the industry often makes Lai|Lai County high-temperature molten glass to humiliate the tension. The value of the value is poor. The present invention uses the drape drop method to obtain a more accurate tension value. Table 1 shows the comparison between the accuracy of the drape method and the sessile drop method.

Pendant Drop (32.58 mg) —-----:~— Sessile Drop (24.75 meV 張力 表面張力 張力 表面張力 T==850°C 範圍 (mN/m) 範圍 (mN/m) (mN/m) (mN/m) 267 ί 275土 8 205 ί 263士5 8 282 320 本發明可應用於溶融玻璃之界面物性判定,有助於玻 璃膏池内熔融玻璃流動成形之條件選擇,提高成品良率。 因此,藉由本發明測量高溫熔融狀態之玻璃液滴之表 面張力的方法,係發展出一套可適用於熔融玻璃於高 溫下之表面張力的測量系統,利用獨特白金-铑針頭的 1289661 設計,更配合T字魏化姆的顧,除了所量測高溫溶 融玻璃鮮確’並且可量測較高範圍之表面張力值之 外’其測量溫度更可高達至1650〇C。 …藉由以上較佳具體實施例之詳述,係希望能更加清楚 把述本發明之特徵與精神,而並非以上述所揭露的較佳具 體實施例來對本發明之齡加嫌制。相反地,其目的是 希望能涵蓋各種改變及具相等性的安排於本發明所欲申請 之專利範圍的範•内。 【圖式簡單說明】 圖一顯示一懸垂液滴的座標系統; 圖一顯不為不同β值時之懸垂液滴之理論曲線圖; 圖二為一用於本發明的高溫熔融玻璃表面張力的測量 系統之示意圖; 圖四為一熔融玻璃表面張力量測系統設計圖; 圖五為一懸垂玻璃液滴成形的白金-铑針頭:20% 錢+80〇/〇白金; 圖六為一 Pyrex玻璃之固著液滴在耐火磚上,液滴 邊界點與理論曲線之最佳比對,T = 875°C,不同曲線 代表不同表面張力; 圖七為一 Pyrex玻璃熔融懸垂液滴之液滴邊界點與理論 曲線之最佳比對,T = 975°C,不同曲線代表不同表面張 力;以及 17 1289661 圖八為懸垂液滴法與固著液滴法張力準確性之比 較0Pendant Drop (32.58 mg) —-----::—Sessile Drop (24.75 meV Tension Surface Tension Tension Surface Tension T==850°C Range (mN/m) Range (mN/m) (mN/m) ( mN/m) 267 ί 275 土 8 205 ί 263 士 5 8 282 320 The invention can be applied to the determination of the interface physical properties of the molten glass, and contributes to the selection of conditions for the flow forming of the molten glass in the glass paste pool, thereby improving the yield of the finished product. The method for measuring the surface tension of glass droplets in a high-temperature molten state by the present invention develops a measuring system which is suitable for the surface tension of molten glass at a high temperature, and utilizes a unique white gold-铑 needle head 1289616 design, which is more compatible with T. The word Wei Weimu's Gu, in addition to measuring the high temperature molten glass is fresh and can measure the surface tension value of a higher range, the measured temperature can be as high as 1650 〇C. The details of the present invention are intended to be more clarified, and the present invention is not limited to the preferred embodiments disclosed above. Instead, the purpose is to cover various Change and The equivalence is arranged within the scope of the patent scope of the invention to be applied for. [Simplified illustration of the drawing] Figure 1 shows the coordinate system of a drape droplet; Figure 1 shows the theory of the drape droplets when different β values are shown. Figure 2 is a schematic view of a measuring system for the surface tension of a high-temperature molten glass used in the present invention; Figure 4 is a design of a surface tension measuring system for a molten glass; and Figure 5 is a white gold-铑 of a drape glass droplet forming. Needle: 20% money + 80 〇 / 〇 white gold; Figure 6 is a fixed droplet of Pyrex glass on the refractory brick, the best comparison between the droplet boundary point and the theoretical curve, T = 875 ° C, different curves represent Different surface tensions; Figure 7 is the optimal alignment of the droplet boundary points of a Pyrex glass melted drape droplet with the theoretical curve, T = 975 ° C, different curves represent different surface tensions; and 17 1289661 Figure 8 is a drape drop Comparison of the tension accuracy between the method and the fixed droplet method

【主要元件符號說明】 熔融懸垂液滴34 光源2 平凸透鏡3 針孔4 消色差透鏡5 南溫爐體6 管外測溫棒7 管内側溫棒8 接物鏡13 透鏡組14 藍色濾光片15 攝影機16 介面卡21 電腦17 控溫箱10 溫控電腦11 恆溫水槽12 高溫恆溫系統42 懸垂液滴進料棒9 石英片23 白金-姥針頭32 玻璃塊30 T型氧化鋁管22 懸垂液滴生成裝置40 18[Main component symbol description] Melt drape droplets 34 Light source 2 Plano-convex lens 3 Pinhole 4 Achromatic lens 5 South temperature furnace body 6 Tube outside temperature measuring rod 7 Tube inside temperature rod 8 Mirror lens 13 Lens group 14 Blue filter 15 Camera 16 Interface card 21 Computer 17 Temperature control box 10 Temperature control computer 11 Thermostatic water tank 12 High temperature thermostat system 42 Suspended liquid droplet feed rod 9 Quartz sheet 23 Platinum - 姥 needle 32 Glass block 30 T-type alumina tube 22 Suspended droplets Generating device 40 18

Claims (1)

1289661 十、申請專利範圍: 1、一種测量高溫熔融狀態之玻璃液滴之表面張力 的方法,包含下列步驟: 將裁切完成之玻璃塊外掛於一白金-铑針頭之 上化,並填入该白金-姥針頭内; 將該白金-铑針頭升溫至一選定溫度,以使該 玻璃塊於該白金_铑針頭之下端形成一熔融 懸垂液滴; 利用一攝影機之光感測器對準該熔融懸垂液 滴’以產生相對應該溶融懸垂玻璃液滴之側 視投影影像; 擷取該熔融懸垂玻璃液谪之侧視投影影像,並 數位化該侧視投影影像;以及 藉由數位化後該熔融懸垂玻璃液滴之側視投 影影像,搜尋該熔融懸垂玻璃液滴之邊界, 與該熔融懸垂玻璃液滴之Y〇ung-Laplace理 論曲線做最適化迴歸,藉以得到該炼融懸垂 玻璃液滴之表面張力值。 2、如申請專利範圍第1項所示之方法,其中所述該 侧視投影影像的產生,係將一平行光源裝置與該 1289661 光感測器分別置放於該懸垂液滴的相對兩側,並 且呈直線分佈,其中該光感測器平面之法線向量 與該平行光源裝置所投射之平行光同向,藉由投 射該平行光於該熔融懸垂破璃液滴之侧面,使該 • , ·、 光感測器產生該熔融懸垂玻璃液滴之侧視投影 影像。 、如申請專利範圍第1項所示之方法,其中該攝影 機係將該光感測器所擷取該熔融懸垂玻璃液滴 之侧視投影影像,以一相對應之影像訊號輸出至 一影像介面卡,透過該影像介面卡以產生相對應 之影像數位化信號,再將此該影像數位化信號傳 送至一電腦中,進行處理以獲得該熔融懸垂玻璃 液滴之邊界。 4、如申請專利範圍第1項所示之方法,其中所述得 到該熔融懸垂玻璃液滴,係包含下列步驟: 將裁切好的玻璃塊填入該白金—姥針頭,當溫 度達該選定溫度時,形成該熔融懸垂玻璃液 滴於橫向置放之一τ字型氧化鋁管之中段 内;以及 於該τ字型氧化鋁管之兩端分別加上二石英 片,藉以使該熔融懸垂玻璃液滴處於溫度穩 20 1289661 定封閉狀態。 % 211289661 X. Patent Application Range: 1. A method for measuring the surface tension of a glass droplet in a high temperature molten state, comprising the steps of: attaching a cut glass piece to a platinum-ruthenium needle and filling it into the Platinum-姥 needle; heating the platinum-铑 needle to a selected temperature so that the glass block forms a molten drape at the lower end of the platinum ; needle; aligning the melting with a photosensor of a camera Suspending the droplets ' to produce a side view projection image corresponding to the molten glass droplets; extracting the side view projection image of the molten pendant glass liquid and digitizing the side view projection image; and melting the portion by digitization A side view projection image of the suspended glass droplets, searching for the boundary of the molten pendant glass droplets, and performing an optimum regression with the Y〇ung-Laplace theoretical curve of the molten pendant glass droplets, thereby obtaining the smelting suspension glass droplets Surface tension value. 2. The method of claim 1, wherein the side view projection image is generated by placing a parallel light source device and the 1289661 photo sensor on opposite sides of the suspended liquid droplet. And in a straight line distribution, wherein a normal vector of the plane of the light sensor is in the same direction as the parallel light projected by the parallel light source device, by projecting the parallel light on the side of the molten suspension glass droplet, so that , the photo sensor produces a side view projection image of the molten pendant glass droplet. The method of claim 1, wherein the camera extracts a side view projection image of the molten pendant glass droplet from the photo sensor, and outputs the corresponding image signal to an image interface. The card passes through the image interface card to generate a corresponding image digitization signal, and then transmits the image digitization signal to a computer for processing to obtain a boundary of the molten pendant glass droplet. 4. The method of claim 1, wherein the obtaining the molten drape glass droplet comprises the steps of: filling the cut glass block into the platinum-ruthenium needle, when the temperature reaches the selected At a temperature, the molten drape glass droplet is formed in a middle portion of a τ-shaped alumina tube disposed laterally; and two quartz sheets are respectively added to both ends of the τ-shaped alumina tube, thereby causing the molten suspension The glass droplets are in a closed state at a temperature of 20 1289661. % twenty one
TW95101782A 2006-01-17 2006-01-17 Method for the surface tension measurement of melting glasses at high temperature TWI289661B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95101782A TWI289661B (en) 2006-01-17 2006-01-17 Method for the surface tension measurement of melting glasses at high temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95101782A TWI289661B (en) 2006-01-17 2006-01-17 Method for the surface tension measurement of melting glasses at high temperature

Publications (2)

Publication Number Publication Date
TW200728703A TW200728703A (en) 2007-08-01
TWI289661B true TWI289661B (en) 2007-11-11

Family

ID=39295717

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95101782A TWI289661B (en) 2006-01-17 2006-01-17 Method for the surface tension measurement of melting glasses at high temperature

Country Status (1)

Country Link
TW (1) TWI289661B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063548A (en) * 2012-12-24 2013-04-24 江苏大学 Measurement method for liquid interfacial tension based on liquid droplet contour curve four measurement points
CN104792667A (en) * 2015-03-27 2015-07-22 常州大学 Surface tension high-temperature hanging drop measuring bracket

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112179813B (en) * 2020-08-26 2021-08-06 清华大学 Liquid contact angle on-line measurement method based on experimental image
CN113776992B (en) * 2021-08-27 2024-02-23 河北光兴半导体技术有限公司 Method for testing surface tension of melt

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103063548A (en) * 2012-12-24 2013-04-24 江苏大学 Measurement method for liquid interfacial tension based on liquid droplet contour curve four measurement points
CN104792667A (en) * 2015-03-27 2015-07-22 常州大学 Surface tension high-temperature hanging drop measuring bracket
CN104792667B (en) * 2015-03-27 2017-10-20 常州大学 A kind of surface tension high temperature hanging drop measures support

Also Published As

Publication number Publication date
TW200728703A (en) 2007-08-01

Similar Documents

Publication Publication Date Title
TWI289661B (en) Method for the surface tension measurement of melting glasses at high temperature
WO2023226481A1 (en) Monocrystalline-silicon diameter measurement method and apparatus based on chord length ratio of concentric ellipses
CN104132870A (en) Surface tension and surface area viscosity measuring device
CN104484563B (en) A method of dynamic evaluation being carried out to road lighting dazzle using imaging brightness meter
CN207163945U (en) Also retract rate measurement apparatus
JP2006226935A (en) Instrument and method for measuring contact angle of liquid drop
CN113308731B (en) Single crystal furnace liquid mouth distance measuring method and device taking sharp seed crystal as reference
Grishchenko et al. Recent progress in the gas-film levitation as a method for thermophysical properties measurements: application to ZrO2-Al2O3 system
JP5077929B2 (en) Heat source support device for tension measurement
CN207248490U (en) A kind of HUD emergent light axis level angle detection device
CN204902837U (en) Novel hat width of cloth measuring apparatu
CN206724923U (en) A kind of Loads of Long-span Bridges dynamic displacement video sensor system
CN206514844U (en) Electronic level with instrument height real―time precision measurment function
CN207248100U (en) A kind of lifting light supply apparatus of image measurer
CN109444150A (en) Contactless crackle measurement method and its device
CN108332795A (en) A kind of high-precision diamond wire on-line monitoring device and its monitoring method
CN209102021U (en) A kind of auto-focusing Eccentric Instrument
CN109363687B (en) Cervical vertebra mobility detection device and method
CN206862340U (en) A kind of leveling instrument for construction project
CN209894722U (en) Automatic identification device for measuring cracks of bridge structure
CN206361375U (en) Special tripod support that has warning light of construction exploration caliber support
CN205027263U (en) Full -automatic cervical vertebra measuring apparatu
CN104907515B (en) A kind of tank level control system based on oblique photograph and level measuring method
CN107543824A (en) The detection means and its detection method of planar optical elements beauty defects
CN109751955A (en) Non-contact object displacement measuring device and the measurement method for using it

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees