TWI289329B - Method and apparatus for controlling spacer width - Google Patents

Method and apparatus for controlling spacer width Download PDF

Info

Publication number
TWI289329B
TWI289329B TW91106715A TW91106715A TWI289329B TW I289329 B TWI289329 B TW I289329B TW 91106715 A TW91106715 A TW 91106715A TW 91106715 A TW91106715 A TW 91106715A TW I289329 B TWI289329 B TW I289329B
Authority
TW
Taiwan
Prior art keywords
layer
spacer
width
gate
nitride
Prior art date
Application number
TW91106715A
Other languages
Chinese (zh)
Inventor
Jhy-Shiou Hsu
Pin-Yi Hsin
Jeng Yu
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW91106715A priority Critical patent/TWI289329B/en
Application granted granted Critical
Publication of TWI289329B publication Critical patent/TWI289329B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

The present invention provides a method and an apparatus for controlling spacer width. The method includes the following steps: forming an oxidation layer, a nitride layer and a second oxidation layer on a semiconductor substrate having the gate structure to cover the upper portion and side walls of the gate structure; using the nitride layer as an etching stop layer to perform anisotropic etching on the second oxidation layer so as to form a residual second oxidation layer on a side wall of the gate structure, wherein the width between the side wall of the gate and the edge of the residual second oxidation layer is t, which is smaller than the width of the target spacer; using the first oxidation layer as an etching stop layer to perform anisotropic etching on the nitride layer so as to form a residual nitride layer on the side wall of the gate; removing the first oxidation layer and the second oxidation layer to leave only a first spacer, formed by the residual first oxidation layer and the residual nitride layer, on the side wall of the gate structure; and finally forming a second spacer having the width of T-t on the semiconductor substrate of the side wall of the first spacer. Since the present invention first forms the first spacer having a width smaller than a predetermined target spacer width (T) before forming the rest of the spacer to make up the target spacer width, the spacer width can be controlled effectively for not only fabricating an element of good electric stability but also preventing any bridging generated between the gate and the source/drain or any electric leakage after a subsequent metallic silicide process.

Description

1289329 ----ΜΜί_5_ 年-…月 日 條正 五、發明說明(1) 少 【發明領域】 本發明有關於一種形成間隙壁的方法和裝置,特別有 關於種开》成間隙壁的方法和裝置,其可有效控制間隙壁 的寬度,故可得到電性穩定的元件。 【發明背景】 隨著半導體積體電路的縮小化,元件的最小線寬(CD; critical dimension)已由 〇· 25 /ζιη 縮小至〇· i 8 ,甚至 於〇· 13 /zm。隨著元件最小線寬的下降,位於閘極側择之 間隙壁(spacer)之CD和閘極之複晶矽層之⑶的比值亦隨之 增大。也就是說,隨者元件最小線寬的下降,間隙壁所佔 的比重越來越大。因此,間隙壁對於元件電性的影響也就 越來越大。 傳統上0 · 2 5 // m元件之間隙壁的作法,是僅沈積厚度 高達2 5 0 0 A的一層氮化矽,然後進行乾蝕刻而$形成'間隙 壁。然而,沈積如此厚的氮化矽需彳艮高的溫度,若是對於 〇 . 1 8 # m或0 · 1 3 // m元件也採用這種高溫沈積厚氣化矽來形 成間隙壁的方法,會對元件造成損傷^因此,目前對於〇 · 1 8 //in或〇 ·. 1 3 /z m元件,——般都採用複合式間隙劈 (composite spacer)製法,使用較低的溫度沈二多層較薄 的絕緣層。 第la至1 d圖顯示傳統上複合式間隙壁的製造方法。首 先,請參閱第la圖,一半導體基底1 〇上具有一閘極結構 6 〇 ’其包括閘極乳化層6 2和複晶砍層6 4。在半導體基底1 0 上依序順應性地形成一第一氧化層2 2、一氮化廣24、和一 第二氧化層2 6,用以覆蓋閘極結構6 〇。1289329 ----ΜΜί_5_年-...月日条正五、发明说明(1) 少 [Field of the Invention] The present invention relates to a method and apparatus for forming a spacer, and more particularly to a method for seeding a spacer The device can effectively control the width of the spacer, so that an electrically stable component can be obtained. BACKGROUND OF THE INVENTION With the shrinking of semiconductor integrated circuits, the minimum line width (CD) of components has been reduced from 〇· 25 /ζιη to 〇· i 8 , even 〇· 13 /zm. As the minimum line width of the component decreases, the ratio of the CD of the spacer on the gate side to the (3) layer of the gate of the gate increases. That is to say, the minimum line width of the components decreases, and the proportion of the spacers becomes larger and larger. Therefore, the influence of the spacer on the electrical properties of the component is also increasing. Traditionally, spacers of 0 · 2 5 // m components have been deposited with only one layer of tantalum nitride having a thickness of up to 2,500 Å, and then dry etched to form a 'gap wall. However, the deposition of such a thick tantalum nitride requires a high temperature, and if it is for a 〇. 1 8 # m or 0 · 1 3 // m element, the method of forming a spacer by using a high-temperature deposition thick gas enthalpy is also used. Damage to components ^ Therefore, for 〇·1 8 //in or 〇·. 1 3 /zm components, the composite spacer method is generally used, and the lower temperature is used. A thinner insulating layer. Figures la to 1d show a conventional method of manufacturing a composite spacer. First, referring to the first drawing, a semiconductor substrate 1 has a gate structure 6 〇 ' which includes a gate emulsification layer 62 and a polycrystalline chop layer 64. A first oxide layer 2, a nitride layer 24, and a second oxide layer 2 6 are sequentially formed on the semiconductor substrate 10 to cover the gate structure 6 〇.

0503-6921 twfl (n) ; tsmc2001-08^8; JamnGwo.pt c 1289329 修正 --—--— 案號 91106715 年月日 五、發明說明(2) 斤接著’請參閱第lb圖,以氮化層24為蝕刻停止屏, 仃乾蝕刻除去第二氧化層26,而在氮化層24之辟日途 :。一此時’_侧壁上之絕叫心為成 接者,請參閱第lc圖,以第一氧化層22為蝕刻停止 層並以間隙壁2 6 a為硬罩幕,進行乾兹刻除去氮化声 24 ^而在第一氧化層22之侧壁上形成殘留的氮化"層24=。 同時,間隙壁26a也會被蝕刻掉一些而形成間隙壁26b。 接著,請參閱第Id圖,進行氫氟酸(HF)的濟^刻,以 除去第一氧化層22和間隙壁26b,而留下殘留的 以及在其下方之殘留的第一氧化層22a,而構成所謂; 合式間隙壁C 〇 f上述傳統形成複合式間隙壁的方法中,閘極6 〇側壁 上之複合式間隙壁C的寬度A是由間隙壁26a的寬度所決定^ ,(見第b圖)。也就是說,複合式間隙壁c的寬度A是在進 行除去第二氧化層的乾蝕刻程序中所決定的 ^以=前的技術而言,間隙壁26a的形狀(pr〇fUe)很難控 制’寬度非常不穩定.,使得複合式間隙的寬度A常無法 達到和目標(target)間隙壁的寬度相尊。因此,元件的電 性也很難控制,非常不穩定。再者,由於閘極侧壁上間隙 .壁=寬度不穩定,使得後續在進行金屬矽化物製程之後, 很容易在閘極和源/汲極之間產生橋接(bridging)現象, 成漏電。 【發明之目.的及概述】 有鑑於此’本發明之一目的為提供一種形成間隙壁的 0503-6921 twfl(n); tsnic2001 -0848; JamnGwo.pt c 第6頁 !2893290503-6921 twfl (n) ; tsmc2001-08^8; JamnGwo.pt c 1289329 Amendment -------- Case No. 91106715 5th, 5th, invention description (2) Jin then 'Please refer to Figure lb, with nitrogen The layer 24 is an etch stop screen, and the second oxide layer 26 is removed by dry etching, and the nitride layer 24 is turned on. At this time, the singularity on the sidewall is a splicer. Referring to the lc diagram, the first oxide layer 22 is used as an etch stop layer and the spacers 6 6 a are used as a hard mask for dry etching. Nitriding sound 24 ^ while forming a residual nitriding layer on the sidewall of the first oxide layer 22 =. At the same time, the spacers 26a are also etched away to form the spacers 26b. Next, referring to the figure Id, performing hydrofluoric acid (HF) etching to remove the first oxide layer 22 and the spacers 26b leaving the residual first oxide layer 22a remaining underneath, In the above-described conventional method of forming a composite spacer, the width A of the composite spacer C on the sidewall of the gate 6 is determined by the width of the spacer 26a (see b)). That is, the width A of the composite spacer c is a technique determined by the dry etching process for removing the second oxide layer, and the shape of the spacer 26a (pr〇fUe) is difficult to control. 'The width is very unstable. This makes the width A of the composite gap often unable to reach the width of the target spacer. Therefore, the electrical properties of the components are also difficult to control and are very unstable. Moreover, due to the gap on the sidewall of the gate, the wall = width is unstable, so that after the metal germanide process is performed, bridging phenomenon between the gate and the source/drain is easily caused, resulting in leakage. [Invention and Summary] In view of the above, it is an object of the present invention to provide a spacer for forming 0503-6921 twfl(n); tsnic2001 -0848; JamnGwo.pt c page 6 !289329

修正 Λ_η :法二此可控制間隙壁的寬度,達到穩定元件卜 禾 同時可避免橋接現象。 的攻 本發明之又一目的為提供一種形成間隙壁的裝置。 為達成本發明之上述目的,本發明形成間隙壁的方 在其上有一閘極結構的半導體基底上依序形成—> :層、一氮化層、和一第二氧化層,以覆蓋閘極結構: 及側壁。接著,以氮化層為钱刻停止層,冑第二养 二k 了非等向性蝕刻,而在閘極結構的侧壁上形成殘 二:乳化層,⑴極側壁到殘留之第二氧化層邊緣的: =笛,t值比目標(target)間隙壁寬度(τ)為小。接芏見 =弟一氧化層為钱刻停止層,對氮化層進行非等向性,, "而在閘極之側壁上形成殘留的氮化層。除去第卜 層二氧化,’使得間極結構的侧壁:剩;化 和,留之氮化層所構成之第一間隙壁由 第二;侧ί的半導體基底上,形成寬度為(τ-t)之〜仅 弟-=壁:然後再補形成不足寬度的間隙巧份為小的 寬度J裝ί ::芩—!?佳具體實施例’本發明控制間隙壁 :,置包括.—第一間隙壁形成裝置,用 二 間隙壁寬度(Τ)為小之第一門陶辟見度比目私(target) 宁钫埜一即小 之弟一間隙壁;一測定裝置,用以測 以I該第二:t之寬度Ο); 一第二間隙壁形成裝置,用 測f =镇一 ^壁之侧壁上形成一第二間隙壁,並依據該 -亍 C _隙壁之寬度(t)而決定第二間隙壁之形成寬 —w _以及—數據傳送裝置,用以將該測得 丨加,〜.二 -------------- 一Correction Λ η : Method 2 This can control the width of the spacer to achieve stable components while avoiding bridging. Another object of the present invention is to provide a device for forming a spacer. In order to achieve the above object of the present invention, the spacer formed by the present invention is sequentially formed on a semiconductor substrate having a gate structure thereon - a layer, a nitride layer, and a second oxide layer to cover the gate. Pole structure: and side walls. Then, the nitride layer is used as a stop layer, and the second layer is anisotropic etching, and a residual layer is formed on the sidewall of the gate structure: an emulsion layer, and (1) a sidewall to a residual second oxide. At the edge of the layer: = flute, the value of t is smaller than the target gap width (τ). Then see = the oxide layer is the memory stop layer, the nitride layer is anisotropic, and the residual nitride layer is formed on the sidewall of the gate. Removing the second layer of dioxide, 'so that the sidewall of the interpole structure: left; the sum, leaving the first spacer formed by the nitride layer from the second; on the side of the semiconductor substrate, forming a width (τ- t) ~ only brother -= wall: then make up the gap that forms insufficient width, the size is small, the width is J, and the width of the gap is 芩: 芩 ! ! 具体 具体 具体 ! ! 具体 具体 具体 具体 具体 具体 具体 具体 具体 具体 具体 具体 具体 具体 具体 具体 具体 具体 具体 具体a gap forming device, using the width of the two gaps (Τ) as a small first door, the visibility of the first door, the target, the Ning, the wilderness, the younger brother, a gap wall; a measuring device for measuring I the second: t width Ο); a second spacer forming device, forming a second spacer on the sidewall of the wall of the f = town, and according to the width of the -亍C _ gap t) determining the formation of the second spacer wall - w _ and - the data transmission device for adding the measurement, ~. two -------------

第7頁Page 7

_.Uwf 1⑻;tsmc2〇〇^^^T 1289329 ΜΜ 9ΐιηβ7ΐς 五、發明說明(4) 月 曰 修正 之第一間隙壁之寬度傳送至第二間隙壁形 依據本發明之另一較佳具體實施例,= 壁寬度的裝置包括:一第一間隙壁形成裝^月才:制間隙 5體基底上之閘極結構的侧壁上形成一寬 二在-半 置,用以測定該第一間隙壁之寬度⑴第:=襄 成裝置:其包括一沈積裝置和一崎置,= 二壁敢 用以在半導體基底上順應性地形成一絕緣層了 b^置係 結構和第-間隙壁’並依據該測得之第隙壁:::極 (t)而決定該絕緣層之形成厚度(w),使得w = ,見广 裝置係用以非#向性㈣該絕緣層而使得絕^ 刻 ^則壁上殘留寬度為(T_t)的第二間隙壁;以曰及二-間 !送襄置’用以將該測得之第一間隙壁之寬度⑴傳= 弟一間隙壁形成裝置。 ' 、’、主 μ,提供一脚⑽積體電路,其包括複數個電晶 :,、中至〉—個電晶體包括:一半導體基底;位在該基 氐上之閘極結構;位在該閘極結構侧壁上之一第一二 § ^(target) falFV# 見度(T)為小,且.該第一間隙壁係由位於該閘極結構側壁 上之一氧化層和位於該氧北層側壁上之一氮化層所構成一_ 立於該第一間隙壁侧壁上之第二間隙壁,其寬度為 斤綜上所述,本發明先形成比目標間隙壁寬度(τ)為小 =第一間隙壁S1,然後測定第一間隙壁S1實際上所形成的 寬度(t),再依據寬度差額(T—1)而補形成不足寬度的間隙 〇503-692ltwfl(n);tsmc2001-〇848;JamnGwo.ptc i 1289329 修正 曰 案號 91106715 五、發明說明(5) 壁部份。如此,可有效批告丨丨鬥 穩定的元件,且可寬度,故可得到電性 【實施例】 ' ¥ 弟2 a至2 f圖顯示依據太蘇日s p> ^ ^ .X ,, 、本I月一較佳具體實施例形成間 a ^ 月,閱弟2&圖,一半導體基底100上 具有-閘極結獅0,其包括閘極氧化層62D和複晶石夕層 640。在f導體基底1GG±依序順應性地形成—第—氧化層 20氮化層240、和一第二氧化層260,用以覆蓋閘極 結構6 0 0的上方及侧壁。 第一氧化層22 0可為以CVD法所沈積之TE0S —Si〇2,厚 度可為100A至200A,例如ι50Α。氮化層24〇可為以CVD 法=沈積之氮化矽,厚度可為2〇〇 A至4〇〇 A,例如3〇〇 A 。第二氧化層26 0可為以CVD法所沈積之te〇S-Si 〇2,厚度 可為 8 0 0 A 至 1 2 0 0 A,例如 1 〇 〇 〇 a。 接著,請參閱第2b圖,以氮化層240為蝕刻停止層, 對第二氧化層26 0進行非等向性蝕刻,而在閘極結構6〇 〇的 侧壁上形成間隙壁2 6 0a。若假設所欲達成之目標(target) 間隙壁的寬度為(T),則閘極侧壁到間隙壁26 〇a邊緣的寬 度(t)應該要控制成比目標間隙壁寬度(τ)為小。 接著’請參閱第2c圖,以第一氧化層22〇為兹刻停止 層,並以間隙壁26 0a為硬罩幕,對氮化層24〇進行非&向 性钱刻’而在閘極6 〇 〇之侧壁上形成殘留的氮化層2 4 ^。 同,時,間.隙壁2 6 0 a也會被蝕刻掉一些而形成間隙壁2 6 〇 b。 接著,請參閱第2d圖,以等向性蝕刻法(例如以抓進 0503-69211wf1 (η);t smc2001-0848;J amnGwo.pt c 第9頁 1289329 i 號 91106715_^曰 五、發明說明(6) 行濕飯刻)除去第一氧化層220和間隙壁26 0b,使得閘極結 構6 0 0的側壁上剩下由殘留之第一氧化層22〇a和殘留之氮σ 化層240a所構成之第一間隙壁S1。第一間隙壁S1的寬度 (七),即為閘極6 0 0之側壁到間隙壁2 6 0 a邊緣的寬声 第2b圖)。 又八見 ^由於直接使第一間隙壁31的寬度達到目標間隙壁寬度 非常,難,因此,本發明的主要概念是,先形成比目標& 隙壁寬度(T)為,j、的第一間隙壁si,然後測定第一間隙壁 si實際上所形成的寬度(t) ’再依據寬度差額(T—q而補形 成不足寬度的間隙壁部份。 y 請參閱第2e和2f圖,以說明補形成不足寬度之間隙壁 部份的方法。請先參閱第2e圖,在半導體基底1〇〇上順應" 性地形成厚度為w之一絕緣層3 〇 〇,以覆蓋閘極結構6 G 〇和 第一間隙壁S1。絕緣層3 0 0的厚度(㈠是甴目標間隙辟 度(τ)和第一間隙壁S1的寬度(ΐ)所決定的,:亦即,二τ—^ 。絕緣層3 0 0可為氮化物,例如為以cyD法所沈積之 矽’厚度可為150 A至45 0 λ之間。 、大 接著凊麥閱第2 f圖,以非等向性蝕刻法或者以 刻法除去絕緣層3 0 0,使得絕緣層3 〇 〇在第一間隙辟 壁上殘留第二間隙壁以。由於進行非等向性钱刻=: 絕緣層300所殘留的第二間隙壁S2部份之寬度,即 原先絕緣層所形成的厚度w。最後得到的間隙壁二二 間隙壁Si和第二間隙所構成,其總寬度(t ^ : 間隙壁寬度(T) 一樣。 ” S ‘ 第2f圖顯示本發日月之CM0S積體y的一部分,圖t顯 0503-6921 t'vfl(n); tsmc200i-0848; JaninGwo(20060809) .ptc第 l〇 頁 1289329 案说 91106715 五、發明說明(7) 示的電ΒΘ體包括·一半導體基底1〇〇,位在基底1〇〇上之一 閘極結構6 0 0,位在閘極結構6 〇 〇侧壁上之一第一間隙壁s 1 ’以及位於第一間隙壁S 1侧壁上之第二間隙壁s 2。第一間 隙壁S1之寬度為t,t值比目標(target)間隙壁寬度(T)為 小’且第一間隙壁S1係由位於該閘極結構6〇〇侧壁上之殘 留的第一氧化層22 0a和位於殘留的第一氧化層2 20a侧壁上 之氮化層240 a所構成。第二間隙壁S2的寬度為¥,即 (T-1) 〇 本發明同時提供一種控制間隙壁寬度的裝置。以下藉 由在一半導體基底上之閘極結構的側壁上形成複合式間隙 壁的製程,以說明依據本發明一較佳具體實施例控制 壁寬度的裝置。 請簽閱第3圖,依據本發明之一較佳具體實施例,本 發明控制間隙壁寬度的裝置包括:一第一間隙壁形成裝置 52,一測定裝置54,一第二間隙壁形成裝置7〇,以及二 據傳送裝置〇 請同時麥閱第2d至2 f圖之製程以及第3圖之裝置。首 先,將其上具有閘極結構6 0 0的一半導體基底1〇〇送入一 間隙壁形成裝置52内,以在閘極結構6〇〇的侧壁上形成一 寬度比目標間隙壁寬度(T)為小之第一間隙壁S1,^第Μ 圖所示。測定裝置54可用來測定第一間隙壁51的寬度 。將所測得的寬度(t)輸入數丨據傳送裝置56中,然後數垆 傳送裝置56可將寬度(t)的數據傳送至第二間隙壁步忐二 置70中。 夕风衣_.Uwf 1(8); tsmc2〇〇^^^T 1289329 ΜΜ 9ΐιηβ7ΐς V. Description of the invention (4) The width of the first gap wall of the meniscus correction is transmitted to the second gap wall shape. According to another preferred embodiment of the present invention The device of the wall width includes: a first spacer wall forming device: a gap is formed on the sidewall of the gate structure on the body substrate, and a width two in-half is formed to determine the first spacer Width (1):: 襄 forming device: it includes a deposition device and a smear, = two walls dare to conformally form an insulating layer on the semiconductor substrate, the b-type structure and the first-gap Determining the thickness (w) of the insulating layer according to the measured yoke wall:::pole (t), so that w = , see the wide device for non-directional (four) the insulating layer to make the etch ^ The second spacer having a width of (T_t) remains on the wall; and the width of the first spacer (1) is transmitted by the 曰 and the two-pass ' =. ', ', main μ, providing a one-foot (10) integrated circuit comprising a plurality of electro-crystals:, medium-to-one transistor comprising: a semiconductor substrate; a gate structure on the substrate; One of the first two §^(target) falFV# visibility (T) is small on the sidewall of the gate structure, and the first spacer is formed by an oxide layer on the sidewall of the gate structure and a nitride layer on the sidewall of the north layer of oxygen forms a second spacer wall standing on the sidewall of the first spacer wall, the width of which is described above, and the present invention first forms a specific gap of the target spacer (τ ) is small = first spacer S1, and then the width (t) actually formed by the first spacer S1 is measured, and then the gap 不足 503-692ltwfl(n) which is insufficiently formed according to the width difference (T-1) ;tsmc2001-〇848;JamnGwo.ptc i 1289329 Amendment number 91106715 V. Invention description (5) Wall part. In this way, the stable component of the bucket can be effectively approved, and the width can be obtained, so that the electrical property can be obtained. [Example] ' ¥ 2 a to 2 f shows the basis according to Taisu s p> ^ ^ .X , , , A preferred embodiment of the present invention forms a ^ a month, and the semiconductor substrate 100 has a gate lion 0, which includes a gate oxide layer 62D and a polycrystalline stone layer 640. The f-conductor substrate 1GG± is sequentially compliantly formed with a first oxide layer 20, a nitride layer 240, and a second oxide layer 260 for covering the upper and sidewalls of the gate structure 600. The first oxide layer 22 may be TEOS-Si 2 deposited by a CVD method and may have a thickness of 100 A to 200 A, for example, ι 50 Å. The nitride layer 24 〇 may be tantalum nitride deposited by CVD method, and may have a thickness of 2 〇〇 A to 4 〇〇 A, for example, 3 〇〇 A . The second oxide layer 260 may be te 〇 S-Si 〇 2 deposited by a CVD method and may have a thickness of 800 Å to 1 2 0 0 A, for example, 1 〇 〇 〇 a. Next, referring to FIG. 2b, the nitride layer 240 is used as an etch stop layer, and the second oxide layer 260 is anisotropically etched, and a spacer 2 60a is formed on the sidewall of the gate structure 6? . If it is assumed that the width of the target gap is (T), the width (t) of the edge of the gate to the edge of the spacer 26 〇a should be controlled to be smaller than the target gap width (τ). . Then, please refer to Fig. 2c, the first oxide layer 22 is used as the stop layer, and the spacers 26 0a are used as the hard mask, and the nitride layer 24 is subjected to non-& A residual nitride layer 2 4 ^ is formed on the sidewall of the electrode. At the same time, the gap wall 210 will also be etched away to form the spacers 2 6 〇 b. Next, please refer to the 2d figure, with an isotropic etching method (for example, to grab 0503-69211wf1 (η); t smc2001-0848; JamnGwo.pt c page 9 1289329 i No. 91106715_^5, invention description ( 6) wet etching) removing the first oxide layer 220 and the spacers 260b such that the remaining first oxide layer 22a and the residual nitrogen sigma layer 240a remain on the sidewalls of the gate structure 600 The first spacer S1 is formed. The width (7) of the first spacer S1 is the wide sound of the edge of the gate 600 to the edge of the spacer 2600 a (Fig. 2b). Moreover, it is difficult to directly make the width of the first gap 31 reach the target gap wall. Therefore, the main concept of the present invention is to form a ratio of the target & gap width (T) to j, first. a gap wall si, and then measuring the width (t) of the first spacer wall si actually formed, and then forming a gap portion of insufficient width according to the width difference (T-q. y see Figures 2e and 2f, To illustrate the method of filling the gap portion of the insufficient width. Please refer to Figure 2e first, and conformally form an insulating layer 3 厚度 on the semiconductor substrate 1〇〇 to cover the gate structure. 6 G 〇 and the first spacer S1. The thickness of the insulating layer 300 ((1) is determined by the target clearance (τ) and the width (ΐ) of the first spacer S1, that is, two τ- The insulating layer 300 can be a nitride, for example, the thickness of the 沉积' deposited by the cyD method can be between 150 A and 45 0 λ. The larger the next buckwheat is the 2 f map, with anisotropy. Etching or removing the insulating layer 300 by engraving, so that the insulating layer 3 残留 remains on the first gap wall The gap wall is made by the anisotropy = the width of the portion of the second spacer S2 remaining in the insulating layer 300, that is, the thickness w formed by the original insulating layer. The finally obtained spacer second and second spacer Si And the second gap is formed, the total width (t ^ : the gap width (T) is the same." S ' 2f shows a part of the CM0S complex y of the current day and month, the figure t display 0503-6921 t'vfl (n); tsmc200i-0848; JaninGwo (20060809) .ptc p. 1289329 Case 91106715 V. Description of the invention (7) The electric body shown includes a semiconductor substrate 1〇〇 on the substrate 1 a gate structure 600, a first spacer s 1 ' located on the sidewall of the gate structure 6 and a second spacer s 2 on the sidewall of the first spacer S1. The width of the spacer S1 is t, the value of t is smaller than the target gap width (T), and the first spacer S1 is composed of a residual first oxide layer located on the sidewall of the gate structure 6 22 0a and a nitride layer 240 a on the sidewall of the remaining first oxide layer 20 20 a. The width of the second spacer S 2 is ¥, that is, (T-1) The invention also provides a device for controlling the width of a spacer. The following is a process for forming a composite spacer on a sidewall of a gate structure on a semiconductor substrate to illustrate a device for controlling wall width in accordance with a preferred embodiment of the present invention. Please refer to FIG. 3. According to a preferred embodiment of the present invention, the apparatus for controlling the width of the spacer includes: a first spacer forming device 52, a measuring device 54, and a second spacer forming device. 7〇, and the two-package transmission device, please read the process of 2d to 2f and the device of Figure 3. First, a semiconductor substrate 1 having a gate structure 600 is fed into a spacer forming device 52 to form a width-to-target spacer width on the sidewall of the gate structure 6? T) is the first small gap S1, ^ is shown in the figure. The measuring device 54 can be used to determine the width of the first spacer 51. The measured width (t) is entered into the data transfer device 56, and the data transfer device 56 can then transmit the width (t) data to the second spacer step 70. Evening windbreaker

1289329 _mm, 91106715_年 月 日 倏正 五、發明說明(8) 置74。將半導體基底送入沈積裝置72中,以在.半導體基底 上順應性地形成一絕緣層3 0 0,以覆蓋閘極結構6 0 〇和第一 間隙壁S1。絕緣層30 0的沈積厚度(w)是依據數據傳送裝置 56所傳來之所測得第一間隙壁之寬度(t)而決定的,使得 w = T-t。接著,將丰導體基底送入蝕刻裝置74中,以非等 向性蝕刻絕緣層而使得絕緣層在第一間隙壁S1侧壁上有殘 留。由於進行非等向性蝕刻法,因此絕緣層3 〇 〇所殘留的 第二間隙壁S2部份之寬度,即等於其原先所形成的厚度 w。最後得到的間隙壁即為第一間隙壁si和第二間隙壁 所構成,其總寬度(t + w )和目標間隙壁寬度(τ) 一樣。 綜上所述,本發明先形成比目標間隙壁寬度(τ)為小 的第一間隙壁S1,然後測定第一間隙壁S1實際上所形成'白、 度(ΐ ) ’再,依據览度差額(T - ΐ )而補形成不足寬度的門:、 壁部份。如此,可有效控制間隙壁的寬度,故可得到;= 穩定的元件,且可避免後續金屬矽化物製程之後閘接^ 源/没極之間所產生的橋接現象,防止漏電。 雖然本發明已以較佳實施例揭露如上,然其並非用、 限制本發明,任何熟習此項技藝者,在不脫離本發明之梦 神和範圍内,當可做更動與潤飾,因此本發明之保護範= 當以後附之申請專利範圍所界定者為準。'乾圍1289329 _mm, 91106715_年月日 Yongzheng V. Inventive Note (8) Set 74. The semiconductor substrate is fed into a deposition device 72 to conformally form an insulating layer 300 on the semiconductor substrate to cover the gate structure 60 〇 and the first spacer S1. The deposition thickness (w) of the insulating layer 30 0 is determined in accordance with the measured width (t) of the first spacer from the data transfer device 56 such that w = T-t. Next, the rich conductor substrate is fed into the etching device 74, and the insulating layer is anisotropically etched so that the insulating layer remains on the sidewall of the first spacer S1. Due to the anisotropic etching method, the width of the portion of the second spacer S2 remaining in the insulating layer 3 is equal to the thickness w originally formed. The resulting spacer is formed by the first spacer si and the second spacer, the total width (t + w ) being the same as the target spacer width (τ). In summary, the present invention first forms a first spacer S1 that is smaller than the target spacer width (τ), and then determines that the first spacer S1 actually forms a 'white, degree (ΐ)', and then The difference (T - ΐ) complements the door that forms less than the width: the wall portion. In this way, the width of the spacer can be effectively controlled, so that a stable component can be obtained, and bridging between the gate and the gate after the subsequent metal telluride process can be avoided to prevent leakage. Although the present invention has been disclosed in the above preferred embodiments, it is not intended to limit the invention, and the present invention may be modified and retouched without departing from the spirit and scope of the present invention. Protection Fan = The one defined in the scope of the patent application attached is subject to change. 'dry circumference

1289329 案號 91106715 曰 修正 圖式簡單說明 為讓本發明之上述目的.、特徵及優點能更明顯易懂, 下文特舉一較佳實施例,並配合所附圖式,作詳細說明如 下。 : 第1 a至1 d圖顯示傳統上複合式間隙壁的製造方法。 第2 a至2 f圖顯示依據本發明一較佳具體實施例形成間 隙壁的方法。 第3圖顯示依據本發明一較佳具體實施例之形成間隙 壁的裝置。 【符號說明】 習知技系诗 1 0〜半導體基底; 6 0〜閘極結構; 62〜閘極氧化層; 64〜複晶矽層; 22〜第一氧化層; 22a〜殘留的第一氧化層; 2 4〜氮化層; 24a〜殘留的氮化層; 26〜第二氧化層;。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 : Figures 1 to 1 d show the manufacturing method of the conventional composite spacer. Figures 2a through 2f show a method of forming a gap wall in accordance with a preferred embodiment of the present invention. Figure 3 shows a device for forming a spacer wall in accordance with a preferred embodiment of the present invention. [Description of symbols] Conventional technology is poem 10 0~ semiconductor substrate; 6 0~ gate structure; 62~ gate oxide layer; 64~ polysilicon layer; 22~ first oxide layer; 22a~ residual first oxidation Layer; 2 4~ nitride layer; 24a~ residual nitride layer; 26~ second oxide layer;

Ma〜間隙壁; 2 6b〜間隙壁; C〜複合式間隙壁; A〜複合式間隙壁的寬度。 本發明 ' 10 0〜半導體基底;Ma ~ spacer; 2 6b ~ spacer; C ~ composite spacer; A ~ composite spacer width. The invention is a '10 0~ semiconductor substrate;

0503-69211wf1(η);ΐ smc2001-0848;J amnGwo.p t c 第13頁 1289329 __ 案號91106715_年月曰 修是 圖式簡單說明 6 0 0〜閘極結構; 6 2 0〜閘極氧化層; 64 0〜複晶矽層; 2 2 0〜第一氧化層; 22 0a〜殘留的第一氧化層; 2 4 0〜氮化層; 2 4 0 a〜殘留的氮化層; 26 0〜第二氧化層; 26 0a〜間隙壁; 26 0b〜間隙壁; S1〜第一間隙壁; S2〜第二間隙壁; T〜目標間隙壁寬度; t〜第一間隙壁S1的寬度; 3 0 0〜絕緣層; w〜絕緣層厚度; 52〜第一間隙壁形成裝置; 以〜測定裝置; 70〜第二間隙壁形成裝置; ' 56〜數據傳送裝置; 了2〜沈積裝置; 74〜蝕刻裝置。0503-69211wf1(η);ΐ smc2001-0848;J amnGwo.ptc Page 13 1289329 __ Case No. 91106715_年月曰修 is a simple illustration of the structure 6 0 0~ gate structure; 6 2 0~ gate oxide layer 64 0~polycrystalline germanium layer; 2 2 0~first oxide layer; 22 0a~ residual first oxide layer; 2 4 0~nitriding layer; 2 4 0 a~ residual nitride layer; 26 0~ Second oxide layer; 26 0a~gap; 26 0b~gap; S1~first spacer; S2~second spacer; T~target spacer width; t~first spacer S1 width; 3 0 0~insulating layer; w~insulating layer thickness; 52~first spacer forming device; ~measuring device; 70~second spacer forming device; '56~data transfer device; 2~deposition device; 74~etching Device.

0503-69211wf1(η);t smc2001-0848;J amnGwo.p t c 第14頁0503-69211wf1(η);t smc2001-0848;J amnGwo.p t c第14页

Claims (1)

1289329 案號 91106715 六、申請專利範圍 修正1289329 Case No. 91106715 VI. Scope of Application for Patent Revision 1. 一種控制間隙壁寬度的方法,其包括: 一氮化層 Ϊ::t導體基底’其上具有-閘極結構 在該+弋體基底上依序形成一第一氧化層 、和—第二氧化層,以覆蓋閘極結構的上方及侧辟, 以該氮化層為钱刻停止層,對該第二氧化層 向性餘刻,而在閘極έ士槿f / 仃非寺 位、、、口構的侧壁上形成殘留的第二 、、t該閘極侧壁到殘留之第二氧化層邊緣層 值比目標(target)間隙壁寬度(τ)為小; ,又為t,t =第-氧化層為兹刻停止I ’對該氮化層進 向!· ”二而在閘極之側壁上形成殘留的氮化層; 除去第一氧化層和第二氧化層,極妹 上剩下由殘留之第-氧化層和殘留之氮化層所;=壁 間隙壁;以及 尽^構成之弟一 ’形成寬度為 其中該第一氧 其中該第一氧 其中該第二氣 -氧 在該第一間隙壁侧壁的半導體基底上 (T - ΐ )之一第二間隙壁。 2 ·如申請專利範圍第1項所述之方法: 化層為以CVD法所沈積之TE〇s —Si%。 3 ·如申請專利範圍第1項所述之方法5 化層之厚度為1 〇 〇入至2 q 〇 a。 4 ·如申請專利範圍第1項所述之方法, 化層為以CVD法所沈積iTE〇s —μ%。 5 ·如申请專利範圍第1項所述之方法, 化層之厚度為8〇〇入至12〇〇 a。 / 6·如申睛專利範圍第1項所述之方法, 其中該第· 其中該氮化詹A method of controlling a width of a spacer, comprising: a nitride layer::t conductor substrate having a gate structure thereon, a first oxide layer sequentially formed on the + germanium substrate, and a dioxide layer to cover the upper and side of the gate structure, the nitride layer is used as a stop layer for the engraving, the second oxide layer is directional, and the gate is in the gate of the gentleman 槿f / 仃非寺, the second portion of the sidewall of the mouth structure is formed, and the edge layer of the second oxide layer remaining to the residual gate layer is smaller than the target gap width (τ); and is t , t = the first oxide layer is stopped, I's the nitride layer, and the second nitride layer is formed on the sidewall of the gate; the first oxide layer and the second oxide layer are removed. The remaining part of the remaining oxide layer and the residual nitride layer; the wall spacer; and the composition of the brother's formation width is the first oxygen of the first oxygen, wherein the second gas - a second spacer on the semiconductor substrate (T - ΐ) of the first spacer sidewall. 2 · as claimed The method described in the first aspect: the chemical layer is TE〇s-Si% deposited by the CVD method. 3. The method according to the method of claim 1 is characterized in that the thickness of the layer is 1 in 2 to 2 〇 4. The method according to claim 1, wherein the layer is iTE 〇 s - μ% deposited by the CVD method. 5. The method according to the first aspect of the patent application, the thickness of the layer is 8Into 12〇〇a. / 6· The method described in claim 1 of the scope of the patent, wherein the 0503-69211wf1(η);t smc2001-0848;J amnGwo.p tc 第15頁 Ϊ289329 Λ_ 日 修正 丄 9iinfi7iR y、申请專利範圍 為以CVD法所沈積之氮化矽。 之厚7度UoY至第1項所述之方法,其中該氮化層 -氣利範圍第1項所述之方法’其中該除去第 壁的牛^ #弟^氧化層而在閘極結構侧壁上形成第一間隙 土的步驟係以等向性钱刻法進行。 階辟9/,如申請專利範圍第1項所述之方法,其中在第一間 隙壁侧壁的本鐾Μ Iν^ /、Τ供矛 间 的步驟包括 底上形成寬度為(7沁)之第二間隙壁 厚,體基底上順應性地形成厚度為(卜七)之一絕緣 k 復盍該閘極結構和該第一間隙壁;以及 ^〜除去該絕蝝層’使得該絕緣層在第一間隙廢侧卷上费 留寬度為(τ-t)之第二間隙壁。 、一 一奴 其中該、纟巴緣層 ’其中該絕緣 ’其中該絕緣 其^中該除去絕 ’其中該除去 、1 0 ·如申請專利範圍第9項所述之方法, 為氮化物。 、11 ·如申請專利範圍第1 〇項所述之方法 層為CVD法所沈積之氮化矽。 12·如申請專利範圍第10項所述之方法 層之异度為1 5 0 Λ至4 5 () A之間。 1 3.如申請專利範圍第9項所述之方法, 緣層之步驟係使用非等向性蝕刻法。 14·如申請專利範圍第13項所述之方法 絕緣層之步驟係使用乾蝕刻法。 1 5 · —種CMO S積體電路,其包括複數個電晶體,其中0503-69211wf1(η);t smc2001-0848;J amnGwo.p tc Page 15 Ϊ289329 Λ_日 Correction 丄 9iinfi7iR y, the patent application scope is tantalum nitride deposited by CVD method. The method of claim 1, wherein the method of the nitride layer-gas range according to item 1 wherein the removal of the first wall of the oxide layer is on the gate structure side The step of forming the first interstitial soil on the wall is carried out by an isotropic method. The method of claim 1, wherein the step of the first spacer wall and the step of providing the spear includes forming a width of (7沁) on the bottom. a second gap wall thickness, the thickness of the body substrate is compliantly formed (b), one of the insulating layers k is retanning the gate structure and the first spacer; and the anode layer is removed to make the insulating layer A second gap wall having a width of (τ-t) is left on the waste side of the first gap. And a slave, wherein the barrier layer ‘where the insulation ‘where the insulation is removed ’, wherein the removal, 1 0. The method of claim 9 is a nitride. 11. The method described in the first paragraph of the patent application is a tantalum nitride deposited by a CVD method. 12. The method described in claim 10 of the patent application layer has a degree of difference between 1 500 and 4 5 () A. 1 3. The method of claim 9, wherein the step of the edge layer is an anisotropic etching method. 14. The method of claim 13, wherein the step of insulating the layer is performed by dry etching. 1 5 · A CMO S integrated circuit comprising a plurality of transistors, wherein 第16頁 0503 - 69211wf 1 (η); t smc2001 -0848; J amnGwo. p t c 1289329 一修正 ~_案號gil0671Pi 年月 日 六、申請專利範圍 至少一個電晶體包括: 一半導體基底; 位在該基底上之一閘極結構; 位在該閘極結構侧壁上之一第一間隙壁,兮 度為t,t值比目標(target)間隙壁寬度( 曰 且該第一間隙壁係由位於該閘極結構侧壁上之一 /、、、小 仅於該氧化層側壁上之_氮化層所構成;n氣化層 位於該第一間隙壁側壁上之第二間隙办 (丁〜t)。 丹見度為 1 6 ·如申請專利範圍第1 5項所述之CMOS積體雷% 該氧化層為以CVD法所沈積之TEOS-Si02。 ' 17·如申請專利範圍第1 5項所述之CMOS積體雷% 中該氧化層之厚度為loo A至200 A。 、“路、 18.如申請專利範圍第15項所述之CMOS積體電& 中該氮化層為以CVD法所沈積之氮化石夕。 ΐΐ4 - 士斗\9.如申請.專利範圍第15項所述之CMOS積體雷路 中該氮化層之厚度為2〇0 A至4〇〇 A。 ’ ; 20.如申請專利範圍第15項所述之⑶⑽積體電 中該第二間隙壁為絕緣層。,士 ^ 21·如申請專利範圍第20項所述之CMOS積體電路,d 中該絕緣層為氮化物。 ^ 22.如申請專利範圍第2ι項所述&CM〇s積體電路, 中該絕緣層為CVD法所沈積之氮化矽。 ; 23·如申請專利範圍第2丨項所述之⑶㈨積體電略,」 jPage 16 0503 - 69211wf 1 (η); t smc2001 -0848; J amnGwo. ptc 1289329 A correction ~ _ case number gil0671Pi Year 6th, the patent application range at least one transistor includes: a semiconductor substrate; located on the substrate One of the upper gate structures; one of the first spacers on the sidewall of the gate structure, the twist is t, and the t value is greater than the target gap width (and the first spacer is located at the One of the sidewalls of the gate structure is formed by a nitride layer on the sidewall of the oxide layer; the second vaporization layer is located on the sidewall of the first spacer wall (d~t) The visibility is 1 6 · The CMOS product % as described in claim 15 of the patent application. The oxide layer is TEOS-SiO 2 deposited by the CVD method. ' 17 · As claimed in item 15 In the CMOS integrated body %, the thickness of the oxide layer is loo A to 200 A. "Land, 18. The CMOS integrated body according to claim 15 of the patent application is in the CVD layer. The nitriding stone deposited by the law. ΐΐ4 - 士斗\9. If applied, the CMOS integrated lightning path mentioned in the 15th patent range The thickness of the nitride layer is from 2 〇0 A to 4 〇〇A. '; 20. The second spacer is an insulating layer in the integrated body of (3) (10) according to claim 15 of the patent application. The CMOS integrated circuit according to claim 20, wherein the insulating layer is a nitride in the case of d. ^ 22. The integrated circuit of the &CM〇s integrated circuit according to the second item of claim 2, wherein the insulating layer is The tantalum nitride deposited by the CVD method. 23· (3) (9) as described in the second paragraph of the patent application, "j" 第17頁 1289329Page 17 1289329 0503-6921twfl(n);tsmc2001-0848;JamnGwo.ptc 苐18頁0503-6921twfl(n); tsmc2001-0848;JamnGwo.ptc 苐18 pages
TW91106715A 2002-04-03 2002-04-03 Method and apparatus for controlling spacer width TWI289329B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW91106715A TWI289329B (en) 2002-04-03 2002-04-03 Method and apparatus for controlling spacer width

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW91106715A TWI289329B (en) 2002-04-03 2002-04-03 Method and apparatus for controlling spacer width

Publications (1)

Publication Number Publication Date
TWI289329B true TWI289329B (en) 2007-11-01

Family

ID=39294963

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91106715A TWI289329B (en) 2002-04-03 2002-04-03 Method and apparatus for controlling spacer width

Country Status (1)

Country Link
TW (1) TWI289329B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106816368A (en) * 2015-12-01 2017-06-09 中芯国际集成电路制造(上海)有限公司 The forming method of semiconductor structure and CMOS transistor
TWI698916B (en) * 2015-08-27 2020-07-11 美商應用材料股份有限公司 Vnand tensile thick teos oxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI698916B (en) * 2015-08-27 2020-07-11 美商應用材料股份有限公司 Vnand tensile thick teos oxide
CN106816368A (en) * 2015-12-01 2017-06-09 中芯国际集成电路制造(上海)有限公司 The forming method of semiconductor structure and CMOS transistor

Similar Documents

Publication Publication Date Title
TW408433B (en) Method for fabricating semiconductor integrated circuit
TW548788B (en) Self-aligned contact with improved isolation and method forming
TW201112315A (en) Direct contact in trench with three-mask shield gate process
TWI390639B (en) Methods of fabricating dual fin structures and semiconductor device structures with dual fin structures
JPH10223889A (en) Mis transistor and its manufacture
JP2008546173A (en) Electronic device with trench field isolation region and manufacturing method for forming the electronic device
JP2002198521A (en) Method of manufacturing semiconductor device
TWI298182B (en) Method of manufacturing semiconductor device having side wall spacers
JP2007214436A (en) Semiconductor device and manufacturing method therefor
TWI255529B (en) Method for wrapped-gate MOSFET
TWI289329B (en) Method and apparatus for controlling spacer width
US6479357B1 (en) Method for fabricating semiconductor device with copper gate electrode
JP2006295071A (en) Semiconductor device manufacturing method
TW200834659A (en) Method of fabricating semiconductor device
JP2009094106A (en) Method of manufacturing semiconductor apparatus
TW466692B (en) A method of manufacturing a semiconductor device
TW540159B (en) Manufacturing method of flash memory source line
US7166526B2 (en) Method for forming silicide film in semiconductor device
TW200522254A (en) Method of manufacturing a semiconductor device
JP5408132B2 (en) Manufacturing method of MIS field effect transistor
TWI287847B (en) Method of fabricating metal oxide semiconductor transistor
JPH09148568A (en) Manufacture of semiconductor device
JP2007150253A (en) Method for manufacturing semiconductor device
CN107845680A (en) A kind of semiconductor devices and its manufacture method
JPH11145274A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees