1288740 九、發明說明: 【發明所屬之技術領域】 本發明係有關一種無閥阻抗式微泵,利用材料間阻抗 值的差異,致使流道壁阻抗值之差異,進而達到傳遞介質 之功用。 【先前技術】 按,一般微流體元件之開發與系統技術之應用主要是 發展控制、偵測、反應及分析微量流體。其關鍵元件包括 微泵、微閥、微流道及微混合器等,並可整合為不同功能 之智慧型微流體晶片,其適用於生物科技、可攜式生理監 測儀、環境分析儀、精密流體控制、燃料電池工程、高解 析度喷頭及微動力系統等。其中以微泵為最主要之關鍵元 件之一。 、 而微泵主要可分為有閥與無閥兩種結構形式,而以無 閥微泵來說,依其致動方式可分為壓電致動式、氣動式、 5 1288740 靜電式、形狀記憶合金式、熱氣動式、超音波式及雙金屬 式01288740 IX. Description of the Invention: [Technical Field] The present invention relates to a valveless impedance type micropump that utilizes a difference in impedance values between materials to cause a difference in impedance values of the flow path walls, thereby achieving the function of the transfer medium. [Prior Art] According to the development of general microfluidic components and the application of system technology, it is mainly to develop control, detection, reaction and analysis of trace fluids. Its key components include micro-pumps, micro-valves, micro-channels and micro-mixers, and can be integrated into intelligent microfluidic wafers with different functions. It is suitable for biotechnology, portable physiological monitors, environmental analyzers, precision Fluid control, fuel cell engineering, high-resolution nozzles and micro-power systems. Among them, the micro pump is one of the most important key components. The micro-pump can be mainly divided into two types of valves: valveless and non-valve. In the case of valveless micropump, it can be divided into piezoelectric actuated, pneumatic, 5 1288740 electrostatic, shape according to its actuation mode. Memory alloy, thermopneumatic, ultrasonic and bimetallic 0
如第8圖所示,為一典型之壓電無閥微泵6剖面構造 圖,而第9圖係第8圖之B — B線段之剖視圖,其係表示 一結構底層6 1、一結構頂層6 2、一壓電元件6 3及二 微流道管6 4所組成。其作動原理是給予壓電元件6 3驅 動電壓,當壓電元件6 3作動時會推動一振動薄膜6 2工 ,該振動薄膜6 2 1因形變而導致一中間流道6 5的體積 改變,因而產生壓力的改變。而水由一進水口 6 6進入經 擴流道6 7通過中間流道6 5再經另一擴流道6 8至出水 口 6 9。藉由中間流道6 5的體積變位,使得進出水口 6 6、69產生壓力差異,出水口6g的淨流量大於進水口 6 6的淨流量,因此水的流向會由進水口 6 6至出水口 6 ^ ο 由於傳統壓電無閥微泵的擴流道設計繁雜,且液體流 向只有單一方向,除了不合乎成本效益之外,因只有單一 流向的功能而使得實用性亦受到限制。 【發明内容】 本發明之主要目的,在於解決上述的問題而提供—種 無閥阻抗式微泵,其係利用材料間結構或材質軟硬程声的 不同’以造傭料卩摧抗值的差異,致使介質在流道$ 6 1288740 振膜產生波動時會因流道壁阻抗值之差異,進而達到傳遞 介質之功用。 為達前述之目的,本發明係包括: 一結構底層,其具有一開孔; 一結構中間層,設於該結構底層之頂端,對應該結構 底層之開孔位置利用二平面與一底面於該結構中間層界定 出一略大於該開孔寬度之流道,並將該流道底面下方與該 結構底層間之區域界定為下振膜; 一結構頂層,設於該結構中間層之頂端,其具有一固 定座,該固定座鄰近中間處具有一凹槽,該凹槽中具有一 凸塊,且該凹槽左、右侧至該結構頂層之左、右端面間分 別設有一進出水口,各該進出水口分別與該流道相連通, 並以該凹槽底面為假想基線向左、右兩側延伸而分別與各 進出水口外壁向下之投影線相交所圍成之區域界定為一上 振膜,使該上振膜成為該流道之頂面; 一壓電元件,其長軸方向之底面分別固定於該凸塊頂 端及該固定座之頂面。 本發明之上述及其他目的與優點,不難從下述所選用 實施例之詳細說明與附圖中,獲得深入了解。 當然,本發明在某些另件上,或另件之安排上容許有 所不同,但所選用之實施例,則於本說明書中,予以詳細 7 1288740 說明,並於附圖中展示其構造。 【實施方式】 請參閱第1至第7圖,圖中所示者為本發明所選用之 實施例結構,此僅供說明之用,在專利申請上並不受此種 結構之限制。 本實施例之無閥阻抗式微泵1,如第1圖與第2圖所 示,其係包括: Φ 一成薄片狀之結構底層1 0,其置中位置具有一開孔1 〇 1 ; 一成薄片狀之結構中間層1 1,設於該結構底層丄0之頂 端,對應該結構底層1 〇之開孔1 〇丄位置形成一略大於 該開孔1 0 1寬度之凹槽以界定出一狹長狀流道i i 3, 以供一介質(可為水或其它液體)流動,並將該流道1 1 3底面下方與該結構底層1〇間之區域界定為下振膜11 • 4。 、 一結構頂層1 2,設於該結構中間層1 1之頂端,使 該結構了頁層1 2底面成為該流道1 1 3之頂面,其具有一 固定座121,該固定座121鄰近中間處具有一凹槽1 2 2,於本例中,該凹槽1 2 2與開孔1 〇 1係成相對設 置並具有相同之寬度;於該凹槽1 2 2底緣具有一凸塊1 2 3 ’於本貫施例中’該凸塊1 2 3係為一不對稱之設置 1288740 而偏向該凹槽i 2 2長度方向左侧,另於該凹槽i 2 2長 度方向左、右侧至該結構頂層1 2之左、右端面間分別設 有一進出水口124,各該進出水口1 2 4分別與該流道 1 1 3相連通,並以該凹槽1 2 2底面區域界定為一上振 臈1 2 5 ; 一壓電元件2跨置固定於該固定座121頂面之凹槽 1 2 2上緣兩侧,且壓電元件2底面貼近於該凸塊丄2 3 頂端;該壓電元件2之作動原理於本例中係以u n丨 0rPh或by—morph之形式而動作。 如第3圖所示,由於驅動該微泵之壓電元件2係固定 在固定座1 2 1之頂面,所以連接凸塊1 2 3的上振膜可 推擠產生震波,使該介質在流道1 1 3中因受到上、下振 膜1 2 5、1 1 4的擠壓向兩侧進出水口 1 2 4波動,由 於構成該流道1 1 3之上振膜1 2 5與下振膜1 1 4相較 於固疋座1 2 1與結構底層1 〇的阻抗值因結構設計而使 該流道1 1 3有厚薄的差別,使流道1 1 3在不同位置會 有不同的軟硬程度,同時配合凸塊1 2 3位置不對稱的設 計,使得凸塊1 2 3會較靠近凹槽1 2 2單一侧之固定座 1 2 1,致使該介質的波動碰撞較靠近該凸塊1 2 3之固 定座1 2 1時,會往反向反射回去,藉此不斷的碰撞與反 射,該介質的傳遞就會往距離該凸塊1 2 3較遠處之進出 9 1288740 水口1 2 4流去’同時當改變壓電元件2之驅動頻率,可 以有不同之流量控制,亦會有反向流動之現象。 本發明之製程利用半導體製程技術中的黃光製程之曝 光、顯影’再配合微電鑄製程技術製作出該結構底層1 〇 、結構中間層1 1及結構頂層1 2,於本實施例中,該結 構底層1 0、結構中間層1 1及結構頂層1 2之材料以電 ~錄為主。其製程技術分別述敘如下:As shown in Fig. 8, it is a typical piezoelectric valveless micropump 6 cross-sectional structural view, and Fig. 9 is a cross-sectional view of the B-line segment of Fig. 8 showing a structural bottom layer 6 1 and a structural top layer. 6 2. A piezoelectric element 6 3 and a second micro flow tube 6 4 are composed. The operating principle is to apply a driving voltage to the piezoelectric element 63. When the piezoelectric element 63 is actuated, a vibrating film 6 2 is driven, and the vibrating film 6 2 1 causes a volume change of the intermediate flow path 65 due to deformation. This creates a change in pressure. The water enters the expanded passage 6 through a water inlet 6 6 through the intermediate flow passage 6 5 and through the other expansion passage 6 8 to the outlet 6 9 . By the volume displacement of the intermediate flow passage 65, the pressure difference is generated between the inlet and outlet nozzles 6, 6 and 69, and the net flow rate of the outlet port 6g is greater than the net flow rate of the inlet port 66, so that the flow direction of the water will be discharged from the inlet 6 6 Nozzle 6 ^ ο Due to the complicated design of the expansion channel of the conventional piezoelectric valveless micropump, and the liquid flow direction has only a single direction, in addition to being uneconomical, the utility is also limited due to the function of only a single flow direction. SUMMARY OF THE INVENTION The main object of the present invention is to solve the above problems and provide a valveless impedance type micropump, which utilizes the difference in the hardness and hardness of the structure or material between materials. Therefore, the medium will be affected by the difference of the impedance value of the flow channel when the diaphragm is fluctuating in the flow channel $6 1288740, thereby achieving the function of the transfer medium. For the purpose of the foregoing, the present invention comprises: a structural bottom layer having an opening; a structural intermediate layer disposed at a top end of the bottom layer of the structure, wherein the opening position corresponding to the bottom layer of the structure utilizes a second plane and a bottom surface The intermediate layer of the structure defines a flow path slightly larger than the width of the opening, and defines a region between the bottom surface of the flow channel and the bottom layer of the structure as a lower diaphragm; a top layer of the structure is disposed at the top of the intermediate layer of the structure, The utility model has a fixing seat, the fixing seat has a groove adjacent to the middle portion, the groove has a convex block therein, and the left and right sides of the groove are respectively provided with an inlet and outlet port between the left and right end faces of the top layer of the structure, respectively The water inlet and outlet respectively communicate with the flow channel, and the area surrounded by the bottom surface of the groove extending to the left and right sides of the imaginary baseline and intersecting the downward projection lines of the inlet and outlet ports respectively is defined as an up-vibration The film is such that the upper diaphragm becomes the top surface of the flow channel; and a piezoelectric element has a bottom surface in the longitudinal direction thereof fixed to the top end of the bump and the top surface of the fixing seat. The above and other objects and advantages of the present invention will be readily understood from Of course, the invention may be different in some of the components, or the arrangement of the components, but the selected embodiment is described in detail in the specification, and is shown in the drawings. [Embodiment] Please refer to Figs. 1 to 7, which show the structure of the embodiment selected for the present invention, which is for illustrative purposes only and is not limited by this structure in the patent application. The valveless impedance type micropump 1 of the present embodiment, as shown in Figs. 1 and 2, includes: Φ a sheet-like structural bottom layer 10 having a hole 1 〇1 in the centering position; The intermediate layer 1 1 of the flaky structure is disposed at the top end of the bottom layer 丄0 of the structure, and a groove slightly larger than the width of the opening 10 1 is formed corresponding to the opening 1 〇丄 of the bottom layer 1 of the structure to define A narrow flow passage ii 3 for flowing a medium (which may be water or other liquid), and defining a region between the bottom surface of the flow passage 1 1 3 and the bottom layer of the structural structure as the lower diaphragm 11 • 4. a top layer 12 of the structure is disposed at the top end of the intermediate layer 1 1 of the structure, so that the bottom surface of the structure layer 12 is the top surface of the flow channel 1 1 3 , and has a fixing seat 121 adjacent to the fixing seat 121 There is a groove 1 2 2 in the middle, in this example, the groove 1 2 2 is oppositely arranged with the opening 1 〇1 and has the same width; a bump is formed at the bottom edge of the groove 1 2 2 1 2 3 'In the present embodiment, the bump 1 2 3 is an asymmetrical arrangement 1288740 and is biased to the left side of the groove i 2 2 in the longitudinal direction, and the length of the groove i 2 2 is left, An inlet and outlet port 124 is respectively disposed between the right side and the left and right end faces of the top layer 12 of the structure, and each of the inlet and outlet ports 1 2 4 communicates with the flow channel 1 1 3 respectively, and is defined by the bottom surface area of the groove 1 2 2 A piezoelectric element 2 is mounted on both sides of the upper edge of the groove 1 2 2 of the top surface of the fixing base 121, and the bottom surface of the piezoelectric element 2 is adjacent to the top end of the convex piece 3 2 3 . The principle of operation of the piezoelectric element 2 operates in the form of un丨0rPh or by-morph in this example. As shown in Fig. 3, since the piezoelectric element 2 for driving the micropump is fixed to the top surface of the fixing base 121, the upper diaphragm of the connecting projection 1 2 3 can be pushed to generate a shock wave, so that the medium is In the flow channel 1 1 3, the upper and lower diaphragms are squeezed by the upper and lower diaphragms 1 2 5 and 1 14 to the inlet and outlet ports 1 2 4, and the diaphragm 1 2 5 and the lower portion are formed on the flow path 1 1 3 The impedance value of the diaphragm 1 14 compared to the solid seat 1 2 1 and the bottom layer 1 结构 of the structure is such that the flow path 1 1 3 has a thick difference, so that the flow path 1 1 3 will be different at different positions. The degree of softness and hardness, together with the asymmetric design of the position of the bumps 1 2 3, makes the bumps 1 2 3 closer to the fixed seats 1 2 1 on the single side of the grooves 1 2 2, so that the wave collision of the medium is closer to the When the fixing block of the bump 1 2 3 is 1 2 1 , it will be reflected back in the reverse direction, whereby the collision and reflection will continue, and the transmission of the medium will go far and far from the bump 1 2 3 into and out of the 9 1288740 nozzle. 1 2 4 flow to 'At the same time, when changing the driving frequency of the piezoelectric element 2, there can be different flow control, and there will be a reverse flow phenomenon. The process of the present invention utilizes the exposure and development of the yellow light process in the semiconductor process technology to reproduce the underlayer 1 of the structure, the intermediate layer 1 1 of the structure, and the top layer 12 of the structure. In this embodiment, The material of the bottom layer 10 of the structure, the intermediate layer 1 1 of the structure and the top layer 12 of the structure are mainly recorded by electricity. The process technology is described as follows:
第4圖係顯示本發明無閥阻抗式微泵結構底層之製造 流程示意圖,首先如第4 (a)圖所示為—不鏽鋼片2丄 ,接著在該不鏽鋼片2 1上旋塗一適當厚度之光阻2 2如 第4 (b)圖所示。經過曝光、顯影、洗去光阻22等步 驟’會留下所需要之圖案,如第4(c)圖所示。接著再 利用微電鑄技術將我們所需之結構電鑄出來,其材質為錄 ’請參閱第4(d)圖。最後將光阻22去除,並將結構 脫模與不_片2 i分離,此為本發㈣_抗式微栗所 需之結構底層1〇,如第4 (e)圖所示。 其次,本發明之結構中間層11的製造流程如第5圖 所示。首先如第5(0圖所示,為一不鏞鋼片以,先 在該不鏽鋼片21上電铸—層鍊’此即為該下振膜114 之結構,如第5 (b)圖所示。接著爯 且” ^ *耆私塗-適當厚度的 第5 (C)圖所示。經過曝光、顯影、洗去 1288740 光阻22等步驟,會留下所需要之圖案,如第5 (d)圖 所示。接著再利用微電鑄技術將我們所需之結構電鑄出來 ’其材質為鎳,請參閱第5 (e)圖。最後將光阻2 2去 除’並將結構脫模與不鏽鋼片2 1分離,此為本發明無閥 阻抗式微泵所需之結構中間層1 1,如第5 ( f )圖所示 。此結構中間層11包含該下振膜114和該流道113Figure 4 is a schematic view showing the manufacturing process of the bottom layer of the valveless impedance type micropump structure of the present invention. First, as shown in Fig. 4(a), a stainless steel sheet 2丄, and then a suitable thickness is spin-coated on the stainless steel sheet 2 1 . The photoresist 2 2 is as shown in Figure 4 (b). The steps of exposure, development, and removal of the photoresist 22 will leave the desired pattern as shown in Fig. 4(c). Then we use the micro-electroforming technology to electroform the structure we need, and the material is recorded. Please refer to Figure 4(d). Finally, the photoresist 22 is removed, and the structure is demolded and separated from the non-slice 2 i. This is the bottom layer of the structure required for the (4) _ anti-micro-chestnut, as shown in Fig. 4(e). Next, the manufacturing process of the structural intermediate layer 11 of the present invention is as shown in Fig. 5. First, as shown in Fig. 5 (Fig. 5, a steel sheet is electroformed on the stainless steel sheet 21 - the layer chain is the structure of the lower diaphragm 114, as shown in Fig. 5(b) Then, "^ * 耆 private coating - the appropriate thickness of the 5th (C) picture. After exposure, development, wash off 1288740 photoresist 22 and other steps, will leave the desired pattern, such as the 5th ( d) shown in the figure. Then we use the micro-electroforming technology to electroform the structure we need. 'The material is nickel, please refer to Figure 5 (e). Finally remove the photoresist 2 2 ' and demold the structure Separated from the stainless steel sheet 21, which is the structural intermediate layer 1 required for the valveless impedance type micropump of the present invention, as shown in Fig. 5(f). The intermediate layer 11 of the structure includes the lower diaphragm 114 and the flow path. 113
請參閱第6圖,其係顯示本發明之結構頂層之製造流 輊示忍圖。首先如第6 ( a )圖所示,為一不鏽鋼片2 1 ,先在該不鏽鋼片2 1上旋塗一層光阻2 2,如第β ( b )圖所示。經過曝光、顯影、洗去光阻2 2等步驟,會留 下所需要之圖案,如第6 (e)圖所示。接著電鑄一層錄 ,此即為該上振臈之結構,如第6 (d)圖所示。接著第 二次黃光製程,在該上振膜丄2 5之結構上旋塗一適當厚 度的光阻22,如第6 (e)圖所示。經過曝光、顯影、 洗去光阻22等步驟,會留下所需要之圖案,如第6 )圖所示。再-次利用微電鳍製程,電禱出該固定座i2 1,其材質為錄,請參閱第6(g)圖。最後將光阻22 去除,並將結構脫模與不鏽鋼片2 i分離,此為本發明益 闕阻抗式《所需之結構頂層12,如第6 (h)圖所: 。此結構頂層係包含_定座121、㈣122、凸塊 11 1288740 123、進出水口12 4及上振膜1 2 5。 當然,本發明仍存在許多例子,其間僅細節上之變化 。請參閱第7圖,其係本發明之第二實施例,其中,該結 構頂層12A之凹槽122A中具有二凸塊123A,於 本實施例中,該凸塊1 2 3 A係為對稱之設計,對應各凸 塊1 2 3 A分別設有一壓電元件2 A,各該壓電元件2 A 長軸方向之底面分別固定於各該凸塊1 2 3A頂端及該固 定座121A之頂面。 藉此,在電場作用下,連接凸塊1 2 3 A的部份可推 擠上、下振膜1 2 5 A、1 1 4 A,流道1 1 3A内之介 質受擠壓而向兩侧進出水口 1 2 4 A流動,波的傳遞會因 上、下振膜1 2 5 A、1 1 4 A結構與固定座1 2 1A和 結構底座1 0A的軟硬程度的不同造成阻抗值之差異,進 而達到介質之傳遞。 以上所述實施例之揭示係用以說明本發明,並非用以 限制本發明,故舉凡數值之變更或等效元件之置換仍應隸 屬本發明之範疇。 由以上詳細說明,可使熟知本項技藝者明瞭本發明的 確可達成前述目的,實已符合專利法之規定,爰提出專利 申請。 【圖式簡單說明】 12 1288740 第1圖係本發明之無閥阻抗式微泵的剖面結構圖 第2圖係本發明之無閥阻抗式微泵2 — 2線段的剖視 圖 第3圖係本發明立體剖視之示意圖 第4圖係本發明之結構底層製造流程示意圖 第5圖係本發明之結構中間層製造流程示意圖 第6圖係本發明之結構頂層製造流程示意圖 第7圖係本發明第二實施例之剖視結構示意圖 第8圖係習用之壓電無閥微泵剖面構造圖 第9圖係習用之壓電無閥微泵9 一 9線段之剖視圖 【主要元件符號說明】 (習用部分) 無閥微泵6 結構底層61 結構頂層6 2 振動薄膜6 21 壓電元件6 3 微流道管6 4 中間流道6 5 進水口 6 6 擴流道6 7 擴流道6 8 出水口 6 9 (本發明部分) 無閥阻抗式微系1 結構底層10 開孔1 0 1 結構中間層11 13 1288740Referring to Figure 6, there is shown a manufacturing flow diagram of the top layer of the structure of the present invention. First, as shown in Fig. 6(a), a stainless steel sheet 2 1 is first coated with a photoresist 2 2 on the stainless steel sheet 2 1 as shown in the figure β (b). After exposure, development, and removal of the photoresist 2, the desired pattern is left, as shown in Figure 6(e). Then electroformed a layer of recording, this is the structure of the upper vibrating, as shown in Figure 6 (d). Following the second yellow light process, a suitable thickness of photoresist 22 is spin-coated on the structure of the upper diaphragm 丄25 as shown in Fig. 6(e). After exposure, development, and removal of the photoresist 22, the desired pattern is left, as shown in Fig. 6). The micro-electric fin process is used again, and the holder i2 1 is electrically prayed. The material is recorded, please refer to Figure 6(g). Finally, the photoresist 22 is removed, and the structural demolding is separated from the stainless steel sheet 2 i , which is the desired structure of the top layer 12 of the present invention, as shown in Fig. 6(h): The top layer of the structure comprises _ seating 121, (four) 122, bump 11 1288740 123, inlet and outlet 12 4 and upper diaphragm 1 2 5 . Of course, there are still many examples of the present invention with only minor changes in detail. Referring to FIG. 7, which is a second embodiment of the present invention, the recess 122A of the top layer 12A of the structure has two bumps 123A. In this embodiment, the bumps 1 2 3 A are symmetrical. The design includes a piezoelectric element 2 A corresponding to each of the bumps 1 2 3 A, and the bottom surface of each of the piezoelectric elements 2 A in the longitudinal direction is fixed to the top end of each of the bumps 1 2 3A and the top surface of the fixing seat 121A. . Thereby, under the action of the electric field, the portion connecting the bumps 1 2 3 A can push the upper and lower diaphragms 1 2 5 A, 1 1 4 A, and the medium in the flow channel 1 1 3A is squeezed to two The side inlet and outlet 1 2 4 A flow, the wave transmission will be caused by the difference between the hardness of the upper and lower diaphragms 1 2 5 A, 1 1 4 A and the fixed seat 1 2 1A and the structural base 10A. The difference, in turn, reaches the medium. The above description of the embodiments is intended to be illustrative of the invention, and is not intended to limit the scope of the invention. From the above detailed description, it will be apparent to those skilled in the art that the present invention can achieve the above-mentioned objects, and is in accordance with the provisions of the Patent Law. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 2 is a cross-sectional view of a valveless impedance type micropump of the present invention. FIG. 2 is a cross-sectional view of a valveless impedance type micropump of the present invention. 4 is a schematic diagram of a manufacturing process of the underlayer of the structure of the present invention. FIG. 5 is a schematic diagram of a manufacturing process of the intermediate layer of the present invention. FIG. 6 is a schematic diagram of a manufacturing process of the top layer of the present invention. FIG. 7 is a second embodiment of the present invention. Fig. 8 is a cross-sectional view of a piezoelectric valveless micropump. Fig. 9 is a cross-sectional view of a piezoelectric valveless micropump 9 of a conventional one. [Main component symbol description] (customized part) No valve Micropump 6 structure bottom layer 61 structure top layer 6 2 vibrating film 6 21 piezoelectric element 6 3 micro flow tube 6 4 intermediate flow path 6 5 water inlet 6 6 expansion channel 6 7 expansion channel 6 8 water outlet 6 9 (this Inventive part) Valveless impedance micro-system 1 Structure bottom layer 10 Opening 1 0 1 Structure intermediate layer 11 13 1288740
平面1 1 1 底面1 1 2 流道1 1 3 下振膜114 結構頂層12 固定座121 凹槽1 2 2 凸塊1 2 3 進出水口124 上振膜12 5 壓電元件2 不鏽鋼片2 1 光阻2 2 結構底座10 A 流道113 A 下振膜114 A 結構頂層12 A 固定座121 A 凹槽12 2A 凸塊12 3A 進出水口12 4A 上振膜12 5 A 壓電元件2APlane 1 1 1 Bottom 1 1 2 Flow path 1 1 3 Lower diaphragm 114 Structure Top layer 12 Mounting seat 121 Groove 1 2 2 Bump 1 2 3 Inlet and outlet 124 Upper diaphragm 12 5 Piezoelectric element 2 Stainless steel sheet 2 1 Light Resistance 2 2 Structure base 10 A Flow path 113 A Lower diaphragm 114 A Structure top layer 12 A Mounting seat 121 A Groove 12 2A Bump 12 3A Inlet and outlet 12 4A Upper diaphragm 12 5 A Piezoelectric element 2A