TWI288490B - Single-chip solid state light-emitting device - Google Patents

Single-chip solid state light-emitting device Download PDF

Info

Publication number
TWI288490B
TWI288490B TW95105059A TW95105059A TWI288490B TW I288490 B TWI288490 B TW I288490B TW 95105059 A TW95105059 A TW 95105059A TW 95105059 A TW95105059 A TW 95105059A TW I288490 B TWI288490 B TW I288490B
Authority
TW
Taiwan
Prior art keywords
layer
light
state light
active layer
type
Prior art date
Application number
TW95105059A
Other languages
Chinese (zh)
Other versions
TW200731560A (en
Inventor
Jeng-Chiuan Chen
Original Assignee
Genesis Photonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genesis Photonics Inc filed Critical Genesis Photonics Inc
Priority to TW95105059A priority Critical patent/TWI288490B/en
Publication of TW200731560A publication Critical patent/TW200731560A/en
Application granted granted Critical
Publication of TWI288490B publication Critical patent/TWI288490B/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

The present invention discloses a GaN-based single-chip solid state light-emitting device. This device includes a substrate, at least one quantum unit that is composed of epitaxial layers stacked on the substrate, and a diode used to provide power to the quantum unit. The quantum unit contains a first-type cladding layer forming quantum barriers, an active layer, and a second-type cladding layer. The interface between the first-type cladding layer and the active layer includes a plurality of surface portions having respective predetermined lattice plane. As a result, the active layer has a layer portion having a plurality of lattice planes that are the same to the corresponding surface portions. When current diffuses and passes through the active layer, the plural surface portions of the active layer will trigger a photoelectric effect and each surface will individually emit lights corresponding to predetermined wavelength range of lattice plane, so as to make a single-chip solid state light-emitting device emit mixed-wavelength lights.

Description

1288490 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種固態發光元件,特別是指一種氮 化鎵系的單晶片固態發光元件。 【先前技術】 固態發光元件是應用光電效應放射出光的新興光源之 一’具有體積小、壽命長、驅動電壓低、反應速率快、耐 震性佳等的各式優點。 參閱圖1,一般單晶片固態發光元件1的基本結構包含 一基材(substrate) 11、至少一自該基材u向上磊晶堆疊 的量子單元2’及二電極(eiectr〇de ) 12,圖示中僅%示一 量子單元2說明。 該基材11是例如藍寶石(A12〇3)等易於磊晶成長氮化 鎵系之半導體材料,而易於磊晶成長該量子單元2。 該里子單元2向上依序包括有一第一型披覆層( cladding layer) 21、一活性層(emitting layer) 22,與一第 二型披覆層23,且該第一、二型披覆層21、23相對該活性 層22形成量子能障,進而可以光電效應使該活性層23產 生光子,在此,第一、二型批覆層21、23分別是經過摻雜 的η、p型批覆層。 二電極12分別對該量子單元2提供電能而使電流擴散 通過該活性層22產生光子,進而使該單晶片固態發光元件 1向外發射出光。 由於,該量子單元2之第一、二型披覆層21、23與活 I2S8490 随層22的態樣為均勻 二型披覆層21、23_^ 7在此权構下,自該第一、 子所產生的光子的波長\二所構成的能障中躍遷的電 疋固疋的,也因此,該量子單亓9 產:的光是單-波長範圍的單色光,且該單晶片二光2 向外發射出的亦是單—波長範圍的單色光。 因此’若需產生白A(混光) 可發出藍光(單色光μ曰遍的種做法是將 粉(彻⑷呂石梅石;?门曰^固態發光元件與黃色榮光 留石)/、同封裝,使單晶片固態發光元件 發出的勿藍光激發黃主 藍光的混合而發出白光.另:冑光’進而以黃光與 另一種做法則較為複雜,是將分 β、,、4 Μ光的三單晶片固態發光it件共同封裝 成务光光源’進而以其所產生之紅、M、綠光混合而發出 白光(混光)。 而此等做法-來都不是直接以單晶片固態發光元件發 出白光(混光);二來’以發出藍光的單晶片固態發光元件 與黃色螢光粉共同封裝而成的白光光源,會由於單晶片固 態發光70件與螢光粉的工作壽命、對工作環境的敏感性並 不相匹配’因此在使用時會隨著工作環境、使用時間而產 生光源色度逐漸改變的問題,以分別產生紅 '綠、藍光之 單晶片固態發光元件共同封裝而成的白光光源,雖然在色 -、色度上符合需求,但是,由於產生紅光之單晶片固態 發光70件與發出綠、藍光之單晶片固態發光元件的工作電 壓、工作壽命並不相同,因此欲將其共同封裝成單一光源 時,先期會遭遇到電性控制複雜不易克服的 問題,之後, 1288490 則會產生光源色度隨著使用時間而漸變的問題。 因此,如何直接使單晶片固態發光元件發出白光(混 光),仍是業界、學界努力研究發展的方向之一。 【發明内容】 因此,本發明之目的,即在提供一種可以產生預定色 度座標值之混光的氮化鎵系單晶片發光固態元件。 於是,本發明一種單晶片固態發光元件,以氮化鎵系 的半導體材料構成,包含一基材、至少一連接在該基材上 的量子單元,及二電極。 該篁子單元具有一第一型披覆層、一第二型批覆層, 及一在該第一、二型批覆層之間的活性層,該第一型批覆 層具有一與該基材相連接的第一面,及一相反於該第一面 並與該活性層連接的第二面,且該第二面包括複數分別具 有預定晶格平面的面部,該活性層具有複數晶格平面分別 與其對應之面部相同的層部,該第二型披覆層與該第一型 披覆層相對該活性層形成量子能障。 5玄一電極對該量子單元提供電能而使電流擴散通過該 f層且^電流擴散通過該活性層時,該複數層部以光 電效應分別發出對應於該日日日格平面之預定波長範圍的光, 進而使該單晶片固態發光元件向外發射出混光。 【實施方式】 有關本么明之前述及其他技術内容、特點與功效,在 以下配口參考圖式之三個較佳實施例的詳細說明中,將可 清楚的呈現。 參閱圖2,本發明一種單晶片固態發光元件3的一第一 較佳實施例,是以氮化鎵系的半導體材料構成,包含一基 材31、至少一磊晶形成在該基材31上並可以光電效應產生 光的量子單元4,及二用以提供電能的電極32,而可發出 預定色度座標值的混光。在本例以下的說明與圖示中,為 了更加清楚起見’僅以一量子單元4為例說明;由於熟習 一般固態發光元件技藝人士皆可自此簡單推知單晶片固態 發光元件具有複數量子單元而具有預定發光效能的結構態 樣’且每一量子單元的結構均類似,故以下將不再重複贅 釋。 該基材3 1是例如藍寶石(a12〇3 )等易於磊晶成長氮化 鎵系之半導體材料的材料。 該量子單元4具有自該基材31向上依序磊晶形成的一 第一型披覆層41、一活性層42,及一第二型披覆層43。 該第一型彼覆層41具有一與該基材31相連接的第一 面411,及一相反於該第一面411並與該活性層42連接的 第二面412,且該第二面412包括複數分別具有預定晶格平 面的面部413 ;在此,第一型彼覆層41是經過摻雜之η型 彼覆層,而該等面部413的晶格平面分別是丨〇 〇 〇,u與{ 1,1,〇,Π 〇 該活性層42自該第二面412向上磊晶形成,並具有複 數晶格平面分別與其對應之面部413相同且厚度均勻_致 的層部421,也就是說,該等層部421中部分層部421的晶 格平面是{ 0,0,0,1 },其餘部分層部421的晶袼平面是{丨丨〇 iBACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a solid state light emitting device, and more particularly to a gallium nitride based single wafer solid state light emitting device. [Prior Art] The solid-state light-emitting element is one of the emerging light sources that emit light by the photoelectric effect. It has various advantages such as small volume, long life, low driving voltage, fast reaction rate, and good shock resistance. Referring to FIG. 1, a basic structure of a general single-chip solid-state light-emitting element 1 includes a substrate 11 and at least one quantum unit 2' and two electrodes (eiectr〇de) 12 which are epitaxially stacked from the substrate u. Only the % of the quantum unit 2 is shown in the figure. The substrate 11 is a semiconductor material which is easy to epitaxially grow gallium nitride, such as sapphire (A12〇3), and is easy to epitaxially grow the quantum unit 2. The sub-unit 2 includes a first type of cladding layer 21, an emission layer 22, and a second type of cladding layer 23, and the first and second type cladding layers are sequentially arranged upwardly. 21, 23 forms a quantum energy barrier with respect to the active layer 22, and further, the active layer 23 can generate photons by photoelectric effect. Here, the first and second type cladding layers 21 and 23 are respectively doped η and p type cladding layers. . The two electrodes 12 respectively supply electric energy to the quantum unit 2 to cause current to diffuse through the active layer 22 to generate photons, thereby causing the single-chip solid-state light-emitting element 1 to emit light outward. Since the first and second type cladding layers 21, 23 and the active I2S8490 of the quantum unit 2 are in the form of the uniform type 2 cladding layer 21, 23_^7, the first, The photon generated by the sub-wavelength of the photon is composed of two electrons, and therefore, the light produced by the quantum unit 9 is monochromatic in the single-wavelength range, and the single-chip two Light 2 emits out a single-wavelength range of monochromatic light. Therefore, 'If you need to produce white A (mixed light), you can emit blue light. (The method of monochromatic light μ 曰 是 是 是 ( 彻 彻 彻 彻 彻 彻 彻 彻 彻 彻 彻 彻 彻 彻 彻 彻 彻 彻 彻 彻 彻 彻 彻 彻 彻 彻 彻 4 4 4 4 4 4 4 So that the single-chip solid-state light-emitting element emits blue light that excites the yellow-blue light to emit white light. Another: Twilight' and then yellow light and the other is more complicated, which is divided into three, four, and four The single-chip solid-state light-emitting device is packaged together as a light source' and then emits white light (mixed light) with the red, M, and green light produced by it. These methods are not directly issued by a single-chip solid-state light-emitting element. White light (mixed light); secondly, the white light source which is packaged by a single-chip solid-state light-emitting element emitting blue light and yellow phosphor powder will have a working life of 70 pieces of single-chip solid-state light and fluorescent powder, and a working environment. The sensitivity does not match. Therefore, the chromaticity of the light source gradually changes with the working environment and the use time, so that the single-chip solid-state light-emitting elements respectively generating red' green and blue light are sealed together. The white light source has the same color and chromaticity requirements, but the operating voltage and working life of the single-chip solid-state light-emitting device that emits red and blue light are not the same. Therefore, if you want to package them together into a single light source, you will encounter problems that are difficult to overcome with electrical control. In the future, 1288490 will cause the chromaticity of the light source to gradually change with the use time. Therefore, how to directly make the single chip The solid-state light-emitting element emits white light (mixed light), which is still one of the directions of research and development in the industry and the academic community. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a nitrogen-mixed nitrogen that can produce a predetermined chromaticity coordinate value. The gallium-based single-wafer light-emitting solid-state element. Thus, the single-chip solid-state light-emitting device of the present invention is composed of a gallium nitride-based semiconductor material, comprising a substrate, at least one quantum unit connected to the substrate, and two electrodes The die unit has a first type of cladding layer, a second type of cladding layer, and a layer between the first and second type of cladding layers An active layer, the first type of cladding layer has a first side joined to the substrate, and a second side opposite to the first side and connected to the active layer, and the second side includes a plurality of a face of a predetermined lattice plane having a layer of a plurality of lattice planes respectively corresponding to a face corresponding thereto, the second type of cladding layer and the first type of cladding layer forming a quantum energy barrier with respect to the active layer. When the mysterious electrode supplies electric energy to the quantum unit to diffuse current through the f layer and the current diffuses through the active layer, the plurality of layers respectively emit light corresponding to a predetermined wavelength range of the day and day grid plane by photoelectric effect Further, the single-chip solid-state light-emitting element emits light outwardly. [Embodiment] The foregoing and other technical contents, features, and effects of the present invention are detailed in the following preferred embodiments of the following reference drawings. In the description, it will be clearly presented. Referring to FIG. 2, a first preferred embodiment of a single-chip solid-state light-emitting device 3 of the present invention is composed of a gallium nitride-based semiconductor material, and includes a substrate 31 on which at least one epitaxial layer is formed. The quantum unit 4, which can generate light by photoelectric effect, and the electrode 32 for supplying electric energy, can emit a mixed light of a predetermined chromaticity coordinate value. In the following description and illustration of the present example, for the sake of clarity, only one quantum unit 4 is taken as an example; since a person skilled in the art of solid-state light-emitting elements can easily infer that a single-chip solid-state light-emitting element has a plurality of sub-units. The structural aspect having a predetermined luminous efficacy 'and the structure of each quantum unit are similar, so the following will not be repeated. The substrate 31 is a material which is easy to epitaxially grow a gallium nitride-based semiconductor material such as sapphire (a12〇3). The quantum unit 4 has a first type of cladding layer 41, an active layer 42 and a second type of cladding layer 43 which are sequentially epitaxially formed from the substrate 31. The first type of cladding layer 41 has a first surface 411 connected to the substrate 31, and a second surface 412 opposite to the first surface 411 and connected to the active layer 42, and the second surface 412 includes a plurality of faces 413 each having a predetermined lattice plane; wherein the first type of cladding layer 41 is a doped n-type cladding layer, and the lattice planes of the surface portions 413 are respectively 丨〇〇〇, u and { 1,1,〇,Π 〇 the active layer 42 is epitaxially formed upward from the second surface 412, and has a layer 421 having the same lattice plane and the corresponding thickness 413, respectively, and having a uniform thickness. That is, the lattice plane of the partial layer portion 421 in the layer portion 421 is {0, 0, 0, 1 }, and the wafer plane of the remaining portion 421 is {丨丨〇 i

特別的是,當調變量子單元中活性層 1288490 } ’且每一層部421與對應之面部413相連接的一第一界 面至相反於該第一界面之一第二界面的距離為定值。 该第二型披覆層43自該活性層42更向上形成,並與 忒第一型披覆層41相對該活性層42形成量子能障,而使 該活性層42可以光電效應產生光;在此,該第二型披覆層 43是經過摻雜之p型披覆層。 一電極32可對該量子單元4提供電能,使電流擴散通 過該活性層42,而當電流擴散通過該活性層42日寺,由於該 活性層42之晶格平面分別是{ 〇卿}與{ u,〇J},而使得 該等層部421中晶格平面是丨〇,〇,〇,u的部分層部421發出 的光,是波長為572nm的黃光(單色光),晶格平面^ ( U,〇,l)的部分層部421發出的是波長為46〇nm的藍光(單 ^光),進而使得該單晶片固態發光元件3向外發射出光, 疋由κ光與藍光混合而成的白光(混光)。 日曰你丁萌 { 〇,〇,〇,1丨與i UAi)的部分層部421的總面積比例時,即可, 變該單晶片固態發光元# 3向外發射出光的色度座標值°, 也就是說’當冑變晶格平面{職1}與{i油的部分 421的總面積比例趨近於⑴時,該單晶片固態發光= 3向外發射出的光是均勻的白光;而調變晶格平面{ 〇〇〇 的部分層⑽_面積相對晶格平面⑽J}的部分: 421增加時,該單晶片固態發光元件3向外發射出的光= 度偏紅的白光,反之,則是色度偏藍的白光。 疋 參閱圖3,本發明-種單晶片I態發光元件Specifically, when the active layer 1288490 } ' in the modulation subunit and the distance from the first interface of each layer portion 421 to the corresponding face 413 to the second interface opposite to the first interface is constant. The second type of cladding layer 43 is formed upward from the active layer 42 and forms a quantum energy barrier with the active layer 42 of the first type of cladding layer 41, so that the active layer 42 can generate light by photoelectric effect; Thus, the second type of cladding layer 43 is a doped p-type cladding layer. An electrode 32 can supply electrical energy to the quantum unit 4 to diffuse current through the active layer 42, and when current diffuses through the active layer 42, since the lattice plane of the active layer 42 is {〇卿} and { u, 〇J}, such that the plane of the layer 421 in which the lattice plane is 丨〇, 〇, 〇, u is a portion of the layer 421, which is yellow light (monochromatic light) having a wavelength of 572 nm, and a lattice The partial layer portion 421 of the plane ^ (U, 〇, l) emits blue light (single light) having a wavelength of 46 〇 nm, thereby causing the single-crystal solid-state light-emitting element 3 to emit light outward, and κ light and blue light. Mixed white light (mixed light). When you compare the total area ratio of the partial layer portion 421 of Ding Meng (〇, 〇, 〇, 1丨 and i UAi), the chromaticity coordinate value of the light emitted from the single-chip solid-state light-emitting element #3 is changed. °, that is, when the ratio of the total area of the morphing lattice plane {1] to the portion 421 of the {i oil approaching (1), the single-chip solid-state luminescence = 3 outwardly emitted light is uniform white light And the portion of the modulated lattice plane { 部分 partial layer (10) _ area relative to the lattice plane (10) J}: when 421 is increased, the single-chip solid-state light-emitting element 3 emits light outward = degree reddish white light, On the contrary, it is a white light with a blue color.参阅 Referring to FIG. 3, the present invention - a single-chip I-state light-emitting element

9 .1288490 車乂佳實施例,亦是以氮化鎵系的半導體材料構成,包含一 基材51、至少一形成在該基材51上並可以光電效應產生光 的罝子單元6,及二用以提供電能的電極52,而可發出預 定色度座標值的混光。在本例與圖示中,同樣地為了說明 清楚起見,僅以一量子單元6為例說明。 該基材51是例如藍寶石等易於磊晶成長氮化鎵系之半 導體材料的材料。 該量子單元6具有自該基材51向上依序磊晶形成的一 第一型披覆層61、一活性層62,及一第二型披覆層63。 該第一型披覆層61具有一與該基材51相連接的第一 面611,及一相反於該第一面611並與該活性層Q的第二 面612 ’且㈣二面612包括複數分別具有預定晶格平面的 面u卩613,在此,第一型披覆層61是經過摻雜之〇型披覆 層’而該等面部613的晶格平面分別是{咖}與{ i从i } 〇 該活性層62自該第二面612向上蠢晶形成,並具有複 數晶格平面分別與其對應之面部613相同的層部“I,且該 其中之至少一層部621與對應之面部相連接的一第一界面 至相反於該第-界面之一第二界面的距離,是自該層部⑵ 與另一層部621相交接的一第一邊界向該層部與其他之另 一層部相父接的一第二邊界平緩漸增;而在本例中,以該 等層。P 621中部分晶格平面是{〇,〇,〇,&quot;的層部62工,其第— 、二界面之間的距離是維持等距,而其餘部分晶袼平面是 { 1,1,0,1 }的層部621 ’其第一、二界面之間的距離是自其與 10 1288490 另-晶格平面是{ UAn的層部621相交接的第—邊界,向 晶格平面是{_,1}的層部621相錢的第二邊界方向二 缓漸增說明。 該第二型彼覆層63自該活性層62更向上形成,並與 該第一型披覆層61相對該活性層62形成量子能障,而使 該活性層62可以光電效應產生光。 二電極52分別可對該量子單元6提供電能,使電流擴 散通過該活性層62’而當電流擴散通過該 {0^ 621;^ 勾一致,同時,晶格平面分別是⑽J}的層部621是由薄 至厚的遞增,而使得該等層部621中晶格平面是丨〇,⑽,Η 的部分層部621發出的光,是波長範圍屬於6〇5nm的紅光 (早色光),但晶格平面是{ 丨的部分層部621,則由 於厚度漸變的關係’發出的是一波長範圍涵蓋彳46〇随的 大波長範圍的藍綠光(混光),進而使得該單晶片固態發光 疋件5向外發射出光,是由紅光與大波長範圍之藍綠光混 合而成更趨近於太陽光的白光(混光)。 當然’也可以藉著調變晶袼平面{ 〇,〇,〇,u與{ u,〇j }的 各層部621的面積比例,藉以調變該單晶片固態發光元件$ 向外發射出光的色度座標值,由於此等搭配變化繁多,在 此不再--舉例說明。 另外要強調的是,雖然上述二例中,只以第一批覆層 61的第二面6〗2包括晶格平面分別是{〇,〇,〇,1} 、{ΐ,ι,〇,ϊ} 的面部613,該活性層62具有對應發出紅光的{ 〇,a〇,h層 1288490 部62卜與發出藍綠光的{ U〇J}層部621作說明,但是事 實上,该第二面亦可由晶格平面是{ 〇,〇 〇,1丨與(U k /、 ’ ’ 1 的 面部所組成’或是部分面部的晶格平面是{ 0,0,0,1丨,邛八 面部的晶格平面是{ u,b},其餘面部的晶格=分 ]Ί y y { ,,,丨所組成,都可以藉由不同晶格平面之層部發出特定 波長範圍的光,而達到使該單晶片固態發光元件向外發^ 出混光的目的,由於此等具有特定晶格平面之面部、層部 的組合種類眾多,且對於不同的半導體材料而言,對^發 出預定波長範圍的光的晶格平面亦不相同,恕不在此—— 舉例說明。 參閱圖4,本發明一種單晶片固態發光元件7的一第三 較佳實施例,是與上述二例相似,其不同處僅在於該第一 型披覆層71之第二面711是由晶格平面{ !,油的複數面 部712所構成,而成連續的峰、谷態樣,使得該活性層μ 的複數層部721也是由晶格平面{_}的複數層部72ι對 應形成連續鋒、谷態樣,而由於此活性層72是由單一晶格 平面族的層部721所構成而具有非極性(η〇η ρ〇1^⑽丨吻 layer),所以可以避免壓電效應(piez〇 effect)而具有較佳 的發光效率。 由上述說明可知,本發明主要是以該第一型披覆層41 、61、71與活性層42、62、72連接的第二面412、612、 711疋由袓數刀別具有預定晶格平面的面部413、613、 712所組成,而使得該活性層42、62、72亦對應此等面部 413、613、712而由具有複數晶袼平面的層部421、621、 12 1288490 721所構成,使得當電流擴散通過該活性層42、62、72時 ,活性層42、62、72各層部421、621、721因晶格平面的 不同而以光電效應分別發出對應於晶格平面之預定波長範 圍的光,進而使得單晶片固態發光元件3、5、7向外發射 出混光;而在此基礎架構之下,一些廣為熟悉固態發光元 件技藝人士所周知的例如使電流擴散均勻的透明導電層( ITO),或是增加出光效果的反射鏡層(reflect〇r)等結構, 均可以簡單地增加入上述本發明單晶片固態發光元件3、5 、7的較佳實施例中,以更提昇本發明單晶片固態發光元件 3、5、7的發光效能,由於此等結構已多為業界所周知,且 並非本發明的重點所在,故在此不多加舉例一一贅述。 另外要補充說明的是,由於自基材31、51上磊晶成長 量子單元4、6時,本來即會因為基材31、51與第一批覆 層4丨、61彼此的晶格匹配度nauiee⑹⑽以此)而產生磊 晶瑕疵(defect),因此,只要控制磊晶的成長條件,即可 使該第-型批覆層41、61、71中不同晶格平面的各面部 413、613、712具有預定的面積比例,進而得到發出預定色 度座標之混光的單晶片固態發光元件3、5、7 ;當然,更可 以藉由例如摻雜雜質、或預先以半導體製成在基材Η、” 上形成預定的人工瑕庇(例如特定形狀、尺寸的凸塊、凹 )等 方式,使该第一型批覆層41、61、71具有特定 不同晶格平面的各面部413、613、712,且各面部413、 613、712的具有預定的面積比例,再進而形成活性層42、 …72、得到發出預定色度座標之混光的單晶片固態發光 13 1288490 元件3、5、7。 由上述說明可知,本發明主要是以該第一型披覆層41 61、71與活性層42、62、72連接的第二面412、612、 711是由複數分別具有預定晶格平面的面部413、613、712 所、、且成,而使彳于自其上蠢晶形成的該活性層42、62、72亦 ^應此等面部413、613、712而由具有複數晶格平面的層 邛421、621、721所構成,因此,當電流擴散通過該活性 層 42、62、72 時,活性層 42、62、72 各層部 421、621、 721因晶袼平面的不同而可以光電效應分別發出對應於晶格 平面之預定波長範圍的光,進而使得單晶片固態發光元件3 5、7向外的光,是由不同波長的光混合而成、且具有預 定色度座標值的混光,同時,可再藉著調變此等不同晶格 平面之層邛421、621、721的面積比例、厚度變化等等, 即y以,得單晶片固態發光元件3、5、7向外發射出的光 ,是涵蓋更多波段、更趨近於太陽光的混光,而提供一種 以單-晶片即可產生預定色度座標之混光的固態發光元件3 、5、7 ’確實達到本發明創作的目的。 惟以上所述者,僅為本發明之較佳實施例而已,當不 =以此限定本發明實施之範圍’即大凡依本發明申請:利 範圍及發明說明内容所作之簡單的等效變化與修飾,皆仍 屬本發明專利涵蓋之範圍内。 【圖式簡單說明】 圖1是一示意圖,說明習知單晶片固態發光元件; 圖2是一示意圖,說明本發明單晶片固態發光元件之 14 1288490 一第一較佳實施例; 圖3是一示意圖,說明本發明單晶片固態發光元件的 一第二較佳實施例;及 - 圖4是一示意圖,說明本發明單晶片固態發光元件的 一第三較佳實施例。9 .1288490 The embodiment of the ruthenium is also composed of a gallium nitride-based semiconductor material, comprising a substrate 51, at least one die unit 6 formed on the substrate 51 and capable of generating light by photoelectric effect, and two The electrode 52 for supplying electric energy can emit a mixed light of a predetermined chromaticity coordinate value. In this example and the drawings, for the sake of clarity of explanation, only one quantum unit 6 will be described as an example. The substrate 51 is a material which is easy to epitaxially grow a gallium nitride-based semiconductor material such as sapphire. The quantum unit 6 has a first type of cladding layer 61, an active layer 62, and a second type of cladding layer 63 which are sequentially epitaxially formed from the substrate 51. The first type cladding layer 61 has a first surface 611 connected to the substrate 51, and a second surface 612' opposite to the first surface 611 and the active layer Q, and the (four) two sides 612 are included. a plurality of faces u 613 having a predetermined lattice plane, respectively, where the first type of cladding layer 61 is a doped ruthenium-clad layer and the lattice planes of the faces 613 are respectively {coffee} and { i from i } 〇 the active layer 62 is formed upwardly from the second face 612, and has a layer "I" of a plurality of lattice planes respectively corresponding to the corresponding face 613, and at least one of the layers 621 and corresponding a distance from a first interface connected to the face to a second interface opposite to the first interface is a first boundary from the layer portion (2) to the other layer portion 621 to the layer portion and another layer The second boundary of the father is gradually increasing gradually; in this case, the layer is the same. The part of the lattice plane in P 621 is the layer of 62 〇, 〇, 〇, &quot; The distance between the two interfaces is maintained equidistant, and the remaining part of the wafer plane is {1, 1, 0, 1 } layer 621 'the first and second interfaces The distance between the two is from the first boundary where 10 1288490 is another lattice plane is { UAn layer 621, and the second boundary direction is 2 to the layer 621 where the lattice plane is {_, 1} The second type of capping layer 63 is formed upward from the active layer 62, and forms a quantum energy barrier with the active layer 62 from the first type of capping layer 61, so that the active layer 62 can be photoelectrically The effect generates light. The two electrodes 52 respectively supply electric energy to the quantum unit 6, and the current is diffused through the active layer 62' while the current is diffused through the {0^ 621; ^ hook, and the lattice plane is (10) J} The layer portion 621 is incremented from thin to thick such that the lattice plane in the layer portion 621 is 丨〇, (10), and the light emitted from the partial layer portion 621 of the , is red light having a wavelength range of 6 〇 5 nm ( Early color light), but the lattice plane is { part of the layer 621 of 丨, then the relationship of thickness gradual change' is a blue-green light (mixed light) with a wavelength range covering a large wavelength range of 彳46〇, which makes The single-chip solid-state light-emitting element 5 emits light outward, which is composed of red light and a large wavelength range. The combination of blue and green light is closer to the white light of the sun (mixed light). Of course, it can also be used to modulate the planes of the crystal plane { 〇, 〇, 〇, u and { u, 〇 j } The area ratio is used to modulate the chromaticity coordinate value of the single-chip solid-state light-emitting element $ emitted outward. Since there are many variations in these combinations, it is no longer--exemplary. It is also emphasized that although the above two cases Only the second side 6 of the first cladding layer 61 includes a face 613 whose lattice planes are {〇, 〇, 〇, 1}, {ΐ, ι, 〇, ϊ}, respectively, and the active layer 62 has Corresponding to the { 〇, a 〇, h layer 1288490 part 62 b and the blue green light { U 〇 J} layer part 621, but in fact, the second side can also be made by the lattice plane { 〇 , 〇〇, 1丨 and (U k /, ' ' 1 composed of the face' or the lattice plane of part of the face is { 0,0,0,1丨, the lattice plane of the face is { u, b}, the rest of the face of the lattice = minutes] Ί yy {,,, 丨 composition, can be made by the layer of different lattice planes to emit light of a specific wavelength range, to achieve the single crystal The solid-state light-emitting element emits light for outward purposes, and because of the variety of combinations of the face and the layer portion having a specific lattice plane, and for different semiconductor materials, the crystal of light of a predetermined wavelength range is emitted. The grid planes are also different, so are not here - for example. Referring to FIG. 4, a third preferred embodiment of a single-chip solid-state light-emitting device 7 of the present invention is similar to the above two examples, except that the second surface 711 of the first-type cladding layer 71 is crystalline. The lattice plane {!, the complex surface 712 of the oil is formed into a continuous peak and valley state, so that the plurality of layer portions 721 of the active layer μ are also formed by the complex layer portion 72ι of the lattice plane {_} to form a continuous front. , the grain state, and since the active layer 72 is composed of the layer portion 721 of a single lattice plane family and has a non-polarity (η〇η ρ〇1^(10)丨 kiss layer), the piezoelectric effect can be avoided (piez 〇effect) has better luminous efficiency. It can be seen from the above description that the second surface 412, 612, 711 of the first type of cladding layers 41, 61, 71 and the active layers 42, 62, 72 has a predetermined lattice by the number of knives. The planar faces 413, 613, 712 are formed such that the active layers 42, 62, 72 also correspond to the faces 413, 613, 712 and are composed of layers 421, 621, 12 1288490 721 having a plurality of wafer planes. When the current diffuses through the active layers 42, 62, 72, the layers 421, 621, 721 of the active layers 42, 62, 72 respectively emit a predetermined wavelength corresponding to the lattice plane by photoelectric effect due to the difference in lattice plane. The range of light, in turn, causes the single-chip solid-state light-emitting elements 3, 5, 7 to emit light outward; and under this infrastructure, some of those well-known to those skilled in the art of solid-state light-emitting elements, such as those that make the current spread evenly transparent A conductive layer (ITO), or a structure of a reflective layer that increases the light-emitting effect, can be simply added to the preferred embodiment of the single-chip solid-state light-emitting device 3, 5, 7 of the present invention described above, Further enhancing the single-chip solid state of the present invention The illuminating performance of the illuminating elements 3, 5, 7 is well known in the art and is not the focus of the present invention, so it will not be repeated here. In addition, it is to be noted that since the quantum cells 4 and 6 are epitaxially grown from the substrates 31 and 51, the lattice matching degree of the substrates 31 and 51 and the first cladding layers 4 and 61 is originally nauiee (6) (10). In this way, an epitaxial defect is generated. Therefore, each of the faces 413, 613, and 712 of different lattice planes in the first-type cladding layers 41, 61, and 71 can be provided by controlling the growth conditions of the epitaxial layers. a predetermined area ratio, thereby obtaining a single-wafer solid-state light-emitting element 3, 5, 7 that emits light of a predetermined chromaticity coordinate; of course, it can be made, for example, by doping impurities or by using a semiconductor in advance on the substrate," Forming a predetermined artificial shelter (for example, a bump of a specific shape and size), such that the first type of cladding layers 41, 61, 71 have respective faces 413, 613, and 712 of different lattice planes, and Each of the faces 413, 613, and 712 has a predetermined area ratio, and further forms the active layers 42, 72, and obtains a single-chip solid-state light-emitting 13 1388490 element 3, 5, and 7 that emits light of a predetermined chromaticity coordinate. It can be seen that the present invention is mainly based on The second faces 412, 612, and 711 of the first type cladding layers 41 61, 71 and the active layers 42, 62, 72 are formed by a plurality of face portions 413, 613, and 712 having a predetermined lattice plane, respectively. The active layers 42, 62, 72 formed on the above-mentioned stupid crystals are also composed of the layers 421, 621, and 721 having a plurality of lattice planes, and thus, When the current diffuses through the active layers 42, 62, 72, the layers 421, 621, and 721 of the active layers 42, 62, 72 can respectively emit a predetermined wavelength range corresponding to the lattice plane due to the difference in the plane of the wafer. Light, and thus the outward light of the single-chip solid-state light-emitting elements 35, 7 is a mixed light of different wavelengths of light and having a predetermined chromaticity coordinate value, and at the same time, can be modulated by modulation The area ratio, thickness variation, etc. of the layers 421, 621, and 721 of the lattice plane, that is, y, the light emitted from the single-crystal solid-state light-emitting elements 3, 5, and 7 is covered, and more bands are covered. Near-sunlight mixing, providing a single-wafer to produce a predetermined chromaticity The standard light-mixed solid-state light-emitting elements 3, 5, 7' do achieve the object of the present invention. However, the above is only a preferred embodiment of the present invention, and does not limit the scope of the present invention. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Single-chip solid-state light-emitting element; FIG. 2 is a schematic view showing a first preferred embodiment of a single-chip solid-state light-emitting device of the present invention; FIG. 3 is a schematic view showing a second comparison of the single-chip solid-state light-emitting device of the present invention. Best Modes; and - Figure 4 is a schematic view showing a third preferred embodiment of the single-chip solid-state light-emitting device of the present invention.

15 128849015 1288490

【主要元件符號說明】 1 單晶片固態發光元 5 單晶片固態發光元 件 件 11 基材 51 基材 12 電極 52 電極 2 量子單元 6 量子單元 21 第一型披覆層 61 第一型彼覆層 22 活性層 611 第一面 23 第二型彼覆層 612 第二面 3 單晶片固態發光元 613 面部 件 62 活性層 31 基材 621 層部 32 電極 63 第二型彼覆層 4 量子單元 7 單晶片固態發光元 41 第一型披覆層 件 411 第一面 71 第一型披覆層 412 第二面 711 第二面 413 面部 712 面部 42 活性層 72 活性層 421 層部 721 層部 43 第二型披覆層 16[Main component symbol description] 1 Single-chip solid-state light-emitting element 5 Single-chip solid-state light-emitting element 11 Substrate 51 Substrate 12 Electrode 52 Electrode 2 Quantum cell 6 Quantum cell 21 First-type cladding layer 61 First-type cladding layer 22 Active layer 611 first side 23 second type second layer 612 second side 3 single-chip solid-state light-emitting element 613 surface member 62 active layer 31 substrate 621 layer portion 32 electrode 63 second-type cladding layer 4 quantum unit 7 single-chip Solid-state illuminating element 41 first type cladding layer 411 first surface 71 first type cladding layer 412 second surface 711 second surface 413 surface 712 surface portion 42 active layer 72 active layer 421 layer portion 721 layer portion 43 second type Cladding layer 16

Claims (1)

1288490 十、申請專利範圍: 1 · 一種單晶片固態發光元件,包含: 一基材; 至少一 1子單元,與該基材頂面相連接,該量子單 ,並具有-第一型披覆層、一第二型批覆層,及一在該 第-、二型批覆層之間的活性層,該第一型批覆層具有 -與該基材相連接的第一面,及一相反於該第一面並與 該活性層連接的第二面,且該第二面包括複數分別具有 預定晶格平面的面部,該活性層具有複數晶格平面分別 與其對應之面部相同的層部,該第二型披覆層與該第一 型披覆層相對該活性層形成量子能障;及 一電極,對該量子單元提供電能而使電流擴散通過 該活性層,且當電流擴散通過該活性層時,該複數層部 以光電效應分別發出對應於該晶格平面之預定波長範圍 的光,進而使該單晶片固態發光元件向外發射出混光。 2·依據申請專利範圍第i項所述之單晶片固態發光元件, 其中’該複數面部中,部分面部的晶格平面是⑴ ,其餘面部的晶袼平面是ί ι,ι,ο,Π 。 3·依據中請專利範圍第i項所述之單晶片固態發光元件, 其中,該複數面部中,部分面部的晶格平面是{ _,&quot; ,其餘面部的晶袼平面是ί 1,1,5,2 }。 4·依據中請專利範圍第!項所述之單晶片固態發光元件, 其中’該複數面部中,部分面部的晶格平面是{ 〇,〇,〇,&quot; ,部分面部的晶袼平面是{—},其餘面部的晶格平 17 .1288490 面是{ U,$,2 }。 5·依據申請專利範圍第1項所述之單晶片固態發光元件, 其中’該其中之至少一層部與對應之面部相連接的一第 一界面至相反於該第一界面之一第二界面的距離為定值 ,而使該層部以光電效應發出的光是預定波長範圍的單 色光。 6·依據申請專利範圍第丨項所述之單晶片固態發光元件, 其中’該其中之至少一層部與對應之面部相連接的一第 界面至相反於該第一界面之一第二界面的距離,是自 該層部與另一層部相交接的一第一邊界向該層部與其他 之另一層部相交接的一第二邊界平緩漸增,而使該層部 以光電效應發出的光是預定波長範圍的混光。 181288490 X. Patent Application Range: 1 . A single-chip solid-state light-emitting device comprising: a substrate; at least one sub-unit connected to a top surface of the substrate, the quantum single, and having a first type of cladding layer, a second type of cladding layer, and an active layer between the first and second type of cladding layers, the first type of cladding layer has a first side connected to the substrate, and a first opposite to the first a second surface joined to the active layer, and the second surface includes a plurality of faces each having a predetermined lattice plane, the active layer having a layer having a plurality of lattice planes respectively corresponding to the corresponding surface thereof, the second type a coating layer and the first type of cladding layer form a quantum energy barrier with respect to the active layer; and an electrode that supplies electrical energy to the quantum unit to diffuse current through the active layer, and when current diffuses through the active layer, The plurality of layers respectively emit light corresponding to a predetermined wavelength range of the lattice plane by photoelectric effect, thereby causing the single-chip solid-state light-emitting element to emit light outward. 2. The single-wafer solid-state light-emitting element according to claim i, wherein in the plurality of faces, a lattice plane of a part of the face is (1), and a wafer plane of the remaining faces is ί ι, ι, ο, Π. 3. The single-wafer solid-state light-emitting element according to the item i of the patent application, wherein, in the plurality of faces, a lattice plane of a part of the face is { _, &quot;, and a wafer plane of the remaining faces is ί 1,1 , 5, 2 }. 4. According to the patent scope of the request! The single-wafer solid-state light-emitting element according to the item, wherein in the plurality of faces, a lattice plane of a part of the face is { 〇, 〇, 〇, &quot;, a wafer plane of a part of the face is {-}, and a lattice of the remaining face is Ping 17 .1288490 is { U, $, 2 }. 5. The single-chip solid-state light-emitting device according to claim 1, wherein the first interface in which at least one of the layers is connected to the corresponding face is opposite to the second interface of the first interface The distance is a constant value, and the light emitted by the layer portion by the photoelectric effect is monochromatic light of a predetermined wavelength range. 6. The single-chip solid-state light-emitting device according to the above application, wherein: an interface from which at least one of the layers is connected to the corresponding face to a distance from a second interface of the first interface a first boundary from which the layer portion intersects with another layer portion is gradually increased toward a second boundary where the layer portion intersects with the other layer portion, and the light emitted by the layer portion by the photoelectric effect is Mixed light in a predetermined wavelength range. 18
TW95105059A 2006-02-15 2006-02-15 Single-chip solid state light-emitting device TWI288490B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95105059A TWI288490B (en) 2006-02-15 2006-02-15 Single-chip solid state light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95105059A TWI288490B (en) 2006-02-15 2006-02-15 Single-chip solid state light-emitting device

Publications (2)

Publication Number Publication Date
TW200731560A TW200731560A (en) 2007-08-16
TWI288490B true TWI288490B (en) 2007-10-11

Family

ID=39203038

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95105059A TWI288490B (en) 2006-02-15 2006-02-15 Single-chip solid state light-emitting device

Country Status (1)

Country Link
TW (1) TWI288490B (en)

Also Published As

Publication number Publication date
TW200731560A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
TW591811B (en) Color mixing light emitting diode
TWI250664B (en) White light LED
TWI324834B (en) Phosphor-converted led devices having improved light distribution uniformity
JP5145120B2 (en) COMPOUND SEMICONDUCTOR LIGHT EMITTING ELEMENT, LIGHTING DEVICE USING SAME, AND COMPOUND SEMICONDUCTOR LIGHT EMITTING DEVICE MANUFACTURING METHOD
KR101580739B1 (en) Light emitting device
TW200924246A (en) Group III nitride semiconductor light emission element
JP5289448B2 (en) Semiconductor body for radiation emission
JP2008544567A (en) Light emitting diode with nanorod array structure having nitride multiple quantum well, method for manufacturing the same, and nanorod
TW200919701A (en) Light emitting diode package
TWI607584B (en) Method of making light emitting device and light emitting device made thereof
CA2583504A1 (en) High efficiency light-emitting diodes
TW200935631A (en) Semiconductor light emitting devices with high color rendering
TWI249966B (en) Light-emitting device having porous light-emitting layer
TWI314786B (en)
TW200849548A (en) Light emitting element, manufacturing method thereof and light emitting module using the same
CN102347408B (en) GaN-base double-blue-light wavelength luminescent device and preparation method thereof
TWI245440B (en) Light emitting diode
CN103681997B (en) A kind of manufacture method of required color light-emitting diode chip for backlight unit
CN105552183B (en) White light emitting diode and preparation method thereof
TW201301570A (en) Multi-color light emitting diode and manufacturing method thereof
TWI288490B (en) Single-chip solid state light-emitting device
TWI595629B (en) Light emitting device
TW201129228A (en) Light emitting diode lighting apparatus
JP5060823B2 (en) Semiconductor light emitting device
JP2001291900A (en) Semiconductor light-emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees