TWI288314B - Control apparatus of power factor corrector - Google Patents

Control apparatus of power factor corrector Download PDF

Info

Publication number
TWI288314B
TWI288314B TW95105795A TW95105795A TWI288314B TW I288314 B TWI288314 B TW I288314B TW 95105795 A TW95105795 A TW 95105795A TW 95105795 A TW95105795 A TW 95105795A TW I288314 B TWI288314 B TW I288314B
Authority
TW
Taiwan
Prior art keywords
signal
control
circuit
power
main
Prior art date
Application number
TW95105795A
Other languages
Chinese (zh)
Other versions
TW200732880A (en
Inventor
Tsai-Fu Wu
Yaow-Ming Chen
Jiun-Ren Tsai
Original Assignee
Tsai-Fu Wu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsai-Fu Wu filed Critical Tsai-Fu Wu
Priority to TW95105795A priority Critical patent/TWI288314B/en
Publication of TW200732880A publication Critical patent/TW200732880A/en
Application granted granted Critical
Publication of TWI288314B publication Critical patent/TWI288314B/en

Links

Landscapes

  • Control Of Electrical Variables (AREA)
  • Rectifiers (AREA)

Abstract

A control apparatus of a power factor corrector is presented to simultaneously control a plurality of power transformer operated under the critical conduction mode, so that the totally transforming efficiency and transforming power of the power factor corrector can be promoted. The apparatus comprises: a control circuit of the primary power transformer for feedback of an input voltage signal, an output voltage signal and a primary current signal, and to output a primary gate control signal to control the primary power switch; at least a control circuit of the secondary power transformer, for receiving the primary gate control signal and outputting a secondary control signal to control the secondary power switch; and a phase separation circuit, for receiving the primary gate control signal to control a gate output driving circuit, so that the gate output driving circuit outputs the secondary gate control signal.

Description

1288314 九、發明說明: 【發明所脣之技術領域】 本發明係有關於-種功因修正器控做置 於一種能夠同時控制多個電源轉換器,而敕士 ^ 正器之轉換效率與轉換功率的功因修正器控置^大少 【先前技術】 由於目前的民生或工業電器用品會產生對輸入 (市電端)電壓有減、甚至有高導值因t (譜波)的 入電流,而使得電力品質下降,因此 ,时、雨 功因修正及諧波抑制。其主要功能為士 l正器來做 的電流對電壓相位差與抑制電用品所產生 罩ίϋ 貝受到影響。通常,電力公司比較直歡 =因電;且古負^二電源Λ路而不喜歡高峰值電 調節電路魏。"以使仔電路斷料跳脫而造成電壓 閱第::來ί二因修正器可分為功率級與控制級,請參 ::含二二修正器之電路架構圖。如第-圖所示 為3有功因修正器32的電器系統架 巧輸入:電AC轉換成一直流電源,而匕: -用=他電路部分。在功因修正器32的二 二’有以下幾種常見的拓樸結構 型 2==田在這幾種架構中,由於昇壓型可以用單 功因修正哭1Φ與車父低譜波的效果,因此最常被應用於 換器^功ί级Λ中。在控制級324部分可視其控制的電源轉 、…、、、22)刼作模式分為連續導通操作型控制與臨 6 1288314 界導通操作型控制兩大類:當受控之電源轉換器的電感電 流是連續導通(除了在輸入電壓為零外,電感電流每週期 均會大於零),亦或是臨界導通(電感每週期會下降到零)。 此二者均利用一控制電路3241來處理回授輸出電壓、輸入 電流、輸入電壓等訊號,以決定驅動功率級322的功率開 關元件Q之閘極控制訊號,藉由高頻切換來強迫輸入電流 追隨利用市電AC電壓波形所決定的參考電流訊號,而達 成功因修正的目的。 目前’多數的連續導通操作型功因修正器之控制級都 是利用編號UC3854的1C (或其他同類型1C)來控制;請 參閱第二圖,習知利用UC3854為控制器的功因修正器控 制裝置之電路架構圖所示,其中UC3854的控制電路26包 含了電流回授控制級266、電壓回授控制級264與前饋控 制級262三個部分。而多數的臨界導通操作型功因修正器 則是利用標號L6561的1C (或其他同類型1C)來控制; 請參閱第三圖,習知利用L6561為控制器的功因修正器控 制裝置之電路架構圖所示,其中L6561之控制電路46係 包含電流參考訊號迴授控制462、電壓回授控制464、電流 迴授控制466與汲-源極零電壓偵測電路468四個部分。此 二者的操作方法已於習知技術中揭露,故在此略去不提, 僅綜述其優、缺點。 UC3854可控制電源轉換器操作於連續導通模式,故 有高轉換功率,低輸入電流漣波之優點;然而由於電源轉 換器的功率開關操作屬於硬切換型,因此有轉換效率低之 缺點。此外’由於此控制包含了前饋回授控制、電壓回授 控制與電流回授控制三大部分;加上轉換功率高時,需要 1288314 其他的辅助電路來使主電路之功率開 轉換效率,所以需額外控制至少—㈣^切換以提升 ^相當的複雜。咖可使轉換器操作二 源轉換器具高轉換效率;然而也因此 | ^而使付電 因修正器之輸入電流漣波較大’需要較二通= 乍型的2 ,濾波器以達到功因修正的目的;故其轉換 (約在100W以下)。 力羊通吊不回1288314 IX. Description of the invention: [Technical field of the invention] The present invention relates to a kind of power correction device controlled to be placed in a power converter capable of controlling multiple power converters at the same time, and the conversion efficiency and conversion of the gentleman The power factor correction device is controlled to be large and small. [Prior Art] Since the current people's livelihood or industrial electrical appliances will produce a voltage drop on the input (mains terminal) voltage, or even a high derivative value due to t (spectral wave), As a result, the power quality is degraded, so the rain and rain are corrected due to correction and harmonics. Its main function is that the current-to-voltage phase difference between the voltage regulator and the suppression of the electrical appliance is affected. Usually, the power company is more straightforward = due to electricity; and the ancient negative ^ two power supply circuit does not like the high peak power regulation circuit Wei. "In order to make the circuit breaks the voltage and cause the voltage to read: :: ί 二 because the corrector can be divided into power level and control level, please refer to :: circuit diagram with two or two modifiers. As shown in the figure - Fig. 3 is the power input of the electrical system of the corrector 32: the electric AC is converted into a DC power supply, and the 匕: - = = circuit part. In the two-two of the power factor corrector 32, there are several common topological structures 2==Tian in these kinds of architectures, because the boost type can be used to correct the crying 1Φ and the low-frequency of the car with a single power factor. The effect is therefore most often applied to the converter. In the control stage 324 part can be divided into its control power, ...,,, 22) mode is divided into continuous conduction operation type control and Pro 6 1288314 boundary conduction operation type control two categories: when the controlled power converter inductor current It is continuous conduction (except that the input current is zero, the inductor current will be greater than zero every cycle), or it is critically conductive (the inductor will drop to zero every cycle). Both of them use a control circuit 3241 to process the feedback output voltage, the input current, the input voltage and the like to determine the gate control signal of the power switching element Q of the driving power stage 322, and forcibly input the current by high frequency switching. Follow the reference current signal determined by the mains AC voltage waveform, and the success is due to the purpose of the correction. At present, the majority of the continuous conduction operation type power factor corrector control level is controlled by 1C (or other similar type 1C) numbered UC3854; please refer to the second figure, which is known to use UC3854 as the power factor corrector of the controller. The circuit diagram of the control device is shown, wherein the control circuit 26 of the UC3854 includes three parts of a current feedback control stage 266, a voltage feedback control stage 264 and a feedforward control stage 262. Most of the critical conduction operation type power factor corrector is controlled by 1C (or other similar type 1C) of the label L6561; please refer to the third figure, which is known as the circuit of the power factor corrector control device using the L6561 as the controller. As shown in the architecture diagram, the control circuit 46 of the L6561 includes four parts: a current reference signal feedback control 462, a voltage feedback control 464, a current feedback control 466, and a 汲-source zero voltage detection circuit 468. The operation methods of the two have been disclosed in the prior art, so they are omitted here, and only their advantages and disadvantages are summarized. The UC3854 can control the power converter to operate in continuous conduction mode, so it has the advantages of high switching power and low input current chopping. However, since the power switching operation of the power converter is a hard switching type, it has the disadvantage of low conversion efficiency. In addition, because this control includes feedforward feedback control, voltage feedback control and current feedback control, when the conversion power is high, 1288314 other auxiliary circuits are needed to make the power conversion efficiency of the main circuit, so Additional control is required - at least - (four) ^ switching to improve the complexity of ^. The coffee can make the converter operate the two-source converter with high conversion efficiency; however, therefore, ^ ^ and the power supply due to the corrector input current ripple is larger 'requires two-pass = 乍 type 2, the filter to achieve the power factor The purpose of the correction; therefore its conversion (about 100W or less). Li Yang can not hang back

為了改善上述的情形,本發明提出—功因修正器控制 衣置’不但可以控制功因修正器達到高功因的效 同 時具有高賴鱗與高職功率,而开^ 高輸入電歧波。 h讀入&形成 【發明内容】 豹nif於ί ’本發明提供—功因修正11控制裝置,係能 夠同知控制多個電源轉鋪使之操作於臨界導通模式 仔整體功因修正||之轉換效率與轉換功率可以提高,而不 同於習知的臨界導通操作型功因修正器有最大轉換功率的 限制’以及習知的連績導通操作型功因修正器有低轉換效 率的缺點。 、 -種功因修正墟制裝置,包括—主要級電源轉換器控 制電路,係連接於-系統電路之輸入端及負載端,以回授一輸 入電壓訊號、-輸出電壓訊號及—主要級電流訊號,而輸出 主要級閘極控制信號以控制一主要級電源轉換器之一主要 級功率開關;至少一個次要級電源轉換器控制電路,係接收 4主要級閘極控制信號,而輸出一次要級閑極控制信號以控制 8 1288314 一次要級電源轉換器之一次要級功率開關;及一分相電路, 係設於該次要級電源轉換器控制電路,用於接收該主要級閘 極控制信號以控制一閘極輸出驅動電路,以使該閘極輪出 電路輸出該次要級閘極控制信號。 藉此交錯驅動該主要級電源轉換器與該些次要級電源 轉換器,並將該主要級電源轉換器與該些次要級電 器控制於臨界導通模式。 "、 為了使能更進一步瞭解本發明特徵及技術内容,請參 閱^下有關本發明之詳細說明與附圖,然而所附圖式僅提 供參考與說明用,並非用來對本發明加以限制。 【實施方式】 本發明為一種交錯式變頻控制之臨界導通操作型功因 修正器控職置。本發明之功因修正器控制裝置係連接到 -功率級電路之電源輸人端,㈣制該功率級電路高功 因、低麟’主要储取得該功率級電路輸人的市電 訊號與電流訊號(或取得與該二訊號間接相關的訊號): ^輸出電壓訊號來決定正確的功率開關元件之閘極控制訊 號^然後_功率_元件高頻切換的特性強迫輸入電流 追隨翏考電流訊號,料到控制該功率級電路入 與輸=電壓_㈣簡弦波波形之舰。其巾,本發明 採用父錯狀制魏組電轉鋪, 連 此提升功因修正器之轉換功率、降心I万式連接糟 Λ 、羊降低輸入電流漣波與元件 叙規格,亚㈣独電源職轉作 以減少導通損失,提升無效率。 ¥通核式 請參閱第四圖,本發明可交錯式變頻控制之臨界導通 1288314 操作型T修正器控制裝置之電路方 變頻臨界導通操作型功因修正器㈣裝置二= 換器控制電路11與-次要級電源轉:: 控制,路、、、中’主要級電源轉換器控制電路 了電壓回授控制電路m、電流回授控制電路113、功= 關=财點侦測(ZVD)電路115及一間極輸出驅= 13卜電流回授㈣㈣m ι Γ 了 77相電路 電路(ZVD)135及一間極輪出驅動電路心 在主要級電源轉換器控制電路11中,電壓回授控制帝 路111係包括-誤差放大器電路,用於回授輸出電壓訊^ 並得到了輸出誤差訊號;一分壓電阻對,用於回授輸入電 壓矾唬當作一電流參考訊號;以及一乘法器電路,用於將 該輸出誤差訊號與該輸入電壓訊號相乘得到一參考電流訊 號^漁。電流回授控制電路113則包含了一電感器副繞組 (相當於一變壓器二次側),係用於將一功率級之電感電 流訊號、(近似三角波)轉換成一電感電流之電壓訊號(近 似方波);一積分器,係將該電感電流之電壓訊號積分, 求得一積分訊號;以及一比較器,係將該積分訊號(近似 三角波—電感電流訊號)和該參考電流訊號^咖比較而得 到主要級電源轉換器之一功率開關&之截止控制訊號見 \Reset());該積分器與比較器玎以一組固定導通時間控 J電路取代’如第四b圖固定導通時間控制電路圖,係藉 ,疋導通時間控制亦可達到功因校正之目的(註一)。 判關及-源極零點偵測電路115為一比較器電路,用來 "亥電感電流之電壓訊號正緣端,而輸出一汲-源極零點In order to improve the above situation, the present invention proposes that the power factor corrector controls the clothing set to not only control the power factor corrector to achieve the high power factor, but also has high latitude and high power, and the high input electrical frequency. h read in & formation [invention content] leopard nif in ί 'the present invention provides - power factor correction 11 control device, is able to know the control of multiple power supply bounce to operate in critical conduction mode, the overall power factor correction | The conversion efficiency and the conversion power can be improved, unlike the conventional critical conduction operation type power factor corrector having the limitation of maximum conversion power' and the conventional continuous conduction operation type power factor corrector having the disadvantage of low conversion efficiency. - A modified power system, including - a primary power converter control circuit, connected to the input and load terminals of the -system circuit to feedback an input voltage signal, - output voltage signal and - primary current Signal, and output the main level gate control signal to control one of the main stage power converters; at least one of the secondary level power converter control circuits receives the 4 main stage gate control signals, and the output is once a stage idle control signal for controlling a primary power switch of the primary power converter of 8 1288314; and a phase split circuit coupled to the secondary power converter control circuit for receiving the primary gate control The signal controls a gate output drive circuit to cause the gate turn-out circuit to output the secondary gate control signal. Thereby, the main stage power converter and the secondary stage power converters are alternately driven, and the main stage power converter and the secondary stage electric machines are controlled in a critical conduction mode. The detailed description of the present invention and the accompanying drawings are to be understood as the [Embodiment] The present invention is an interleaved variable frequency control critical conduction operation type power factor corrector control position. The power factor corrector control device of the present invention is connected to the power input end of the power stage circuit, and (4) the high power factor of the power stage circuit is formed, and the low power 'mainly stores the mains signal and the current signal of the input of the power level circuit. (or obtain a signal indirectly related to the second signal): ^ Output voltage signal to determine the gate control signal of the correct power switching element ^ Then _ power_ component high frequency switching characteristics force input current to follow the reference current signal To control the power stage circuit into and out = voltage _ (four) simple sine wave waveform of the ship. The towel, the invention adopts the parental fault-like system, and the power conversion of the corrector, the heart-down type I-connected dregs, the sheep reduce the input current chopping and the component specification, and the sub-fourth power supply Job transfer to reduce conduction losses and improve inefficiency. ¥通核式, please refer to the fourth figure, the invention can be interleaved variable frequency control critical conduction 1288314 operation type T corrector control device circuit side frequency conversion critical conduction operation type power factor corrector (4) device 2 = converter control circuit 11 and -Secondary power supply:: Control, road,,, and middle 'main level power converter control circuit, voltage feedback control circuit m, current feedback control circuit 113, power = off = financial point detection (ZVD) circuit 115 and a pole output drive = 13 bu current feedback (four) (four) m ι 77 77 phase circuit circuit (ZVD) 135 and a pole wheel drive circuit in the main stage power converter control circuit 11, voltage feedback control The circuit 111 includes an error amplifier circuit for feeding back the output voltage signal and obtaining an output error signal; a voltage dividing resistor pair for feeding back the input voltage as a current reference signal; and a multiplier circuit And multiplying the output error signal by the input voltage signal to obtain a reference current signal. The current feedback control circuit 113 includes an inductor secondary winding (corresponding to a transformer secondary side) for converting an inductor current signal of a power stage, (approximating a triangular wave) into a voltage signal of an inductor current (approximate square) Waves; an integrator that integrates the voltage signal of the inductor current to obtain an integral signal; and a comparator that compares the integrated signal (approximately triangular wave-inductor current signal) with the reference current signal Obtain the power-off switch of one of the main-stage power converters and see the switch control signal see \Reset()); the integrator and the comparator 取代 replace it with a fixed set of on-time control J circuit as in the fourth b diagram fixed on-time control The circuit diagram, the borrowing, and the conduction time control can also achieve the purpose of power factor correction (Note 1). The threshold and source zero detection circuit 115 is a comparator circuit for "the current of the voltage signal of the inductor current, and outputs a 汲-source zero

Ο)Ο)

(2) Τοη· hn (3) 1288314 訊號ζκζν並作為功率開關&之導通控制訊號私(Set〇)。 而該閘極輸出驅動電路117係包括—關電路,用於閃鎖 &與知訊號而得到功率開關^之閘極控制訊號%;以及 一足夠驅動該功率開關之放大電路。 位註=y假設功因修正器之輸入電壓%為一弦波訊號, 則可表>1;為 ^in 一 * Sin COt ? 其中,^為4之振幅。在臨界導通操作模式時,電感電 流t可表示為 “ 其中 為導通時間,k為輸人電流。而由(1)與(2)兩是可 得(2) Τοη· hn (3) 1288314 The signal ζκζν is used as the power switch & control signal private (Set〇). The gate output driving circuit 117 includes a -off circuit for flashing the lock and the signal to obtain the gate control signal % of the power switch, and an amplifying circuit sufficient to drive the power switch. Bit Note = y Assuming that the input voltage % of the power factor corrector is a sine wave signal, then the table >1; is ^in a * Sin COt ? where ^ is the amplitude of 4. In the critical conduction mode of operation, the inductor current t can be expressed as "where is the on-time, k is the input current. And (1) and (2) are available.

Vm ^ιηωί Τ 由式⑶可知’ t 7;”固定時輸入電流將會是弦波並與輸 入電壓同相,而達到功率因素近似為i的效果。、 而在次要級電源轉換器控制電路13中,電流回授控制 電路133將依據分相電路所採用之分相方式而分為兩類, 第-類分相電路是採科軌號分相,_電流回授控制 電路包含了-電感器副繞組(相#於_變壓器二次侧), 係用於將一功率級之電感電流訊號(近似三角波)轉換成 2感電流之電壓訊號(近似方波);—積分器,係將該 黾感電流之電壓訊號積分,求得一積分訊號;以及一比較 器本係將該積分訊號(近似三角波—電感電流訊號)和該 爹考電流訊號(於主要級電源轉換器控制電路n中電 壓回授控制電路m所產生)比較,而得到次要級電源轉換 11 1288314 ,運算後得到功率開關^之導通控制訊號& (Setl> ;或 疋截止控制訊號^^(Reset!)。而該閘極輸出驅動電路137 器之一功率開祕之截止控制訊號i(Reseti);第二類 則利用截止訊^進行分相m细分相電路取得 &减,因此第-射的次魏電源轉舖控路中的 積分器無㈣料騎m功率開該·源極零點 债測電路135為-比較H電路,用來騎該電感電流之電 壓訊號正緣端’而輸出次要級電源轉換器功率開關之汲_ 源極零點訊號ZFZV分相電路131係回授主要級電源轉換 益功率開關之間極控制sfL號源極零點訊號2厂认,Vm ^ιηωί Τ From equation (3), it can be seen that 't 7;' the input current will be a sine wave and will be in phase with the input voltage, and the power factor is approximately i. The secondary power converter control circuit 13 The current feedback control circuit 133 is divided into two types according to the phase separation method adopted by the phase separation circuit, the first type phase separation circuit is a phase separation phase, and the current feedback control circuit includes an inductor. The secondary winding (phase #__transformer secondary side) is used to convert a power level inductor current signal (approximately triangular wave) into a 2 sense current voltage signal (approximate square wave); Inductive current voltage signal integration, to obtain an integral signal; and a comparator is the integral signal (approximate triangle wave - inductor current signal) and the reference current signal (in the main stage power converter control circuit n voltage back The control circuit m is generated to compare and obtain the secondary power conversion 11 1288314, and the power switch ^ conduction control signal &(Setl>; or 疋 cutoff control signal ^^ (Reset!) is obtained after the operation. The output drive circuit 137 is one of the power cut-off control signals i (Reseti); the second type uses the cut-off signal to perform the phase split m sub-phase circuit to obtain & subtract, so the first-shot second Wei power supply is turned The integrator in the control circuit has no (four) material to ride m power to open the source zero point debt measurement circuit 135 is - compare H circuit, used to ride the voltage signal positive edge of the inductor current 'and output secondary power converter power Switch 汲 _ source zero signal ZFZV phase separation circuit 131 is the main stage power conversion conversion power switch between the pole control sfL source zero point signal 2 factory recognition,

係包括一閂鎖電路,用於閂鎖&與&訊號而得到功率開 關2』之閘極控制訊號以及一足夠驅動該功率開關之 放大電路。 而上述主要級電源轉換器及次要級電源轉換器於功因 修正器中均為並聯連接,可提高系統可靠度。又該主要級 電源轉換器與該些次要級電源轉換器可整合設計於一積 體電路,為一模組化之電路以降低設計複雜度。 復參閱第五圖,本發明功率開關汲_源極零電壓點偵測 時序圖,其中為參考電流、虼為電感電流、VIL為電 感電流之電壓、Set為功率開關導通控制訊號、Reset為功 率開關截止控制訊號及G為功率開關閘極控制訊號。由第 五圖可知,在電感電流IL上升到與參考電流义咖相同的 瞬間’會觸發功率開關截止控制訊號Reset,此時功率開關 截止,電感電流IL會開始下降,而電感電流之電壓VIL則 會由+Vcc變為〇。當電感電流IL下降至〇時,電感會開始 與功率開關元件上的寄生電容產生諧振,使得電感電流繼 12 1288314 續下降,變為負電流;當電感電流iL下降至最低點,開始 慢慢變大的瞬間,由於電流斜率的轉變會使得電感電流之 電壓VIL由〇變為+Vcc而觸發功率開關導通控制訊號set, 進而驅動功率開關導通;在此時,功率開關的汲—源極電壓 已接近〇,因此功率開關具有零電壓切換的特性。 復參閱第六圖,本叙明弟一較佳實施例之分相電路電 路圖;以及第七圖,本發明第一較佳實施例之分相電路各 元件波形圖。在此分相電路中,在每個主要級電源轉換器 功率開關之閘極控制訊號%的負緣觸發訊號產生時,會產 生幾個控制訊號:(R_Sh,(R-S)2,馬3和M/v; Mp3和 會在每個負緣先將電容CTsl(或CTs2)放充電,然後電容 Ctsi(或CTs2)會在%—週期内由定電流源Idc充電,得到代 表一週期長度的訊號VCTS1(或VCTS2),並利用一分壓電路 61刀壓為〇.5VCTsl(而vCTS2則是利用分壓電路64分壓為 〇.5Vcts2) ’然後纪錄到第一相位债測電路62之電容Cm (或o.5vCTs2記錄到第二相位偵測電路63之& 2)上。$The system includes a latch circuit for latching && signals to obtain a gate control signal of the power switch 2 and an amplifying circuit sufficient to drive the power switch. The main-stage power converter and the secondary-level power converter are connected in parallel in the power factor corrector to improve system reliability. The primary power converter and the secondary power converters can be integrated into one integrated circuit to reduce the design complexity of a modular circuit. Referring to the fifth figure, the power switch 汲_source zero voltage point detection timing diagram of the present invention, wherein the reference current, 虼 is the inductor current, VIL is the voltage of the inductor current, Set is the power switch conduction control signal, Reset is the power The switch cutoff control signal and G are power switch gate control signals. As can be seen from the fifth figure, when the inductor current IL rises to the same instant as the reference current control, the power switch cutoff control signal Reset is triggered. At this time, the power switch is turned off, the inductor current IL starts to decrease, and the inductor current voltage VIL is Will change from +Vcc to 〇. When the inductor current IL drops to 〇, the inductor will start to resonate with the parasitic capacitance on the power switching element, so that the inductor current continues to decrease after 12 1288314, becoming a negative current; when the inductor current iL drops to the lowest point, it begins to change slowly. At a large moment, the transition of the current slope causes the voltage VIL of the inductor current to change from 〇 to +Vcc to trigger the power switch to turn on the control signal set, thereby driving the power switch to conduct; at this time, the 汲-source voltage of the power switch has been Close to 〇, so the power switch has zero voltage switching characteristics. Referring to the sixth embodiment, a phase-separated circuit circuit diagram of a preferred embodiment of the present invention; and a seventh diagram, waveform diagrams of components of the phase-separating circuit of the first preferred embodiment of the present invention. In this phase-separating circuit, when the negative-edge trigger signal of the gate control signal % of each main-level power converter power switch is generated, several control signals are generated: (R_Sh, (RS) 2, Ma 3 and M /v; Mp3 will charge the capacitor CTsl (or CTs2) at each negative edge, then the capacitor Ctsi (or CTs2) will be charged by the constant current source Idc in the %-period to obtain the signal VCTS1 representing the length of one cycle. (or VCTS2), and using a voltage divider circuit 61, the tool pressure is 〇.5VCTsl (while vCTS2 is divided by the voltage dividing circuit 64 to 〇5Vcts2)' and then records the capacitance of the first phase debt measuring circuit 62. Cm (or o.5vCTs2 is recorded to & 2) of the second phase detecting circuit 63. $

cTxlJl,,b0^CTx2^t^^ ;T 3:°己3广:2上 '然後€ΤΧ1進行放電動作。然後利用 等ΓΤ2 Γ小的電流源1如對Ctx1(或Ctx2)放電’ 轉換哭1的二率:2杜的电壓降到Vdc時’即觸發次要級電源 、口口、率70件之分相點訊號处犯丁 此兩訊號作邏輯或、審斤1k、KhSET22,將 ^ ^ 運算之後即可得到所要的截止批 制訊號Resetl(R〇,;隹;^以 才工 述之主要級+ϋ 輪出至’輸出驅動電路。而上 这之主要〜源轉換器功率開關之閘極 限於利用負緣觸發邙骑氺^ 市j巩就係不 工作。 就上作,_可於正_發訊號來 13 1288314 復參閱第八圖,本發明第二較佳實施例之分相電路電 路圖;以及第九圖,本發明第二較佳實施例之分相電路各 元件波形圖。其中本發明之第二較佳實施例係為一主要級 電源轉換器與數個次要級電源轉換器,亦即分相數gn。 在此分相電路中,先根據主要級電源轉換器功率開關之閘 極控制汛號的負緣(或正緣)取得各控制訊號 Μη〜ΜΡγ然後控制電容Ci與q交互的充電與保持電壓额| 號,讓每一週期都有一個電容電壓保持不變,做為參考用, 另一個電容充電,其電壓作為比較用。如第一週期q保持 其本身電壓值,C2則根據先放電到〇,然後根據 讓C2在一週期内持續充電。由於兩個電容的充電電流相 同,因此只要設計後級的比較器的負端輸入電壓為該參考 電壓的1/n倍,即可在相移360。/n時產生觸發訊號〔例 如以分相數為3來說,在第一個週期中第一截止控制訊號 RESET〗會在Vo充電到1/3VC1時觸發(120。);第二截止 控制訊號RESETS會在VC2充電到2/3VC1時觸發(240。); 在下一個週期中,則換成Q保持電壓,Ci充電做相同的 比較動作;此外,亦可以相同概念推得利用主要級電源轉換 器功率開關之閘極控制訊號(¾的正緣之分相訊號。是以輸出 該些截止控制訊號(RESETi、RESEHeset^))至閘極 輸出驅動電路作次要級電源轉換器之功率開關之控制。 復爹閱第十圖,本發明第三較佳實施例之分相電路電 路圖;以及第十一圖,本發明第三較佳實施例之分相電路 各元件波形圖。此分相電路中,利用不同的充放電流大小, 來進行分相成號的產生·請參照兩相分相電路之電路與波 形圖,如圖十與圖十一;首先利用主要級電源轉換器功率 14 1288314 開關之閘極控制訊號%產生控制訊號Μ以〜从,然後交 互的對電容ca c2進行-倍電流I充賴兩倍電流21放 ,的操作,在利用比較H 1311即可得知所f的分相點。若 二相數為三,則需使用3倍來放電,且多一組比較器、電 容,2/3放電電流之電容充放電電流源組;因此可&推至 ^多分相數;此外’亦可以相同概念推得_主要級電源轉 換器功率開關之閘極控制訊號%的正緣之分相訊號。 •(^^中的波形僅為絲解釋各重要電路的動作义 貝際的波形上,並不一定會相同)。 之功^以,透過本發明之功因修正器控制裳置,具有下述 1、 可確保各組電源轉換器均具有零電壓切換特性。 2、 可依據不同的功率需求增加 轉換器個數,且均具交錯式控制。力口修正斋中的電源 3、 由於功因修正器中之電源 g ”此與-般臨界導通操作型功因 較低規格之元件。 时相比可以使用 4、 可依據相同原理擴充設計 數之功因修正器所需的分相電路。3不R電源轉換器個 5、 主要級電源轉換器與次要級電 設計,降低設計複雜度。 原轉換器可模組化 6、 由於功因修正器中的電源 可提高系統可靠度。 、时均為並聯,因此 、惟,以上所述,僅為本發明較佳的具 說明與圖式,凡合於本發明申請專 岡-只轭例之詳細 |利域之精神與其類似 1288314 例’皆應包含於本發明之範♦中’任何熟悉該 可、、子Ϊ在在本發明之領域内,可輕易思及之變化或修飾皆 可涵盍在以下本案之專利範圍。 【圖式簡單說明】 第-圖係為習知功因修正器之電路架構圖; 第二圖,為習知利用UC3854為控制器的功因修正器 裝置之電路架構圖; 第三圖係為習知· L6561為控㈣的功因修正# 置之電路架構圖; 口卫J衣 第四圖係為本發明可交錯式變頻控制之臨 正ϋ控制裝置之電路方塊圖;作型功 苐四b圖係為固定導通時間控制電路圖; ^圖係為本發明功率開關汲雜零電壓則貞測時序圖; 第六圖係、為本發明第-難實施例之分相電路電路圖·’ 第七圖係為本發明第-較佳實施例之分相電路各元件波 第八圖係為本發明第二較佳實施例之分相電路電路圖· 第九圖係為本發明第二較佳實施例之分相電路"、 形圖; h ^十圖係為本發明第三較佳實施例之分相電路電路圖;及 第十一係為本發明第三較佳實施例之分相電路各元件 形圖。 / 【主要元件符號說明】 〔習知技術〕 12883*14 第一圖: 整流電路30 功因修正器32 功率級322cTxlJl,,b0^CTx2^t^^;T 3:°3 广:2上 ' Then ΤΧ1 performs the discharge action. Then use a current source 1 that is equal to Γ2 如, such as discharging Ctx1 (or Ctx2)' to convert the second rate of crying 1: when the voltage of 2 du is reduced to Vdc, that is, triggering the secondary power supply, mouth, and rate of 70 At the split-point signal, the two signals are used as logic or 1k, KhSET22, and the ^^ operation can be used to obtain the desired cut-off batch signal Resetl (R〇,;隹;^ +ϋ Turns out to the 'output drive circuit. And the main ~ source converter power switch gate limit on the use of negative edge trigger 邙 氺 ^ city j Gong will not work. On the work, _ can be positive _ Referring to FIG. 8 , FIG. 8 is a circuit diagram of a phase splitting circuit according to a second preferred embodiment of the present invention; and FIG. 9 is a waveform diagram of components of a phase splitting circuit according to a second preferred embodiment of the present invention. The second preferred embodiment is a primary power converter and a plurality of secondary power converters, that is, a phase split number gn. In this phase split circuit, the power switch of the main power converter is first used. The negative edge (or positive edge) of the pole control nickname takes each control signal Μη~ΜΡγ and then The charging and holding voltage amount | of the capacitor Ci and q are exchanged, so that one capacitor voltage remains unchanged for each period, and the other capacitor is charged, and the voltage is used for comparison. For example, the first period q is maintained. Its own voltage value, C2 is discharged according to the first discharge, and then according to let C2 continue to charge in a cycle. Since the charging current of the two capacitors is the same, as long as the negative input voltage of the comparator of the design stage is the reference voltage 1/n times, the trigger signal can be generated when the phase shift is 360./n (for example, if the phase number is 3, the first cutoff control signal RESET will be charged to 1 in Vo in the first cycle). 3VC1 trigger (120.); the second cutoff control signal RESETS will trigger when VC2 is charged to 2/3VC1 (240.); in the next cycle, it will be replaced by Q hold voltage, Ci charge will do the same comparison action; The same concept can also be used to derive the gate control signal of the main-stage power converter power switch (the positive-phase split signal of 3⁄4 is to output the cut-off control signals (RESETi, RESEHeset^)) to the gate output drive. Circuit Control of the power switch of the secondary power converter. Referring to the tenth figure, the circuit diagram of the phase separation circuit of the third preferred embodiment of the present invention; and the eleventh figure, the phase separation of the third preferred embodiment of the present invention Waveform diagram of each component of the circuit. In this phase separation circuit, different phase of charge and discharge current is used to generate the phase separation number. Please refer to the circuit and waveform diagram of the two-phase phase separation circuit, as shown in Figure 10 and Figure 11; First use the main stage power converter power 14 1288314 switch gate control signal % to generate the control signal Μ to ~ from, then the interaction of the capacitor ca c2 - the current I is charged twice the current 21, the operation, in the use The phase separation point of f can be known by comparing H 1311. If the number of two phases is three, then three times to discharge, and one set of comparators, capacitors, 2/3 discharge current capacitor charge and discharge current source group; therefore, can be & push to ^ multi-phase number; It is also possible to derive the phase separation signal of the positive edge of the gate control signal % of the main power converter power switch by the same concept. • (The waveform in ^^ is only for the explanation of the action of each important circuit. It is not necessarily the same). The function of the power factor corrector of the present invention is controlled by the following: 1. It can ensure that each group of power converters has zero voltage switching characteristics. 2. The number of converters can be increased according to different power requirements, and both have interleaved control. Power supply correction in the power supply 3, due to the power supply g in the power corrector, this and the general critical conduction operation type of the lower specification components. Can be used 4, can expand the design number according to the same principle The phase separation circuit required by the power corrector. 3 does not R power converter 5, the main stage power converter and the secondary level power design, reducing the design complexity. The original converter can be modularized 6, due to power correction The power supply in the device can improve the reliability of the system. Both of them are connected in parallel. Therefore, the above description is only a preferred description and a schematic diagram of the present invention. The spirit of the domain is similar to that of the 1288314 case, which should be included in the scope of the present invention. Anyone who is familiar with the law can be easily changed or modified in the field of the present invention. In the following patent scope of this case. [Simple diagram of the diagram] The first diagram is the circuit architecture diagram of the conventional power factor corrector; the second diagram is the circuit architecture diagram of the power factor modifier device using the UC3854 as the controller; The third picture is · L6561 is the circuit structure diagram of the control (4) power factor correction; the fourth figure of the mouth guard J clothing is the circuit block diagram of the Pro-correction control device of the interleaved frequency conversion control of the invention; It is a fixed on-time control circuit diagram; ^ is the timing diagram of the power switch noisy zero voltage according to the invention; the sixth figure is the circuit diagram of the phase-separated circuit of the first difficult embodiment of the present invention. The eighth embodiment of the phase separation circuit of the first embodiment of the present invention is a circuit diagram of a phase separation circuit according to a second preferred embodiment of the present invention. The ninth diagram is a phase separation of the second preferred embodiment of the present invention. The circuit "the figure; the h^10 is a circuit diagram of the phase separation circuit of the third preferred embodiment of the present invention; and the eleventh is a component diagram of the phase separation circuit of the third preferred embodiment of the present invention. / [Main component symbol description] [Priority technology] 12883*14 First picture: Rectifier circuit 30 Power factor corrector 32 Power stage 322

功率開關元件Q 控制級324 控制電路3241 負載34 輸入市電AC 够—回· 弟一園· 整流電路20 功率級22 負載24 控制電路26 電流回授控制級266 電壓回授控制級264 前饋控制級262 第三圖: 整流電路40 功率級42 負載44 控制電路46 電流參考訊號迴授控制462 電壓回授控制464 17 1288314 電流迴授控制466 . 汲-源極零電壓偵測電路468 . 〔本發明〕 第四圖: 交錯式變頻控制之臨界導通操作型功因修正器控 … 制裝置10 主要級電源轉換器控制電路11 電壓回授控制電路111 • 電流回授控制電路113 功率開關汲-源極零點偵測(ZVD)電路115 閘極輸出驅動電路117 主要級電源轉換器之功率開關仏 夢考電流訊號厂/,*S7>Z 没-源極零點訊號ZVD〇 功率開關之截止控制訊號心(Reseto) 功率開關導通控制訊號A (Set〇) * 主要級電源轉換器功率開關之閘極控制訊號 次要級電源轉換器控制電路13 ; 分相電路131 ; 電流回授控制電路133 功率開關汲-源極零點偵測電路(ZVD) 135 閘極輸出驅動電路137 次要級電源轉換器之功率開關 没-源極零點訊號ZVDj 18 1288314 功率開關截止控制訊號及/ ( Reset!)Power Switching Element Q Control Stage 324 Control Circuit 3241 Load 34 Input Mains AC Enough - Back · Di Yi · Rectifier Circuit 20 Power Stage 22 Load 24 Control Circuit 26 Current Feedback Control Stage 266 Voltage Feedback Control Stage 264 Feedforward Control Stage 262 Third Figure: Rectifier circuit 40 Power stage 42 Load 44 Control circuit 46 Current reference signal feedback control 462 Voltage feedback control 464 17 1288314 Current feedback control 466 . 汲-source zero voltage detection circuit 468 . 】 Fourth picture: Interleaved variable frequency control critical conduction operation type power factor correction device control device 10 main stage power converter control circuit 11 voltage feedback control circuit 111 • current feedback control circuit 113 power switch 汲-source Zero point detection (ZVD) circuit 115 gate output drive circuit 117 main stage power converter power switch night test current signal factory /, *S7> Z no - source zero point signal ZVD 〇 power switch cutoff control signal heart ( Reseto) Power switch turn-on control signal A (Set〇) * Main-level power converter power switch gate control signal secondary stage power converter control circuit 13; split phase Circuit 131; Current feedback control circuit 133 Power switch 源-source zero detection circuit (ZVD) 135 Gate output drive circuit 137 Power switch of the secondary power converter No-source zero signal ZVDj 18 1288314 Power switch cutoff Control signal and / ( Reset!)

. 功率開關導通控制訊號心(SetJPower switch conduction control signal heart (SetJ

. 次要級電源轉換器功率開關之閘極控制訊號G 第五圖: ' 參考電流^ _. Secondary Gate Power Converter Power Switch Gate Control Signal G Figure 5: 'Reference Current ^ _

^ 電感電流II 電感電流之電壓Vil 功率開關導通控制訊號Set • 功率開關截止控制訊號Reset 功率開關閘極控制訊號G 第六圖及第七圖: 分壓電路61 第一相位偵測電路62 第二相位偵測電路63 主要級電源轉換器功率開關之閘極控制訊號G 〇 驅動訊號 Μρι、Mp2、Mp3、Mp4、(R-S)1、(R-S)2^ Inductor Current II Inductor Current Voltage Vil Power Switch On Control Signal Set • Power Switch Cutoff Control Signal Reset Power Switch Gate Control Signal G Sixth and Seventh Diagram: Voltage Divider Circuit 61 First Phase Detection Circuit 62 Two phase detection circuit 63 main gate power converter power switch gate control signal G 〇 drive signal Μρι, Mp2, Mp3, Mp4, (RS) 1, (RS) 2

電容 CTsi、CTs2、CTxl、CTx2 電阻R v 電容電壓 Vjsl、Vts2、VcTxl、VcTx2 電流源Idc 分相點訊號RESETn、RESET12 次要級電源轉換器閘極截止訊號RESET! 直流電源Vdc 第八圖及第九圖: 19 1288314 主要級電源轉換器功率開關之閘極控制訊號G〇 驅動訊號、从P3、似以 電容CVC2 電阻 Rij (i = n-1〜l,j = 1〜η_Γ) 電容電壓Fc7、 電流源Ide 次要級電源轉換器閘極截止訊號RESET^ RESET^d 第十圖及第十一圖: 比較器1311 主要級電源轉換器功率開關之閘極控制訊號G〇 驅動訊號 Afp/、Kp〗、、·Μρ<Capacitor CTsi, CTs2, CTxl, CTx2 Resistor R v Capacitor voltage Vjsl, Vts2, VcTxl, VcTx2 Current source Idc Split phase signal RESETn, RESET12 Secondary power converter gate cutoff signal RESET! DC power supply Vdc 8th and Nine diagrams: 19 1288314 Main-level power converter power switch gate control signal G〇 drive signal, from P3, like capacitor CVC2 resistor Rij (i = n-1~l, j = 1~η_Γ) Capacitor voltage Fc7, Current source Ide Secondary stage power converter gate cutoff signal RESET^ RESET^d 10th and 11th: Comparator 1311 Main stage power converter power switch gate control signal G〇 drive signal Afp/, Kp 〖,,·Μρ<

電容。、C2 電容電壓Vci、Vc2 節點電壓V3 電流源I、21 > 直流電源DC 次要級電源轉換器閘極截止訊號RE S E T! 20capacitance. , C2 capacitor voltage Vci, Vc2 node voltage V3 current source I, 21 > DC power supply DC secondary power converter gate cutoff signal RE S E T! 20

Claims (1)

1288314 、申請專利範圍·· 一種功因修正器控制裳置,該震置包括: 一主要級電_換!!㈣電路 入端及負载端,以回授—於糸統電路之輪 號及—主要級電號…輸出電麗訊 至少二慨要級電源轉換器控制電路,係接收J主要1288314, the scope of patent application · · A power factor corrector control skirt, the shock includes: a main level of electricity _ change!! (four) circuit input and load end, to feedback - the wheel number of the circuit and - Main level electric number... Output electric Lixun at least two generous level power converter control circuit, receiving J main :弟=號’而輸出—次要級閘極控制控、: 級電源轉換器之一次要級功率開關;及人要 itH,係設於該次要級電源轉換11控制電路,用於 :收該主要級閘極控制信號以控制一閘極輸出驅動電 =.,以使該閘極輸出鶴電路輪出該次要朗極控制信 藉此交錯驅動該主要級電源轉換器與該次要級電源轉 換器。 2如申明專利範圍第1項所述之功因修正器控制裝置,其中: brother = number 'and output - secondary level gate control,: one level power switch of the stage power converter; and people want itH, is set in the secondary level power conversion 11 control circuit, used to: receive The main-level gate control signal controls a gate output driving power=., so that the gate output crane circuit rotates the secondary control signal to interleave the main-stage power converter and the secondary level Power converter. [2] The power factor corrector control device according to claim 1, wherein 該主要級電源轉換H控制電路係更包括—電壓回授控制 電路,用於接收該輸入電壓訊號及該輸出電壓訊號並輸出 一參考電流訊號。 3、 如申請專利範圍第2項所述之功因修正器控制裝置,其中 XT亥主要級笔源轉換斋控制電路更包括一主要級電流回授控 制電路,用於接收一主要級電流訊號及該參考電流訊號, 並輸出一主要級閘極截止控制訊號。 4、 如申清專利範圍第3項所述之功因修正器控制裝置,其中 該主要級電流回授控制電路係更包括一電感副繞組,用於 21 1288314 =該系統電路之-電感電流訊號轉換為該主要級電流訊 就。 5、如申請專利範圍第4項所述之功因修正器控制裝置,其中 該主要級㈣轉難控制電路係更包括-零交越偵測電 路,係用於接收該主要級電流訊號並輸出該 功 關之一汲-源極零點訊號。 、、刀手開 6如申請專利範圍第5項所述之功因修正器控制裝置,盆中 該汲-源極零點訊號係為一主要級閘極導通控 二 7、如申請專利範圍第5項所述之功因修正器控制裝^其中 該令父越制電路更包括一邊緣比較電路,用以判斷該 该主要級電流訊號之正緣或負緣,以得該汲·源極零點 號。 8如申睛專利範圍第5項所述之功因修正器控制裳置,盆中 該主要級電源轉換器控制電路係更包括一間極輸出驅動 电路’以接收該主要級閘極截止控制訊號及該沒-源極零 點訊號,而輸出該主要級閘極控制信號。 " 9、 如申請專利範圍第8項所述之功因修正器控制裳置,其中 該主要級閘減止㈣訊號係由—積分器接收該主要級 電流訊號1而該積分ϋ輸出之信號再與該參考電流訊號經 一比較器比較後所產生。 10、 如申請專利範圍第9項所述之功因修正器控制袭置,其中 該積分ϋ及該比較H係用—固定導通相控制電路取 代。 11、 如申請專利範圍第2項所述之功因修正器控制裝置,其中 該次要級電源轉換器控制電路係更包括一次要級電流回授 22 1288314 12 13 14、 15、 16、 17、 18、 控制電路,用於接收一次要級電流訊號及該參考電流訊 號以輸出一次要級閘極截止控制訊號。 如申清專利範圍第11項所述之功因修正器控制裝置,其 中該次要級電流回授控制電路係更包括一電感副繞組,用於 將該系統電路之一電感電流訊號轉換為該次要級電流訊號。 如申凊專利範圍第12項所述之功因修正器控制裝置,其 中該次要級電源轉換器控制電路係更包括一零交越偵測 電路,用於接收該次要級電流訊號,並輸出該次要級功率 開關之一汲-源極零點訊號。 如申清專利範圍第13項所述之功因修正器控制裝置,其 中該令父越偵測電路更包括一邊緣比較電路,用以判斷 該次要級電流訊號之正緣或負緣,以得該汲_源極零點訊號。 如申凊專利範圍第13項所述之功因修正器控制裝置,其 中該分相電路係接收該汲_源極零點訊號及該主要級閘極 控制信號而輪出一次要級閘極導通控制訊號。 如申凊專利範圍第15項所述之功因修正器控制裝置,其 中该2極輸出驅動電路係接收該次要級閘極導通控制訊號 及該人要、、及閘極截止控制訊號,以輸出該次要級閘極控制 信號。 如申請專利範圍第〗項所述之功因修正器控制襞置,其中 該主要級電轉換11及該些:欠要級電轉難、係並聯於該 糸統電路。 如申請專利範圍第i項所述之功因修正器控概置,其中 23The main stage power conversion H control circuit further includes a voltage feedback control circuit for receiving the input voltage signal and the output voltage signal and outputting a reference current signal. 3. The utility model as claimed in claim 2, wherein the XT Hai main-level pen source conversion control circuit further comprises a main-level current feedback control circuit for receiving a main-level current signal and The reference current signal outputs a primary gate turn-off control signal. 4. The power factor corrector control device according to claim 3, wherein the main-stage current feedback control circuit further comprises an inductive auxiliary winding for 21 1288314 = the inductor current signal of the system circuit Convert to this primary level current. 5. The power factor corrector control device according to claim 4, wherein the main stage (four) transition control circuit further comprises a zero crossover detection circuit for receiving the main level current signal and outputting One of the functions is 汲-source zero signal. , Knife open 6 as claimed in the scope of application of the fifth paragraph of the power factor corrector control device, the basin in the basin - source zero signal is a major level gate conduction control 2, as claimed in the scope of the fifth The function of the item is controlled by the corrector, wherein the parent circuit further includes an edge comparison circuit for determining a positive or negative edge of the main current signal to obtain the source and source zero points. . 8 If the power factor corrector is controlled according to item 5 of the scope of the patent application, the main stage power converter control circuit further includes a pole output drive circuit to receive the main gate turn-off control signal. And the non-source zero signal, and the main level gate control signal is output. " 9. The power factor corrector control device according to item 8 of the patent application scope, wherein the main level gate reduction (four) signal is received by the integrator and the signal of the main level current signal 1 is output. And then generated by comparing the reference current signal with a comparator. 10. The power factor corrector control as described in claim 9 of the patent scope, wherein the integral ϋ and the comparison H are replaced by a fixed conduction phase control circuit. 11. The power factor corrector control device according to claim 2, wherein the secondary power converter control circuit further comprises a primary current feedback 22 1288314 12 13 14 , 15 , 16 , 17 , 18. The control circuit is configured to receive the primary current signal and the reference current signal to output a primary gate turn-off control signal. The power factor corrector control device of claim 11, wherein the secondary current feedback control circuit further comprises an inductive auxiliary winding for converting an inductor current signal of the system circuit into the Secondary current signal. The power factor corrector control device of claim 12, wherein the secondary power converter control circuit further comprises a zero-crossing detection circuit for receiving the secondary current signal, and Output one of the sub-level power switches 汲-source zero signal. The power factor corrector control device of claim 13, wherein the parental detection circuit further comprises an edge comparison circuit for determining a positive or negative edge of the secondary current signal Get the 汲_source zero signal. The power factor corrector control device according to claim 13, wherein the phase separation circuit receives the 汲_source zero point signal and the main level gate control signal and rotates the primary level gate conduction control Signal. The power factor corrector control device according to claim 15 , wherein the 2-pole output driving circuit receives the secondary-level gate conduction control signal and the person, and the gate-off control signal to The secondary level gate control signal is output. For example, the power factor corrector control device described in the scope of the patent application, wherein the main level electrical conversion 11 and the low-level electrical conversion are in parallel with the circuit. For example, the power factor correction control device described in item i of the patent application scope, 23
TW95105795A 2006-02-21 2006-02-21 Control apparatus of power factor corrector TWI288314B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW95105795A TWI288314B (en) 2006-02-21 2006-02-21 Control apparatus of power factor corrector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW95105795A TWI288314B (en) 2006-02-21 2006-02-21 Control apparatus of power factor corrector

Publications (2)

Publication Number Publication Date
TW200732880A TW200732880A (en) 2007-09-01
TWI288314B true TWI288314B (en) 2007-10-11

Family

ID=39202976

Family Applications (1)

Application Number Title Priority Date Filing Date
TW95105795A TWI288314B (en) 2006-02-21 2006-02-21 Control apparatus of power factor corrector

Country Status (1)

Country Link
TW (1) TWI288314B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715890A (en) * 2012-10-05 2014-04-09 通嘉科技股份有限公司 Controller for controlling a power converter to output constant power, and related method thereof
TWI456876B (en) * 2012-10-04 2014-10-11 Univ Nat Taiwan Control device for dc-dc converter and control method thereof
TWI636633B (en) * 2017-12-27 2018-09-21 東元電機股份有限公司 Power quality control system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI726759B (en) * 2020-07-01 2021-05-01 宏碁股份有限公司 Boost converter for improving output stability
TWI736367B (en) * 2020-07-23 2021-08-11 宏碁股份有限公司 Boost converter with high power factor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI456876B (en) * 2012-10-04 2014-10-11 Univ Nat Taiwan Control device for dc-dc converter and control method thereof
US9001531B2 (en) 2012-10-04 2015-04-07 National Taiwan University Control device for DC-DC converter and control method controlling the same
CN103715890A (en) * 2012-10-05 2014-04-09 通嘉科技股份有限公司 Controller for controlling a power converter to output constant power, and related method thereof
US9160233B2 (en) 2012-10-05 2015-10-13 Leadtrend Technology Corp. Controller for controlling a power converter to output constant power and related method thereof
TWI514735B (en) * 2012-10-05 2015-12-21 Leadtrend Tech Corp Controller for controlling a power converter to output constant power and related method thereof
CN103715890B (en) * 2012-10-05 2017-04-12 通嘉科技股份有限公司 Controller for controlling a power converter to output constant power, and related method thereof
TWI636633B (en) * 2017-12-27 2018-09-21 東元電機股份有限公司 Power quality control system

Also Published As

Publication number Publication date
TW200732880A (en) 2007-09-01

Similar Documents

Publication Publication Date Title
CN100490284C (en) Power factor improving converter and control method thereof
CN103683918B (en) Switching power unit
JP4678215B2 (en) Switching power supply
CN103580000B (en) Switching Power Supply output over-voltage protection method and circuit and the Switching Power Supply with this circuit
US8531858B2 (en) Power conversion with current sensing coupled through saturating element
CN102420528B (en) Switching power supply device
US8724356B2 (en) Two-stage isolated DC/AC conversion circuit structure
TWI288314B (en) Control apparatus of power factor corrector
CN103312165A (en) High-frequency multiphase interleaved conversion device and control method
Uddin et al. A high capacity synchronous buck converter for highly efficient and lightweight charger of electric easy bikes
US20150155778A1 (en) Control device for power conversion circuit
US9887643B2 (en) Bidirectional electrical signal converter
Stefanutti et al. Digital control of single-phase power factor preregulators based on current and voltage sensing at switch terminals
Fujita Switching loss analysis of a three-phase solar power conditioner using a single-phase PWM control method
JP2008193815A (en) Power supply system
CN101123367B (en) Control method for uninterrupted power supplier
CN100421336C (en) A switch-over control circuit for non-continuous mode PF control transducer
JP5658922B2 (en) Grid-connected power converter and control method for grid-connected power conversion
Subbarao et al. Digital fuzzy current mode controlled integrated PFC converter with external ramp compensation
Channappanavar et al. Current sensorless Power Factor correction circuit using FPGA
TWI221354B (en) Method and controller for depressing DC magnetic declination of transformer
CN102427298A (en) Series connection type alternating current (AC) voltage stabilizer based on BUCK converter
TW201338383A (en) Current-feed single switch in serial connection with load resonance voltage-doubling type convertor
CN108631638B (en) Improved model prediction control method of single-phase inverter
Bagawade et al. Digital implementation of one-cycle controller (OCC) for AC-DC converters

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees