TWI287088B - Multichannel microelectrode probe and fabricating method thereof - Google Patents

Multichannel microelectrode probe and fabricating method thereof Download PDF

Info

Publication number
TWI287088B
TWI287088B TW94103559A TW94103559A TWI287088B TW I287088 B TWI287088 B TW I287088B TW 94103559 A TW94103559 A TW 94103559A TW 94103559 A TW94103559 A TW 94103559A TW I287088 B TWI287088 B TW I287088B
Authority
TW
Taiwan
Prior art keywords
microelectrode
probe
channel
measurement
micro
Prior art date
Application number
TW94103559A
Other languages
Chinese (zh)
Other versions
TW200628797A (en
Inventor
You-Yin Chen
Original Assignee
You-Yin Chen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by You-Yin Chen filed Critical You-Yin Chen
Priority to TW94103559A priority Critical patent/TWI287088B/en
Publication of TW200628797A publication Critical patent/TW200628797A/en
Application granted granted Critical
Publication of TWI287088B publication Critical patent/TWI287088B/en

Links

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

A multichannel microelectrode probe is provided, and is suitable for biological electrical signal detection. The multichannel microelectrode probe includes a substrate, a first isolation layer, microelectrode pads, micro-conductive wires, transmission pads, a second isolation layer, microelectrodes and bonding pads. The first isolation is located on the substrate. The microelectrode pads, the micro-conductive wires and the transmission pads are located on the first isolation layer, wherein each microelectrode pad is connected with the transmission pad by the micro-conductive wire. The second isolation covers the microelectrode pads, the micro-conductive wires and the transmission pads, wherein the second isolation layer has first openings exposing the microelectrode pads, and second openings exposing transmission pads. The microelectrodes and bonding pads are respectively located in the first openings and the second openings.

Description

1287088 14922twf.doc/g 「 九、發明說明:1287088 14922twf.doc/g IX. Invention Description:

J 【發明所屬之技術領域】 ^ 本發明是有關於一種檢測生物電氣信號之探針及其製 ·- 造方法’且特別是有關於一種多通道(Multichannel)微電極 探針及其製造方法。 【先前技術】 腦部是生物體最重要的器官之一,其負責指揮、控制 φ 和協調身體各部位的運作。腦部包含了數百萬個複雜且相 互連結之神經元,當一部位受到刺激時,中樞神經系統可 以處理複雜的感覺信號(Sensory Information)。在腦部中, 視丘(Thalamus)可視為一個傳輸站(Rday),其將感覺信號 從末稍區域(Periphery)傳輸至大腦皮質(Cerebral cortex)之 相關的區域,而使其變成更高階之知覺(percepti〇n)。 、另一方面,在生物體中,不同之神經系統,例如週邊 神經系統、中樞神經系統等,係具有不同之目的性,因此 /、產生之彳s號傳遞至腦部之區域也有所不同。所以,近年 來生物活體細部研究之新的利器之一係利用多通道微電 極探針來進行。由於此類的探針上具有多數個微電極,因 此藉由微電極在空間上的排列設計,可以用來記錄由週邊 神經系統、中樞神經系統等不同神經組織傳遞至腦部不同 區域的信號。此外,此類微電極探針也可以應用於心肌細 ,(Cardiac myocytes)之電氣信號摘測或是藥物之筛檢 上。不過’值得注意是,使用多通道微電極探針檢測生物 組織之電氣信號變化其結果的準確與否,係與探針上之微 !287〇88 14922twf.doc/g r 電極其所涵蓋代測生物組織蚊衫極幼關。舉例來 說’若微電極密度排列過於稀疏’則當豆進入 * 咏雜測生物電氣信號時,例如進入腦部的視丘,則可 錯失特定的腦區之神經信號偵測,而導致檢測結果失真此 另外,若微電極排列密度過高,雖然可以提高檢測社果的 準確性’但則可能需花費更多的時間成本來進行^的處 理0 • 除此之外,現今之多通道微電極探針的製程亦面臨到 -些問題。舉例來說,雖然此類的探針可以藉由微機電盘 半導體技術之整合來達成,傳統製程步驟主要是利用化^ 濕式或電聚乾式侧技術將加工完成之探針由石夕晶片卸= 下來,但是由於其製程步驟較繁瑣在產能上一直無法有效 提升。 【發明内容】 有鑑於此,本發明的目的就是在提供一種多通道微電 極探針的製造方法,以提高產能。 •本發明的再一目的是提供一種多通道微電極探針,使 其月b用於活體内(/« F?VO)或離體(/w 之組織或細胞之 多通道生物電氣信號檢測,這些檢測例如神經元活動信 號,並且可以確保檢測結果之準確度。 ° 本發明提出一種多通道微電極探針的製造方法,此多 通道微電極探針適用於生物電氣信號檢測,此方法係先提 供基底,且此基底具有生物電氣信號偵測區與後端信號轉 接區。然後,於基底上形成第一絕緣層。接著,於第一絕 6 1287088 14922twf.doc/g 緣層上形成數個微電極墊、數條微導線與數個傳輸墊,其 中這些微電極墊係位於生物電氣信號偵測區,這些傳輸墊 係位於後端信號轉接區,且各個微電極塾係藉由對應之一 微導線而與對應之一傳輸墊連接。之後,於基底上形成第 二絕緣層,覆蓋微電極墊、微導線與傳輸墊,其中第二絕 緣層在生物電氣信號偵測區中具有數個第一 電極墊’以及在後端信號轉接區中具有數個第1二 出傳輸墊。繼之,於這些第一開口與這些第中㈣ 形成數個微電極與數個打線點,且各個微電極與各個微電 極墊電〖生連接,而各個打線點與各個傳輸墊電性連接。最 進行雷射切割製程,切割生物電氣信號偵測區與後端 4吕號轉接區中之膜層,而使其成為一探針圖案。 本發明提出一種多通道微電極探針,其適 氣信號檢測’此多通道微電極探針係由基底、第一絕緣層、 微電極塾、微導線、傳輸墊、第二絕緣層、微電極與打曰線 ,所構成。其中’基底具有生物電氣信號彳貞測區與後端信 號傳接區。此外,第一絕緣層係配置在基底上。另外,微 電極墊係配置在生物電氣信號偵測區之第一絕緣層上。此 外,微導線係配置在第一絕緣層上。另外,傳輸&係配 在後端信_接區之第-絕緣層上,其中各個微電極塾係 稭由對應之微導線而與對應之傳輸墊連接。此外,第二絕 緣層係覆蓋微電極墊、微導線與傳輸墊,其中第二絕=層 ,有數個第一開口暴露出微電極墊,以及數個第二^口^ 露出傳輸墊。另外,數個微電極與打線點,分別配&於& 7 1287088 14922twf.doc/g 開口與第—開口中’且各個微電極與各個微電極塾電性 連接,而各個打線點與各個傳輸墊電性連接。 依照本發_難實補所述之多通碰電極探針或 ”製造方法,上述之相鄰二微電極間距(pi剛d以式⑴之 交互相關(。聰^㈣㈣計算所得之相關係數〜值係 不小於^·95 ’並利用student’s paired /-test評估其實驗個體 差異,最後以P value決定是否有達到統計上 <0.05), 、 式⑴ X"BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a probe for detecting bioelectrical signals and a method for manufacturing the same, and more particularly to a multichannel microelectrode probe and a method of fabricating the same. [Prior Art] The brain is one of the most important organs of the organism, which is responsible for directing, controlling, and coordinating the operation of various parts of the body. The brain contains millions of complex, interconnected neurons that can process complex sensory signals when a site is stimulated. In the brain, the Thalamus can be regarded as a transmission station (Rday), which transmits the sensory signal from the Periphery to the relevant area of the Cerebral Cortex, making it a higher order. Perception (percepti〇n). On the other hand, in living organisms, different nervous systems, such as the peripheral nervous system and the central nervous system, have different purposes, and therefore, the area in which the 彳 s is transmitted to the brain is also different. Therefore, one of the new tools for biological in vivo detail research in recent years has been carried out using multi-channel microelectrode probes. Since such a probe has a plurality of microelectrodes, the spatial arrangement of the microelectrodes can be used to record signals transmitted from different nerve tissues such as the peripheral nervous system and the central nervous system to different regions of the brain. In addition, such microelectrode probes can also be applied to cardiac signal extraction (Cardiac myocytes) for electrical signal extraction or drug screening. However, it is worth noting that the use of multi-channel microelectrode probes to detect the electrical signal changes in biological tissues is accurate or not, and is based on the micro-! 287〇88 14922twf.doc/gr electrode on the probe. Organize mosquito swabs to be extremely close. For example, if the density of the microelectrodes is too thin, when the beans enter the * bioelectrical signal, such as entering the hypothalamus of the brain, the neural signal detection of the specific brain region can be missed, resulting in the detection result. Distortion In addition, if the microelectrode arrangement density is too high, although the accuracy of the detection result can be improved', it may take more time and cost to perform the processing of 0. In addition, today's multi-channel microelectrode The process of the probe also faces some problems. For example, although such probes can be achieved by integration of MEMS semiconductor technology, the conventional process steps mainly utilize the chemical or wet-type side technology to unload the processed probe from the Shixi wafer. = Down, but due to the cumbersome process steps, it has not been able to effectively improve the production capacity. SUMMARY OF THE INVENTION In view of the above, it is an object of the present invention to provide a method of manufacturing a multi-channel microelectrode probe to increase productivity. A further object of the present invention is to provide a multi-channel microelectrode probe for use in the detection of multi-channel bioelectrical signals in vivo (/«F?VO) or in vitro (/w tissue/cells, These tests, for example, neuronal activity signals, and can ensure the accuracy of the detection results. ° The present invention provides a method of manufacturing a multi-channel microelectrode probe suitable for bioelectrical signal detection, which is first Providing a substrate, wherein the substrate has a bioelectric signal detection area and a rear end signal transfer area. Then, a first insulating layer is formed on the substrate. Then, a number is formed on the first layer of the 12 1287088 14922 twf.doc/g edge layer a microelectrode pad, a plurality of microwires and a plurality of transmission pads, wherein the microelectrode pads are located in the bioelectric signal detection area, and the transmission pads are located in the rear end signal transfer area, and the respective microelectrode contacts are corresponding a microwire is connected to a corresponding one of the transfer pads. Thereafter, a second insulating layer is formed on the substrate, covering the microelectrode pad, the microwire and the transfer pad, wherein the second insulating layer is in the bioelectrical signal The measuring area has a plurality of first electrode pads' and has a plurality of first and second output transmission pads in the rear end signal transfer region. Then, a plurality of microelectrodes and numbers are formed in the first openings and the middle (four) A wire bonding point, and each microelectrode is electrically connected with each microelectrode pad, and each wire bonding point is electrically connected with each transmission pad. The laser cutting process is most performed, and the bioelectric signal detection area and the back end 4 The membrane layer in the transition zone is made into a probe pattern. The present invention provides a multi-channel microelectrode probe whose proper gas signal detection is based on the substrate, the first insulating layer, The microelectrode, the microwire, the transmission pad, the second insulating layer, the microelectrode and the snoring line are formed, wherein the substrate has a bioelectric signal detection zone and a rear end signal transmission zone. In addition, the first insulation layer The microelectrode pad is disposed on the first insulating layer of the bioelectric signal detecting area. In addition, the micro wire is disposed on the first insulating layer. In addition, the transmission & Letter_connection area - insulation In the above, each of the microelectrode tethers is connected to the corresponding transfer pad by the corresponding microwire. Further, the second insulating layer covers the microelectrode pad, the microwire and the transmission pad, wherein the second layer is a layer, and there are several An opening exposes the microelectrode pad, and a plurality of second electrodes expose the transfer pad. In addition, a plurality of microelectrodes and wire bonding points are respectively disposed in & 7 1287088 14922twf.doc/g opening and opening And each of the microelectrodes is electrically connected to each of the microelectrodes, and each of the wire bonding points is electrically connected to each of the transmission pads. According to the present invention, the multi-pass electrode probe or the "manufacturing method, the above phase" The spacing of the adjacent two microelectrodes (pi just d is calculated by the cross correlation of equation (1). The correlation coefficient calculated by (Cong^^(4)(4) is not less than ^·95' and the individual difference is evaluated by student's paired /-test. Finally, P is used. Value determines whether it has reached statistically <0.05), , and (1) X"

N Μ w=1 Λ __~F) _ - J)2 (1 ― - i)d (?二?7 # 其中’ Xn[tm]為一記錄點上以單點微電極重複第n次量測 後所記錄第m㈣間點之取樣信號值;Yn[tm]為在距二該 記錄點d的位置上以該單點微電極重複第n次量測後所記 錄第m個時間點之取樣信號值;變數n= i〜Ν ,Ν為重複 量測次數(Sweep);變數m= 1〜Μ,Μ為量測時所取樣之資 料點數。 ’、 依“氧本發明的較佳實施例所述之多通道微電極探針或 其製造方法,上述之重複量測次數Ν值以式(2)之交互相關 8 1287088 14922twf.doc/g 心二斤知之相_數p 2值係不小於㈣,並利用伽dent,s /咖坪估實驗個體差異,最後以P value決定是否 有達到統計上顯著差異(戶<〇 〇5),式⑺N Μ w=1 Λ __~F) _ - J)2 (1 ― - i)d (?二?7# where 'Xn[tm] is the nth measurement of the single point microelectrode repeated at a recording point The sampled signal value of the mth (fourth) point is recorded later; Yn[tm] is the sampling signal of the mth time point recorded after the nth measurement of the single point microelectrode is repeated at the position from the recording point d Value; variable n = i ~ Ν, Ν is the number of repeated measurements (Sweep); variable m = 1 ~ Μ, Μ is the number of data points sampled during the measurement. ', according to the oxygen preferred embodiment of the invention The multi-channel microelectrode probe or the manufacturing method thereof, the above-mentioned repeated measurement times Ν value is related to the cross-correlation of the formula (2) 8 1287088 14922twf.doc / g heart jin knows the phase _ number p 2 value is not less than (4), and use dent, s / ca Ping to estimate the individual differences of the experiment, and finally use P value to determine whether there is a statistically significant difference (household < 〇〇 5), formula (7)

Bu NBu N

AtiAti

N rtj=l 一 1 Μ a =—Yau 2N ixu «2=(^+1) __ 1 Μ b^±-Ybu Μ±ίN rtj=l 一 1 Μ a =—Yau 2N ixu «2=(^+1) __ 1 Μ b^±-Ybu Μ±ί

Am[tm]與Bn2[tm]為在同一記錄點上以單 別進行第n2次之制 =點微她Am[tm] and Bn2[tm] are the n2th system at the same recording point.

之取樣信麵她為2N個時= η2 = (Ν+ΐ)^2Ν· λ, λ 文数 ηι — 1 〜Ν,變J 點數。,遽m = 1〜M ’ M為量測時所取樣之❺ 其製3==施例所述之多通道微電極錄 其製發實施例所述之多通道微電極探如 料,其例如是鈦、翻或銀/氯化銀。、了以疋金屬木 方法’上述之第-絕緣層或第二絕緣層的:= 1287088 14922twf.doc/g 料氣化矽、氮氧化矽、非導電性塑膠或非導電性 依照本發明的較佳實施例所述之多 其製造方法,上述之基底材質例如是石夕、 塑膠或非導高分子材料。 非以性 f造=本1ΓΓ較佳實施例所述之多通道微電極探針的 ⑽.之雷射切割製程可以使用—脈衝型亞格 脈衝型亞格雷射的功率例如是介於65至7 1 是L。64微米,脈衝型亞= 们承焦長度例如是介於15〇至16〇奎 的光束直徑例如是介於2。至3。:;未物亞格雷射 制造=本較佳實施例所述之多妓微電極探針的 =方法,上述之探針圖案的寬度例如是朝向一方向逐漸 =本=的較佳實施例所述之多通道微電極探針的 k方法,上述之切襲案為—探針形狀 後端信號轉接區,而且切割之 一絕緣層、弟一絕緣層與基底之總厚度。 依照本發明的較佳實施例所述之多通道 上ΐ在形成微電極與打線點之後以及在進行雷 =二Ξί二ί可1^進行—預切割製程,以預先畫 離子割製程例如是進行反應性 14922twf.doc/g 依照本發明的較佳實施例所述之多通道微電極探針, 其可適用於生物活體内咖㈣與離體之組織或 細=樣品檢測’這些檢測例如是大鼠生物神經系統之電氣 仏唬或是心臟電氣信號檢測。 依照本發明的較佳實施例所述之多通道微電極探針, 亡述之微,與打線點的厚度係大於或等於第一開口與第 一開口之深度。 由於本發明之多通道微電極探針的製造綠以雷射切 二‘程切割出探針圖案’因此可以簡化製程,從而提高產 =此外/由於本發明之多通道微電極探針,其微電極之 植d藉由式⑴之交互相關計算所得之相關係數a值係 ^小於G.95並符合統計上顯著差異(P&lt;G.G5),因此利用 ^月之探針所進行〇通道生物電氣㈣制,其結果 具有較高之可靠度與準確性。 為讓本發明之上述和其他目的、特徵和優點能更明顯 *,下文特舉較佳實施例,並配合所附圖式,作詳細 明如下。 夂 【實施方式】 夕圖1A至圖ιέ是繪示依照本發明一較佳實施例的一種 =通道微f極探針的製造流程立體圖,而此多通道微電極 採針係適用於生物電氣信號檢測中。 f參照圖1A,提供基底100,且此基底100具有生物 ^氣k唬偵測區102與後端信號轉接區1〇4。其中,基底 10〇之材質例如是矽、玻璃、非導電性塑膠、非導電性高 1287088 14922twf.doc/g 分子材料或是其他合適之材料。 然後’於基底100上形成絕緣層1%。 例如是氧化石夕物、氮氧化二’導: 塑膠、非導電性高分子材或是复 y非V電性 是無毒性。此外,絕緣層106的形成方十織或細胞 氣相沈積製程或其他合適之製程。化學 如是1500埃。 所化成之厚度例 信號如上!r號傳導層-其中, 屬導電材料例如是具有低在::施,令,非金 ;雜多晶㈣如是具高摻質濃度之;二傳 ?合在適:,。另外,所形成之或= :層,中’是以具高輸度之多一= 接著’請參照圖1B,對信號傳導層⑽特一圖案化 導i nr緣層106上形成數個微電極塾職、數條微 係位於生物電mti〇8c°其中’這些微電極塾_ 區1〇4,且各個微電極塾職係藉由對應之 述之圖案化製程例如是一反應性離子敍刻(^)。此卜上 12 1287088 14922twf.doc/g 值得—提的是,上述之相鄰二微電極塾應3之間的間 距d以式⑴之交互相關計算所得之相關係數…值係不小 student, paired ,-test a oq取^ 決定是否有達到統計上顯著差異(p〈 ^ /7=1 —1 χ-η^Σχ 八《=1 一 1 ^ = T7ly-When the sampling surface is 2N = η2 = (Ν+ΐ)^2Ν· λ, λ ηι — 1 Ν Ν, change J points. , 遽m = 1~M 'M is the sample taken during the measurement. 3== The multi-channel microelectrode described in the example is recorded as the multi-channel microelectrode as described in the production example, for example It is titanium, turned or silver/silver chloride. In the above-mentioned first-insulating layer or second insulating layer by the method of bismuth metal wood: = 1287088 14922twf.doc / g gasification bismuth, bismuth oxynitride, non-conductive plastic or non-conductive according to the present invention In the manufacturing method described in the preferred embodiment, the substrate material is, for example, a stone, plastic or non-conductive polymer material. The laser cutting process of the multi-channel microelectrode probe described in the preferred embodiment of the present invention can be used, for example, the power of the pulse-type subgrid-type subgrain is 65 to 7 1 is L. 64 micron, pulse type sub = = the focal length of the beam is, for example, between 15 〇 and 16 〇, and the beam diameter is, for example, 2. To 3. The method of the multi-electrode microelectrode probe according to the preferred embodiment of the present invention, wherein the width of the probe pattern is, for example, gradually oriented toward one direction = the present embodiment. The k method of the multi-channel microelectrode probe, the above-mentioned attack method is a probe shape rear end signal transfer region, and the total thickness of one insulating layer, the first insulating layer and the substrate is cut. The multi-channel upper crucible according to the preferred embodiment of the present invention performs the pre-cutting process after the formation of the microelectrode and the bonding point, and after performing the lightning-cutting process, for example, Reactivity 14922 twf.doc/g A multi-channel microelectrode probe according to a preferred embodiment of the invention, which is applicable to biological in vivo coffee (4) and ex vivo tissue or fine = sample detection 'such as detection is large Electrical sputum or cardiac electrical signal detection in the rat biological nervous system. In accordance with a preferred embodiment of the present invention, the multi-channel microelectrode probe has a thickness that is greater than or equal to the depth of the first opening and the first opening. Since the fabrication of the multi-channel microelectrode probe of the present invention cuts the probe pattern by laser cutting, the process can be simplified, thereby improving the production yield. In addition/due to the multi-channel microelectrode probe of the present invention, The correlation coefficient a of the electrode d calculated by the cross-correlation calculation of the formula (1) is smaller than G.95 and conforms to the statistically significant difference (P&lt;G.G5), so the sputum channel organism is performed by the probe of the ^ month. Electrical (4) system, the results have higher reliability and accuracy. The above and other objects, features and advantages of the present invention will become more apparent.实施 [Embodiment] FIG. 1A to FIG. 1A are schematic perspective views showing a manufacturing process of a =channel micro-f pole probe according to a preferred embodiment of the present invention, and the multi-channel microelectrode needle picking system is suitable for bioelectrical signals. checking. Referring to FIG. 1A, a substrate 100 is provided, and the substrate 100 has a biogas detection region 102 and a rear end signal transition region 1-4. The material of the substrate 10 is, for example, germanium, glass, non-conductive plastic, non-conductive high molecular material 1287088 14922twf.doc/g or other suitable materials. Then, an insulating layer 1% was formed on the substrate 100. For example, it is a oxidized stone, a nitrogen oxide, or a non-conductive polymer or a complex non-V-electricity. In addition, the insulating layer 106 is formed into a woven or cell vapor deposition process or other suitable process. The chemistry is 1500 angstroms. The thickness of the formed signal is as above! r-conducting layer - wherein the conductive material is, for example, low::,,,, non-gold; heteropoly (4), if it has a high dopant concentration; :,. In addition, the formed or =: layer, the middle 'is a high degree of one = then 'please', please refer to FIG. 1B, the signal conducting layer (10) is specially patterned to form a plurality of microelectrodes on the edge layer 106. The defamation and several micro-systems are located in the bioelectricity mti〇8c°, where these microelectrode 塾_ regions 1〇4, and each microelectrode 塾 塾 藉 藉 对应 对应 对应 对应 对应 对应 对应 对应 对应 对应 对应 对应 对应 对应 对应 对应 对应 对应 对应 对应 对应 对应 对应 对应 对应 对应 对应(^). 12 1287088 14922twf.doc/g It is worth mentioning that the correlation between the above-mentioned adjacent two microelectrode 塾3 spacing d is calculated by the cross-correlation calculation of equation (1)...the value is not small, paired , -test a oq take ^ to determine whether there is a statistically significant difference (p < ^ /7=1 -1 χ-η^Σχ eight "=1 -1 ^ = T7ly-

^/(1 /(N -1))^=1 {Xtm -X)2(\/(Ν - 其中,xn[tm]為一記錄點上以單點微電極重複第η次量測 後所記錄第m個時間點之取樣信號值;Υηω為二該 記錄點d的位置上以該單點微電極重複第^次量測後所記 錄第m個時間點之取樣信號值;變數η= 1〜ν,ν為重複 量測次數(Sweep);變數m = 1〜Μ,Μ為量測時所取樣之資 料點數。 在-較佳實施例中’上述所進行之重複量測次數㈣ 以式(2)之交互相關計算所得之相關係數ο〗值係不小於 0.95,並利用Student’s paired i-test評估實驗個體差旦最 後以P value決定是否有達到統計上顯著差異(户&lt; 〇'〇5), 式⑺ 、. 13 1287088 14922twf.doc/g^/(1 /(N -1))^=1 {Xtm -X)2(\/(Ν - where xn[tm] is the number of times after repeating the ηth measurement with a single-point microelectrode at a recording point Recording the sampling signal value at the mth time point; Υηω is the sampling signal value of the mth time point recorded after the single-point microelectrode repeats the second measurement at the position of the recording point d; the variable η=1 Νν, ν is the number of repeated measurements (Sweep); the variable m = 1~Μ, Μ is the number of data points sampled during the measurement. In the preferred embodiment, 'the number of repeated measurements performed above (4) The correlation coefficient calculated by the cross-correlation calculation of equation (2) is not less than 0.95, and the Student's paired i-test is used to evaluate the experimental individuals. Finally, the P value is used to determine whether there is a statistically significant difference (household &lt; 〇' 〇5), Equation (7),. 13 1287088 14922twf.doc/g

An Bt&gt; N N /7,=1 Α = 1 Μ =万ΣΧ m^\ 2N *1 kj ΣβΜ n2=(N+l) Β = 1 - &quot;λ/Σ^- w=l _,Σί =1 (尤 其中,八111[〖111]與Bn2[tm]為在同一記錄點上以單點微電極分 別進行第⑴次與第η:次之量測,並記錄其第㈤個時間點 之取樣信號值;重複量測次數為2N,變數…=,變數 n2 = (N+1)〜2N ;變數m = 1〜M,M為量測時所取樣之資料 點數。 —關於上述重複量測次數N與相鄰二微電極間w的決 以下細電刺激大鼠尾部中段並量測視丘體感覺區之 =電位為例中,來加以說明。首先,請先參照圖2A, 較相,重ί量測數目之平均誘發場電位波形,並比 ^之nr與其交互湖絲。麵設計為以1 (VPL)、;伴1激大鼠尾巴中段’並於視丘體感覺區 Μ可知,’ 發,位(EV_咖Ρ〇_)。由圖 之平電位的次數之增加,其兩兩 高相互相_數。以N” 越來越高’且獲得較 代表在同—記錄點各進二5〇相’所得到之兩波形係 平均之波形。將久禝Μ _人的誘發場電位量測並 則所得到之交上式(2)中, 1287088 14922twf.doc/g 在決定出微電極墊l〇8a之間的間距d,並定義出微電 極墊108a、微導線l〇8b與傳輸墊i〇8c之後,請參照圖ic, 於基底100上形成絕緣層110,覆蓋微電極墊108a、微導 線108b與傳輸墊i〇8c。而且,此絕緣層11()在生物電氣 信號偵測區102中具有數個開口 112a暴露出微電極墊 l〇8a,以及在後端信號轉接區1〇4中具有數個開口 I〗沘 暴露出傳輸墊l〇8b。其中,絕緣層110的材質例如是氧化 矽氮化矽、氮氧化矽、非導電性塑膠、非導電性高分子 材料或是其他合適之絕緣材料。在一實施例中,作為絕緣 層110的材料必須對生物組織或細胞是無毒性。此外,絕 、彖層110的形成方法例如是進行化學氣相沈積製程咬盆 他合適之製程。此外,所形成之厚度例如是3000埃。此外、’ =口 112a與U2b之形成方式是例如利用反應性離子 (RIE)來蝕刻部分絕緣層11〇而得之。 乂 微雷請參照圖1D,於開口心與咖中分別形成 a”打線點U4b。其中,各個微電極丨丨如係盥 :作=各個微電極墊驗電性連接,此微電極U4a 生:電氣信號偵測點。此外,各個打線點 ⑽係作為㈣^各個傳輸墊職電性連接,此打線點 樑。另外,微電'極】丨ί物電氣信號與外部線路轉接之橋 材料或是Α他入、南 或打線點⑽的材質可以是金屬 喻氣之=中金屬材料例如是金、&quot;、 點⑽的材實施例中,作為微電極⑽與打線 的材科必_生物_或細胞是無毒性。另外,形 1287088 14922twf.doc/g r 成這些微電極114a與這些打線點U4b的方法例如是分別 在開口 112a與112b中沈積一金屬材料,且所沈積之金屬 - 材料的厚度係大於或等於開口 112&amp;與n2b之深度。此外, &quot; 在一實施例中,微電極114a的面積例如是225//m2,即 15//mxl5//m。 产然後,請參照圖1E,進行雷射切割製程,切割生物電 氣心號偵測區102與後端信號轉接區1〇4中之膜層,例如·· φ ,緣f U〇、106與基底100而使其成為一探針圖案。特別 疋,藉由上述之雷射切割製程可以使整支多通道微電極探 針從基底100卸除,而且所切割出來之探針圖案包含生物 電氣信號偵測區102與後端信號轉接區1〇4,而且切割之 /朱度包括絶緣層106、110與基底10Q之總厚度。其中,上 述之雷射切割製程可以使用一脈衝型亞格(Nd : YAG)雷 射 準刀子辑射、一一氧化石炭雷射或是其他型態之雷射。 此脈衝型亞格雷射的功率例如是介於65至70瓦/脈衝,脈 衝型亞格雷射的波長例如是h046微米,脈衝型亞格雷射 • 的聚焦長度例如是介於150至160毫米,脈衝型亞格^射 的光束直徑例如是介於20至30微米。此外,所切割出來 的探針圖案其寬度係朝向一方向逐漸減小,其例如是呈現 針尖狀或是其他形狀。特別是,此探針圖案之長度與形狀 並無特別之限制,其端視欲檢測區域及其深度而定。檢 測大鼠之視丘的VPL區為例,探針圖案的長度較佳選擇^ 6 mm ° # 除此之外,在一較佳實施例中,進行雷射切割製程之 17 1287088 14922twf.doc/g 别更可先進行-預切割製程,以預先畫出欲切割圖案的 輪廓如此可以使之後的雷射切割製程更容易進行。其中, 此預切割製程例如是進行反應性離子蝕刻製程。 由於本發明之多通道微電極探針的製造方法以雷射切 割i程切割出探針圖案,因此可以簡化製程,從而提高產 ΐ二=相較於習知使用乾式蝴或濕雜刻製程來定 義板針圖案,此雷射切割製程不需使用化學藥劑。而且, ^需形成光阻層’從而不需進行微影製程及 因此、,可以節省製程成本,並且提高產能。 衣矛 以下係說明利用上述製造方法所得之探針結構。 3C ^同別時表參:1Ε與圖Μ至圖3C,其中圖3Α至圖 ϋ 1 由圖1E之W,、IWI,與1職,,剖面所得之 d面不思圖。本發明之多通道微電極探針係由基 絕緣層106、微電極墊1〇8a、微導線1〇 二勒、 絕緣、微電極114a與打線點114b所構專成輪墊108c、 /、中,基底100具有信號偵測區1〇2盥 104 ’其材質例如切、玻璃、傳輸區 =_是其他合適之材料。此外,= 在基底100上,其材質例如是氧化石夕、 …係配置 非導電性塑膠、非導電性高分子材或是夕人^乳化石夕、 料。在-實施例令,作為絕緣層10ςσ^之絕緣材 織或細胞是無毒性。 、材科必須對生物組 另外’微電極墊職係 102之絕緣層106上,1材質 ,f物電軋k號偵測區 八材貝例如是非金 1287088 14922twf.d〇c/g tr硬、金屬或是其他合適之導電材料。在—實施例中, 五^導電材料例如是具有低阻值之石墨;在另一實施例 ’ 4雜多晶梦例如是具高換f濃度之多晶碎。特別是, 微電極塾驗之間的間距d以上式⑴之交互相關 =异所得之相關係數〜值係不小於G95並達到統計上顯 著差,(P &lt; 0.⑹。此外,在一較佳實施例中,式⑴中所 j復量測次數N值以式⑺之交互相_算所得之相關 係數p2值係不小於〇95並達到統計上顯著差里⑺〈 ⑽5)。關於此部分之解釋’已於上述之内容中說明,於此 不再贅述。 曰此外,微導線l〇8b係配置在絕緣層1〇6上,其材質例 如疋非金屬導電材料、摻歸晶⑪、金屬或是其他合適之 材料。在—實施例巾,非金屬導電材料例如是具有低阻值 之石^ ;在另一實施例中,摻雜多晶矽例如是具高摻質濃 度之多晶秒。另外,傳輸墊職係配置在信號轉接區1〇4 之、、、邑緣層106上,其材質例如是非金屬導電材料、摻雜多 晶矽、、金屬或是其他合適之導電材料。在一實施例中,非 金屬導電材料例如是具有低阻值之石墨;在另一實施例 中,摻雜多晶矽例如是具高摻質濃度之多晶矽。而且,上 述之各個微電極墊職储由對應之微導線腿而與對 應之傳輸塾l〇8c連接。 此外,絕緣層110係覆蓋微電極墊108a、微導線1〇8b 與傳輸墊108c。其中,絕緣層110具有數個開口 112a暴 露出微電極墊l〇8a,以及數個開口 n2b暴露出傳輸墊 19 «An Bt&gt; NN /7,=1 Α = 1 Μ = million ΣΧ m^\ 2N *1 kj ΣβΜ n2=(N+l) Β = 1 - &quot;λ/Σ^- w=l _,Σί =1 (In particular, eight 111 [111] and Bn2 [tm] are the measurements of the (1)th and the nth:th times with a single-point microelectrode at the same recording point, and the sampling of the (f)th time point is recorded. Signal value; repeated measurement times 2N, variable...=, variable n2 = (N+1)~2N; variable m = 1~M, M is the number of data points sampled during measurement. - About the above repeated measurement The number of times N and the difference between the adjacent two microelectrodes w are determined by the following fine electrical stimulation of the middle segment of the rat and the potential of the hypothalamic sensory region is measured as an example. First, please refer to FIG. 2A, compare, The average number of induced field potentials is measured and compared with the nr of the lake. The surface is designed to be 1 (VPL), with the middle segment of the rat tail and the sensory area of the ventricle. '发,位(EV_咖Ρ〇_). The increase in the number of times of the flat potential of the graph, the two highs are mutually _ number. The N" is getting higher and higher, and the more representative is in the same - record point Two waveforms obtained by entering two 〇 phase The average waveform. The long-term _ human evoked field potential measurement and the resulting equation (2), 1287088 14922twf.doc / g in determining the spacing d between the microelectrode pads l 〇 8a, After defining the microelectrode pad 108a, the microwire l8b and the transfer pad i〇8c, please refer to FIG. ic to form an insulating layer 110 on the substrate 100, covering the microelectrode pad 108a, the microwire 108b and the transfer pad i〇8c. Moreover, the insulating layer 11() has a plurality of openings 112a in the bioelectric signal detecting area 102 exposing the microelectrode pads 10a, and a plurality of openings I in the rear signal switching area 1? The conductive pad 110 is exposed to a material such as yttrium niobium nitride, yttrium oxynitride, a non-conductive plastic, a non-conductive polymer material or other suitable insulating material. In the example, the material of the insulating layer 110 must be non-toxic to biological tissues or cells. Further, the method for forming the ruthenium layer 110 is, for example, a chemical vapor deposition process suitable for biting the pot. Further, the thickness formed. For example, 3000 angstroms. In addition, '= mouth 112a and U2b The formation method is, for example, using a reactive ion (RIE) to etch a portion of the insulating layer 11 。. For the micro ray, please refer to FIG. 1D, and form a “wire line U4b” in the open heart and the coffee, respectively, wherein each microelectrode For example, the system: the = microelectrode pad electrical connection, the microelectrode U4a: electrical signal detection point. In addition, each wire point (10) is used as (four) ^ each transmission pad electrical connection, the wire point Beam. In addition, the micro-electric 'pole' 丨 ̄ ̄ electrical electrical signal and external line transfer bridge material or Α other, south or line point (10) material can be metal qi = medium metal material such as gold, &quot;, In the material example of the point (10), the microelectrode (10) and the wire-bonding material must be non-toxic. In addition, the method of forming the microelectrode 114a and the wire bonding point U4b is, for example, depositing a metal material in the openings 112a and 112b, respectively, and the thickness of the deposited metal-material is greater than or equal to the opening 112&amp;; with the depth of n2b. Further, &quot; In an embodiment, the area of the microelectrode 114a is, for example, 225//m2, i.e., 15/mxl5/m. Then, referring to FIG. 1E, a laser cutting process is performed to cut the film layer in the bioelectric heart detection area 102 and the rear end signal transfer area 1〇4, for example, φ, edge f U〇, 106 and The substrate 100 is made into a probe pattern. In particular, the entire multi-channel microelectrode probe can be removed from the substrate 100 by the laser cutting process described above, and the cut probe pattern includes the bioelectric signal detection area 102 and the back end signal transfer area. 1〇4, and the cut/jumancy includes the total thickness of the insulating layers 106, 110 and the substrate 10Q. Among them, the above laser cutting process can use a pulse type yag (Nd: YAG) laser knives, one-on-one oxidized carbon laser or other types of lasers. The power of this pulse-type subgrain is, for example, between 65 and 70 watts/pulse, the wavelength of the pulsed subgrain is, for example, h046 micrometers, and the focal length of the pulsed subgrain is, for example, between 150 and 160 millimeters, pulse The beam diameter of the type of subgrid is, for example, between 20 and 30 microns. Further, the cut probe pattern has a width which gradually decreases toward one direction, which is, for example, a needle tip shape or other shape. In particular, the length and shape of the probe pattern are not particularly limited, and the end depends on the area to be detected and its depth. For example, the VPL region of the hypothalamus of the rat is detected, and the length of the probe pattern is preferably selected to be 6 mm °. In addition, in a preferred embodiment, the laser cutting process is performed. 17 1287088 14922twf.doc/ g Do not perform the pre-cutting process to pre-draw the outline of the pattern to be cut so that the subsequent laser cutting process can be made easier. Wherein, the pre-cutting process is, for example, performing a reactive ion etching process. Since the manufacturing method of the multi-channel microelectrode probe of the present invention cuts the probe pattern by the laser cutting process, the process can be simplified, thereby improving the production of the second generation, which is compared with the conventional dry or wet engraving process. Define the plate needle pattern. This laser cutting process does not require the use of chemicals. Moreover, the photoresist layer needs to be formed so that the lithography process is not required and, therefore, the process cost can be saved and the throughput can be improved. Cloth Spear The following describes the probe structure obtained by the above manufacturing method. 3C ^ Same time reference: 1Ε and Μ to Figure 3C, where Figure 3Α to Figure 由 1 from Figure 1E of W, IWI, and 1 job, the d-face of the profile is not considered. The multi-channel microelectrode probe of the present invention is composed of a base insulating layer 106, a microelectrode pad 1〇8a, a microwire 1 〇2, an insulating, a microelectrode 114a and a wire bonding point 114b, and is specially configured as a wheel pad 108c, /, The substrate 100 has a signal detection area 1〇2盥104', and its material such as cut, glass, and transmission area=_ are other suitable materials. Further, = on the substrate 100, the material thereof is, for example, an oxide stone, a non-conductive plastic material, a non-conductive polymer material, or an emulsified stone material. In the embodiment, the insulating material or the cell as the insulating layer 10 ς ^ is non-toxic. The material must be on the insulating layer 106 of the micro-electrode pad system 102 of the biological group, 1 material, f material electric rolling k detection area, eight material shell, for example, non-gold 1287088 14922twf.d〇c/g tr hard, Metal or other suitable conductive material. In the embodiment, the conductive material is, for example, graphite having a low resistance; in another embodiment, the heteropoly crystal dream is, for example, a polycrystalline fine having a high f concentration. In particular, the spacing between the microelectrode tests is greater than the cross-correlation of equation (1) = the correlation coefficient of the difference is not less than G95 and reaches a statistically significant difference, (P &lt; 0. (6). In a preferred embodiment, the value of the correlation coefficient p2 obtained by calculating the number of times of multi-measurement N in equation (1) is not less than 〇95 and reaches a statistically significant difference (7) < (10) 5). The explanation of this section has been described in the above, and will not be repeated here. Further, the microwires 8 8b are disposed on the insulating layer 1 〇 6 and are made of, for example, a non-metallic conductive material, a doped crystal 11, a metal or other suitable material. In the embodiment, the non-metallic conductive material is, for example, a stone having a low resistance; in another embodiment, the doped polysilicon is, for example, a polycrystalline second having a high dopant concentration. In addition, the transfer pad grade is disposed on the signal transfer region 1〇4, the germanium edge layer 106, and the material thereof is, for example, a non-metal conductive material, a doped polysilicon, a metal, or other suitable conductive material. In one embodiment, the non-metallic conductive material is, for example, graphite having a low resistance; in another embodiment, the doped polysilicon is, for example, a polycrystalline germanium having a high dopant concentration. Moreover, each of the above-described microelectrode pads is connected to the corresponding transfer port 8c by the corresponding microwire leg. Further, the insulating layer 110 covers the microelectrode pad 108a, the microwires 1〇8b, and the transfer pad 108c. Wherein, the insulating layer 110 has a plurality of openings 112a exposing the microelectrode pad l〇8a, and a plurality of openings n2b exposing the transfer pad 19 «

1287088 14922twf.doc/g =此外,絕緣層110的材質例如是氧化石 虱虱化矽、非導電性塑膠、非導電性高分子材$ B夕、 適之絕緣㈣。在—㈣^ 子材或是其他合 在只知例中,作為絕緣層110的松钮v 須對生物組織或細胞是無毒性。 才抖必 另外,微電極114a與打線點114b分別配置於開 ” 112b中。其中’各個微電極心係與各鑛電極塾 :性電極114a係作為探針之生物電氣信號偵測 ”、、占、。此外,各個傳輸接觸窗114b係與各個傳輸墊108c電 性連接’此打線點114 b係作為生物電氣錢與外部線路轉 ,之橋樑。另外,微電極114a或打線點祕的材質可以 是金屬材料或是其他合適之材料,其中金屬材料例如是 金翻翻或銀/氯化銀。在一實施例中,作為微電極11如 與打線點114b的材料必須對生物組織或細胞是無毒性。此 外,在另一實施例中,這些微電極114&amp;與打線點U4b的 厚度係大於或等於開口 112a與112b之深度。 值得一提的是,本發明之多通道微電極探針係適用於 生物活體内(j&gt;7 Wvo)與離體(/« 之組織或細胞樣品檢 測,其例如是大鼠生物神經系統之電氣信號,例如:大鼠 腦部之視丘神經元活動信號檢測,或是心臟電氣信號檢 測。也就是說,以生物活體内(/„ Wvo)之組織或細胞樣品 檢測來說,依動物實驗管理法則將動物麻醉,在無疼痛狀 況下將將本發明之探針進入動物體内進行多通道生物電氣 信號量測,如此將可以得到可靠度較佳之結果。 除此之外,在上述之實施例中,雖然僅以具有四個微 20 l287〇88 14922twf.doc/g 電極之圖絲_文字之綱,鱗 發明之微電極的數目、排列之間距以及探忿本 可依使用者之不同需求而加以改變。舉d長度’ 可為如圖4A所示之具有16個微電極114^探=探針亦 個微電極ma係個別有打線點⑽相= 間藉由微導線而互相連接。此外,探針之局;區;:匕之 放大圖係如圖4B所示。 &amp;或200之1287088 14922twf.doc/g = In addition, the material of the insulating layer 110 is, for example, an oxidized bismuth oxide, a non-conductive plastic, a non-conductive polymer material, and a suitable insulation (4). In the case of - (4) ^ sub-materials or other known examples, the loose button v as the insulating layer 110 must be non-toxic to biological tissues or cells. In addition, the microelectrode 114a and the wire bonding point 114b are respectively disposed in the opening 112b. Among them, 'the respective microelectrode core system and each mineral electrode 塾: the sex electrode 114a is used as a bioelectric signal detection of the probe", ,. In addition, each of the transmission contact windows 114b is electrically connected to each of the transmission pads 108c. This wiring point 114b serves as a bridge between the bioelectric money and the external line. In addition, the material of the microelectrode 114a or the wire bonding point may be a metal material or other suitable material, wherein the metal material is, for example, gold flip or silver/silver chloride. In one embodiment, the material as the microelectrode 11 and the wire bonding point 114b must be non-toxic to biological tissues or cells. Further, in another embodiment, the thickness of the microelectrodes 114 &amp; and the wire bonding point U4b is greater than or equal to the depth of the openings 112a and 112b. It is worth mentioning that the multi-channel microelectrode probe of the present invention is suitable for biological (in vivo) (j&gt;7 Wvo) and ex vivo (/« tissue or cell sample detection, which is, for example, electrical of rat biological nervous system. Signals, for example, detection of activity signals of the neurons in the rat brain, or detection of cardiac electrical signals. That is, according to the detection of tissue or cell samples in biological organisms (/„Wvo), according to animal experiment management The law anesthetizes the animal, and the probe of the present invention is introduced into the animal for multi-channel bioelectrical signal measurement without pain, so that a better reliability result can be obtained. In addition, in the above embodiment In the above, although only four micro 20 l287 〇 88 14922 twf.doc / g electrode of the wire _ text, the number of micro-electrodes, the arrangement between the scale and the probe can be different according to the needs of the user. The change may be as follows: as shown in FIG. 4A, there are 16 microelectrodes 114 probes, probes, microelectrodes, and individual wire-bonding points (10), which are connected to each other by micro-wires. Probe station : An enlarged view of the system shown in Figure 4B dagger &amp; 200 or the.

以下係說明述探針進行戦所得之結果。 請參闕5,其為_抑電極進行不^重複量測 -人數(Sweep) ’所得之重複量測次數n與訊雜比SN 係圖。其中’·表示由密西根大學之Cemerf〇rNe=The results of the probes are described below. Please refer to ,5, which is the _ suppressor electrode does not repeat the measurement - the number of Sweep's repeated measurement times n and the signal to noise ratio SN system. Where '· indicates Cemerf〇rNe= by the University of Michigan

Commumcatum Technology (CNCT)所設計之探針;▲表示 本么月之棟針,▼表示翻/鶴微電極(Micr〇eiectr〇(je) ; 不玻璃微電極(Micropipette)。此外,該實驗是量測視丘的 誘發場電位。另外,Y軸之SNR的單位為1〇1〇g(cjs2/c7N2)。 由圖5可知,平均說來,當重複量測次數]^增加時, SNR亦同步增加。不過,當n大於6〇之後,SNr對於N 之增加趨勢係逐漸減緩。當中特別值得一提的是,本發明 之探針相較於密西根大學所設計之探針具有更佳之 表現。 接者’睛參照圖6A至圖6C,圖6A表示本發明之探 針進入視丘之分佈圖;圖6B表示利用具有16個微電極, 且微電極間距為50//m之探針,檢測圖6A之視丘不同深 度所得之場電位圖;圖6C表示利用圖6B所得之結果,經 21 1287088 14922twf.doc/i 轉換^之電流源密度(Currents。職Density)分析圖。 綜上所述,本發明至少具有下面的優點: 1.由於本發明之多通道微電極探針的製造方法以雷射 簡化製程,從而提 2:由於本發明之?通道微電極探針,其微電極之間距 以式⑴之交互相關計算所得之相關係數Ρι值係不小於 • .95並達到統計上顯著差I (户&lt; 0.05),因此利用本發明 之探針所進行之檢測結果,可具有較高之可靠度。 3.除此之外,由於本發明之多通道微電極探針可適用 ,活體内(舒㈣或離離㈣生物電氣信號檢測,因此 更增加了檢測之方便性與準確性。 雖穌發明已以錄實關揭露如上,然其並非用以 本發明,任何熟習此技藝者,在錢離本發明之精神 口=内’當可作些許之更動與潤飾,因此本發明之保護 % =圍虽視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 圖1A至圖1E是依照本發明一較佳實施例的一種多通 k微電極探針的製造流程立體圖。 與圖2A是以1Hz之頻率電刺激大鼠尾巴,於視丘體感 二品VPL)舌己錄誘發場電位(Ey〇ked朽祝p以⑶㈣比 又不同重複量測次數所平均之誘發場電位。 圖2B是不同重複量測次數N與其交互相關係數一 22Probe designed by Commumcatum Technology (CNCT); ▲ indicates the needle of this month, ▼ indicates the flip/he microelectrode (Micr〇eiectr〇 (je); no glass microelectrode (Micropipette). In addition, the experiment is the amount In addition, the unit of the SNR of the Y-axis is 1〇1〇g(cjs2/c7N2). As can be seen from Fig. 5, on average, when the number of repeated measurements is increased, the SNR is also synchronized. However, when n is greater than 6〇, the increasing trend of SNr for N is gradually slowed down. It is particularly worth mentioning that the probe of the present invention performs better than the probe designed by the University of Michigan. Referring to FIG. 6A to FIG. 6C, FIG. 6A shows a profile of the probe of the present invention entering the hypothalamus; FIG. 6B shows a probe using a probe having 16 microelectrodes and a microelectrode pitch of 50/m. The field potential map obtained at different depths of the view hill of Fig. 6A; Fig. 6C shows the current source density (Currents Density) analysis chart converted by 21 1287088 14922 twf.doc/i using the result obtained in Fig. 6B. The present invention has at least the following advantages: 1. Due to the multi-pass of the present invention The manufacturing method of the micro-electrode probe is simplified by the laser, and thus, 2: due to the channel microelectrode probe of the present invention, the correlation coefficient Ρι value calculated by the cross-correlation calculation of the formula (1) between the microelectrodes is not less than • .95 and reached a statistically significant difference I (household &lt; 0.05), so the detection results performed by the probe of the present invention can have higher reliability. 3. In addition, due to the present invention The channel microelectrode probe can be applied to the bio-electrical signal detection in vivo (shu (4) or away (4), thus increasing the convenience and accuracy of the detection. Although the invention has been disclosed as the above, it is not used In the present invention, any person skilled in the art can make some changes and refinements when the money is within the spirit of the present invention. Therefore, the protection % of the present invention is subject to the definition of the patent application scope attached thereto. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1A to FIG. 1E are perspective views showing a manufacturing process of a multi-pass k-electrode probe according to a preferred embodiment of the present invention. FIG. 2A is an electrical stimulation of a rat tail at a frequency of 1 Hz.视丘体感二品VPL) The evoked field potential (Ey〇ked 祝 p 以 以 ( ( ( 以 以 以 以 以 以 以 以 以 以 诱发 诱发 诱发 诱发 诱发 诱发 诱发 诱发 诱发 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。

1287088 !4922twf.doc/g 進行檢測,所狀_ 位置上 (# )/、相關係數P的關係圖。 電極==、本發明另-較佳實施例的-種多通道微 圖4Β是圖4Α之局部區域2〇〇的放大示意圖。 7伴圖^獅㈣麵之微電極進行視丘誘發場電位之 ^己錄。比較不同類型微電極記錄誘發場電位, %電位訊雜比SNR與重複量測次數]^之關係圖。ν 圖6Α是本發明之探針進入視丘之染色切片圖。 圖6Β是利用具# 16個微電極,且微電極間距為刈 ㈣之楝針,檢測圖6Α之視丘不同深度所得之場電位圖。 密度=Γ6Β所得之結果’經轉換所得之電流源 【主要元件符號說明】 100 :基底 102 :生物電氣信號偵測區 104 :後端信號轉接區 106、110 ·•絕緣層 108 ·•信號傳導層 l〇8a ··微電極墊 108b ··微導線 23 1287088 14922twf.doc/g 108c 112a 114a 114b 200 : :傳輸墊 、112b :開口 :微電極 :打線點 區域標號1287088 !4922twf.doc/g Detects the relationship between the _ position (#)/ and the correlation coefficient P. Electrode ==, the multi-channel micro-image of the other preferred embodiment of the present invention is an enlarged schematic view of a partial region 2A of Figure 4A. 7 accompanied by the micro-electrode of the lion (four) surface to perform the field-induced evoked field potential. Compare the relationship between different types of microelectrode recording induced field potential, % potential signal-to-noise ratio SNR and repeated measurement times]. ν Figure 6Α is a stained section of the probe of the present invention entering the hypothalamus. Fig. 6 is a field potential diagram obtained by detecting the different depths of the view hills of Fig. 6 using a microneedle with #16 microelectrodes and a microelectrode spacing of 刈 (4). Density = Γ 6 Β results obtained 'converted current source' [main component symbol description] 100 : substrate 102 : bioelectric signal detection area 104 : rear end signal transfer area 106 , 110 · • insulation layer 108 · • signal transmission Layer l 8a ··Microelectrode pad 108b ··Microwire 23 1287088 14922twf.doc/g 108c 112a 114a 114b 200 : :Transport pad, 112b: Opening: Microelectrode: marking point area label

24twenty four

Claims (1)

1287088 14922iwf.doc/g (Nd: YAG)雷射、一 3. 如申請專利範圍第刀—二氧化埃雷射 電極探針的 Μ至70 製造方法’其中該脈衝型亞格二=電 瓦/脈衝。 町妁功辜係介於 4. 如申請專利範圍第2項所述 製造方法’其中該脈衝型亞格雷射的波^2極探針的 5·如申請專利範圍第2項所述之多通道·)微米。 米其中該脈衝型亞格雷射的聚焦長度係 制、/方如/tt利範圍第2項所述之多通道微電極探針的 亞格雷射的光束直㈣介於如 7.如申請專鄕圍第i項所狀Μ道微電極之探針 的製造方法,其中相鄰二徼電極之間的間距(Pitch) d以式 (1)之交互相關(Cross-Correlation)計算所得之相關係數p 值係不小於0.95,並利用Student’s paired &quot;test評估其實驗 個體差異’最後以尸value決定是否有達到統計上顯著差 異 CP &lt; 0.05), 式⑴ 一 1 Μ _ Y = —YYim Μ±ΐ 26 1287088 14922twf.doc/g 、 n 一 _ (1/(7V-(Xtm — X)(Y^ P\ 厂- 二&lt;m=l 一 ------ V(1KN -1))^2=1 (Xtm ~ X)2 (1KN - 1))X^ (?/m p)21287088 14922iwf.doc/g (Nd: YAG) laser, a 3. For example, the patent scope of the first knife - the bismuth oxide electrode probe of the Μ to 70 manufacturing method 'where the pulse type yag two = electric tile / pulse.妁 妁 妁 介于 4 4 4 4 4 4 4 4 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造 制造·) Micron. The focal length system of the pulse-type subgrain shot, or the square of the multi-channel microelectrode probe described in item 2 of the /tt range is straight (four) is as in 7. As for the application A method for manufacturing a probe for a channel microelectrode according to item i, wherein a pitch (cord) between adjacent two electrodes is calculated by a cross-correlation of equation (1) The value is not less than 0.95, and the Student's paired &quot;test is used to evaluate the individual differences of the experiment'. Finally, the corpse value is used to determine whether there is a statistically significant difference CP &lt; 0.05), Equation (1) -1 Μ _ Y = -YYim Μ±ΐ 26 1287088 14922twf.doc/g , n a _ (1/(7V-(Xtm — X)(Y^ P\ factory - two &lt;m=l a ------V(1KN -1))^ 2=1 (Xtm ~ X)2 (1KN - 1))X^ (?/mp)2 其中,Xn[tm]為一記錄點上以卓點微電極重複第n次量測 後所記錄第m個時間點之取樣信號值·,Yn[tm]為在距離該 記錄點d的位置上以該單點微電極重複第η次量測後所記 錄第m個時間點之取樣信號值;變數η == 1〜ν,ν為重複 量測次數(Sweep);變數m = 1〜Μ,Μ為量測時所取樣之資 料點數。 8·如申請專利範圍第7項所述之多通道微電極探針的 製造方法,其中該重複量測次數Ν值以式(2)之交互相關計 异所得之相關係數ρ2值係不小於0.95,並利用Student’s paired r-test評估實驗個體差異,最後以尸value決定是否 有達到統計上顯著差異〇Ρ&lt;〇·05), 式⑺Wherein, Xn[tm] is a sampling signal value of the mth time point recorded after repeating the nth measurement by the micro-electrode on a recording point, and Yn[tm] is at a position away from the recording point d The sampling signal value of the mth time point recorded after the ηth measurement is repeated by the single-point microelectrode; the variable η == 1~ν, ν is the number of repeated measurements (Sweep); the variable m = 1~Μ, Μ is the number of data points sampled during the measurement. 8. The method for manufacturing a multi-channel microelectrode probe according to claim 7, wherein the correlation coefficient ρ2 obtained by the cross-correlation calculation of the equation (2) is not less than 0.95. And use Student's paired r-test to assess the individual differences in the experiment, and finally determine whether there is a statistically significant difference by the corpse value 〇Ρ&lt;〇·05), (7) Bn N 2Nixu n2=(N+\) 一 1么 Α = —ΤΑίη Mti &quot;Bn N 2Nixu n2=(N+\) One 1 Α = —ΤΑίη Mti &quot; (上-一 ν(ι”ι))Σ二d —却(寧—洲一万) 其中’ Anl[tm]與Bn2[tm]為在同一記錄點上以單點微電極分 別進行第ηι次與第112次之量測,並記錄其第m個時間點 之取樣彳§號值;重複量測次數為2N,變數ni = 1〜N ,變數 27 1287088 14922twf.doc/g n2 - (N+l)〜2N ,變數m =;[〜Μ,M為量測時所取樣之 點數 ,9·如申明專利範圍第丨項所述之多通道微電極探針的 製造方法,其巾雜針圖雜寬度係朝向—方向逐漸減小。 1〇·如申請專利範圍第9項所述之多通道微電極探針 的製造方法,其中該切割圖案為一探針形狀,且包含該生 物電氣信號偵測區與該後端信號轉接區 包括該第二絕緣層、該第一絕緣層與該基底之總=度 ,、二·:申:乾圍第1項所述之多通道微電極探針的 在進行該雷射切割製程之前,更包括妨二 以預先晝出欲切割圖案的輪廓。 口、 的製圍第11項所述之多通道微電極探針 刻製、程_)/、&quot;預切割製程包括進行—反應性離子钮 的製=請其之多通 墊的材質包括二非金屬雷从、°亥些微導線或該些傳輸 14·如申請專利範圍第13 :所晶矽或金屬。 的巧二其中該非金屬導電材料包=微電極探針 15.如申請專利範圍第〗項 查 的製造方法,其中該些微電極或祕打;=;極探針 金屬材料。 一订綠點的材質包括一 丨6.如申請專利範圍第15項所述之多通道微電極探針 28 1287088 14922twf.doc/g 的製造方法,其中該金 17.如申請專利範圍第丨^括金、翻、麵或銀/氯化銀。 的製造方法’其中該第—絕緣多通道微電極探針 括氧化矽、氮化石夕、氮 q或以弟一絕緣層的材質包 高分子材料。 魏妙、非導電性_或非導電性 18·如申請專利範圍 的製造方法,其中該基 ^述之多通道微電極探針 膠或非導電性高分子材料。貝包括石夕、玻璃、非導電性塑 !9·如申請專利蔚園 的製造方法,其中於兮此項所述之多通道微電極探針 形成該些微電極與該::線: 開口與該些第二開口中―:方法匕括分別在該些第-::r_ 大於二 测,細於竭氣信號檢 信號轉該基底具有一生物電氣信號侧區與一後端 :第-絕緣層,配置在該基底上; 第個微電極墊,配置在該生物電氣信號侧區之該 禾絕緣層上; ^數個微導線,配置在該第-絕緣層上; 緣声夕數個傳輸塾’配置在該後端信號轉接區之該第一絕 、、曰上,其中各該微電極墊係藉由對應之一微導線而與對 29 1287088 14922twf.doc/g 應之一傳輸墊連接; 一第二絕緣層,覆蓋該些微電極墊、該些微導線與該 些傳輸墊,其中該第二絕緣層具有多數個第一開口暴露出 該些微電極墊,以及多數個第二開口暴露出該些傳輸墊; 以及 多數個微電極與多數個打線點,分別配置於該些第一 開口與該些第二開口中,且各該微電極與各該微電極墊電 性連接,而各該打線點與各該傳輸墊電性連接, ® 其中,相鄰二該些微電極之間的間距d以式(1)之交互 相關計算所得之相關係數Pi值係不小於0.95,並利用 Student’s paired /_test評估其實驗個體差異,最後以尸value 決定是否有達到統計上顯著差異(尸&lt;〇.〇5), 式⑴ _ 1 N __ 1 Λ/ _ Y = —YYtm 30 1287088 14922twf.doc/g 量測次數(Sweep);變數[為量測時所取樣之資 料點數。 21·如申請專利範圍第2〇項所述之多通道微電極探 針’其中該重複量測次數N值以式(2)之交互相關計算所得 之相關係數仏值係不小於0.95,並利用Studenfs paired itest α平估貫驗個體差異,最後以尸vaiue決定是否有達到 統计上顯著差異(P &lt; 〇.〇5),(上-一ν(ι"ι)) Σ二d—but (Ning-zhou 10,000) where 'Anl[tm] and Bn2[tm] are ηι times with single-point microelectrodes at the same recording point And the 112th measurement, and record the sampling value of the mth time point § § value; the number of repeated measurement is 2N, the variable ni = 1~N, the variable 27 1287088 14922twf.doc/g n2 - (N+ l) ~2N, variable m =; [~Μ, M is the number of points sampled during the measurement, 9 · The manufacturing method of the multi-channel microelectrode probe described in the scope of the patent scope, the towel needle The method of manufacturing the multi-channel microelectrode probe according to claim 9, wherein the cutting pattern is in the shape of a probe and includes the bioelectrical signal. The detection area and the back-end signal transition area include the second insulation layer, the total insulation degree of the first insulation layer and the base, and the multi-channel micro-electrode probe described in the first item: Before performing the laser cutting process, the needle further includes a contour for pre-cutting the pattern to be cut. The multi-channel described in Item 11 of the mouth Electrode probe engraving, process _) /, &quot; pre-cutting process includes - reactive ion button system = please use the material of the multi-pass pad including two non-metallic thunder, ° some micro-wire or these transmission 14 · For example, the scope of patent application is 13: the crystal or the metal. The non-metallic conductive material package = microelectrode probe 15. The manufacturing method as in the scope of the patent application, wherein the microelectrodes or secrets; =; pole probe metal material. The material of a green dot includes a 丨6. The manufacturing method of the multi-channel microelectrode probe 28 1287088 14922twf.doc/g according to claim 15 of the patent application, wherein the gold 17 For example, the manufacturing method of the invention includes the method of manufacturing the first-insulated multi-channel microelectrode probe including yttrium oxide, cerium nitride, nitrogen q or The material of the insulating layer is a polymer material. Wei Miao, non-conductive _ or non-conductive 18 · The manufacturing method of the patent application range, wherein the multi-channel microelectrode probe glue or non-conductive polymer material Bell includes stone eve, glass, non-guide 9. The manufacturing method of the patented Weiyuan, wherein the multi-channel microelectrode probe described in the above section forms the microelectrodes and the :: line: opening and the second openings -: method 匕Included in the first -::r_ is greater than the second measurement, and is finer than the exhaust gas signal detection signal. The substrate has a bioelectric signal side region and a rear end: a first insulating layer disposed on the substrate; the first micro An electrode pad disposed on the insulating layer of the bioelectric signal side region; ^ a plurality of microwires disposed on the first insulating layer; and a plurality of transmissions arranged in the back signal routing region The first electrode, the upper electrode, wherein each of the microelectrode pads is connected to a transmission pad of 29 1287088 14922twf.doc/g by a corresponding one of the micro wires; a second insulating layer covering the micro An electrode pad, the micro-wires and the transfer pads, wherein the second insulating layer has a plurality of first openings exposing the micro-electrode pads, and a plurality of second openings exposing the transfer pads; and a plurality of micro-electrodes and Most of the line points are configured in the The first opening and the second openings are electrically connected to each of the microelectrode pads, and each of the wire bonding points is electrically connected to each of the transmission pads, wherein two adjacent ones of the microelectrodes are The correlation coefficient Pi calculated by the cross-correlation calculation of the formula (1) is not less than 0.95, and the individual differences of the experiment are evaluated by Student's paired /_test, and finally the corpse value is used to determine whether there is a statistically significant difference ( Corpse &lt;〇.〇5), Equation (1) _ 1 N __ 1 Λ / _ Y = — YYtm 30 1287088 14922twf.doc / g Measure times (Sweep); variables [is the number of data points sampled during the measurement. 21) The multi-channel microelectrode probe described in the second paragraph of the patent application scope wherein the number of times of the repeated measurement is determined by the cross-correlation calculation of the equation (2) is not less than 0.95, and is utilized. Studenfs paired itest α assesses the individual differences, and finally determines whether there is a statistically significant difference (P &lt; 〇.〇5). 式⑺ |Formula (7) | 〜 1 μ Α = -7τΣΑ B: M\ 釋—1))Σ 二(I, 其中Anl[tm]與Bn2[tm]為在同一記錄點上以單點微電極分 別進仃第ηι次與第%次之量測,並記錄其第㈤個時間點 之取樣信號值;重複量測次數為2N,變數n! = i〜N,變數 n2 = _)〜2N ;變數m =丨〜M,M為量測時所取樣之 點數。 、 申,專利範圍第2G項所述之多通道微電極探 針’其中該多通道微電極探針適用於生物活體内咖心 與離體(知FzWo)之組織或細胞樣品檢測。 23·如申請專利範圍第22項所述之多通道微電極探 31 1287088 14922twf.doc/g ;氣;;::通道微電極探針適用於大鼠生物神經心 電_錢=心臟電氡信號檢測。 針利範圍第2g項所述之多通道微電極探 包括二心些微導線或㈣ W 士 $材枓、摻雜多晶⑪或金屬。 針,直中〜利耗圍第24項所述之多通道微電極探 針’其中該非金屬導電材料包括石墨。 針,j:中兮1 j利fesl第20項所述之多通道微電極探 '7 ·Γγ^電極或該些打線點的材質包括一金屬材料。 針 針 矽 1中第26項所述之多通道微電極探 屬材料包括鈦、金、麵或銀/氯化銀。 範圍第20項所述之多通道微電極探 気V:/巴緣層或該第二絕緣層的材質包括氧化 材料 氧切、料雜_或轉電性高分子 針,第2G項所叙多通道微電極探 電c包-、玻璃、非導電性塑膠或非導 的製第2G項所述之多通道微電極探針 的k方法,其中該些微電極與該些打 或等於該些第-開口與該些第二開σ之深度叫度係大於 32~ 1 μ Α = -7τΣΑ B: M\ 释 -1)) Σ II (I, where Anl[tm] and Bn2[tm] are the same as the single-point microelectrode at the same recording point. % second measurement, and record the sampling signal value at the (5th) time point; the number of repeated measurement is 2N, the variable n! = i~N, the variable n2 = _)~2N; the variable m = 丨~M, M The number of points sampled for measurement. The multi-channel microelectrode probe described in the patent scope 2G, wherein the multi-channel microelectrode probe is suitable for tissue or cell sample detection in a living body and in vitro (known FzWo). 23·Multi-channel microelectrode probe according to item 22 of the patent application scope. 12 1287088 14922twf.doc/g; gas;;:: channel microelectrode probe is suitable for rat biological nerve ECG_money=heart electrocardiogram signal Detection. The multi-channel microelectrode as described in item 2g of the range of needles includes two core microwires or (iv) W 士 掺杂, doped poly 11 or metal. The multi-channel microelectrode probe described in item 24, wherein the non-metallic conductive material comprises graphite. Needle, j: The multi-channel microelectrode probe described in item 20 of the jfefesl item 20. The material of the wire or the wire-bonding point includes a metal material. The multi-channel microelectrode probing material of item 26 of the needle 矽 1 includes titanium, gold, face or silver/silver chloride. The material of the multi-channel microelectrode probe V:/ba margin layer or the second insulation layer described in the twentieth range includes oxygen oxidizing material, material miscellaneous _ or electroconductive polymer needle, and the second GG Channel microelectrode probe c-package, glass, non-conductive plastic or non-conductive k-method of the multi-channel microelectrode probe described in item 2G, wherein the microelectrodes are related to the The depth of the opening and the second opening σ is greater than 32
TW94103559A 2005-02-04 2005-02-04 Multichannel microelectrode probe and fabricating method thereof TWI287088B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94103559A TWI287088B (en) 2005-02-04 2005-02-04 Multichannel microelectrode probe and fabricating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94103559A TWI287088B (en) 2005-02-04 2005-02-04 Multichannel microelectrode probe and fabricating method thereof

Publications (2)

Publication Number Publication Date
TW200628797A TW200628797A (en) 2006-08-16
TWI287088B true TWI287088B (en) 2007-09-21

Family

ID=39460218

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94103559A TWI287088B (en) 2005-02-04 2005-02-04 Multichannel microelectrode probe and fabricating method thereof

Country Status (1)

Country Link
TW (1) TWI287088B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI409215B (en) * 2009-02-18 2013-09-21 Winmems Technologies Co Ltd Micro-electro-mechanical systems interconnection pins and method for forming the same
TWI510788B (en) * 2014-01-13 2015-12-01 Taiwan Elite Nano Technology Corp Probe structures and method for fabricating the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI409215B (en) * 2009-02-18 2013-09-21 Winmems Technologies Co Ltd Micro-electro-mechanical systems interconnection pins and method for forming the same
TWI510788B (en) * 2014-01-13 2015-12-01 Taiwan Elite Nano Technology Corp Probe structures and method for fabricating the same

Also Published As

Publication number Publication date
TW200628797A (en) 2006-08-16

Similar Documents

Publication Publication Date Title
US10791946B2 (en) Transparent, flexible, low-noise electrodes for simultaneous electrophysiology and neuro-imaging
Deku et al. Amorphous silicon carbide ultramicroelectrode arrays for neural stimulation and recording
CN102783942B (en) Implantable neural information dual-mode detection microelectrode array chip and manufacturing method thereof
US11857344B2 (en) Fault detection for microneedle array based continuous analyte monitoring device
US7941201B2 (en) Microprobe array structure and method for manufacturing the same
CN105561469B (en) A kind of miniature brain electrode array chip of implanted Multifunctional two-sided
US20070187238A1 (en) Microelectrode system for neuro-stimulation and neuro-sensing and microchip packaging
WO2007068433A3 (en) Diagnosing of a diseased condition of the skin using impedance
Kang et al. Sputtered iridium oxide modified flexible parylene microelectrodes array for electrical recording and stimulation of muscles
TWI287088B (en) Multichannel microelectrode probe and fabricating method thereof
US20130190586A1 (en) Multi-Terminal Nanoelectrode Array
JPWO2020069564A5 (en)
Wang et al. Electrode–electrolyte interface impedance characterization of ultra-miniaturized microelectrode arrays over materials and geometries for sub-cellular and cellular sensing and stimulation
KR102241685B1 (en) diagnosis apparatus and system of skin disease
Anderson Penetrating multichannel stimulation and recording electrodes in auditory prosthesis research
Usoro et al. Chronic stability of local field potentials from standard and modified Blackrock microelectrode arrays implanted in the rat motor cortex
KR102173746B1 (en) Sensor for sensing vital signs
US20200303236A1 (en) Implantable all diamond microelectrode and fabrication method
JP2023504090A (en) Detection of chemical species in subject&#39;s sweat
Zhou et al. Ultra-flexible neural probes with electrochemical modified electrodes for reliable, chronical recording
Sun et al. High-Stability Polyimide-based Flexible Electrodes with IrOx to Interface the Mouse Vagus Nerve
KR20120046554A (en) Sensor for detecting cancer tissue and manufacturing method of the same
KR102630332B1 (en) Bio-probe module, bio-signal detector having the same and method of manufacturing the bio-probe module
KR101887073B1 (en) Wearable biodevice and manufacturing method thereof
Patrick et al. Flexible polymer substrate and tungsten microelectrode array for an implantable neural recording system