TWI286535B - The growth method of amorphous carbon nanowires - Google Patents

The growth method of amorphous carbon nanowires Download PDF

Info

Publication number
TWI286535B
TWI286535B TW94137877A TW94137877A TWI286535B TW I286535 B TWI286535 B TW I286535B TW 94137877 A TW94137877 A TW 94137877A TW 94137877 A TW94137877 A TW 94137877A TW I286535 B TWI286535 B TW I286535B
Authority
TW
Taiwan
Prior art keywords
carbon
catalytic metal
adhesive layer
substrate
layer
Prior art date
Application number
TW94137877A
Other languages
Chinese (zh)
Other versions
TW200716478A (en
Inventor
Jia-Jr Juang
Original Assignee
Jia-Jr Juang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jia-Jr Juang filed Critical Jia-Jr Juang
Priority to TW94137877A priority Critical patent/TWI286535B/en
Publication of TW200716478A publication Critical patent/TW200716478A/en
Application granted granted Critical
Publication of TWI286535B publication Critical patent/TWI286535B/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A growth method of amorphous carbon nanowires mainly comprises: covering the adhesive layer as well as metal-catalyst layer on the substrate in proper order; inflowing the hydrocarbon gas and controlling the growth temperature in a range of 400 to 650 DEG C; the carbon atoms diffusing into the inside of metal-catalyst particles which is formed by the metal-catalyst layer; the hydrocarbon molecules directly depositing on the metal-catalyst particles and growing upward on the metal-catalyst particles. By such method the amorphous carbon nanowires can be obtained under low temperature.

Description

1286535 •九、發明說明: 、【發明所屬之技術領域】 本發明係有關一種非晶質奈米碳線成長方法,尤指一 種控制成長溫度,以成長非晶質奈米碳線的方法。 【先前技術】 目前世界上有許多的研究團隊一直專注於奈米碳管的 場發射特性,尤其是場發射電子源的應用。當以化學氣相 _ 沉積法成長奈米碳管時,所使用的金屬催化劑多以鐵(ir〇n )、鈷(cobalt)、鎳(nickel)為主。奈米碳管的方向性 在琢發射特性方面佔有相當重要的地位,如何使奈米碳管 垂直於基板表面方向成長,更是當前的重要課題。又,由 於非晶質奈米碳線(amorphous carbon nanowires)跟奈米 碳管係應用於相同的場發射領域,非晶質奈米碳線亦可作 ^%發射電子源,並且在同樣的低電場狀態時,非晶質奈 米碳線又比奈米碳管更具有較佳的場發射特性。另外,非 • 晶質奈米碳線的成長方法亦與奈米碳管成長方式相似,故 ’非晶質奈米碳線具有更高的發展價值。 一般以熱裂解化學氣相沉積法製備奈米碳管時,主要 •是利用乙炔或甲烷為主的碳氳化合物氣體,通入一高溫的 石英爐管中成長,成長溫度約為攝氏7 〇 〇度以上,其通 入之氣體會經由高溫催化而裂解成碳原子,並進入催化金 屬顆粒内,進而堆積成長為奈米碳管。 然而’前述成長奈米碳管之方法,其成長溫度都會超 過攝氏7 0 〇度以上,如此高之成長溫度無法成長出非晶 5 1286535 •質奈米碳線,而且一般用於成長奈米碳管之玻璃基板,其 、可經鍛燒之耐溫玻璃的形變溫度最高可達攝氏6 5 0度, 而鈉玻璃(soda-lime glass)的形變溫度更是在攝氏5 5 0度左右,若不能降低成長溫度’對於基板之選用會受到 相當的限制。 因此,如何長出非晶質奈米碳線,則為本發明創作之 重點。 【發明内容】 瞻本發明之主要目的,在於解決上述的問題而提供一種 非晶質奈米碳線成長方法’其係通入含碳氳氣體並控制成 長溫度在4 00度〜650度’使含碳氳氣體裂解出碳氫 分子(C-H)鍵及碳原子,且碳氫分子(C-H)鍵直接沉積於催 化金屬顆粒上的量會多於碳原子經擴散至催化金屬層所形 成之催化金屬顆粒内的量,以成長出非晶質奈米碳線,且 較低之成長溫度,對於基板材質之選擇更有彈性。 為達前述之目的,本發明係包括下列步驟·· _ a·準備基板: 預先將一基板加以清潔及整備。 b·設置黏著層: 將一層具有一定厚度的黏著層披覆於該基板之表 ‘ 面上。 c·設置催化金屬層: 將一層具有催化非晶質奈米碳線生長之催化劑成 份,且具有一定厚度的催化金屬層披覆於該黏著 6 1286535 , 層相對該基板之表面上。 ^ d·形成催化金屬顆粒: 將披覆有黏著層及催化金屬層之基板在一成長腔 内加熱,使該催化金屬層由薄膜形態受熱聚集形 成催化金屬顆粒於黏著層上。 e ·成長奈米碳線: 將形成催化金屬顆粒之基板’在通有含碳氮氣體 之成長腔體内加熱至攝氏4 00度〜650度的 溫度範圍,以熱裂解含碳氳氣體,使含碳氫氣體 裂解出碳氳分子(C_H)鍵及碳原子,且碳氳分子 (C-H)鍵直接沉積於催化金屬顆粒上的量會多於 碳原子經擴散至催化金屬層所形成之催化金屬顆 粒内的量,以補充成長非晶質奈米碳線所需之碳 原子及碳氫分子(C-H)鍵,而於該基板上形成多數 之非晶質奈米碳線。 本發明之上述及其他目的與優點,不難從下述所選用 實施例之詳細說明與附圖中,獲得深入了解。 當然,本發明在某些另件上,或另件之安排上容許有 所不同’但所選用之實施例,則於本說明書中,予以詳細 " 說明,並於附圖中展示其構造。 【實施方式】 請參閱第1圖至第3圖,圖中所示者為本發明所選用 之實施例結構,此僅供說明之用’在專利申請上並不受此 種結構之限制。 7 1286535 本實施例之非晶質奈米碳線成長方法,其包括下列步 a ·準備基板: 預先準備好材質為矽(S i )之一基板1而加以 清潔及整備。 b·設置黏著層: 利用物理藏鑛系統(sputter )將一層材質為鉻 (Cr)之黏著層2濺鍍於該基板1之表面上,而 該黏著層2的厚度為2 0 Onm。 c·設置催化金屬層: 利用物理藏鍵系統(sputter )將一層材質為鎳 (Ni)之催化金屬層3濺鍍於該黏著層2相對該 基板1之表面上,而該催化金屬層3的厚度為8 0 nm ° d·形成催化金屬顆粒: 將依序濺鍍有黏著層2及催化金屬層3之基板1 在一成長腔内之加熱板上加熱,使該催化金屬層 3由薄膜形態受熱聚集形成多數催化金屬顆粒3 1於黏著層2上; e ·成長奈米碳線: 將已形成有多數催化金屬顆粒31之基板1,於 通有甲烷(CH4)之含碳氫氣體之成長腔體内, 在1大氣壓下,加熱至攝氏5 1 0度,加熱時間 為3 0分鐘,使氣體裂解出碳原子及碳氫分子 8 1286535 (OH)鍵’碳原子經擴散至催化金屬層所形成之催 - 化金屬顆粒内,碳氫分子(C-H)鍵直接沉積於催化 金屬顆粒上,且碳氫分子(C-H)鍵沉積於催化金屬 顆粒上的量會多於碳原子進入該催化金屬層3所 形成之多數催化金屬顆粒3 1内部的量,使各催 化金屬顆粒3 1逐漸向上成長出非晶質奈米碳線 4 ° 前述實施例中之所含石炭氫氣體係以甲烷(C H4),當 # 然可選自乙烯(C2H4)、乙炔(C2H2)等之其中一種的 含石炭氳氣體。黏者層2之材質亦可選自銅(Cu)、銦(M 〇)、搭(丁8)、碲(丁6)、|£(丁11)、鈦(丁丨)、石夕 或合金。另外,催化金屬層3材質亦可選自鐵(Fe)、麵(c〇) 或其合金(alloys)等之其中一種。 前述實施例中所設置黏著層2與催化金屬層3除物理 濺鍍之外,亦可利用物理蒸鍍、無電鍍法、化學法或電鍵 ® 法之其中-種。 如第4圖所示’經由本發明之成長方法可以得到非晶 質奈米碳線成長之結構,包括··一發基板1,一絡金屬之 ,黏著層2係位於該矽基板1之上,而多數非晶質奈米碳線 4則分別成長於該黏著層2相對於矽基板之表面。' 反” 本發明之非晶質奈米碳線成長方法,其主要係長 環境内通入含碳氫之氣體,並控制成長溫度在攝氏4 〇 〇 度〜6 5 0度的溫度範圍内,利用含碳氫氣體熱裂解出之 1286535 碳原子進入各催化金屬顆粒3 1内及碳氫分子直接沉基於 催化金屬顆粒3 1上,由於將成長溫度控制在攝氏4 0 0 度〜6 5 0度之低溫,使熱裂解出之碳氫分子沉基於催化 金屬顆粒表面的量會多於碳原子進入催化金屬顆粒内的量 ,因為在攝氏4 0 0度〜6 5 0度較低溫之成長溫度環境 内,其碳原子會因該催化金屬顆粒在低於7 0 0度時催化 能力下降’使碳原子裂解量少於碳氫分子量’破原子經擴 散進入催化金屬顆粒内,而碳氳分子(C-H)鍵則不受催化金 屬顆粒表面石墨結構之影響,仍可沉積在催化金屬顆粒上 ,使碳氳分子(C-H)鍵沉積催化金屬顆粒表面的量會多於碳 原子進入催化金屬顆粒内的量,進而可成長出非晶質奈米 碳線4。 再者’本發明成長非晶質奈米碳線4之成長溫度係控 制在攝氏4 0 0度〜6 5 0度間較低之成長溫度,使得本 發明應用於一般之矽基板或金屬基板之外,更可應用於形 變溫度低之玻璃基板,而對於產業研發或製程上的改良實 在大有助益。 以上所述實施例之揭示係用以說明本發明,並非用以 限制本發明,故舉凡數值之變更或等效元件之置換仍應隸 屬本發明之範_。 由以上詳細說明’可使熟知本項技藝者明瞭本發明的 確可達成前述目的,實已符合專利法之規定,爰提出專利 申請。 【圖式簡單說明】 1286535 第1圖係本發明之流程圖 第2圖係本發明之步驟示意圖 第3圖係本發明之非晶質奈米碳線成長示意圖 第4圖係本發明之非晶質奈米碳線結構示意圖 【主要元件符號說明】 (習用部分) (本發明部分) 黏著層2 催化金屬顆粒3 1 矽基板1 # 催化金屬層3 非晶質奈米碳線41286535 • Nine, invention description: [Technical field to which the invention pertains] The present invention relates to a method for growing amorphous carbon carbon wires, and more particularly to a method for controlling growth temperature to grow amorphous nano carbon wires. [Prior Art] There are many research teams in the world that have been focusing on the field emission characteristics of carbon nanotubes, especially the application of field emission electron sources. When the carbon nanotubes are grown by chemical vapor deposition, the metal catalysts used are mainly iron (ir〇n), cobalt (cobalt), and nickel (nickel). The directionality of the carbon nanotubes plays an important role in the emission characteristics of the ruthenium. How to make the carbon nanotubes grow perpendicular to the surface of the substrate is an important issue at present. Moreover, since amorphous carbon nanowires and nanocarbon tubes are used in the same field emission field, amorphous nano carbon wires can also be used as electron emission sources, and at the same low level. In the electric field state, the amorphous nanocarbon wire has better field emission characteristics than the carbon nanotube. In addition, the growth method of non-crystalline nano carbon wire is similar to that of carbon nanotube growth, so the amorphous carbon fiber has a higher development value. Generally, when carbon nanotubes are prepared by pyrolysis chemical vapor deposition, the main carbon nanotube gas is acetylene or methane, which is grown into a high temperature quartz furnace tube and has a growth temperature of about 7 摄. Above the degree, the gas that is introduced therein is cleaved into carbon atoms by high-temperature catalysis, and enters the catalytic metal particles, thereby accumulating and growing into a carbon nanotube. However, the method of growing the carbon nanotubes above has a growth temperature of more than 70 ° C. The growth temperature of such a high temperature cannot grow amorphous 5 1286535 • the carbon nanowire, and is generally used to grow nano carbon. The glass substrate of the tube has a deformation temperature of up to 650 degrees Celsius, and the deformation temperature of soda-lime glass is about 550 degrees Celsius. Can not reduce the growth temperature 'The choice of substrate will be quite limited. Therefore, how to grow amorphous carbon carbon wire is the focus of the invention. SUMMARY OF THE INVENTION The main object of the present invention is to solve the above problems and to provide an amorphous nano carbon wire growth method which is capable of introducing carbon-containing helium gas and controlling the growth temperature at 400 to 650 degrees. The carbon-containing helium gas cleaves the hydrocarbon (CH) bond and the carbon atom, and the hydrocarbon molecule (CH) bond is directly deposited on the catalytic metal particle more than the catalytic metal formed by the carbon atom diffusing to the catalytic metal layer. The amount in the particles to grow amorphous carbon nanowires, and the lower growth temperature, is more flexible for the choice of substrate material. For the purpose of the foregoing, the present invention includes the following steps: _ a. Preparing a substrate: A substrate is cleaned and prepared in advance. b. Setting the adhesive layer: A layer of adhesive having a certain thickness is applied to the surface of the substrate. c. Providing a catalytic metal layer: a catalyst component having a catalytic amorphous nanocarbon wire growth, and a catalytic metal layer having a thickness coated on the adhesion 6 1286535, the layer being opposed to the surface of the substrate. ^ d·Formation of catalytic metal particles: The substrate coated with the adhesive layer and the catalytic metal layer is heated in a growth chamber, and the catalytic metal layer is heated by the film form to form catalytic metal particles on the adhesive layer. e · Growing nano carbon wire: The substrate forming the catalytic metal particles is heated in a growth chamber containing carbon-containing nitrogen gas to a temperature range of 400 ° C to 650 ° C to thermally crack the carbon-containing helium gas, so that The hydrocarbon-containing gas cleaves the carbon-germanium (C_H) bond and the carbon atom, and the carbon-germanium (CH) bond is directly deposited on the catalytic metal particle more than the catalytic metal formed by the diffusion of the carbon atom to the catalytic metal layer. The amount of particles in the particles is to supplement the carbon atoms and hydrocarbon molecules (CH) bonds required for growing the amorphous nanocarbon wires, and a plurality of amorphous nanocarbon wires are formed on the substrate. The above and other objects and advantages of the present invention will be readily understood from Of course, the present invention allows for different 'on the other parts, or the arrangement of the parts, but the selected embodiment is described in detail in the specification, and its construction is shown in the drawings. [Embodiment] Please refer to Fig. 1 to Fig. 3, which shows the structure of the embodiment selected for use in the present invention, which is for illustrative purposes only and is not limited by such a structure. 7 1286535 The amorphous carbon carbon wire growth method of the present embodiment includes the following steps: a. Preparing the substrate: Prepare one of the substrates 1 made of 矽(S i ) in advance and clean and prepare. b. Setting the adhesive layer: A layer of adhesive material 2 made of chromium (Cr) is sputtered on the surface of the substrate 1 by a physical deposit system, and the thickness of the adhesive layer 2 is 20 Onm. c. arranging a catalytic metal layer: a catalytic metal layer 3 made of nickel (Ni) is sputtered on the surface of the adhesive layer 2 opposite to the substrate 1 by a physical storage system (sputter), and the catalytic metal layer 3 The thickness is 80 nm ° d·forming catalytic metal particles: the substrate 1 which is sequentially sputtered with the adhesive layer 2 and the catalytic metal layer 3 is heated on a heating plate in a growth chamber, so that the catalytic metal layer 3 is formed by a film form The majority of the catalytic metal particles 31 are formed on the adhesive layer 2 by heat accumulation; e. The growth of the nano carbon wire: the growth of the hydrocarbon-containing gas having the majority of the catalytic metal particles 31 formed in the methane (CH4) In the chamber, at 1 atmosphere, heated to 510 ° C, heating time is 30 minutes, the gas is cracked out of carbon atoms and hydrocarbon molecules 8 1286535 (OH) bond 'carbon atoms are diffused to the catalytic metal layer In the formed metal particles, hydrocarbon (CH) bonds are directly deposited on the catalytic metal particles, and hydrocarbon molecules (CH) bonds are deposited on the catalytic metal particles more than the carbon atoms enter the catalytic metal layer. 3 of the majority of catalytic metal particles 3 1 internal amount, so that each catalytic metal particle 31 gradually grows upwards out of the amorphous nano carbon wire 4 ° The carboniferous hydrogen system contained in the foregoing embodiment is methane (C H4), which may be selected from ethylene ( An anthracite gas containing one of C2H4), acetylene (C2H2), and the like. The material of the adhesive layer 2 may also be selected from the group consisting of copper (Cu), indium (M 〇), lap (Ding 8), bismuth (Ding 6), | £ (Ding 11), titanium (Ding), Shi Xi or alloy. . In addition, the material of the catalytic metal layer 3 may also be selected from one of iron (Fe), surface (c), or alloys thereof. In addition to physical sputtering, the adhesive layer 2 and the catalytic metal layer 3 provided in the foregoing embodiments may also be subjected to physical vapor deposition, electroless plating, chemical methods or electric bond ® methods. As shown in FIG. 4, a structure in which an amorphous nano carbon wire is grown can be obtained by the growth method of the present invention, including a substrate 1 and a metal, and the adhesive layer 2 is positioned on the substrate 1 Most of the amorphous nanocarbon wires 4 are respectively grown on the surface of the adhesive layer 2 with respect to the ruthenium substrate. The invention relates to a method for growing amorphous carbon carbon wire according to the present invention, which mainly adopts a hydrocarbon-containing gas in a long environment, and controls a growth temperature in a temperature range of 4 to 165 degrees Celsius, and utilizes The 1286535 carbon atom thermally cracked by the hydrocarbon-containing gas enters each of the catalytic metal particles 31 and the hydrocarbon molecules are directly deposited on the catalytic metal particles 31, since the growth temperature is controlled at 400 degrees Celsius to 600 degrees Celsius. At low temperatures, the thermal decomposition of the hydrocarbon molecules is based on the amount of catalytic metal particles on the surface of the metal particles more than the amount of carbon atoms into the catalytic metal particles, because in the temperature range of 40 ° C to 600 ° C lower temperature growth temperature , the carbon atoms will be reduced due to the catalytic ability of the catalytic metal particles below 700 ° 'the carbon atom cracking amount is less than the hydrocarbon molecular weight 'breaking atoms diffused into the catalytic metal particles, and the carbon germanium molecules (CH) The bond is not affected by the graphite structure on the surface of the catalytic metal particles, and can still be deposited on the catalytic metal particles, so that the carbon ruthenium (CH) bond deposition catalyzes the surface of the metal particles more than the carbon atoms enter the catalytic metal particles. The amount of carbon nanowires 4 can be grown. Further, the growth temperature of the grown amorphous nanocarbon wire 4 of the present invention is controlled to be a low growth rate between 400 degrees Celsius and 60 degrees Celsius. The temperature allows the invention to be applied to a general substrate or a metal substrate, and is more applicable to a glass substrate having a low deformation temperature, which is greatly beneficial for industrial development or process improvement. The present invention is not intended to limit the invention, and variations of the numerical values or substitutions of equivalent elements are still subject to the scope of the invention. From the above detailed description, it will be apparent to those skilled in the art that the invention is The above-mentioned objects can be achieved, and the patent application is in compliance with the provisions of the Patent Law. [Simplified description of the drawings] 1286535 Figure 1 is a flow chart of the present invention. Figure 2 is a schematic view of the steps of the present invention. FIG. 4 is a schematic diagram showing the structure of the amorphous nano carbon wire according to the present invention. [Main component symbol description] (customized part) (part of the invention) Adhesive layer 2 Catalytic metal particle 1 1 # 3 silicon substrate catalytic metal layer is 3 nm amorphous carbon wire 4

Claims (1)

1286535 •十、申請專利範圍:s_ ” _ -1 ·一種非晶質奈米碳線成長方法,其係包括下列步驟: a·準備基板: 預先將一基板加以清潔及整備; b·設置黏著層: 將一層具有一定厚度的黏著層披覆於該基板之表 面上, c·設置催化金屬層: φ 將一層具有催化奈米碳線生長之催化劑成份且具 有一定厚度的催化金屬層披覆於該黏著層相對該 基板之表面上; d·形成催化金屬顆粒: 將披覆有黏著層及催化金屬層之基板在一成長腔 内加熱,使該催化金屬層由薄膜形態受熱聚集形 成催化金屬顆粒於黏著層上; e ·成長奈米碳線: • 將形成催化金屬顆粒之基板,在通有含碳氫氣體 之成長腔體内加熱至攝氏4 00度〜650度的 溫度範圍,以熱裂解含碳氫氣體,使含碳氫氣體 裂解出碳氳分子及碳原子,且碳氳分子(C-H)鍵直 、 接沉積於催化金屬顆粒上的量會多於碳原子經擴 散至催化金屬層所形成之催化金屬顆粒内的量, 以補充成長非晶質奈米碳線所需之碳原子及碳氫 分子(C-H)鍵,而於該基板上形成多數之非晶質奈 12 1286535 米碳線。 2·依申請專利範圍第1項所述之非晶質奈米碳線成長方 法,其中該含碳氫氣體係選自曱烷(CH4)、乙烯(C 2h4)、乙炔(C2H2)等之其中一種。 3·依申請專利範圍第1項所述之非晶質奈米碳線成長方 法,其中步驟b,該黏著層彼覆於該黏著層上之方法 係選自物理濺鍍、物理蒸鍍、無電鍍法、化學法或電 鍍法其中一種。 4·依申請專利範圍第1項所述之非晶質奈米碳線成長方 法,其中步驟b,該黏著層之材質係選自鉻(C r )、 銅(Cu)、钥(Mo)、錯(Ta)、碲(Te)、灶 (T h )、鈦(T i )、矽(Si)、鋁(A1)、鎢(W)、白 金(Pt)、鈀(Pd)其中一種或合金。 5·依申請專利範圍第1項所述之非晶質奈米碳線成長方 法,其中步驟c,該催化金屬層彼覆於該黏著層上之 方法係選自物理濺鍍、物理蒸鍍、無電鍍法、化學法 或電鍍法其中一種。 6·依申請專利範圍第1項所述之非晶質奈米碳線成長方 法,其中步驟c,該催化金屬層材質係選自鐵(Fe)、 鈷(Co)、鎳(Ni)或其合金(alloys)其中一種。 131286535 • X. Patent application scope: s_ ” _ -1 · A method for growing amorphous carbon carbon wire, which comprises the following steps: a. Preparing the substrate: pre-cleaning and preparing a substrate; b·setting the adhesive layer : coating a layer of adhesive layer having a certain thickness on the surface of the substrate, c. arranging a catalytic metal layer: φ coating a layer of a catalytic metal layer having a catalyst component for catalyzing the growth of carbon nanowires and having a certain thickness Adhesive layer is opposite to the surface of the substrate; d·forming catalytic metal particles: heating the substrate coated with the adhesive layer and the catalytic metal layer in a growth cavity, so that the catalytic metal layer is heated by the film form to form catalytic metal particles. On the adhesive layer; e · Growing nano carbon wire: • The substrate that will form the catalytic metal particles is heated to a temperature range of 400 ° C to 650 ° C in a growth chamber containing hydrogen-containing gas to thermally crack Hydrocarbon gas, the hydrocarbon-containing gas is cleaved out of the carbon ruthenium molecule and carbon atoms, and the carbon ruthenium (CH) bond is directly and more deposited on the catalytic metal particles. The atom is diffused into the catalytic metal particle formed by the catalytic metal layer to supplement the carbon atom and the hydrocarbon (CH) bond required for growing the amorphous nano carbon wire, and forms a majority on the substrate. Crystalline na 12 1286535 m carbon wire. 2. A method for growing amorphous carbon carbon wire according to claim 1, wherein the carbon-containing hydrogen system is selected from the group consisting of decane (CH4) and ethylene (C 2h4). And one of acetylene (C2H2), etc. 3. The method for growing amorphous carbon carbon wire according to claim 1, wherein in step b, the method of adhering the adhesive layer to the adhesive layer is selected One of physical growth, physical vapor deposition, electroless plating, chemical or electroplating. 4. A method for growing amorphous carbon carbon wire according to claim 1, wherein step b, the adhesive layer The material is selected from the group consisting of chromium (C r ), copper (Cu), molybdenum (Mo), erbium (Ta), strontium (Te), stove (T h ), titanium (T i ), bismuth (Si), aluminum ( A1), one of tungsten (W), platinum (Pt), palladium (Pd) or alloy. 5. Amorphous nano according to the scope of claim 1 The wire growth method, wherein the step c, the method of coating the catalytic metal layer on the adhesive layer is one selected from the group consisting of physical sputtering, physical vapor deposition, electroless plating, chemical method or electroplating method. The method for growing amorphous carbon carbon wire according to Item 1, wherein in the step c, the catalytic metal layer is selected from the group consisting of iron (Fe), cobalt (Co), nickel (Ni) or alloys thereof. 13
TW94137877A 2005-10-28 2005-10-28 The growth method of amorphous carbon nanowires TWI286535B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94137877A TWI286535B (en) 2005-10-28 2005-10-28 The growth method of amorphous carbon nanowires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94137877A TWI286535B (en) 2005-10-28 2005-10-28 The growth method of amorphous carbon nanowires

Publications (2)

Publication Number Publication Date
TW200716478A TW200716478A (en) 2007-05-01
TWI286535B true TWI286535B (en) 2007-09-11

Family

ID=39459323

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94137877A TWI286535B (en) 2005-10-28 2005-10-28 The growth method of amorphous carbon nanowires

Country Status (1)

Country Link
TW (1) TWI286535B (en)

Also Published As

Publication number Publication date
TW200716478A (en) 2007-05-01

Similar Documents

Publication Publication Date Title
Yudasaka et al. Nitrogen-containing carbon nanotube growth from Ni phthalocyanine by chemical vapor deposition
CN100463111C (en) Manufacturing method of silicon wire
Du et al. CVD growth of carbon nanotubes directly on nickel substrate
JP4684053B2 (en) Method for producing carbon nanotube and method for fixing the same
KR20070062711A (en) Method for growing carbon nanotubes and manufacturing method of field emission device therewith
JP2001020072A (en) Method of low temperature synthesis of carbon nanotube using catalyst metal film for decomposition of carbon source gas
CN106756870B (en) A kind of method of plasma enhanced chemical vapor deposition growth graphene
US7384668B2 (en) CCVD method for producing tubular carbon nanofibers
CN102849733A (en) Low-temperature direct preparation method of graphene under double-temperature-zone control, and double-temperature-zone tube furnace
CN102092704A (en) Device and method for preparing carbon nanotube array
WO2003018474A1 (en) Nanostructure synthesis
CN111562297B (en) Non-enzymatic biosensor based on carbon material/boron-doped diamond composite electrode and preparation method and application thereof
TW200823313A (en) Method of coating carbon film on metal substrate surface at low temperature
CN113307252B (en) Method for preparing spinnable super-parallel carbon nanotube array
TWI378897B (en) Method for producing carbon nanocoils
WO2015093759A1 (en) Method of manufacturing carbon nanostructure having 3d structure of directly connected carbon supports and carbon nanotubes
TWI286535B (en) The growth method of amorphous carbon nanowires
TW200800397A (en) Method of preparing catalyst for catalyzing carbon nanotubes growth
JP2011132068A (en) Method of manufacturing carbon nanotube
JP5002187B2 (en) Carbon nanocoil growth method
CN108726510A (en) A kind of fast evaluation method of large area ultra-clean graphene and its magnanimity preparation method and its cleanliness factor
Chen et al. Experimental investigation on carbon nanotube grown by thermal chemical vapor deposition using non-isothermal deposited catalysts
JP2009137805A (en) Method for producing carbon nanotube, and substrate on which carbon nanotube has been grown
TWI667363B (en) Method for fabricating carbon nanotube array
JP2010042942A (en) Method for manufacturing substrate for forming carbon nanotube and method for manufacturing carbon nanotube using the substrate

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees