TWI284964B - A non-volatile memory array - Google Patents

A non-volatile memory array Download PDF

Info

Publication number
TWI284964B
TWI284964B TW94130477A TW94130477A TWI284964B TW I284964 B TWI284964 B TW I284964B TW 94130477 A TW94130477 A TW 94130477A TW 94130477 A TW94130477 A TW 94130477A TW I284964 B TWI284964 B TW I284964B
Authority
TW
Taiwan
Prior art keywords
volatile memory
memory array
gate
memory cells
column
Prior art date
Application number
TW94130477A
Other languages
Chinese (zh)
Other versions
TW200713514A (en
Inventor
Jie-Hau Huang
Ching-Yuan Lin
Original Assignee
Ememory Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ememory Technology Inc filed Critical Ememory Technology Inc
Priority to TW94130477A priority Critical patent/TWI284964B/en
Priority to US11/164,174 priority patent/US7244985B2/en
Publication of TW200713514A publication Critical patent/TW200713514A/en
Application granted granted Critical
Publication of TWI284964B publication Critical patent/TWI284964B/en

Links

Landscapes

  • Non-Volatile Memory (AREA)
  • Read Only Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

A non-volatile memory array including a plurality of memory units is provided. The memory units are arranged in a row/column array. Source lines are arranged in parallel in the column direction and connect the source regions of the memory units in the one column. Bit lines are arranged in parallel in the row direction and connect the drain regions of the memory units in the one row. Word lines are arranged in parallel in the column direction and connect the select gates of the memory units in the one column. Control lines are arranged in parallel in the column direction and connect the control gates of the memory units in the one column. The control lines is divided into several groups by n (n is an integer not less than 2), and the control lines in each group are connect to each other electrically.

Description

1284^ wf.doc/y 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種半導體元件,且特別是有 一 種非揮發性記憶體陣列。 ; 【先前技術】 在各種非揮發性記憶體產品中,具有可進行多次資料 之存入、讀取、抹除等動作,且存入之資料在斷電後=不 會消失之優點的可電抹除且可程式唯讀吃 (EEPRQM) ’已成為個人電腦和電子設備所廣泛採 種記憶體元件。 的 典型的可電抹除且可程式唯讀記憶體係以摻雜的 矽(doped P〇lysilicon)製作浮置閑極(fl〇ating 摊)盘 ^ 極—rd gate)。由於此非揮發性記憶體具 =甲 難以與-般CMOS邏輯製程(L〇gicPr〇cess)相整曰合 =於疋雙層的閘極,使得整個嵌人式非揮發性記憶體製造 成本增加,而不利於其競爭優勢。 、° 此卜@_此心體進行程式化(P r f1極的Γ會均勾分布於整個多晶石夕浮置閑極層之γ 而就浮極層下方的穿隨氧化層有缺陷存在 π就谷成兀件的漏電流,影響元件的可靠度。 題,可:抹除可程式唯讀記憶體元件漏電流之問 t ^ «^-#t^,A##(charge trapping materiaJ) 石夕呈G捉中子^何陷入材料例如是氮化石夕。由於氮化 夕具有捕捉电子的特性,且注入氮化石夕層的電子僅集中於 ③ 6 I284%4wf.doc/y 局部的區域,因此,對於穿隧氧化層中缺陷的敏感度較小, 元件漏電流的現象較不易發生。而且,在氮化石夕層上下通 常各有一層氧化石夕,而形成氧化石夕/氮化石夕/氧化石夕 (oxide_nitride_oxide,簡稱 ΟΝΟ)複合層。 另一方面,為了避免典型的可電抹除且可程式唯讀記 憶體在抹除/寫入時,因過度抹除/寫入現象太過嚴重,而 導致資料之誤判的問題。而在控制閘極與浮置閘極的一側 串接一選擇電晶體(select transistor),而形成兩電晶體(2τ) 一結構。藉由選擇電晶體(select transist〇r)來控制記憶體的程 式化和讀取。 然而’在操作具有兩電晶體結構的非揮發性記憶單元 的記憶單元陣列時,在不同偏壓下,會有因程式化干擾 (program disturb)或抹除干擾(erase disturb)等使記憶單元 被錯誤寫入或抹除的情況產生,可能就會導致記憶單元的 可靠度(Reliability)降低。 【發明内容】 本發明的目的就是在提供一種非揮發性記憶體陣列, 可以降低程式化干擾或抹除干擾的現象,而提升記憶單元 的可靠度。 抑本發明提出一種非揮發性記憶體陣列,包括多數個記 憶單7C、多數條源極線、多數條位元線、多數條字元線、 條控制線。多數個記憶單元排列成一行/列陣列,各記 fe單凡,包括第一導電型井區、第二導電槊源極區、一第 一V電型摻雜區與一第二導電型汲極區、選擇閘極、控制 ⑤ 7 1284撇 ;wf.doc/y 間極、電荷儲存結構。控制閘極與選擇閣極由同一層間極 材料所形成。電荷儲存結構,其巾至少包含—電荷儲存層。 第-導電型井區設置於基底中。第二導電型源極區、第曰二 導電型摻雜區與第二導電型汲極區設置於第一 中。選擇問極設置於第二導電型源極區與第二導電型接ς 區之間的基底上。控制閘極設置於第二導電型捧雜區 二導電型汲極區之_基底上。電荷儲存結構設置於控制 閑極與基底之間。同一行的記憶單元中,相鄰的兩記憶單 凡是以鏡向對稱的的方式配置。多數條源極線在列方向上 連接同一列的各記憶單元的第二導電型源極 線在行方向上平行排列,連接同一行的各 以思早福弟二導電迪極區。多數條字元線在列方向上 二=’連接同一列的各記憶單元的選擇閘極。多數條 -制4在列方向上平行排列,連接同一列的 的 其中這些控制線以每n_為大於等; 整數)為一組,而電性連接在一起。 在上述之非揮發性記憶體1284^wf.doc/y IX. Description of the Invention: [Technical Field] The present invention relates to a semiconductor element, and in particular to a non-volatile memory array. [Prior Art] Among various non-volatile memory products, there are many operations that can perform data storage, reading, erasing, etc., and the stored data can not disappear after power-off. Erasing and programmable read-only (EEPRQM) has become a widely used memory component for personal computers and electronic devices. A typical electrically erasable and programmable read-only memory system uses a doped P〇lysilicon to fabricate a floating 闲 ( gate gate). Because this non-volatile memory device is difficult to integrate with the general-purpose CMOS logic process (L〇gicPr〇cess) = the double-layered gate of the 疋 double-layer, making the entire embedded non-volatile memory manufacturing cost increase Not conducive to its competitive advantage. , ° This @@本心体 is stylized (P r f1 pole Γ 分布 分布 分布 分布 分布 分布 分布 整个 整个 整个 整个 整个 整个 整个 整个 整个 整个 整个 整个 整个 整个 整个 整个 整个 整个 整个 整个 整个 整个 整个 整个 整个 整个 整个 整个 而 而 而 而 而 而π is the leakage current of the component, which affects the reliability of the component. The problem can be: erase the leakage current of the programmable read-only memory component t ^ «^-#t^, A##(charge trapping materiaJ) stone In the evening, G catches the neutrons. What is trapped in the material is, for example, nitride rock. Because of the characteristics of electron capture, the electrons injected into the nitride layer are concentrated only in the local area of 3 6 I284% 4wf.doc/y. Therefore, the sensitivity to the defects in the tunneling oxide layer is small, and the phenomenon of leakage current of the element is less likely to occur. Moreover, there is usually a layer of oxidized oxide on the upper and lower layers of the nitride layer, and the formation of oxidized stone/nitrite/ Oxidation oxide (oxide_nitride_oxide, ΟΝΟ) composite layer. On the other hand, in order to avoid the typical erasable and programmable read-only memory during erasing/writing, the over-erase/write phenomenon is too serious. , causing misjudgment of data. While controlling gates and floating gates One side is connected in series with a select transistor to form a two-transistor (2τ) structure. The memory is selected and read by selecting a transistor (select transist〇r). When a memory cell array of a non-volatile memory cell having two crystal structures is used, the memory cell is erroneously written or programmed due to program disturb or erase disturb under different bias voltages. The erasing situation may result in a decrease in the reliability of the memory unit. SUMMARY OF THE INVENTION The object of the present invention is to provide a non-volatile memory array that can reduce stylized interference or erase interference. Therefore, the reliability of the memory unit is improved. The present invention provides a non-volatile memory array including a plurality of memory sheets 7C, a plurality of source lines, a plurality of bit lines, a plurality of word lines, and a strip control line. A plurality of memory cells are arranged in a row/column array, and each of the memory cells includes a first conductive type well region, a second conductive germanium source region, a first V-electric doped region, and a first Conductive type bungee region, select gate, control 5 7 1284撇; wf.doc/y interpole, charge storage structure. Control gate and select gate are formed by the same interlayer material. Charge storage structure, at least the towel Including a charge storage layer. The first conductive type well region is disposed in the substrate, and the second conductive type source region, the second conductive type doped region and the second conductive type drain region are disposed in the first. The control gate is disposed on the substrate between the second conductive type source region and the second conductive type interface region, and the control gate is disposed on the substrate of the second conductive type doping region and the second conductive type drain region. The charge storage structure is disposed between the control idler and the substrate. In the memory unit of the same row, the adjacent two memory modules are arranged in a mirror-symmetrical manner. The plurality of source lines are connected in parallel in the column direction to the second conductivity type source lines of the memory cells in the same column, and are connected in parallel in the row direction, and are connected to each other in the same row. Most of the word line lines are in the column direction. Two = 'The selection gates of the memory cells connected to the same column. The plurality of strips - 4 are arranged in parallel in the column direction, and the control lines connecting the same column are each set to be larger than each other in n_; integers are grouped and electrically connected together. Non-volatile memory in the above

型,第二導電型ο型。 N 電層在體陣列中,更包括選擇閘極介 質包括氧與基底之間,選擇閘極介電層之材 括穿=:非=性記憶體陣列中,電荷儲存結構更包 層之材質包括氧化矽。 牙隧介電 1284· wf.doc/y 括閉非=性記憶體陣列中,電荷儲存結構更包 =層Si包荷错存層與控制閘極之間。閉間 包括發性記憶體_巾,電射轉層的材質 匕括亂化石夕_、氮氧化石夕( (nan〇-cry咖丨)或摻雜多晶矽。 不木日日層 同一行的記憶單元 同一行的記憶單元 在上述之非揮發性記憶體陣列中 中,相鄰的兩記憶單元共用源極區。 在上述之非揮發性記憶體陣列中 中,相鄰的兩記憶單元共用汲極區。 本發明非揮發性記憶體陣列,當使用 ⑽㈣她n)機制進行程式化(pr:g=ming) 必須在遥定記憶體單元之位元線施以一高壓,因為同 二位=⑽都是連接在一起’所以同-行之所有記 2體早几將都接受到程式化干擾(师g職此祕);藉由本 =明’將控制線以設定數目連在一起’因此再對選定記憶 早讀行程式化操作時’只要對連接選定記憶單元的選定 控制線組施加偏愿使之進行程式化,而其 制線組則施予不會造成程式化干擾之偏遷,因此 ΐ程式化過程中所造成之對其他未選定被程式化的記憶體 早元所經過之程式化干擾次數,而降低其被程式化干擾之 影響。 而且,在對記憶體陣列進行譯碼(dec〇de)操作時,只 要對選定控制線組施加偏壓,就可以對選定控制線組所連 I284^4£fd〇c/y 接的記憶單元進行譯碼,因此就可以 單。而且施加的偏麗種類也變的較為簡單作變的較簡 =外’在對記憶體陣列進行抹除操作時, 控制線組施加偏壓,而其 、要對&疋 塵,因此可㈣㈣制線組不施加偏 料㈣記鮮以敍抹除_ 口本發明提出-種麵發性記憶辦列,包括 憶單元、多數條源極線、錄餘元線、乡數條字元線: ^數條控制線。多數個記憶單元排列成一行/列陣列,各記 憶單元,包括第一導電型井區、第二導電型源極區、二第 二導電型摻雜區與一第二導電型汲極區、選擇閘極、控制 閘極、電荷儲存結構。控制閘極與選擇閘極由同一層閘極 材料所形成。電荷儲存結構,其中至少包含一電荷儲存層。 第一導電型井區設置於基底中。第二導電型源極區、第二 導電型摻雜區與第二導電型汲極區設置於第一導電型井區 中。選擇閘極設置於第二導電型源極區與第二導電型摻雜 區之間的基底上。控制閘極設置於第二導電型摻雜區與第 二導電型汲極區之間的基底上。電荷儲存結構設置於控制 閘極與基底之間。同一行的記憶單元中,相鄰的兩記憶單 元是以鏡向對稱的的方式配置。多數條源極線在列.方向上 平行排列,連接同一列的各記憶單元的第二導電型源極 區,且源極線電性連接第一導電型井區。多數條位元線在 行方向上平行排列,連接同一行的各記憶單元的第二導電 型汲極區。多數條字元線在列方向上平行排列,連接同一 1284964 】T?8itwf.doc/y 列的各記憶單元的選擇閘極。多數條控制線在 行排列,連接同一列的各記憶單元的控制閉極。。上平Type, second conductivity type ο type. The N electrical layer is in the body array, and further includes a gate dielectric including oxygen and a substrate, and a gate dielectric layer is selected: a non-volatile memory array, and the charge storage structure is further covered by a material including Yttrium oxide. Tunneling dielectric 1284· wf.doc/y In the closed non-sex memory array, the charge storage structure is further packaged between the layer Si-loaded fault-storing layer and the control gate. The closed space includes the hair memory _ towel, and the material of the electric radiation transfer layer includes the disordered stone eve, the nitrous oxide eve ((nan〇-cry curry) or the doped polycrystalline 矽. The memory of the same row of the wood day layer The memory cells of the same row of cells are in the non-volatile memory array described above, and the adjacent two memory cells share the source region. In the above non-volatile memory array, the adjacent two memory cells share the drain The non-volatile memory array of the present invention, when programmed using (10) (four) her n) mechanism (pr: g = ming) must apply a high voltage in the bit line of the remote memory cell, because the same two bits = (10) They are all connected together. So all the two bodies of the same line will receive stylized interference (the division is the secret of the division); by this = Ming 'the control lines are connected together by the set number' When the memory is read early, the stroke operation is performed as long as the selected control line group connected to the selected memory unit is biased to be programmed, and the line group is given a bias that does not cause stylized interference. Caused by other factors not selected during the stylization process Early type of memory element through the interference frequency and stylized, reduce the impact of interference is stylized. Moreover, in the decoding operation of the memory array, as long as the bias is applied to the selected control line group, the memory unit connected to the selected control line group can be connected to I284^4£fd〇c/y. It is decoded, so it can be single. Moreover, the type of the applied slanting type is also relatively simpler. simplification = external 'When the memory array is erased, the control line group applies a bias voltage, and it is necessary to & dust, so (4) (4) The line group does not apply bias material (4) to remember to erase the _ mouth. The present invention proposes a kind of facial memory, including the memory unit, the majority of the source line, the recorded element line, and the township number line: ^ Several control lines. A plurality of memory cells are arranged in a row/column array, and each memory cell includes a first conductive type well region, a second conductive type source region, two second conductive type doped regions, and a second conductive type drain region, and is selected. Gate, control gate, charge storage structure. The control gate and the selection gate are formed by the same gate material. A charge storage structure comprising at least one charge storage layer. The first conductivity type well region is disposed in the substrate. The second conductive type source region, the second conductive type doped region and the second conductive type drain region are disposed in the first conductive type well region. The selection gate is disposed on the substrate between the second conductivity type source region and the second conductivity type doping region. The control gate is disposed on the substrate between the second conductive type doped region and the second conductive type drain region. A charge storage structure is disposed between the control gate and the substrate. In the memory unit of the same row, the adjacent two memory cells are arranged in a mirror-symmetrical manner. A plurality of source lines are arranged in parallel in the column direction, and connect the second conductivity type source regions of the memory cells of the same column, and the source lines are electrically connected to the first conductivity type well regions. A plurality of bit lines are arranged in parallel in the row direction to connect the second conductive type drain regions of the memory cells of the same row. Most of the word lines are arranged in parallel in the column direction, connecting the selected gates of the memory cells of the same 1284964]T?8itwf.doc/y column. A plurality of control lines are arranged in rows, and the control terminals of the memory cells connected to the same column are connected. . Flat

在上述之非揮發性記憶體陣列中,第一 型,第二導電型為p型。 '型為N 在上叙非揮發性記憶體陣财,更包 電層,設置於選擇閘極與基底之間,選擇間=極介 質包括氧化矽層。 电層之柯 在上述之_發性記憶體陣财,電荷儲存 牙隨介電層’設置於電荷儲存層與基底之間。^更包 層之材質包括氧化矽。 牙隧介電 在上述之非揮發性記憶體陣列中,電 3間介電層,設置於電荷儲存層與控“構更包 介電層之材質包括氧化矽。 <間。閘間 中’電荷儲存層的材質 (~丄丄多二乳化緣〇凡)、奈米晶層 在上述之非揮發性記憶體陣列中,同 中,相鄰的兩記憶單元共用源極區。 ^憶單元 型井區電位會透過所有網 線第-導電 憶體元件群體馳表㈣大幅提昇 4 ’對於記 I284^si,doc/y ▲為讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說 明如下。 【實施方式】 圖1A所繪示為本發明之非揮發性記憶體陣列的一較 佳貫施例的電路簡圖。圖1B所繪示為本發明之非揮發性 Zfe單元之一較佳實施例的結構剖面圖。圖1B繪示了圖 1A中A j思早元]yf〗]〜Μ14的剖面圖。 首先,說明本發明之記憶單元的結構。請參照圖1Β, 本么明之5己憶早元包括基底1 〇〇、ν型井區1 〇2、Ρ型源極 區104、Ρ型摻雜區1〇6、ρ型;;及極區1〇8、選擇閘極u〇、 • 選擇閘極介電層112、控制閘極114、穿隧介電層116、電 • 荷儲存層118、閘間介電層120。 基底100例如是矽基底中。Ν型基底1〇2例如是設置 於基底100中。 Ρ型源極區104、Ρ型摻雜區1〇6及ρ型汲極區108 > 例如是設置於基底1〇〇中。 選擇閘極110例如是設置於Ρ型源極區1〇4與ρ型摻 雜區106之間。選擇閘極110的材質例如是摻雜多晶矽。 選擇閘極介電層112例如是設置於選擇閘極110與基底 100之間。選擇閘極介電層Π2之材質例如是氧化矽。 控制閘極114例如是設置於ρ型摻雜區ι〇6及ρ型汲 極區108之間。控制閘極114的材質例如是摻雜多晶矽。 控制閘極114與選擇閘極no例如是屬於同一閘極製程步 ⑧ 12 I284m,doc/y 驟所製造出來,這樣一來可以降低製造成本。 電荷儲存結構由下而上包含穿隧介電層116、電荷儲 存層118及閘間介電層120。電荷儲存層118例如是設置 於控制閘極114與基底100之間。電荷儲存層118之材質 例如是導體材料(如摻雜多晶矽)或電荷陷入材料(如氮化 石夕、氮氧化石夕(SixOyNz)、奈米晶層(nano-crystal))等。 穿隧介電層116例如是設置於電荷儲存層118與基底 1〇〇之間。穿隧介電層116之材質例如是氧化矽。 > 閘間介電層120例如是設置於電荷儲存層118與控制 閘極114之間。閘間介電層120之材質例如是氧化矽。 汲極區108例如是藉由插塞122電性連接至位元線 • BL1 °源極區1〇4是藉由插塞124分別電性連接至所對應 - 的源極線SL1〜SL3。 接著’說明本發明之非揮發性記憶體陣列。請參照圖 1A,本發明之非揮發性記憶體陣列,包括多數個記憶單元 〜δ己憶單元Mxy、多數條字元線WL1〜WLy、多數條控 | 制線CL1〜CLy、多數條位元線BL1〜BLx、多數條源極線 SL1〜SLj、N型井區NW。 圮憶單元Mn〜記憶單元河^排成一行/列陣列。在行 的方向上,記憶單元Mn、Mi2.....Mly串接成記憶單元 行R1 ;記憶單元、M22、…、M2y串接成記憶單元行 R2 ;依此類推,記憶單元Μχΐ、Μχ2.....Mxy串接成記憶 單元行Rx。 在列的方向上,記憶單元、M21.....Mxl排列成 ⑧ 13 I2849Mwf.d〇〇/y 記憶單元列Cl ;記憶單元Mu、Μ。、···、mx2排列成記憶 單元列C2 ;依此類推,記憶單元Mly、M2y、…、Mxy排列 成記憶單元列Cy。In the above non-volatile memory array, the first type and the second conductivity type are p-type. The type is N. In the above-mentioned non-volatile memory, the electric layer is set between the selected gate and the substrate. The choice between the dielectrics includes the yttrium oxide layer. In the above-mentioned sinusoidal memory, the charge storage teeth are disposed between the charge storage layer and the substrate with the dielectric layer. ^ The material of the cladding layer includes yttrium oxide. The tunnel dielectric is in the above non-volatile memory array, and the three dielectric layers are disposed on the charge storage layer and the control material of the dielectric layer includes yttrium oxide. The material of the charge storage layer (~丄丄2, emulsifier), and the nanocrystalline layer are in the above non-volatile memory array, and the adjacent two memory cells share the source region. The potential of the well zone will be greatly improved by the network of the first-electroconductive memorandum component (4). For the record I284^si, doc/y ▲, the above and other objects, features and advantages of the present invention can be more clearly understood. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The following is a detailed description of the preferred embodiment of the present invention. FIG. 1A is a simplified circuit diagram of a preferred embodiment of the non-volatile memory array of the present invention. 1B is a cross-sectional view showing a structure of a preferred embodiment of the non-volatile ZFE unit of the present invention. FIG. 1B is a cross-sectional view of FIG. 1A. First, the structure of the memory unit of the present invention will be described. Please refer to FIG. Recall that the early element includes the base 1 〇〇, the ν type well area 1 〇 2, the Ρ type source area 104, the Ρ type doped area 1〇6, ρ type; and the polar area 1〇8, the selection gate u〇, • Select gate dielectric layer 112, control gate 114, tunnel dielectric layer 116, charge storage layer 118, inter-gate dielectric layer 120. Substrate 100 is, for example, a germanium substrate. It is disposed in the substrate 100. The 源-type source region 104, the Ρ-type doping region 〇6, and the p-type drain region 108 > are disposed, for example, in the substrate 1 。. The selection gate 110 is, for example, disposed on Ρ The source region 1 〇 4 and the p-type doping region 106. The material of the gate 110 is, for example, doped polysilicon. The gate dielectric layer 112 is, for example, disposed between the gate 110 and the substrate 100. The material of the gate dielectric layer 2 is, for example, tantalum oxide. The control gate 114 is, for example, disposed between the p-type doping region ι6 and the p-type drain region 108. The material of the control gate 114 is, for example, doped. The control gate 114 and the selection gate no are, for example, manufactured by the same gate process step 8 12 I284m, doc/y, which can reduce the manufacturing cost. The charge storage structure includes a tunnel dielectric layer 116, a charge storage layer 118, and an inter-gate dielectric layer 120 from bottom to top. The charge storage layer 118 is disposed between the control gate 114 and the substrate 100, for example. The material is, for example, a conductor material (such as doped polysilicon) or a charge trapping material (such as nitrite, SixOyNz, nano-crystal), etc. The tunneling dielectric layer 116 is, for example, a set. The material of the tunneling dielectric layer 116 is, for example, hafnium oxide. The inter-gate dielectric layer 120 is disposed between the charge storage layer 118 and the control gate 114, for example. The material of the inter-gate dielectric layer 120 is, for example, yttrium oxide. The drain region 108 is electrically connected to the bit line, for example, by the plug 122. The BL1 ° source region 1〇4 is electrically connected to the corresponding source line SL1 to SL3 by the plug 124, respectively. Next, the non-volatile memory array of the present invention will be described. Referring to FIG. 1A, the non-volatile memory array of the present invention includes a plurality of memory cells δ δ recall cells Mxy, a plurality of word line lines WL1 WLWLy, a plurality of control lines, CL1 ~CLy, and a plurality of bit elements. Lines BL1 to BLx, a plurality of source lines SL1 to SLj, and an N-type well region NW. The memory cells Mn~memory cells are arranged in a row/column array. In the direction of the row, the memory cells Mn, Mi2.....Mly are connected in series to the memory cell row R1; the memory cells, M22, ..., M2y are connected in series to the memory cell row R2; and so on, the memory cells Μχΐ, Μχ2 .....Mxy is concatenated into a memory cell row Rx. In the direction of the column, the memory cells, M21.....Mxl are arranged into 8 13 I2849Mwf.d〇〇/y memory cell column C1; memory cells Mu, Μ. , ···, mx2 are arranged in the memory cell column C2; and so on, the memory cells Mly, M2y, ..., Mxy are arranged in the memory cell column Cy.

在各記憶單元行R1〜似中’相鄰的兩個記憶單元是 以鏡向對稱的的方式配置,且相鄰的兩個記憶單元會共用 源極區或汲極區。舉例來說,在記憶單元行R1中,記憶 單元M"與記憶單元Mu以鏡向對稱的方式配置,且共用 汲極區;記憶單元Mn與記憶單元Mu以鏡向對稱的的方 式配置,且共用源極區;依此類推,記憶單元與記 憶單元Mly以鏡向對稱的的方式配置,且共用汲極區。 N型井區NW例如是設置於記憶單元^^〜記憶單元 MXy下方的基底中。 位凡綠BL1〜BLx例如疋在行方向上平行排列,連接 同一行的各記憶單元的汲極區。舉例來說,位元線BL1連 接記憶單元行R1巾記憶單元Mi i〜Miy的及極區;位元線 BL2連接記料元行R2巾記憶單元⑷〜、的汲極區; :此類推,位元線BLx連接記憶單元行Rx中記憶單元The two memory cells adjacent to each other in the memory cell row R1 to the like are arranged in a mirror-symmetric manner, and the adjacent two memory cells share a source region or a drain region. For example, in the memory cell row R1, the memory cell M" is arranged in a mirror-symmetrical manner with the memory cell Mu, and shares the drain region; the memory cell Mn and the memory cell Mu are arranged in a mirror-symmetrical manner, and The source region is shared; and so on, the memory unit and the memory unit Mly are arranged in a mirror-symmetrical manner and share the drain region. The N-type well region NW is, for example, disposed in a substrate below the memory cell MXy. The bits BL1 to BLx, for example, are arranged in parallel in the row direction to connect the drain regions of the memory cells of the same row. For example, the bit line BL1 is connected to the sum region of the memory cell row R1 to the memory cell Mi i~Miy; the bit line BL2 is connected to the drain region of the cell row R2 to the memory cell (4)~; Bit line BLx is connected to the memory cell row Rx memory cell

Mxl〜Mxy的汲極區。 同-=口?如是在財^ 合斗兀:。且每兩個相鄰的記憶胞列 來說,源極、_連接記憶單元 憶單元列㈤_元連接記 列C3中記憶單元M,3〜m二^!源極區以及記憶單元 x3的源極區;源極線SL3連接記The bungee area of Mxl~Mxy. Same as -= mouth? If it is in the wealth of the fight::. And for every two adjacent memory cell columns, the source, the _connected memory cell, the memory cell column (5), the _ meta-connection column C3, the memory cell M, the 3~m2^ source region, and the source of the memory cell x3 Polar region; source line SL3 connection

1414

I284%i,doc/y 憶單元列C4中記憶單it M14〜MX4的源極區以及記憶單元 歹C5中§己憶單元μ!5〜Mm的源極區;依此類推,源極線 SLJ連接記憶單元列Cy中記憶單元Mly〜Mxy的源極區。 字元線WL1〜WLy例如是在列方向上平行排列,連接 同一列的各記憶單元的選擇閘極。舉例來說,字元線WL i 連接記憶單元列C1中記憶單元Mll〜Μχ]的選擇閘極;字 几線WL2連接記憶單元列C2 +記憶單元Μΐ2〜Μχ2的選 ,閘極;依此類推,字元線WLy連接記憶單元列Cy中記 憶單元Mly〜Mxy的選擇閘極。 控制線CL1〜CLy例如是在列方向上平行排列,連接同 一列的各記憶單元的控侧極。舉例來說,控制線cu 元列C1中記憶單元Μιι〜Μχι的控制閘極;控制 元“的控制閉 極,依此類推,控制線CLy連接記憶單元列Cy中記 兀Mly〜Mxy的控制閘極。控制線cu〜 大於等於2的正整數)為-組,而電性連接在—起。;例ί ί二ilT是以四條為1組’亦即控制線。_ 電性連接在-起;控制線CL5〜CL8電性連接在 可以明巾’雜連接在—起的控觀的數目, 叮以視貫際㈤要而決定,舉例來說,記憶單元陣列中可以 由 32 個、64 個、128 個或 256 個$ - π 在# ϋ 〜 早凡列所構成。因此, 在4早7C陣列可以具有32條、64條、128 制線,再將這些控制線以每η條(Π為大於等於V的正:= 分為一組,例如以每2條、4終s伙κ 、勺正數 母& 4條、8條、16條或32條等為 ⑧ 15I284%i, doc/y Recall the source region of the memory cell unit it M14~MX4 in the cell column C4 and the source region of the memory cell 歹C5 in the memory cell μ!5~Mm; and so on, the source line SLJ The source regions of the memory cells Mly to Mxy in the memory cell column Cy are connected. The word lines WL1 to WLy are, for example, arranged in parallel in the column direction, and connect the selection gates of the respective memory cells in the same column. For example, the word line WL i is connected to the selection gate of the memory unit M11 Μχ Μχ in the memory cell column C1; the word line WL2 is connected to the memory cell column C2 + the memory cell Μΐ 2 Μχ 2 is selected, the gate; and so on. The word line WLy is connected to the selection gate of the memory unit Mly to Mxy in the memory cell column Cy. The control lines CL1 to CLy are, for example, arranged in parallel in the column direction, and are connected to the control side electrodes of the respective memory cells in the same column. For example, the control gate cu element column C1 in the memory cell Μιι~Μχι control gate; the control element "control closed, and so on, the control line CLy connected to the memory cell column Cy in the memory Mly ~ Mxy control gate The control line cu~ is a positive integer greater than or equal to 2) is a group, and the electrical connection is at -. Example ί ί ilT is a group of four as a control line. _ Electrical connection in - The control lines CL5~CL8 are electrically connected to the number of control points that can be connected to each other, and are determined by the visual (5). For example, there may be 32 or 64 memory cell arrays. , 128 or 256 $ - π are formed in # ϋ 〜 早凡列. Therefore, in 4 early 7C arrays can have 32, 64, 128 lines, and then these control lines are every n pieces (Π Positive or equal to or greater than V is divided into one group, for example, every 2, 4 final s κ, spoon positive mother & 4, 8, 16, or 32, etc. 8 15

V 1284?就场 、也咐分組的控制線電性連接在一起。 於:整;; '!連接ί:起的控制線的數目越少越可以避免;=為: 疋a己憶單7C的程式化干擾現 "、、/ 與抹除操作t,電性連接在二“在广馬蝴 以f2 在一起的控制線的數目越多越可V 1284? The control lines that are present and also grouped are electrically connected together.于:整;; '!Connection ί: The fewer the number of control lines, the more you can avoid; =: 疋a has recalled the stylized interference of 7C now",, / with erase operation t, electrical connection In the second "the number of control lines in the wide horse with f2 together, the more

= 與抹除操作,且可以使偏壓種類 *此’電性連接在一起的控制線的數目,可以 措由程式化操作、譯石馬操作與抹除操作等的考量,而 較佳的數目。 /Ν= and the erase operation, and the number of control lines that can be electrically connected to the type of bias * can be taken into account by stylized operations, translation operations and erase operations, etc., and the preferred number . /Ν

在本發明中,由於將控制線以設定數目連在一起,因 此可以簡化操作。舉例來說,如@ 1Α所示,控制線⑴ 至控制線CL4電性連接在一起;控制線CL5至控制線CL8 電性連接在一起。再對控制線CL1至控制線CL4(選定控 制線組)所連接的選定記憶單元進行程式化操作時,只要對 控制線CL1至控制線CL4施加偏壓,而其他的未選定控 制線組(例如控制線CL5至控制線CL8)則施予不會造成 程式化干擾之偏壓,因此可以避免對其他組的記憶單元造 成程式化干擾。 舉例來A ’ 一開始设什有256個記憶單元列所組合而 成之非揮發性記憶體陣列,會先以最小陣列面積作為設計 考量;為了達成最小面積,勢必會將256個記憶單元列之 控制線(CL1〜CL256)電性全部連接在一起,但如此一來, ⑧ 16 I284%i,doc/y 可能在程式化過程中,未選定記憶體單元(例如,記憶 單元)最糟狀況下會有255次程式化干擾(程式化 ,y=256,除Μ%外);但如果將2允個記憶單元列 之控制線拆成64組,每組4條控制線電性連接(例如Μ%、 Μ%、Μ”及Μ%控制線電性相連),則Μ%所會看到之^呈 式化干擾則降為3次,大大提昇非揮發性記憶體操作特性。 而且,在對記憶體陣列進行譯碼(decode)操作時,只 要對控制線CL1至控制線CL4(選定控制線組)施加偏壓, 就可以對控制線CL1至控制線CL4(選定控制線組)所連接 ,纪憶單元進行譯碼,因此就可以使譯碼操作變的較簡 單。而且施加的偏壓種類也變的較為簡單,譯碼電路也可 以更加省面積。 此外,在對記憶體陣列進行抹除操作時,只要對控制 線CL1至控制線CL4(選定控制線組)施加偏壓,而其他的 ^選定控制線組(例如控制線CL5至控制線CL8)*施加偏 壓,因此可以避免對其他組的記憶單元造成軟抹除(soft erase)的現象。 、本發明另一項改善方面,如圖1C所示,則是將所有 源極線(SL1〜SLj)將與N型井區丽電性連接,通常 井區NW僅在s己憶體陣列周圍由n型井區連接出來,在記 k體陣列中所有記憶單元看到的肩電位可能不是很均 勻’尤其^在需要大量電流操作模式下,其在陣列週邊及 中央記憶單元之NW電位可能就會有很大差異;通常源極 線會由自行對準金屬矽化主動區域(Salicided 幻 ⑧ 17 12849M wf.doc/y 及透過上層金屬線網路狀連結整個陣列區,如果 電性連接至所有源極線饥1〜SLj),則記憶體單元内= 有網路狀源極線而均句分布,對於記, 體70件群體特性表現將大幅提昇。 %、 雖然本發明已以較佳實施例揭露如上,铁 限定本發明,任何熟習此技㈣,在不脫離;:發In the present invention, since the control lines are connected together in a set number, the operation can be simplified. For example, as indicated by @1Α, the control line (1) to the control line CL4 are electrically connected together; the control line CL5 to the control line CL8 are electrically connected together. When the selected memory cells connected to the control line CL1 to the control line CL4 (selected control line group) are programmed, a bias voltage is applied to the control lines CL1 to CL4, and other unselected control line groups (for example, The control line CL5 to the control line CL8) are biased without causing stylized interference, thereby avoiding stylized interference to other groups of memory cells. For example, A ' initially set up a non-volatile memory array with 256 memory cell columns. The minimum array area is considered as a design consideration. In order to achieve the minimum area, 256 memory cells are bound to be listed. The control lines (CL1~CL256) are all electrically connected together, but as a result, 8 16 I284%i, doc/y may be in the worst case of unselected memory cells (eg memory cells) during the stylization process. There will be 255 stylized interferences (stylized, y=256, except Μ%); however, if the control lines of 2 memory cells are split into 64 groups, each group of 4 control lines is electrically connected (for example, Μ %, Μ%, Μ" and Μ% control lines are electrically connected), then 呈% will see that the *formed interference is reduced to 3 times, greatly improving the non-volatile memory operating characteristics. When the memory array performs a decoding operation, as long as a bias voltage is applied to the control line CL1 to the control line CL4 (the selected control line group), the control line CL1 to the control line CL4 (the selected control line group) can be connected. The memory unit decodes, so the decoding operation can be simplified. Moreover, the type of bias applied is also relatively simple, and the decoding circuit can be more space-saving. In addition, when erasing the memory array, only the control line CL1 to the control line CL4 (selected control line group) The bias voltage is applied, and the other selected control line groups (for example, the control line CL5 to the control line CL8)* are biased, so that the soft erase phenomenon can be avoided for the other groups of memory cells. Another improvement aspect, as shown in Figure 1C, is that all source lines (SL1 ~ SLj) will be electrically connected to the N-type well region. Usually, the well region NW is only n-type around the s-resonance array. The well areas are connected, and the shoulder potential seen by all the memory cells in the k-body array may not be very uniform. In particular, in the case of a large current operation mode, the NW potential of the array and the central memory unit may be very high. Large difference; usually the source line will be self-aligned to the metal deuterium active area (Salicided 8 17 12849M wf.doc / y and through the upper metal wire network connection the entire array area, if electrically connected to all source line hunger 1~SLj), then Within the memory unit = there is a network-like source line and the average sentence distribution, for the record, the body characteristics of the body 70 will be greatly improved. %, although the invention has been disclosed in the preferred embodiment as above, iron defines the invention, any Familiar with this technique (4), not leaving;

内,當可作些許之更動與潤飾,因此本發明之^ 耗圍當視伽之申請專㈣騎界定者為準。 … 【圖式簡單說明】 佳為本發明之非揮發性記憶體陣列的-較 1土只加例的電路簡圖。 千乂 實施=::::本發明之非揮發性記憶單元之-較佳 發明之非揮發性記憶體陣列的In the meantime, when some changes and refinements can be made, the invention of the invention is subject to the definition of the application. ... [Simple description of the diagram] It is a schematic diagram of the non-volatile memory array of the present invention. Millennium implementation =:::: non-volatile memory unit of the invention - preferred non-volatile memory array of the invention

【主要元件符號說明】 1〇〇 :基底 102、NW : Ν型井區 104 ·· Ρ型源極區 106 : Ρ型摻雜區 108 ·· Ρ型汲極區 110 :選擇閘極 112 :選擇閘極介電層 114 :控制閘極 ⑧ 18 I284^44wf.doc/y 116 :穿隧介電層 ' 118 :電荷儲存層 / 120 :閘間介電層 122、124 :插塞 Μη〜Mxy :記憶單元 WL1〜WLy ··字元線 CL1〜CLy :控制線 BL1〜BLx :位元線 參 SL1〜SLj :源極線 R1〜Rx :記憶單元行 C1〜Cy :記憶單元列[Main component symbol description] 1〇〇: base 102, NW: Ν type well area 104 · Ρ type source area 106 : Ρ type doped area 108 · · Ρ type drain area 110: select gate 112: selection Gate dielectric layer 114: control gate 8 18 I284^44wf.doc/y 116: tunneling dielectric layer '118: charge storage layer/120: gate dielectric layer 122, 124: plug Μη~Mxy: Memory cells WL1 to WLy · Word lines CL1 to CLy: Control lines BL1 to BLx: Bit line parameters SL1 to SLj: Source lines R1 to Rx: Memory cell lines C1 to Cy: Memory cell columns

Claims (1)

1284944 twf.doc/y 申請專利範圍: 1·一種非揮發性記憶體陣列,包括: 記憶單 夕數個δ己憶單元排列成一行/列陣列,各該此 元,包括 一第一導電型井區,設置於一基底中; 户…—第二導電型源極區、―第二導電型摻雜區與一 第二導電型汲極區,設置於該第一導電型井區中;/、 一選擇閘極,設置於該第二導電型源極區盥 二導電型摻雜區之間的該基底上; 弟 一、—控制閘極,設置於該第二導電型摻雜區與該繁 一導電型汲極區之間的該基底上,且該控 ^ 極由同-相極材料所形成;以& 4擇閘 一電荷儲存結構,其中至少包含一電荷 設:於該控制閑極與該基底之間,其中同一行單 兀中相_兩該些記憶單元是以鏡向對_的配 各源極線,在列方向上平行排列,連接同—列的 隐早兀的該第二導電型源極區; 連接同一行的 連接同一列的 連接同一列的 夕數條位元線,在行方向上平行排列 各忒e己憶單元的該第二導電型汲極區; >夕數條字元線,在列方向上平行排列 各該,憶單元的該選擇閘極;以及 各該ΐϊΐ控制線,在列方向上平行排列1鮮卜列的 為大控制閘極,其中該些控制線以每η條(η 為大4於2的正整數)為一組,而電性連接在—起 20 I284^sl,d〇c/y 2. 如申請專利範圍第1項所述之非揮發性記憶體陣 列,其中該第一導電型為N型。 3. 如申請專利範圍第1項所述之非揮發性記憶體陣 列,其中該第二導電型為P型。 4. 如申請專利範圍第1項所述之非揮發性記憶體陣 列,更包括一選擇閘極介電層,設置於該選擇閘極與該基 底之間。 5. 如申請專利範圍第1項所述之非揮發性記憶體陣 列,電荷儲存結構更包括一穿随介電層,設置於該電荷儲 存層與該基底之間。 6. 如申請專利範圍第1項所述之非揮發性記憶體陣 列,其中該穿隧介電層之材質包括氧化矽。 7. 如申請專利範圍第1項所述之非揮發性記憶體陣 列,電荷儲存結構更包括一閘間介電層,設置於該電荷儲 存層與該控制閘極之間。 8. 如申請專利範圍第1項所述之非揮發性記憶體陣 列,其中該閘間介電層之材質包括氧化矽。 9. 如申請專利範圍第1項所述之非揮發性記憶體陣 列,其中該電荷儲存層的材質包括氮化矽、氮氧化矽或是 奈米晶層。 10. 如申請專利範圍第1項所述之非揮發性記憶體陣 列,其中該電荷儲存層的材質包括掺雜多晶石夕。 11. 如申請專利範圍第1項所述之非揮發性記憶體陣 列,其中同一行的該些記憶單元中,相鄰的兩該些記憶單 ⑧ 21 I284^44wf.doc/y ^ 元共用該源極區。 , 12.如申請專利範圍第1項所述之非揮發性記憶體陣 • 列,其中同一行的該些記憶單元中,相鄰的兩該些記憶單 元共用該汲極區。 13.—種非揮發性記憶體陣列,包括: 多數個記憶單元排列成一行/列陣列,各該些記憶單 元,包括: 一第一導電型井區,設置於一基底中; • 一第二導電型源極區—第二導電型摻雜區與一 第二導電型汲極區,設置於該第一導電型井區中; 一選擇閘極,設置於該第二導電型源極區與該第 - 二導電型摻雜區之間的該基底上; . 一控制閘極,設置於該第二導電型摻雜區與該第 二導電型汲極區之間的該基底上,且該控制閘極與選擇閘 極由同一層閘極材料所形成;以及 一電荷儲存結構,其中至少包含一電荷儲存層, Φ 設置於該控制閘極與該基底之間,其中同一行該些記憶單 元中,相鄰的兩該些記憶單元是以鏡向對稱的的方式配置; 多數條源極線,在列方向上平行排列,連接同一列的 各該記憶單元的該第二導電型源極區,且該些源極線電性 連接該第一導電型井區; 多數條位元線,在行方向上平行排列,連接同一行的 “ 各該記憶单元的該第二導電型 >及極區, 多數條字元線,在列方向上平行排列,連接同一列的 22 f.doc/y 各該記憶單元的該選擇閘極;以及 多數條控制線,在列方向上平行排列,連接同一列的 各該記憶單元的該控制閘極。 14. 如申請專利範圍第13項所述之非揮發性記憶體陣 列,其中該第一導電型為N型。 15. 如申請專利範圍第13項所述之非揮發性記憶體陣 列,其中該第二導電型為P型。 16. 如申請專利範圍第13項所述之非揮發性記憶體陣 列,更包括一選擇閘極介電層,設置於該選擇閘極與該基 底之間。 17. 如申請專利範圍第13項所述之非揮發性記憶體陣 列,電荷儲存結構更包括一穿隧介電層,設置於該電荷儲 存層與該基底之間。 18. 如申請專利範圍第13項所述之非揮發性記憶體陣 列,其中該穿隧介電層之材質包括氧化矽。 19. 如申請專利範圍第13項所述之非揮發性記憶體陣 列,電荷儲存結構更包括一閘間介電層,設置於該電荷儲 存層與該控制閘極之間。 20. 如申請專利範圍第13項所述之非揮發性記憶體陣 列,其中該閘間介電層之材質包括氧化矽。 21. 如申請專利範圍第13項所述之非揮發性記憶體陣 列,其中該電荷儲存層的材質包括氮化矽、氮氧化矽或是 奈米晶層。 22. 如申請專利範圍第13項所述之非揮發性記憶體陣 (§) 23 I2849M twf.doc/y 列,其中該電荷儲存層的材質包括摻雜多晶石夕。 23. 如申請專利範圍第13項所述之非揮發性記憶體陣 列,其中同一行的該些記憶單元中,相鄰的兩該些記憶單 元共用該源極區。 24. 如申請專利範圍第13項所述之非揮發性記憶體陣 列,其中同一行的該些記憶單元中,相鄰的兩該些記憶單 元共用該汲極區。1284944 twf.doc/y Patent Application Range: 1. A non-volatile memory array comprising: a memory of a plurality of δ hexagram units arranged in a row/column array, each of which includes a first conductivity type well a second conductive type source region, a second conductive type doped region and a second conductive type drain region are disposed in the first conductive type well region; a gate is disposed on the substrate between the second conductive type source region and the second conductive type doped region; a first control gate is disposed on the second conductive type doped region and the a substrate between the conductive drain regions, and the control electrode is formed of a homo-phase material; and a charge storage structure is included in the gate electrode, wherein at least one charge is included: the control idle Between the substrate and the substrate, wherein the memory cells are in the same direction as the mirror lines, and the source lines are arranged in parallel in the column direction, and the first column is connected to the same column. Two conductive source regions; connecting the same column connecting the same column a plurality of bit lines arranged in parallel in the row direction for the second conductivity type drain region of each of the cells; > a number of word line lines arranged in parallel in the column direction, the selection of the cell a gate electrode; and each of the ΐϊΐ control lines, which are arranged in parallel in the column direction as a large control gate, wherein the control lines are each set of n (n is a positive integer of 4 to 2) The non-volatile memory array of claim 1, wherein the first conductivity type is N-type. 3. The non-volatile memory array of claim 1, wherein the second conductivity type is P-type. 4. The non-volatile memory array of claim 1, further comprising a select gate dielectric layer disposed between the select gate and the substrate. 5. The non-volatile memory array of claim 1, wherein the charge storage structure further comprises a pass-through dielectric layer disposed between the charge storage layer and the substrate. 6. The non-volatile memory array of claim 1, wherein the material of the tunneling dielectric layer comprises yttrium oxide. 7. The non-volatile memory array of claim 1, wherein the charge storage structure further comprises an inter-gate dielectric layer disposed between the charge storage layer and the control gate. 8. The non-volatile memory array of claim 1, wherein the material of the inter-gate dielectric layer comprises yttrium oxide. 9. The non-volatile memory array of claim 1, wherein the material of the charge storage layer comprises tantalum nitride, hafnium oxynitride or a nanocrystalline layer. 10. The non-volatile memory array of claim 1, wherein the material of the charge storage layer comprises doped polycrystalline stone. 11. The non-volatile memory array according to claim 1, wherein in the memory cells of the same row, the adjacent two memory cells 8 21 I284^44wf.doc/y ^ yuan share the same Source area. 12. The non-volatile memory array according to claim 1, wherein in the memory cells of the same row, the adjacent two memory cells share the drain region. 13. A non-volatile memory array comprising: a plurality of memory cells arranged in a row/column array, each of the memory cells comprising: a first conductivity type well region disposed in a substrate; a conductive source region-second conductive type doped region and a second conductive type drain region are disposed in the first conductive type well region; a selection gate is disposed in the second conductive type source region and a substrate between the first and second conductive type doped regions; a control gate disposed on the substrate between the second conductive type doped region and the second conductive type drain region, and the The control gate and the selection gate are formed by the same gate material; and a charge storage structure including at least one charge storage layer, Φ is disposed between the control gate and the substrate, wherein the memory cells are in the same row The two adjacent memory cells are arranged in a mirror-symmetric manner; a plurality of source lines are arranged in parallel in the column direction, and the second conductive type source regions of the memory cells connected to the same column are connected And the source lines are electrically connected The first conductive type well region; a plurality of bit lines arranged in parallel in the row direction, connecting the second row of the memory cells of the same row and the polar regions, the plurality of word lines, in the column direction Arranging in parallel, connecting 22 f.doc/y of the same column to the selection gate of each memory cell; and a plurality of control lines arranged in parallel in the column direction to connect the control gates of the memory cells of the same column 14. The non-volatile memory array of claim 13, wherein the first conductivity type is N-type. 15. The non-volatile memory array of claim 13, wherein The non-volatile memory array of claim 13 further comprising a selective gate dielectric layer disposed between the select gate and the substrate. 17. The non-volatile memory array of claim 13, wherein the charge storage structure further comprises a tunneling dielectric layer disposed between the charge storage layer and the substrate. 13 non-swing The memory memory array, wherein the material of the tunneling dielectric layer comprises ruthenium oxide. 19. The non-volatile memory array according to claim 13, wherein the charge storage structure further comprises a gate dielectric layer. The non-volatile memory array according to claim 13, wherein the material of the inter-gate dielectric layer comprises ruthenium oxide. The non-volatile memory array of claim 13, wherein the material of the charge storage layer comprises tantalum nitride, hafnium oxynitride or a nanocrystalline layer. 22. Non-volatile as described in claim 13 Memory Memory Array (§) 23 I2849M twf.doc/y column, wherein the material of the charge storage layer comprises doped polycrystalline stone. 23. The non-volatile memory array of claim 13, wherein in the memory cells of the same row, two adjacent memory cells share the source region. 24. The non-volatile memory array of claim 13, wherein in the memory cells of the same row, two adjacent memory cells share the drain region. 24twenty four
TW94130477A 2005-09-06 2005-09-06 A non-volatile memory array TWI284964B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW94130477A TWI284964B (en) 2005-09-06 2005-09-06 A non-volatile memory array
US11/164,174 US7244985B2 (en) 2005-09-06 2005-11-14 Non-volatile memory array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94130477A TWI284964B (en) 2005-09-06 2005-09-06 A non-volatile memory array

Publications (2)

Publication Number Publication Date
TW200713514A TW200713514A (en) 2007-04-01
TWI284964B true TWI284964B (en) 2007-08-01

Family

ID=39446028

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94130477A TWI284964B (en) 2005-09-06 2005-09-06 A non-volatile memory array

Country Status (1)

Country Link
TW (1) TWI284964B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10141323B2 (en) 2016-01-04 2018-11-27 Taiwan Semiconductor Manufacturing Company, Ltd. Non-volatile memory and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10141323B2 (en) 2016-01-04 2018-11-27 Taiwan Semiconductor Manufacturing Company, Ltd. Non-volatile memory and method of manufacturing the same
TWI651834B (en) * 2016-01-04 2019-02-21 台灣積體電路製造股份有限公司 Non-volatile memory and method of manufacturing the same
US10784276B2 (en) 2016-01-04 2020-09-22 Taiwan Semiconductor Manufacturing Company Ltd. Non-volatile memory and method of manufacturing same

Also Published As

Publication number Publication date
TW200713514A (en) 2007-04-01

Similar Documents

Publication Publication Date Title
TWI427744B (en) Memory architecture of 3d array with diode in memory string
US8861273B2 (en) Bandgap engineered charge trapping memory in two-transistor nor architecture
US10192622B2 (en) Systems, methods, and apparatus for memory cells with common source lines
TWI433302B (en) Integrated circuit self aligned 3d memory array and manufacturing method
TWI447855B (en) Memory architecture of 3d array with diode in memory string
US7626864B2 (en) Electrically alterable non-volatile memory cells and arrays
US10468433B2 (en) Three-dimensional semiconductor devices including gate electrodes
TWI420656B (en) Non-volatile semiconductor memory and driving method thereof
TWI462116B (en) 3d memory array with improved ssl and bl contact layout
JP2008140912A (en) Nonvolatile semiconductor memory device
KR20150083319A (en) Nonvolatile memory device and manufactureing the same
US20100080038A1 (en) Semiconductor memory device
JP2012019211A (en) Three-dimensional memory array having improved contact layout of string selection line and bit line
US8427864B2 (en) Semiconductor storage device
US20170040335A1 (en) Semiconductor device
JP2011091302A (en) Semiconductor memory device
US20090080250A1 (en) Nonvolatile semiconductor storage device and operation method thereof
TW200931648A (en) Non-volatile semiconductor memory device and method of manufacturing the same
US8300448B2 (en) Semiconductor storage device, memory cell array, and a fabrication method and drive method of a semiconductor storage device
TWI284964B (en) A non-volatile memory array
US11605647B2 (en) Ferroelectric-type semiconductor memory device with hole transfer-type layer
CN102201453A (en) Memory unit and nonvolatile memory device and foming method thereof
US20080093643A1 (en) Non-volatile memory device and fabrication method
JP2011210969A (en) Semiconductor device and method of manufacturing semiconductor device
JP2009212149A (en) Nand mix-loading type semiconductor time switch